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Abstract

We study stochastic approximation procedures for approximately solving a d-dimensional
linear fixed point equation based on observing a trajectory of length n from an ergodic
Markov chain. We first exhibit a non-asymptotic bound of the order tmix% on the squared
error of the last iterate of a standard scheme, where t,,ix is a mixing time. We then prove
a non-asymptotic instance-dependent bound on a suitably averaged sequence of iterates,
with a leading term that matches the local asymptotic minimax limit, including sharp
dependence on the parameters (d, tmix) in the higher order terms. We complement these
upper bounds with a non-asymptotic minimax lower bound that establishes the instance-
optimality of the averaged SA estimator. We derive corollaries of these results for policy
evaluation with Markov noise—covering the TD()\) family of algorithms for all A € [0,1)—
and linear autoregressive models. Our instance-dependent characterizations open the door
to the design of fine-grained model selection procedures for hyperparameter tuning (e.g.,
choosing the value of A when running the TD(A) algorithm).

1 Introduction

Linear Z-estimation problems—in which we are interested in computing the fixed point of
a linear system of equations—are widely used in many application domains, including rein-
forcement learning and approximate dynamic programming [Ber19, Szel0], stochastic control
and filtering [BMP12, Bor09, KY03], and time-series analysis [Ham20]. In many of these
applications, the data-generating mechanism is modeled using an underlying Markov chain.
The resulting dependency among the observations presents challenges for algorithm design
as well as statistical analysis. In this paper, our goal to is provide an instance-dependent
statistical analysis—one that captures the difficulty of the particular Z-estimation problem
at hand—and to develop computationally efficient algorithms that match these fundamental
limits.
A linear Z-estimation problem in R¢ is specified by a fixed point equation of the form

0= L6+ b, (1)

where the matrix L € R%*? and the vector b € R? are parameters of the problem. In settings
of interest in this paper, the problem parameters (L,b) are unknown, and we observe only
a sequence (L, by)i>1 of noisy observations, generated according to a Markov process in the
following manner. The Markov process generates a sequence (s¢)¢>o of states taking values in
some underlying state space X. This chain is assumed to be ergodic, with a unique stationary



distribution . The observed pair (L, by) at each time ¢ depends on the current state s;, and
moreover, their expectations under the stationary distribution £ are equal to their population-
level counterparts (L, b).

This general formulation includes a number of special cases of interest. In the simplest
setting, at each time ¢, we observe a matrix-vector pair of the form L;11 = L(s;) and b1 =
b(s;), where L : X — R and b : X — R? are deterministic mappings such that

Ee[L(s)] =L, and E¢[b(s)] =b. (2a)

Many applications involve additional sources of randomness beyond that naturally associated
with the Markov chain itself. In order to accommodate this possibility, we can consider
observations of the form

Lt+1 = Lt+1(8t), and bt+1 = bt+1(8t). (2b)

Here the mappings L1 and b,1 are now allowed to be i.i.d. random, independent of s;, but
are required to be related to the deterministic mappings L and b via the relation

E[Li+1(s)] = L(s), E[byi(s)] =b(s), forall s eX. (2¢)

By the tower property of conditional expectation, equations (2a) and (2¢) imply that L;11(s¢)
and b1 (s;) are unbiased estimates of L and b, respectively.'

Stochastic approximation methods, dating back to the seminal work of Robbins and
Monro [RM51], are standard iterative procedures for using data to approximately compute 6.
These algorithms proceed in a streaming fashion: upon receiving each data point, an incre-
mental update is made and the (averaged or) final iterate is returned in a single pass. In this
way, each iteration of stochastic approximation incurs only mild computational and storage
costs. Given these attractive computational properties, it is natural to ask if there are SA
methods that also enjoy optimal statistical performance.

In this paper, we analyze the SA procedure based on the updates

041 := (1 —1)0 + (L1316 — big1), fort=0,1,... (3a)
n—1
~ 1
0, = 0, forn—ng+1.no+2. .. . b
"_"Otgn:ot orn=mng+ 1,n9+ (3b)

Equation (3a) describes a standard stochastic approximation update with constant stepsize
1 > 0, whereas equation (3b) corresponds to an application of the Polyak—Ruppert averaging
procedure [PJ92, Rup88] to the iterates, with burn-in period ng. When each matrix observa-
tion L;11 has a constant rank independent of the dimension d—as is the case for temporal
difference learning methods in reinforcement learning (see Section 2.2)—the SA method (3)
can be implemented with O (d) computational and storage cost per iteration.

