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Abstract
Virtual switches, used for end-host networking, drop pack-

ets when the receiving application is not fast enough to con-
sume them. This is called the slow receiver problem, and it
is important because packet loss hurts tail communication
latency and wastes CPU cycles, resulting in application-level
performance degradation. Further, solving this problem is
challenging because application throughput is highly variable
over short timescales as it depends on workload, memory
contention, and OS thread scheduling.

This paper presents Backdraft, a new lossless virtual switch
that addresses the slow receiver problem by combining three
new components: (1) Dynamic Per-Flow Queuing (DPFQ)
to prevent HOL blocking and provide on-demand memory
usage; (2) Doorbell queues to reduce CPU overheads; (3)
A new overlay network to avoid congestion spreading. We
implemented Backdraft on top of BESS and conducted ex-
periments with real applications on a 100 Gbps cluster with
both DCTCP and Homa, a state-of-the-art congestion con-
trol scheme. We show that an application with Backdraft can
achieve up to 20x lower tail latency at the 99th percentile.

1 Introduction

Virtual switches (vswitches) play an important role in today’s
data center networks operation [30, 33, 38, 68]. They are in
charge of routing packets to one of the many competing mi-
croservices and applications running on a server that are com-
municating both locally and remotely [48, 66, 86]. They also
provide isolation [61, 68, 87], enable load balancing [51], and
perform packet encapsulation and decapsulation for secure
virtual networking [30, 38, 39].

Virtual switches are fundamentally different from their
physical counterpart. A physical switch has fixed port band-
width, and its draining rate of output queues does not change
over time. This is not the case for vswitches, as their draining
rate of output queues depends on the ability of connected
applications to consume packets. When packets arrive faster

than an application can process, queues inside the vswitch
fill up and overflow, leading to packet loss. This is called the
slow receiver problem [21,44,60,73], and it hurts tail network
communication latency and wastes CPU cycles, impacting
application-level performance [22, 27, 91, 96].

In this paper, we show that slow receivers can manifest at
short timescales and cause packet loss even in the presence of
state-of-the-art congestion controls such as Homa [72] (§2.1).
Moreover, CPU cycles are wasted in handling dropped pack-
ets, and this further increases latency and the already high soft-
ware overheads of current network stacks [21,72,73], inflating
the problem. Although there are existing approaches to miti-
gate packet loss (i.e., bandwidth reservation [13,49,50], back-
pressure [31, 43], credit-based hop-by-hop flow control [62],
PicNIC [61]), they all have key limitations (§2.2). For ex-
ample, because virtual ports bandwidth are variable over
time, reservation schemes either lead to reduced network
throughput or fail to prevent packet loss. Today’s backpres-
sure flow control solutions suffer from severe Head-of-Line
(HOL) blocking and congestion spreading, leading to reduced
throughput across the entire cluster [44, 88, 99] and unaccept-
able latency for some applications [16, 65]. PicNIC [61, 79],
a state-of-the-art solution to provide predictable performance
in a multi-tenant data center, incurs high CPU utilization and
consequent throughput degradation and HOL blocking for
flows sharing a Virtual Machine (VM).

To prevent packet loss from the slow receiver problem, this
paper presents Backdraft, a new lossless vswitch. Backdraft
prevents packet loss while (1) avoiding HOL blocking, (2)
reducing the required CPU cycles, and (3) preventing con-
gestion spreading in the network core (§3). Our main insight
is that, unlike physical switches, vswitches have abundant
memory that can be used to support a large number of queues.

Leveraging this property, Backdraft assigns a separate
queue for every single flow, preventing HOL blocking. To
ensure that per-flow queuing is not prohibitive in its mem-
ory overheads, we introduce an approach that dynamically
reclaims queues from idle flows and resizes them to accom-
modate in-flight packets from bursty flows.



Also, Backdraft uses separate queues for doorbells (notifica-
tions) and packet data to reduce the CPU overhead induced by
per-flow queueing that can impact the vswitch performance.
In this approach, the vswitch has only to poll the doorbell
queue to find where the new to be processed data is located.
By keeping the number of doorbell queues low, it is possi-
ble to greatly reduce CPU overheads, enabling per-flow data
queueing and scaling to 100 Gbps switching performance.

Finally, Backdraft uses an overlay network between com-
municating vswitches. When a queue inside the vswitch be-
gins to fill because of a slow receiver, Backdraft preemptively
sends an Overlay Pause Frame (OPF) to the upstream vswitch
responsible for the congestion with pause time and the slow
receiver’s bandwidth. This is practical because vswitches have
a large amount of memory that can be used to store in-flight
packets generated by the sender before receiving the OPF
notification. Indeed, even buffering a full RTT of packets in a
100 Gbps network, a worst case of 1ms RTT would only re-
quire 12.5 MB of space (1 Bandwidth-Delay-Product - BDP),
and end-hosts have GBytes of memory.

We implemented Backdraft on top of the BESS vswitch [3,
45] (§4), and evaluated it using a cluster of servers on Cloud-
Lab [75] equipped with 10 and 100 Gbps NICs (§6). We ex-
perimented with both standard and state-of-the-art congestion
controls: in the first case we used unmodified POSIX appli-
cations leveraging the TAS TCP acceleration service [56]; In
the second, we used Homa [72] with its DPDK implemen-
tation. When we ran a distributed application that performs
RPCs, Backdraft in conjuction with Homa could lower its tail
latency by up to 20x at the 99th percentile. With Memcached,
instead, Backdraft could improve its goodput by up to 2.71x
when compared to BESS. We also show that Backdraft does
not suffer by HOL blocking and because of this can achieve
100 Gbps throughput in a cluster where a slow receiver is
present. Finally, we demonstrate that Backdraft ensures high
throughput with large number of queues. With 2K queues,
throughput is 9x higher than BESS. This paper makes three
contributions:

1. We make the case for building a lossless virtual switch by
demonstrating the impact of slow receivers on packet loss
and network performance using both DCTCP and Homa,
a state-of-the-art congestion control algorithm.

2. We introduce Backdraft, a new lossless virtual switch that
prevents the slow receiver problem and overcomes the
drawbacks of state-of-the-art solutions: It (1) prevents
packet loss, (2) removes HOL blocking, (3) increases
throughput by eliminating wasted CPU cycles, and (4)
avoids congestion spreading in the core network.

3. We implement and evaluate Backdraft on top of BESS
using different congestion control mechanisms in a clus-
ter of servers on CloudLab equipped with 10 Gbps and
100 Gbps NICs. We released our code under a flexible
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Figure 1: Various deployments of transport layer with respect
to vswitches. (a) transport as a library. (b) transport as an OS
service. (c) transport as a network function. (d) transport as a

vswitch service.

open-source license to enable reproducibility1.