There is an extensive body of past work on stochastic approximation methods with Markov
data. Here we provide an overview of the literature most germane to our contributions, and
defer a more detailed review to Section 1.2. Asymptotic convergence of SA procedures with
Markovian data can be established using either the ODE method [Bor09] or the Poisson
equation method [BMP12]. The paper [TVR97]| analyzes the asymptotic convergence of SA
in the specific context of temporal difference methods in reinforcement learning. Although

"However, equation (2¢) does not require the observations to be conditionally unbiased.



asymptotic guarantees provide helpful guidance, it is often most useful to have non-asymptotic
guarantees that account both for limited sample size and scale of modern problems, and for
these reasons, non-asymptotic analysis of Markovian SA procedures has attracted much recent
attention.

Assuming a mixing time bound on the Markov chain, a projected variant of linear SA
was analyzed by Bhandari et al. [BRS18], who established non-asymptotic rates that are
near-optimal in their dependence on the sample size n. Srikant and Ying [SY19] analyzed
the standard SA scheme without the projection step used in [BRS18], and obtained the same
convergence rate in both mean-squared error and higher moments. Under an appropriate
Lyapunov function assumption on the Markov chain, Durmus et al. [DMN*21] proved finite-
time bounds for linear SA using stability properties of random matrix products. Variants and
special cases of SA procedures with Markov data have also been studied, including two-time-
scale algorithms [KMN™20], gradient-based optimization under Markov data [DNPR20], and
estimation in auto-regressive models [BJN'20, JKNN21].

Despite this encouraging progress to date, two important questions still remain open, and
form the focus of this paper:

e Sample complexity in high dimensions: The primary goal of non-asymptotic analysis
is to provide guarantees on the estimation error that have an explicit dependence on the
problem at hand, and that hold true for a reasonable range of values of the sample size
n. For instance, suppose the linear Z-estimation problem in R? is driven by an underly-
ing Markov chain of mixing time f.ix. Then under natural noise assumptions, one should
expect the estimation error to scale as O (tmixd/n), with this being the dominant term
whenever n 2 tnixd. However, existing analyses of linear SA do not provide such tight
dimension-dependence. Using the notation of this paper, the sample size bounds in the
papers [SY19, BRS18] rely on a uniform upper bound on the operator norm of the stochas-
tic matrix L;y1(s¢); this quantity scales linearly with dimension d in many applications.
Consequently, the resulting bounds on the MSE have a sub-optimal dependence on dimen-
sion, which is unsatisfactory for high-dimensional problems. Similarly, the bounds in the
papers [DMNT21, KLL20, CMSS21] also exhibit a sub-optimal dependence on dimension.
To the best of our knowledge, the question of whether linear SA succeeds under the minimal
conditions on sample size—in particular, with n mildly larger than d - t;,;x——remains open.

e Instance-dependent optimality: While many estimators may exhibit near-optimal sta-
tistical performance in the globally minimax (i.e., worst-case) sense, some of them perform
significantly better than others when applied to practical problem instances. This phe-
nomenon motivates the study of local (i.e., instance-dependent) performance in the non-
asymptotic regime. Such results have recently been established for linear Z-estimation in
the i.i.d. setting [PW21, LWCT20, KPR 21, MPW20]. The latter two papers listed provide
non-asymptotic analogs of classical theory on local asymptotic minimaxity (c.f. [vdV00]),
which establishes lower bounds by looking at the worst-case family of instances in a local
neighborhood of a given problem. In the Markov setting, two questions naturally arise:
(1) What does it mean for an estimator to be locally optimal in a non-asymptotic sense?
(2) Does the linear SA estimator (3) match the local lower bound for every problem instance?

1.1 Contributions and organization

The primary goal of this paper is to resolve these challenges, and provide a sharp analysis of
(averaged) linear SA algorithms. These answers are not merely of theoretical interest: they
also provide important guidance for practice, such as in choosing algorithm parameters such



as the burn-in period and stepsize. In more detail:

e We perform a fine-grained analysis of linear SA and produce an upper bound on its statis-
tical error that transparently tracks the dependence on problem-specific complexity as well
as step-size. Furthermore, our bound holds true provided n 2 tpix - d, establishing that the
algorithm does indeed attain a sharp sample complexity guarantee in high dimensions.

e In a complementary direction to our upper bounds, we show a local minimax lower bound
with an appropriately defined notion of local neighborhood of Markov chains. This lower
bound certifies the statistical optimality of the linear SA estimator, again in an instance-
dependent sense.

e We derive consequences of our general analysis for temporal difference methods in rein-
forcement learning, demonstrating a key problem-dependent quantity in matching upper
and lower bounds.