2 Motivation

Virtual switches use shared memory queues to transmit and
receive packets to and from connected end-points (Figure 1).
Here, depending on the settings, the transport layer can be
directly included into the application as a library (case a) [56],
deployed in the kernel of a virtual machine (case b), used
as a network service directly attached to the vswitch (case
c) [59], or implemented in the vswitch (case d) [68]. Regard-
less, whenever the vswitch is ready to handle new data coming
from the wire, it pulls a packet pointer from one of the NIC
queues (point 1), performs processing and places it in the
queue associated to the destination endpoint (point 2). Finally,
the endpoint pulls the pointer and consumes the data (point
3). If this last step is not fast enough, the queue saturates and
packets will be dropped at the vswitch. Notably, the discussed
queue is not subjected to transport-level flow control mecha-
nisms, so even if an endpoint has enough memory reserved
for incoming packets (for example, TCP’s receive window en-
sures there is space in the receive buffer), it is still possible for
packets to arrive faster than the endpoint can process them and
eventually get dropped. This issue has been acknowledged in
the past, and it is called the slow receiver problem [21, 44].

2.1 The Slow Receiver Problem
There are many reasons for slow receivers, including alloca-
tion limitations [81], application-level limitations, load im-
balance [19, 28, 32, 51, 52, 63, 71, 74], CPU performance vari-
ability [17, 25, 37, 42, 54, 66, 82, 97], and CPU/Memory con-
tention [14, 35, 40, 41, 67].

To better understand this, we performed a number of
tests on a 100 Gbps cluster (more information available in
§6). First, we measured the achievable throughput of data-
intensive (i.e., Nginx [8] and Memcached [7]) and network-
only applications (iperf3 [6]) using an increasing number

1https://github.com/Lossless-Virtual-Switching/Backdraft

https://github.com/Lossless-Virtual-Switching/Backdraft
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Figure 2: Maximum achieved throughput by Memcached, Ng-
inx, and Iperf running with DPDK and Linux with large (L)
and small (S) response sizes. (a) They require more than 6 cores
to achieve 100 Gbps. (b) Memcached exhibits high throughput
variability with and without the background workload. (BG1:
on isolated cores. BG2: on shared cores)

of assigned processing cores. We also used different packet
I/O frameworks (e.g., standard Linux socket and DPDK) and
different workloads. For Memcached, we used both small
(200 B) and large values (4.8 KB) with sizes inspired by an
analysis of caching at Twitter [92]. For Nginx, we served both
small (4.8 KB) and large (1 MB) web pages.

Figure 2a shows the result of this experiment. We find
that even iperf3, an application that only performs network-
ing functionalities and no other specific processing, cannot
hit 100 Gbps throughput with less than 6 cores. For other
applications, even 64 cores might not be enough. Further,
performance is highly dependent on the specific workload:
Memcached using the Linux socket interface and serving
4.8 KB values with 32 cores achieves 16x higher bandwidth
than the counterpart serving 200 B values. In contrast, Mem-
cached can achieve 187 KRPS per core when serving 200 B
items, while only 78 KRPS when serving 4.8 KB items.

Resource provisioning (OS scheduling) also plays a key
role in application behavior [21, 73]. To better understand
this, we run Memcached with 32 threads solely on bare-metal
servers, where each thread resides on a separate logical core
(the number of total logical cores is 64). Then, we use sys-
bench [58], which only exercises 32 logical cores, along with
Memcached on the same machine. We evaluated both sce-
narios when Memcached and sysbench share CPU cores and
when the two applications are isolated on different cores. Fig-
ure 2b shows that the Memcached server is unpredictable even
without a background workload. When it is run with sysbench,
its performance degrades by 12% or by 50% depending on
the amount of contention. Moreover, the standard deviation
of the throughput distribution increases by up to 1.71x.

Even worse, applications behavior can be highly variable
and dependent on the workload [92]. We show this with ex-
periments using Memcached and Nginx. To test the former,
we used four clients generating a workload resembling the
one experienced by Facebook [15]. For the latter, we used
sixty single threaded clients requesting data from a copy of
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Figure 3: Throughput variability of Memcached (a) and Nginx
(b) in a 1.4ms window. Throughput is highly variable over short
timespans: box is 100 µs. In the box, we can see over 40 Gbps
variability in less than 100 µs. (c) CDF of Memcached and Nginx
throughput over the entire experiment.
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Figure 4: Throughput (a), packet loss (b) and RPC completion
time (c) for a bidirectional RPC using Homa, the state-of-the-
art transport protocol for data center networks. Packet loss can
reach even 10% when only one core is assigned to the server
application. RPC completion time can increase by ∼9.3x at 99th.

the NSDI’21 website2, a fairly light website composed of
static pages. In Figures 3a and 3b, we show that performance
variability in these applications is temporal. For instance,
throughput varies about 45 Gbps in less than 100 µs.

Furthermore, in Figure 3c, we illustrate the CDF of through-
put for both Memcached and Nginx. Again, we can see vari-
ability: although they can both reach 100 Gbps, but for 50%
of the time their throughput stays under 80 Gbps and 60 Gbps
for Memcached and Nginx, respectively.

Observation I: Slow receivers are pervasive and can
manifest at short timescales.

There are many new congestion control algorithms. How-
ever, even new algorithms still suffer from slow receivers. To
show this, we ran a number of tests using Homa, a state-of-the-
art transport protocol for data center networks [72]. Precisely,
we performed a few tests where a client requests Remote
Procedure Calls (RPCs) on a server, a dominating pattern in
production data centers [57, 86], using a workload similar to
the one experienced by Memcached servers at Facebook [72].

In Figures 4a and Figure 4b, we show that when the end-
point cannot process incoming packets fast enough, the drop
rate increases. In this experiment, all packet loss occurs at the
end-host, and the core network is loss free. This is particu-
larly problematic because packet reception is expensive [69]
and CPU cycles spent to eventually drop a packet are wasted
resources that can amplify the problem. For example, it has
been demonstrated that an increasing loss rate can cause ad-

2https://www.usenix.org/conference/nsdi21

https://www.usenix.org/conference/nsdi21
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Figure 5: (a) The impact of packet loss on Homa’s and, (b)
TCP’s throughput. Packet loss of 10−2 can halve the throughput.
(c) The CPU cost of packet admission in PicNIC given different
packet batch sizes. PicNIC’s out-of-order packet completion
queues incur high CPU utilization.

ditional CPU cycles spent in handling the transport protocol,
leading to fewer available cycles for data processing [21].

Further, Figure 4c shows that slow receivers lead to an
increase in RPC completion time. This is because vswitch
queues are shared across flows/RPCs belonging to the same
application. As a queue becomes full, flows not responsible
for the congestion (victim flows) will experience high latency.
Specifically, we can see that even a slight slow down of the
receiver application can cause the 99.9th percentile latency
to hit values higher than 1ms. Those results show that even
small amounts of packet loss can have a dramatic impact on
the performance of receiver applications. We also performed
a similar set of tests using DCTCP [12] to show DCTCP is
also susceptible to high packet loss and report our results in
Appendix (§ A.1.1).

To better understand the cost of packet loss, we performed
an experiment where the vswitch is configured to drop pack-
ets according to a uniform probability distribution. We also
used a standard TCP and Homa as transport protocols and
measured the maximum sustainable throughput in terms of
RPCs-per-second. In Figures 5a and 5b, we can see that even
a small percentages of packet loss can dramatically impact
performance. For example, the maximum sustainable RPCs-
per-second can be halved with a packet loss probability of
just 10−2 when using Homa. Also, the latency of Homa can
reach milliseconds scale as packet loss exceeds 10−2, as we
show in Appendix (§A.1.2).

Observation II: Slow receivers cause sudden packet loss
even in the presence of state-of-the-art congestion control
mechanisms. Packet loss impacts network throughput and

application service completion time.

2.2 Lossless Vswitching to the Rescue?

Packet loss at the vswitch is the source of many problems.
However, there are already a variety of approaches that can
be taken to avoid packet loss. These include reservations/rate-
limiting, backpressure, credit-based flow control, or a com-
bination thereof. Unfortunately, these have their own key
limitations as discussed below and recap in Table 1.

Approach
Prevents
packet
loss

HOL
blocking

free

Avoids
wasted
CPU

Congestion
spreading
prevention

Rate-limiting [50] ✗ ✗ ✗ ✗

Backpressure [31, 43] ✓ ✗ ✗ ✗

Credit-based [62] ✓ ✗ ✓ ✗

PicNIC [61] ✓ ✗* ✗ ✗

Backdraft ✓ ✓ ✓ ✓

Table 1: A comparison of existing approaches to reducing
packet loss. (*) PicNIC only prevents HOL blocking for flows

coming from different VMs.

Reservation Schemes (Rate limiting). One option could
be to rate-limit traffic according to bandwidth reservation
schemes [13, 49, 50]. Although this is a good option for phys-
ical switches, it is not applicable in the virtual context. This
is because such schemes assume that the line-rate processing
is known in advance and deterministic. While this is the case
for hardware switches, it is not for virtual ones.
Backpressure. Another option is to use a backpressure flow
control scheme such as PFC [31] or BFC [43]. The main
idea here is to send a pause message to the upstream switch
before incurring a buffer overflow. Unfortunately, both PFC
and BFC have key limitations that prevent them to be used
as viable solution in a vswitch. The former might cause HOL
blocking [29] and congestion spreading [44, 99] when the
PAUSE frame from the vswitch reaches the upstream hard-
ware switch. The second relies on the observation that most
flows in a data center network are relatively short at today’s
100 Gbps line-rates to avoid HOL blocking from priority hash
collisions inside the network core. However, this assumption
breaks if slow applications connected to a vswitch are allowed
to generate PAUSE messages. In this case, slow receivers will
cause congestion spreading, and hash collisions will result in
reduced throughput of victim flows from line-rate (100 Gbps)
to the rate of the slow receiver.
Credit-based Flow Control. Hop-by-hop credit-based flow
control is another mechanism for ensuring zero packet
drop [62]. Unfortunately, this technique requires an RTT
to request credits and specific support from switches which
makes it difficult to be deployed on production networks [24].
Similar to backpressure schemes, credit-based flow control
requires packets to be buffered at switches when there are no
credits available, leading to HOL blocking.

Observation III: Standard lossless techniques either
cannot be used in a virtual context or cause severe HOL

blocking and congestion spreading.

Other Approaches (PicNIC). PicNIC [61, 79] is a state-
of-the-art solution to provide predictable performance in a
multi-tenant data center where per-VM service level objec-
tives (SLO) must be met. PicNIC takes an end-to-end ap-
proach to provide backpressure from receivers to senders and
aims at preventing HOL blocking at the transmit-side by intro-
ducing a packet admission control system where descriptors
may be completed out-of-order. This is implemented using



Backdraft
Component Purpose Expected result

Dynamic per-flow
queuing

Avoids HOL blocking,
On-demand memory usage

Mitigates tail latency,
Improves throughput,
Flexible packet scheduling,
Prevents pause frame flood.

Doorbell queue Avoids wasted CPU
Avoids extra pause frame generation,
Saves network bandwidth,
Alleviates the slow receiver problem.

Virtual switch
backpressure
overlay network

Avoids packet loss,
Vswitch-level flow control,
PFC/BFC compatibility

Avoids extra pause frame generation,
Saves network bandwidth,
Alleviates the slow receiver problem.

Table 2: Backdraft’s components and their contributions

a specific feature available in virtio interface [10, 78]. To
understand its associated cost, we conducted an experiment
where two end-points are connected to a vswitch on the same
host. Each end-point is assigned a single core. Then we ex-
perimented with both out-of-order and in-order completion
queues in the vswitch. Figure 5c, depicts that the out-of-order
packet completion approach is slower than in-order by 20%
and 28% when using a batch size of 16 [68] and 32 [3], respec-
tively. Further, this is a baseline with only one core, and these
overheads increase with a larger number of cores and queues.
Thus, irrespective of application behavior, PicNIC imposes a
high toll on performance. Furthermore, while PicNIC can suc-
cessfully provide predictable performance for flows generated
by different VMs, it does not have any mechanisms to ensure
isolation between flows coming from the same VM as the
out-of-order completion queues have a per-VM granularity,
meaning that the slow-receiver problem can still happen and
affect all the flows within the same VM.

Observation IV: PicNIC can only isolate slow receivers at
a per-VM granularity. It also imposes high CPU utilization

and causes throughput degradation.

3 Backdraft Overview

Backdraft is a vswitch that provides lossless networking
with higher throughput and lower CPU overheads than lossy
switching, and Backdraft does not suffer from HOL blocking
or congestion spreading. Backdraft achieves its goals by us-
ing three main components: (1) Dynamic Per-flow Queuing
(DPFQ); (2) Separate queues for doorbells and data; and a (3)
Virtual switch overlay network used for backpressure. Table 2
summarizes the purpose and effect of each component.
Dynamic Per-Flow Queuing (DPFQ): To avoid HOL block-
ing, Backdraft assigns a separate queue for every single flow
in the vswitch, where a flow is an individual TCP connection.
However, preallocating queues and memory for the worst case
number of flows and burst sizes would be prohibitive. To en-
sure that per-flow queuing is not prohibitive in its memory
overheads, we introduce a new approach that dynamically re-
claims queues from idle flows and dynamically resizes queues
to accommodate in-flight packets from bursty flows (DPFQ).

By enabling per-flow queueing, Backdraft fundamentally
eliminates the HOL blocking caused by slow receivers and
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(a) A traffic pattern where
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from HOL blocking.
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(b) An illustration of why
using separate queues for
each virtual switch port
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Figure 6: Queuing and HOL blocking with backpressure.

incasts. HOL blocking only occurs when flows share a queue,
and every flow in DPFQ is served by its own queue (Figure 6b
versus Figure 6a). DPFQ is possible because end-host mem-
ory is not as limited as in physical switches [43,84]. However,
the challenge is ensuring that DPFQ does not incur prohibitive
memory overheads even though the number of active flows
is potentially large [77]. Over-provisioning leads to memory
pressure, while under-provisioning forces flows to fall back to
sharing the same queue, potentially incurring HOL blocking.

To solve this issue, Backdraft introduces a new approach
to efficiently resize queues on demand. Although all memory
for queues and packet buffers is allocated when the process is
created to avoid performance stalls, queues are dynamically
allocated and reclaimed from flows as they start and stop,
and queues are dynamically grown by combining queues as
needed to accommodate bursts of packets. This dynamism
allows for efficient per-flow queuing without increasing mem-
ory overheads. Our insight is that the total amount of conges-
tion that can occur in a vswitch is limited by things like the
line-rate of the NIC and not by the number of active flows.
Given the same amount of memory, DPFQ enables the same
congestion tolerance as a single queue.