One technical aspect of our analysis is noteworthy. En route to establishing bounds with
sharp dimension dependence, we introduce a careful “bootstrapping” argument: starting with
a loose bound, we progressively refine it via the repeated application of certain self-bounding
inequalities. We suspect that this method may be of independent interest in providing sharp
analyses of other stochastic approximation methods.

The remainder of this paper is organized as follows. We complete this section by introduc-
ing notation to be used throughout the paper, and then providing a more detailed discussion
of related work. In Section 2, we provide the basic problem set-up, discuss the underlying
assumptions, and give some illustrative examples. Section 3 is devoted to the presentation of
our main results, which include upper bounds on the estimation error of stochastic approxi-
mation procedures, along with local minimax lower bounds that apply to any estimator. In
Section 4, we develop some consequences of these results for specific models, including policy
evaluation in reinforcement learning and estimation in autoregressive models. Sections 5, 0,
and 7 are devoted to the proofs of Proposition 1, Theorem 1, and Theorem 2, respectively. We
conclude with a discussion in Section 8. The proof of some auxiliary results and corollaries
are postponed to the appendix.

Notation: We let (X p) denote a metric space. For any = € X, we use d, to denote the
distribution that places all its mass on {z}. Given a random variable X, we use the notation
L(X) to denote its probability distribution. For a pair (m, ) of probability distributions on
X, let T'(m, ) denote the space of all possible couplings of p and w. For any p > 1, the
Wasserstein-p distance between 7 and p is given by

W, (m )-—{ inf / (z,y)Pdy(x )}”p (4)
p\T 1) ‘= e ) XxXp YY) ay\z,y )

and the total variation distance between 7 and u by

drv(m, p) = sup |m(A) — pu(A)].

Our analysis also involves various other divergences between probability measures. For any
pair of probability distributions P and () on the same space, we use P < @ to denote the fact
that P is absolute continuous with respect to (), and use % to indicate the Radon-Nikodym



derivative. Given P < @, we define:

KL Divergence: Dk (P || Q) := Ep[log (X)}

x? divergence: X2 (P || Q) := Ep[d —1],
Max divergence: Do (P||Q) := sup ‘log g—P(x)‘
zesupp(Q)

Given any matrix A = (a;;) € R™*™, its vectorization is obtained by concatenating its
columns—viz. vec(A) := [all a1 -+ Apl Q12 Ap2  ccc Aly cct anm]T e R,
We use {ej};lzl to denote the standard basis vectors in the Euclidean space RY, i.e., ej is a
vector with a 1 in the j-th coordinate and zeros elsewhere. For two matrices A € R1*d2
and B € R%*4  we use A® B to denote their Kronecker product, a dids x dads real matrix.
For symmetric matrices A, B € R%? the notation A < B means that B — A is a positive
semi-definite matrix, whereas A < B indicates that B — A is positive definite. We use \,,.,(4)
and Apin(A) to denote the largest and smallest eigenvalue of the matrix A, respectively. We
use the following notation for matrix norms: for any matrix A € R%*%  we use the notation
Il Allops lIAllF and [|Aflaue to denote its operator norm, Frobenius norm and nuclear norm,
respectively.

Finally, throughout the paper, we use F; := 0((b2, Li,si)i< ) to denote the natural filtra-
tion induced by the Markov observations.

1.2 Additional related work

This paper analyzes stochastic approximation algorithms based on Markov data, and has
consequences for reinforcement learning. So as to put our results into context, we now provide
more background on past work in these areas.