DPFQ introduces a new interface to the vswitch. However,
it is still possible to support DPFQ without modifying appli-
cations. For example, most TCP applications (e.g., POSIX
sockets applications) already perform per-flow operations. In
this case, only the TCP stack needs to be modified to support
DPFQ. Further, Backdraft supports legacy DPDK [47] and
Netmap [76] applications that expect a shared queue interface
with a vswitch by performing DPFQ inside the vswitch.
Doorbell Queues: The CPU overheads of a vswitch increase
linearly with the number of queues that need to be polled [41],
and data center workloads may have thousands of flows [18,
77]. Backdraft overcomes this limitation by using separate
queues for data and doorbells. For each endpoint, there is
a data queue for each flow and a doorbell queue for each
core. To send data, an end-point first enqueues packets in data
queues then sends a doorbell message to the doorbell queue.
This allows the vswitch to poll only an application’s doorbell
queue to learn about new data.

Doorbell queues also provide a mechanism for applica-
tions to communicate scheduling information about the rel-
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Figure 7: An overview of Backdraft’s architecture.

ative priorities and weights of all active flows. Similar to
prior work [79, 80, 87], this enables Backdraft to perform pro-
grammable scheduling and ensure that the appropriate queues
are scheduled first to ensure low latency.
Virtual Switch Backpressure Overlay Network: When
combined with backpressure, DPFQ can avoid both packet
loss and HOL blocking for traffic local to the vswitch (server).
However, if Backdraft runs out of buffer space and data is
still incoming from a NIC, it must send a pause frame to the
upstream TOR switch connected to the NIC to avoid packet
loss when interfacing with a lossless network core, and it must
drop packets when interfacing with a lossy network core. Un-
fortunately, generating pause frames can lead to congestion
spreading, while dropping packets has a significant impact on
network performance (Figure 5a and Figure 5b).

To avoid such problems, Backdraft builds an overlay net-
work out of vswitches where Backdraft eagerly sends pause
messages on the overlay network to the upstream vswitches
that are causing congestion and either lazily sends pause mes-
sages to the upstream physical switch or lazily drops packets.
This enables the local congested vswitch to continue buffer-
ing packets while waiting for the remote vswitch to react
without causing congestion spreading. Additionally, DPFQ
ensures that there is no congestion spreading inside the up-
stream vswitches because it is possible to pause only the flows
responsible for the congestion.

With a lossless network core, the difference between the
overlay pause threshold (T hover) and the network pause thresh-
old used for PFC or BFC (T hnet) determines the amount
of data that can be buffered while waiting for the upstream
vswitch to react. If the difference in bytes between these two
thresholds is greater than the current network’s bandwidth
delay product (BDP), i.e., the RTT times the network line
rate (T hover −T hnet > RT T ∗BW ), then it is possible for the
overlay network to react to a slow receiver without needing to
send a network-level pause message. Because buffering 1ms
of packets at 100 Gbps line-rate only requires 12.5 MB of
buffering, it is easy to buffer multiple BDPs of packets in a
vswitch with low overheads.

4 Design

Applications connect to Backdraft through queues imple-
mented on top of shared memory, and both applications and
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(b) Data queue pool memory overview in DPFQ.

the vswitch detect packets by polling. Native Backdraft ap-
plications use doorbell queues and data queues in both RX
and TX directions. However, Backdraft also supports legacy
DPDK applications that only use data queues to send packets
as well as standard applications using the kernel networking
stack through a custom kernel driver. Currently, Backdraft is
designed to be a userspace vswitch although its key ideas are
also applicable to kernel-space switching.

Figure 7 provides an overview of Backdraft. First an appli-
cation sends control messages to the vswitch 1 . Upon the
arrival of the doorbell message, Backdraft allocates the appro-
priate data queues 2 . Finally, data packets exchange starts
3 . Similarly, as new flows start and stop, an application can

send more doorbell messages to allocate or release additional
data queues. Backdraft supports dynamic queue allocation
and resizing via a linked list structure to efficiently manage
packet buffers. The rest of this section discusses the design of
the Backdraft components in more detail.

4.1 Doorbell Queues
Backdraft uses doorbell queues to reduce the CPU overheads
of DPFQ and achieve high throughput. DPFQ increases the
number of available queues, and polling them all is inefficient.
Checking for outstanding packets costs a memory access,
which requires ∼100 cycles per queue. There are two ways
doorbell queues reduce polling overheads: First, only doorbell
queues and not data queues need to be polled. Second, the
total number of doorbell queues is kept small. To support
parallelism, an application needs at most one hardware thread
per doorbell queue.

Figure 8a illustrates the control flow between doorbell and
data queues. 1 The application generates a doorbell message,
notifying the vswitch. 2 The vswitch receives outstanding
packets. If the destination is a remote server, 3 the vswitch
sends the packets to the NIC, and then 4 the packets arrive



at the destination vswitch. Once the packet is at the receiv-
ing vswitch, 5 the vswitch places the received packet in the
appropriate per-flow queue and then generates doorbell mes-
sage for the application. Finally, 6 the application receives
a doorbell message and then polls the data. Additionally, all
of the command messages in a command queue are read at
once in a batch to ensure there is no HOL blocking.

4.2 Dynamic Per-Flow Queuing (DPFQ)

It is important to ensure that DPFQ does not put pressure on
memory; hence, DPFQ dynamically reclaims, reassigns, and
resizes queues to reduce the memory pressure.

When an application initially connects to Backdraft, the
data queue descriptors are negotiated between the vswitch
and the application. As applications push packets to buffers,
Backdraft allocates individual queues on demand (Figure 8b).
To prevent applications’ address spaces from being exposed to
others, separate shared memory regions and pools of queues
are used for each application. This separation of buffering
across applications ensures isolation.

Backdraft dynamically resizes queues to absorb packet
bursts while minimizing memory overheads. To this end,
Backdraft allocates ring buffers of fixed size and then links
them together to form and extend queues (Figure 8b-2). Be-
fore a ring buffer gets full, Backdraft extends the queue by
placing a pointer to a new ring buffer instead of a packet
buffer in the overloaded queue. This enables it to learn about
an extended queue without any race conditions. Then, once a
flow becomes idle, Backdraft reclaims the initial queue into a
pool that it can allocate to other queues.

Backdraft pre-allocates all queues at boot time and pushes
all the pointers to these queues in a lockless stack. The number
of pre-allocated queues can be configured depending on the
workload but we used 50 queues for the experiments of this
paper. Backdraft benefits from the lockless stack in two ways:
First, this structure improves cache efficiency as a pushed
pointer can be used immediately from the top of the stack.
Second, Backdraft is capable of supporting multiple threads
accessing the data queue pool. When a new flow arrives at
Backdraft, it borrows a pointer to a queue from the stack
and enqueues packet pointers in the queue (Figure 8b-1). If
this queue becomes fully occupied, Backdraft borrows an-
other pointer and links it to the previous one as is depicted in
Figure 8b-2.

Backdraft does not deallocate empty queues, nor does it
leave empty queues allocated to idle flows. Instead, it reclaims
empty queues and pushes them back to the lockless stack. This
helps Backdraft to reuse reclaimed queues promptly without
deallocating them. Backdraft is only responsible for queue
assignment/reclamation leading to no race conditions. An
entire queue can be reclaimed once there are no outstanding
packets in the queue. Full reclamation only happens when a
receiver application notifies Backdraft by means of a doorbell

message about the emptiness of a data queue. Similarly, for
new queues, applications must send a doorbell message to
Backdraft requesting a queue corresponding to the new flow.

Both RX queues and TX queues can be extended. RX
queues are frequently extended to tolerate bursts. In contrast,
TX queues are only extended for flows with large BDPs, and
there is no need to extend TX queues beyond a BDP in length.
Instead of extending transmit queues beyond a BDP in length,
an application can infer that a transmit queue being full is
because of congestion or a slow receiver, and DPFQ enables
applications to react to congestion. Many applications can
simply keep packets buffered inside a TCP stack until the
queue drains. However, it is also possible for some applica-
tions to mutate or even discard packets to reduce load.
Legacy Interfaces: Backdraft is backward compatible with
both POSIX applications and DPDK applications. For the
former, there are two ways to interface with Backdraft: (1)
Backdraft uses a userspace TCP library that dynamically links
to legacy socket applications (TAS [56]). (2) Packets can be
received from the kernel through a custom networking driver.
This is useful for applications that require features not yet
supported by our library, e.g., PF_RING.

4.3 VSwitch Backpressure Overlay Network

When there is congestion because of a slow receiver, Back-
draft uses backpressure and sends pauses messages to the
upstream sources of traffic to avoid packet losses. However,
Backdraft is unique in that there are two different types of
pause messages that it can generate: Overlay Pause Frames
(OPFs) that are sent on a vswitch-to-vswitch overlay net-
work and network-level pause frames that are sent hop-by-hop
across the physical topology by a backpressure flow control
scheme like PFC or BFC [43]. Backdraft implements PAUSEs
internally by function calls instead of sending PAUSE frames
throughout the pipeline because this reduces CPU overheads.
PAUSE frames are only created if the PAUSE frame is des-
tined for a remote end-point, which enables Backdraft to pro-
vide lossless forwarding across a cluster.

To avoid congestion spreading, Backdraft eagerly generates
OPFs. When the occupancy of a receive queue crosses a
configurable threshold (T hover), Backdraft generates an OPF
and sends it to the upstream Backdraft virtual switch that is
causing congestion. Because there is only one flow per receive
queue in Backdraft, only one message needs to be generated.

OPFs contain three pieces of information that are used by
the upstream vswitch: 1) flow identifier, 2) pause time, and 3)
new transmission rate. When an upstream vswitch receives
an OPF, it pauses the input queue for the specified pause
time, and then it applies a transmission rate-limit on the input
queue.

Although prior backpressure schemes only send a pause
time, sending a rate in an OPF is important to avoid persistent
on/off congestion bursts from transmitters restarting after



being paused. To support this, Backdraft tracks an estimated
receive rate (Rrecv) using an exponential weighted moving
average (EWMA) for each receive queue as it delivers packets,
and it uses this rate when generating an OPF. The pause time
is set as (T hcurr −T hgoal)/Rrecv where T hcurr is the current
length of the queue and T hgoal is the target queue length,
which is equal to the batch size of packets read by the TCP
stack by default to help ensure efficient CPU utilization.

The biggest concerns with respect to choosing values for
T hgoal and T hover are in avoiding starvation and reducing
CPU overheads. Starvation is possible if the receiver vswitch
either underestimates the end-point’s rate or sets too large of
a pause value. T hgoal provides headroom to avoid this, and
if starvation is observed to be a problem with a running ap-
plication, both the application and the vswitch can increase
this value. In contrast, to avoid congestion spreading, it is
desirable to set as large of a value for T hnet as possible be-
cause Backdraft generates PFC/BFC messages that will be
processed by the upstream switch when this threshold is ex-
ceeded. This value can be as large as the maximum length of
the queue minus the 1-hop bandwidth-delay product between
the server and its TOR switch (1-hop RTT × line-rate).

On the whole, sending OPF messages significantly reduces
CPU utilization by preventing packet drops. However, to re-
duce the CPU overheads of OPF messages, T hover is set to
be at least one batch size of packets larger than T hgoal to
not interfere with batching. Further, to avoid excessive OPF
generation, Backdraft generates a new OPF message only if
the previous OPF message pause time has gone past. When
the pause time passes, Backdraft checks the queue length to
decide whether to generate another OPF message or not.

5 Implementation

Backdraft builds upon the BESS virtual switch [3] (commit
0145a1c). We have extended the TAS TCP stack [56] (commit
a1c158f) to support TCP legacy applications. Further, we
have implemented a Homa open-loop app based on the Homa
DPDK library (commit 392b577) and altered the DPDK driver
to interface with Backdraft. Our changes to BESS amount to
about 3.5K LOC, and our changes to TAS and Homa required
about 100 and 500 LOC, respectively. Apps running TAS and
Homa both connect to BESS via a DPDK vHost user port.

6 Evaluation

In this section, we evaluate the performance of Backdraft
and demonstrate that Backdraft is able to prevent packet loss
while providing 100 Gbps switching capabilities and without
incurring in HOL blocking.
Experimental cluster: We used two different types of clus-
ters from CloudLab [75]. On the first, we were able to use
PFC to perform experiments with a lossless fabric. This clus-
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Figure 9: Performance of a victim RPC with Homa in the
presence of an increasing load generated by a competing appli-
cation. We used two different message sizes and either BESS or
Backdraft as vswitch. The victim RPC is less impacted by the
competing workload in the presence of Backdraft.

ter has 6 servers, and each server has an Intel Xeon E5-2640
CPU running at 2.40 GHz with 64 GB of RAM and a 10G
ConnectX4-L NIC. These servers are connected via a Mel-
lanox SN240 10 Gbps TOR switch. We used a second cluster
with 4 servers to perform experiments at 100 Gbps. Each
server has an AMD EPYC 7452 64-Core CPU running at
2.30 GHz with 128 GB of RAM and a 100 Gbps ConnectX-
5 NIC. These servers are connected via a Dell Z9264F-ON
switch.
Applications: When experimenting with TCP, we leveraged
the TAS TCP acceleration service to connect three unmodi-
fied POSIX applications to Backdraft: Memcached [7], Muti-
late [64], and a custom distributed application that performs
RPCs. To perform experiments with Homa, we utilized the
Homa DPDK implementation [4], which unfortunately does
not have any native support for applications. We overcome
this problem by developing an open-loop RPC application on
top of Homa. Because PicNIC [61] is proprietary software, a
head-to-head comparison is not feasible.
Performance metrics and comparison points: Our exper-
iments focus on four main metrics: packet drop rate, CPU
utilization, throughput, and 99th percentile request completion
time latency. We also compared Backdraft against two varia-
tions of BESS virtual switch: lossy (default), and a lossless
variation which generates PFC messages.
Key results: With Backdraft, the Homa-based RPC appli-
cation achieves 20x lower tail latency at the 99th percentile
(§6.1). Further, Memcached achieves 1.9x higher goodput
with Backdraft (§6.2). In a lossless multi-node scenario, Back-
draft prevents congestion spreading in the network core (§6.3).
In a 100 Gbps setup, Backdraft avoids HOL blocking and
reaches 100 Gbps even in presence of slow receivers (§6.4).
Finally, Backdraft supports 16 K queues without any through-
put slow down (§6.5).