1.2.1 Statistical estimation based on Markov data

There is a large body of past work on statistical estimation based on observing a single
trajectory of a Markov chain; for example, see Billingsley [Bil61] for an overview of some clas-
sical results. For the problem of functional estimation under the stationary distribution, the
asymptotic efficiency of plug-in estimators” has been established for discrete-state Markov
chains [Pen91, GW95] and It6 diffusion processes [Kut97]. In this paper, we provide non-
asymptotic bounds, both upper and lower, that depend on a certain instance-dependent func-
tional that also appears in an asymptotic analysis. More recent work has seen non-asymptotic
results for statistical estimation with Markovian data, including the estimation of transition
kernels [WK21, LWZ18], mixing times [HKL*19], the parameters of Gaussian hidden Markov
models [YBW17], as well for certain testing problems [DDG18]. These papers can be roughly
divided into two categories. Papers in the first category focus on estimating parameters for
each individual state of the Markov chain (e.g., transition kernels), and thus require sample
sizes that scale with the complexity of the state space (e.g., its cardinality in the discrete
case). By contrast, papers in the second category are concerned with estimating properties
of the Markov chain (e.g., the expectation of a functional under the stationary distribution),
and the sample complexity of such problems need not depend on the size of the state space.
Our paper falls within the second category.

2These papers refer to such methods as “empirical” estimators.



1.2.2 Stochastic approximation methods

The use of recursive stochastic procedures for solving fixed point equations dates back to the
seminal work of Robbins and Monro [RM51]; see the reference books [Bor09, BMP12, KY03]
for more background. By averaging the iterates of the SA procedure, it is known that one
can obtain both an improved convergence rate and central limit behavior [PJ92, Rup88]. A
variety of stochastic approximation procedures now serve as the workhorse for modern large-
scale machine learning and statistical inference [NJLS09, BCN18], and many algorithmic
techniques are known to accelerate their convergence [GL12, JZ13, LMWJ20]. In particular,
non-asymptotic bounds matching the optimal Gaussian limit have been established in a variety
of settings [MB11, GP17, DDB20, MLW 20, MPW20].

While the instance-dependent nature of this line of investigation aligns with the objective
of our work, prior work either assumes an i.i.d. observation model or imposes a martingale
difference assumption on the noise.” The first study of SA procedures without a martingale
difference assumption was initiated by Kushner and Clark [KC78], who give a general criteria
for convergence, as well as Ljung [Lju77a, Lju77b], who analyzed linear problems motivated by
control and filtering. The work [MP84] analyzed general SA problems for controlled Markov
processes by applying the Kushner—Clark lemma. In addition to this classical work, stochastic
approximation in the Markov setting has attracted much recent attention. Central limit
theorems [Forl5] and non-asymptotic convergence rates [KMMW19] have been established
for controlled Markov processes. In addition to the papers discussed in Section 1, several
recent works have considered particular aspects of SA with Markov data, including two-time-
scale variants [DNPR20, KB18], observation skipping schemes for bias reduction [KLL20],
Lyapunov function-based analysis under general norms [CMSS21], and proving guarantees
under weaker ergodicity conditions [DDA21].

1.2.3 Application to RL problems

Markovian observations arise naturally in the context of stochastic control and reinforcement
learning (RL). See the book [BMP12] for a historical survey of algorithms for stochastic con-
trol and filtering with Markovian stochastic approximation, and the books [Berl9, Szel0]
for more background on the RL setting. In RL problems, SA algorithms are typically used
to solve Bellman equations, a class of linear or non-linear fixed-point equations. In policy
evaluation problems, temporal difference (TD) methods [Sut88] use linear stochastic approx-
imation to estimate the value function of a given policy, with asymptotic convergence guar-
antees [DS94, TVRI7, Boy(02] and non-asymptotic bounds [BRS18, KPR™21, MPW20]. In
the non-linear case, the Q-learning algorithm [WD92] is a stochastic approximation method
that estimates the Q-function of a Markov decision process from data. There is a long line
of past work on this algorithm, including convergence guarantees [Tsi94, Sze98, EDMO03], re-
sults on linear function approximation for optimal stopping problems [TVR99, BRS18], and
non-asymptotic rates under general norms in both the i.i.d. setting [Wail9a, Bor21] as well as
the Markovian setting [CMSS21]. A class of variants of TD and Q-learning are also studied in
literature, including actor-critic methods [KT00], SARSA [RN94], and methods that employ
variance-reduction [SWWT18, KPR*21, Wail9b, KXWJ21]. A concurrent preprint to this
manuscript [LLP21] proves lower bounds on the oracle complexity of policy evaluation with
access to temporal difference operators, and develops an acceleration scheme with variance

3In the linear equation setup, the martingale difference noise assumes that E[Li+1 | F:] = L and
E[bt+1 | F¢] = b, which does not cover the Markov case.



reduction to achieve these lower bounds while retaining the optimal sample complexity.