6.1 Backdraft Complements Homa
Our first experiment demonstrates that Backdraft comple-
ments Homa. In this experiment, we used two different ma-
chines in the 100 Gbps cluster: one of them hosting three
client applications and the other two server applications. Each
client/server application is assigned to a single CPU core. We
used two clients to generate fixed-size RPC requests towards
one server. The other client, instead, generates requests to-

https://github.com/NetSys/bess/commit/0145a1c388ecfd1d80992f14fba7997191b3dde6
https://github.com/tcp-acceleration-service/tas/commit/a1c158fdebeca4a315ca334ddebb9c74bcbe3d14
https://github.com/PlatformLab/Homa/tree/392b577bbdad2f5aa42faefc88614992b5e505d2
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Figure 10: Performance of the individual components of Backdraft in presence of slow receivers when handling a Memcached TCP
incast (10 flows) workload with a background UDP workload (50 flows). (a) Experimental setup (b) Aggregate drop rate, when the
UDP server spends on average 0/0.5 K/5 K extra cycles on every delivered packet. Slower receivers have more detrimental impact on
the performance. (c,d) detailed breakdown of goodput and latency impact of Backdraft. Backdraft improves tail latency up to 5.65x
compared to BESS, and 45.2x compared to BESS augmented with PFC at the 99th percentile while achieving 1.9x higher goodput.
wards the remaining server using the Facebook Memcached
workload [15].

We compare the RPC performance of the client using the
Memcached workload when using either BESS or Backdraft
as vswitch. In Figure 9a and Figure 9b, we show the results
when fixed-size RPCs are 200 B and 5 KB, respectively. When
the RPC load increases, the completion time with Backdraft
remains stable, while it inflates by over 20x with BESS. The
poor results experienced with BESS are a consequence of
its single queue design. In contrast, Backdraft keeps tail la-
tency low because each RPC_ID occupies a single queue in
the vswitch. This way, Backdraft removes HOL blocking of
various RPCs with different service times.

Homa and Backdraft have strong synergy. Homa eagerly
sends RESEND control messages to peers (RESEND_INTERVAL
= 2 µs [5]). This enables Homa to detect packet loss proac-
tively, resulting in better tail latency. The CPU overhead of
this task can be prohibitively high in presence of packet loss.
For instance, without Backdraft, the CPU usage of Homa in-
creases 8-10% because there are more outstanding messages
to manage due to loss. Backdraft avoids wasting CPU cycles
by preventing packet loss, enabling the transport protocol to
provide better performance.

6.2 Per-Component Analysis
To provide a performance breakdown of the benefits of the
different Backdraft'components, we created a scenario in a
single host where background UDP packets destined to a slow
receiver (50 flows) compete against a Memcached applica-
tion with 10 active flows generated by Mutilate (Figure 10a).
Here, we considered three cases: (1) the receiver spends 0
cycles processing the received packet; (2) the receiver spends
500 cycles; and (3) the receiver spends 5000 cycles. For con-
text, Facebook’s Katran load balancer spends 100 cycles per
packet [20], and complex functions like range queries in key-
value stores can easily take more than 1 K cycles.

Figure 10 shows the results of this experiment. With
Lossy, we consider the default behavior of BESS, while

BP is BESS with PFC enabled. DPFQ, DPFQ+DQ, and
DPFQ+DQ+ON (BD) show the incremental benefits of differ-
ent Backdraft components: dynamic per-flow input queueing
(DPFQ), doorbell queues (DQ), and the overlay network (ON).
BD indicates our final system with all components.

Figure 10b shows packet loss rates given the slow receiver
application (UDP receiver) in Figure 10a. BESS with PFC
and Backdraft both report zero packet loss. Without PFC for
BESS and without the overlay network for Backdraft, packets
may be dropped. Packet loss occurs in both the slow and fast
flows, and it is more problematic in the presence of a slow
receiver. DPFQ+DQ reduces CPU overheads and can forward
at higher throughputs than just DPFQ. This results in even
more packet loss at the receiver. This packet loss, however, is
avoided by introducing the overlay network (ON). Backdraft
prevents packet loss and achieves higher throughput and lower
tail latency.

Next, Figure 10c shows the aggregate goodput achieved by
the applications (UDP and Memcached). Backdraft always
outperforms BESS, even when the latter is augmented with
lossless capabilities using PFC. In this experiment, for the 0,
500, and 5 K cycle receiver, Backdraft achieves 22%, 10%,
and 200% and higher goodput than the lossy counterpart,
respectively. Backdraft also mitigates tail latency at the 99th

percentile by up to 5.65x.
Looking at the individual components, we find that DPFQ

has a negative impact on performance because polling more
queues consumes more CPU cycles. However, combining
DPFQ and doorbell queues (DPFQ+DQ) improves goodput
by reducing cycles spent polling. This effect is more visible
in the presence of a fast receiver, as the faster the receiver
the more packets need to be process by the vswitch. The last
component (ON) enables Backdraft to prevent packet loss.
This is illustrated in Figure 10b.

Figure 10d shows the latency experienced by Memcached.
In this figure, Backdraft similarly outperforms both BESS
configurations. The BP bar shows that naively applying a
backpressure mechanism dramatically increases network la-
tency, and this is mainly an effect of HOL blocking. DPFQ, in
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contrast, keeps the overall latency low, even in the presence
of a slow receiver. This is because providing per-flow queues
prevents HOL blocking.

To better understand Dynamic Queue Allocation (DQA),
we used a sample client application generating approximately
100 K flows to a server sink application on the same machine
where only 1 K flows are active at any point in time. We
compared two different policies for queue allocation: a static
number defined at configuration time and a dynamic. The
former assigns flows to queues using an RSS (Receive Side
Scaling) hash function, the latter creates a new queue anytime
a new flow shows up. Figure 11 shows that when using only
2.5 K queues, the collision rate is high, even if only 1 K flows
are active. Having 10x more static queues than active flows
helps, but still collisions occur. In contrast, DPFQ avoids
wasted memory and achieves a zero-collision rate thanks to
its per-flow queueing mechanism. Each ring buffer consumes
about 20 B. 10 K queues will consume 200 KB, where DPFQ
allocates only 1 K queues since we have 1 K active flows,
requiring only 20 KB. This is a 10x reduction in memory
utilization in addition to the reduction in collisions.

Next, we evaluated Backdraft’s ability to absorb packet
bursts by extending queues by performing an experiment
where a sender pushes different batch sizes (64 to 1024) to
a receiver. The receiver is attached to a vswitch on the same
server and pulls packets in large batches of 1024. This experi-
ment compares Backdraft against two different configurations
of BESS augmented with PFC: one with short queues, the
other with long. Short queues are more likely to generate
PAUSE frames at a higher rate, whereas longer queues are
less likely.

Figure 12 shows that, when increasing the burst size, loss-
less BESS with short queues causes a high PFC PAUSE frame
generation rate that would hurt application performance in
terms of goodput and tail latency. Although long queues re-
duce the PAUSE frame generation problem, this is at the cost
of increased latency. In contrast, this experiment shows that
Backdraft is able to absorb variations, particularly in a bursty
workload with its dynamic queue extensions. It is the only
configuration that does not generate PAUSE frames. More-
over, Backdraft maintains high goodput with DPFQ because
the cost of queue extension is relatively low.
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Figure 13: Performance of Backdraft overlay network in a
cluster-wide experiment. Backdraft achieves higher throughput
and avoids extra PAUSE frame generation in presence of a slow
receiver. (a) Experiment setup. (b) Overall throughput. (c) Pause
frame generation rate due to a slow receiver.

Config Tput (Gbps) Pause (Kfps) Drop (Mpps)
BESS Lossy

+ Lossy Network (2.36,21.85) N/A (1.6,0)

BESS Lossless
+ Lossy Network (2.66,19.29) (2.8,0) (1.3,0)

ON
+ Lossy Network (2.3,21.98) (0,0) (0,0)

Table 3: Virtual overlay network performance
results (Victim,Non-victim flow)

Finally, we also measured the overheads of extending
queues in DPFQ and found that it is small. The number of cy-
cles required to extend queues fluctuates between 24 and 350
cycles, and this value is dependent on caching. This shows
that the overheads of DPFQ are low, especially when amor-
tized over all of the packets in the added queue, which has
a default size of 64 packets. Further, if desired, Backdraft’s
queue size can be configured as a parameter based on the
measured overhead according to the user’s preference for
performance versus memory efficiency.

6.3 Multi-node Performance

This section studies the behavior of the overlay network be-
tween vswitches used in Backdraft. To do this, we used a
cluster of four different servers. Each server is running its own
vswitch, and they are connected through a physical switch
with PFC enabled. We generated background UDP flows com-
peting with TCP victim flows (Figure 13a) and compared the
results when using either BESS or Backdraft as a vswitch.
Backdraft achieves higher aggregate throughput than BESS
(Figure 13b). This is because Backdraft sends PAUSE frames
through the overlay networks as soon as it notices queue
buildup. This is not done by BESS, which in turn induces
the physical switch to send PFC PAUSE frames and trigger
congestion spreading inside the network.

Figure 13c shows the number of PFC PAUSE frames sent
by the receiving server to the upstream PFC enabled switch
as a receiver gets slower. In this scenario, BESS causes the
physical switch to also generate PAUSE frames. However, this
does not happen with Backdraft because the overlay network
pauses the flow for the slow receiver before queues fill up.

We also compared the performance of BESS and Backdraft
using two nodes in the 100 Gbps CloudLab testbed connected
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by a lossy switch. Here, we used one server to send two UDP
flows towards another machine where one receiver is slow
and the other instead is a victim. Table 3 reports our results.
When using standard BESS (lossy) with a lossless network
core (first row), the overall throughput is high. However, it
also suffers from a high degree of packet loss. When, instead,
using BESS generating PFC frames (lossless), the throughput
is reduced and a considerable amount of packet loss still
appear, as the network core is lossy. Finally, due to overlay
messages, Backdraft it is able to avoid packet losses, while
keeping network throughput high.

Finally, we performed an experiment to demonstrate that
the overlay network in Backdraft does not suffer from starva-
tion, even when the rate of the slow receiver is variable over
the time. In this experiment, one machine is sending packets
towards a slow receiver. Initially, the destination polls packets
at rate 3 Mpps, then it doubles its rate at time T30. In Fig-
ure 15, BP (BESS with PFC) suffers from starvation and the
receiver spends its extra cycles polling instead of processing
packets. In contrast, at T = T30, Backdraft detects a change
in the receivers rate and increases T hgoal to avoid starvation
for the rest of the application’s life.

6.4 100 Gbps Forwarding Performance

To show that Backdraft can achieve 100 Gbps throughput
regardless of the presence of slow receivers, we performed
an experiment where an 8-core sender is generating a heavily
skewed workload consisting of 12 flows (11 fast flows and
1 slow flow) towards an 8-core receiver. To cause a slow
flow, one of 8 cores of the receiver application is slowed
down in this experiment. When using BESS, the slow flow
will eventually block the others, forcing the vswitch to drop
packets due to a lack of queue descriptors at the receiver’s
RX queues. In contrast, Backdraft does not suffer from this
problem because of its ability to dynamically resize queues
and send overlay PAUSE frames.

Figure 14 shows the aggregate throughput for all flows and
the drop rate for the victim flow in presence of slow receivers
in this experiment. With BESS, this experiment results in
high packet loss and a decreased throughput of ∼75 Gbps
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even though there is only one core receiving slower than the
expected pace. In contrast, Backdraft achieves full line-rate
without any packet drops. Backdraft sends overlay messages
on a per-queue basis to notify the upstream sender to reduce
its rates. This allows Backdraft to utilize the extra bandwidth
for the other flows in order to drive the 100 Gbps line-rate.

6.5 Backdraft Scalability
Finally, we assessed the scalability of Backdraft in terms of
its throughput and memory requirements.
The impact of number of queues on performance. To
demonstrate the benefits of doorbell queues, we performed
an experiment where an application sends packets from UDP
flows in a skewed pattern based on the Zipfian distribution,
and we compared the throughput achieved between doorbell
queues (Backdraft) and polling every queue (BESS).

Figure 16 shows the aggregate vswitch throughput when a
single core is allocated to the switch as we vary the number
queues. With a small number of queues, both Backdraft and
BESS perform similarly, which shows that the overheads of
doorbell queues are quite low. However, when the number of
queues increase, only Backdraft maintains its throughput.
The amount of memory needed varying network RTT. Fi-
nally, we performed an analysis of the memory overheads
of Backdraft to demonstrate that this is not prohibitive. In
order to avoid congestion spreading, T hnet must be suffi-
ciently larger when compared to T hover so that packets can
be buffered during the time it takes for the source of the con-
gestion to pause and adjust its rate. The increased memory
overheads of Backdraft are small and can be estimated by
bandwidth-delay product for different network line-rates. For
example, a 100 Gbps network with a 1ms RTT only requires
12.5 MB of buffering to avoid congestion spreading. Further,
it is important to note that DPFQ ensures that this buffering
requirement is for the entire switch and not per-flow.

7 Discussion

Slow NICs. NICs may be slow and unable to achieve line-
rate, and this can cause packet loss [44, 83]. If a slow NIC



participates in the overlay network by generating OPFs, it can
avoid both packet loss and congestion spreading.
Slow virtual switches. There are many reasons a vswitch
may be slow, including CPU limitations, memory bandwidth
limitations, and insufficient LLC cache [34, 36, 89, 95], and
packets can be dropped at the NIC when a vswitch cannot
keep up with the ingress rate, resulting in a slow vswitch
problem. This can be solved by offloading part of Backdraft’s
processing onto a programmable NIC [2, 9, 39, 46, 87]. This
should be feasible because recent developments in NIC de-
signs have brought models that provide a large amount of
on-NIC memory that can be used for Backdraft. For exam-
ple, Xilinx Alveo NICs support High Bandwidth Memory
(HBM), fast memory that is directly embedded on-chip in an
FPGA [11, 53].
RDMA support. Backdraft can support 2-sided RDMA verbs
by monitoring the length of receive queues in the application
or a library and generating OPF messages to transmitters as
appropriate. Further, if offloaded onto a NIC, Backdraft can
mitigate the effect of the slow NIC problem for 1-sided verbs
and complement the sender-based approaches that can be used
for congestion control [55, 68, 98].
Programmable packet scheduling. If Backdraft is deployed
without enough memory, multiple flows have to share the
same queue. Although this can cause HOL blocking, this
can be mitigated with opportunistic packet scheduling. For
example, Backdraft could employ software solutions like Eif-
fel [80] or hardware ones like AIFO [94] and PIFO [85] if
Backdraft is offloaded to a programmable NIC.
Linux kernel compatibility. Backdraft is implemented using
DPDK. Thus, all of the traffic coming from the NIC bypasses
the Linux kernel. However, we believe that the same design
principles are applicable to the Linux kernel. Further, being
implemented in userspace does not even preclude Backdraft
from interfacing with the Linux kernel networking stack. For
example, Backdraft can use a custom kernel driver to inter-
face with traditional applications, and the recently proposed
AF_XDP Poll Mode driver [1] enables DPDK applications to
natively support the AF_XDP socket and retain compatibility
with the Linux tools that operators expect [90].

8 Related Work

Slow receiver problem. Past research has acknowledged the
slow receiver problem in the context of the overheads of
the Linux networking stack [21], Linux-based transport pro-
tocol implementations [73], and production networks from
Microsoft [44], and Google Swift [60].
Virtual switching. Snap, Andromeda, and PicNIC all per-
form lossy vswitching [30, 61, 68], which drops packets. On
the other hand, Zfabric, NFVNice, and zOVN are lossless
vswitches. These, however, suffer from HOL blocking as they
share queues among active flows in the vswitch [26, 27, 59].
Moreover, unlike Backdraft, none of these approaches address

the slow receiver problem. Similarly, FreeFlow ensures high
performance by using shared memory, but it does not consider
packet loss problem at the end-hosts [93].
Packet scheduling and rate limiting. Backdraft is compat-
ible with Eiffel and Carousel and can mitigate their CPU
utilization overheads with its command queue [79, 80]. Sim-
ilarly, hyperplane can be used to reduce the CPU polling
overheads of Backdraft [70]. EyeQ is a related system that
builds an overlay network that performs rate-limiting [50].
However, EyeQ pays high CPU utilization overhead when
rate limiting, and EyeQ works at millisecond-scale, which is
not fast enough to address the slow receiver problem.
Congestion control. In addition to Homa, there are other
important new congestion control algorithms like Google’s
Swift, which performs fine grain time stamping to identify the
congestion source (end-host, network) [60]. Similar to how
we have found that Backdraft is complementary to Homa, we
expect that Backdraft is complementary to Swift as well.
Flow control. Backdraft is complementary to flow control
protocols designed to provide a lossless core network. For ex-
ample, Backdraft is complementary to PFC because it strives
to minimize the PAUSE frames sent across the network. PCN
ensures high throughput for victim flows if congestion spread-
ing occurs and is also complementary to Backdraft [23]. BFC
is a new backpressure flow control protocol intended to re-
place PFC [43]. Backdraft solves a key problem that arises
with deploying BFC in practice. This is because BFC as-
sumes that flows can be received at 100 Gbps line-rates, and
this assumption can be violated by slow receivers. Backdraft
addresses this problem and prevents congestion spreading
from slow receivers.

9 Conclusions

In this paper, we present the design and implementation of
Backdraft, a new lossless virtual switch. We make a case for
providing lossless networking at the vswitch level by showing
the impact of packet loss caused by slow receivers on network
performance using existing congestion control algorithms.

We implemented Backdraft on top of the BESS virtual
switch and performed experiments with two different clusters
of servers on CloudLab (10 Gbps and 100 Gbps). We used
unmodified POSIX applications with TAS TCP and a custom
distributed application that performs RPCs with Homa, a state-
of-the-art datacenter transport protocol. We demonstrate that
Backdraft is effective in preventing packet loss and reduces
tail latency by up to 20x compared to BESS.
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Figure 17: Throughput, loss and latency of DCTCP given differ-
ent number of allocated cores. DCTCP still is unable to prevent
packet loss with 4 CPU cores.
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even 10−2 drop probability.
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Figure 19: Backdraft TX bandwidth management in presence
of a slow receiver. (a) The experiment setup on a single machine.
(b) Backdraft prevents packet loss and saves CPU utilization
from slow receiver and can allocate it to other receiver applica-
tions.

A Appendices

In this section, we expand our experiments associated with
congestion controls, and bandwidth management on a single
host.

A.1 Slow Receivers and DCTCP/Homa
While we discussed the problem associated with congestion
controls such as Homa with regard to the slow receiver prob-
lem in Figure 4, we extended our study and performed similar
experiments on DCTCP (§A.1.1).

We then discuss the impact of packet loss on latency of
Homa (§A.1.2), given that Homa uses high granular timers to
identify lost packets which is already discussed in §6.1.

A.1.1 DCTCP

We show that congestion control algorithms fail to address
slow receiver problem in §2.1. Other than Homa, we per-

formed the same test on DCTCP congestion control. Fig-
ure 17a show that throughput of DCTCP application cannot
reach higher than 5 Mpps or 320 Mbps with even 8 cores
(64 B packets were used).

We have found that this packet loss occurs even when the
vswitch performs ECN marking and end-hosts use a state-of-
the-art congestion control algorithm like DCTCP [12]. This is
demonstrated in Figure 17b, which shows what happens when
we vary the number of allocated cores from 1 to 8 allocated
to a DCTCP receiver application experiencing receiving data
from a DCTCP client that is utilizing 8 CPU cores to send
messages as fast as possible. We enable ECN marking at
vswitch level to ensure DCTCP controls the flow rates in
the scenarios where only vswitches are involved. Finally,
Figure 17c demonstrates that packet loss has dramatic impact
on the tail latency of the DCTCP.

A.1.2 Packet Loss Effect on Homa

In this section, we further discuss packet loss overhead of
Homa protocol discussed in §4. In Figure 18, we observe
that RPC completion time increase to 5x higher with mere
packet loss probability of 10−2. Although Homa identifies
lost packets with high resolution timers, this does not seem to
be highly effective.

A.2 Single Host Bandwidth Management
We performed an extra experiment to show how Backdraft
works when dealing with a non-cooperative workload in terms
of bandwidth management. This experiment is carried on a
single node, we demonstrate that Backdraft delivers 2x higher
throughput than its counterpart, BESS. Figure 19a shows the
setup for this experiment. Here we have four applications
(A, B, C, and D), where application D is a slow receiver and
process packets at a maximum of 1 Mpps. The sender appli-
cations (i.e., A and C) are configured to transmit packets at
20 Mpps, instead. Reciver B is not limited in performance,
so we can consider it to be fast. When Backdraft identifies
the queue buildup due to slow receiver (i.e., D), it sends a
local overlay message towards the sender port that includes a
pause duration and an estimate of the receiver’s rate. Using
this information, Backdraft can pause the sender port, save
CPU cycles otherwise wasted in handling the slow receiver
flow, and use the saved resources to better handle the traffic
directed to the fast receiver.

Figure 19b demonstrates this. With Backdraft, flow fAB
achieves 19 Mpps throughput. BESS, however, wastes CPU
cycles and throughput bandwidth on dropping packets, caus-
ing the flow to reach only 10 Mpps.
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