It should be noted that an important feature of reinforcement learning is function ap-
proximation, i.e., using a given function class (e.g. a linear subspace) to approximate the
solution to the Bellman equation of interest. This method enables estimation with a sample
size depending on the intrinsic complexity of the function class, instead of the cardinality of
state-action space. On the other hand, an approximation error is induced by projecting the
Bellman equation onto this function class. This trade-off is central to the class of TD algo-
rithms, as studied in a line of past work [TVR97, YB10, Berll, MS08, MPW20]. Prior work
by a subset of the authors [MPW20] focuses on the i.i.d. setting, and shows that projected
linear equations have a non-standard tradeoff between approximation and estimation errors.
The current paper is complementary in nature, building on this work by analyzing the more
challenging setting of Markov observations. Among the concrete consequences of this paper
are an instance-optimal analysis of TD algorithms in the Markov setting with linear function
approximation. This analysis provides the basis for a principled choice of the parameter A in
the broader class of TD(\) algorithms.

2 Problem set-up

Recall from our earlier set-up (cf. equation (1)) that we are interested in solving a fixed point
equation of the form 6 = L + b, based on noisy observations of the pair (L, b), as defined by
the Markov observation model (2). We require that the matrix L satisfies the conditions

1 — _ _
K= §AmaX(L +L7) <1, and ||LJlop < Ymax- (5)

2.1 Assumptions

We now introduce and discuss the remaining four assumptions that underlie our analysis.

2.1.1 Conditions on Markov chain

We first describe the conditions imposed on the underlying Markov chain in our observation
model. Let {s;}+>0 denote a trajectory drawn from a Markov chain with transition kernel P.
We assume that this chain has a unique stationary distribution &, and impose the following
mixing condition in Wasserstein-1 distance:

Assumption 1. There exists a natural number tynix and a universal constant cg > 1 such
that for any x,y € X, we have the bounds

(a) (b)
W (8 Plmix | 6, Plmix) < %p(x,y), and W (6, P, 8,P") < cop(z,y), forallt=0,1,2,....
(6)

We assume throughout that the chain is initialized with a sample sg ~ £ from the stationary
distribution. Given that our mixing time bound guarantees exponential decay of the Wasser-
stein distance, this condition is mild: it can be removed by waiting O (tnix) iterations for the
process to mix.



2.1.2 Tail conditions on noise

In our observation model, the “noise” terms correspond to the differences L;11(s;) — L(s;) and
L(s;) — L, along with analogous quantities for the vector b. Our second assumption imposes
conditions on these noise variables. We consider separate conditions on these martingale
Lyi1(s) — L(s;) and Markov L(s;) — L parts of the noise, as well as the b-noise analogues.

Assumption 2. There ezists an even integer p € [2,+00| and non-negative constants oy, and
op, such that for any positive even integer p < p, scalar t > 0, vector u € S4 1, and index
je{l,...,d}, we have

E[{ej, (Lisa(st) — L(s))u)? | Fi] < plop,  and Ese[E[(e), bryr(s) — b(s))” | s]] §P!(‘757)

as well as

ESN§[<€]‘, (L(S) — L)u)p] <plo?, and Eswg[(ej, b(sy) — l_)>p] < pla}. (7b)

Note that this assumption is mildest for p = 2, and strongest for p = oco. In the latter
case, when p = oo, the assumption requires L;11 and b;41 to be sub-exponential random
variables in the standard coordinate directions (since log(p!) < plog(p/2) by concavity of the
log function). This condition covers, for instance, the case where L;11 is the outer product
of sub-Gaussian random vectors, as in temporal difference learning methods. In addition to
accommodating this case, Assumption 2 also covers the heavier-tailed setting in which only
finitely many moments exist. In particular, when p = 2, the second moment assumption
coincides with the assumption made in the paper [MPW20].

An important quantity in our analysis is the effective noise level given by

g:= sup sup p ' (E[(ej, (Li1(se) — L)0 + (byy1(se) — 5)>p])1/p.
pe[2,p] jeld]

Note that under Assumption 2, we have the upper bound & < o ||0||2 + 03.

2.1.3 Metric space conditions
For most of our analysis, we impose the following condition:
Assumption 3. The metric space (X, p) has diameter at most one.

Note that our assumption of unit diameter is arbitrary; boundedness suffices. In order to
accommodate the general case, it suffices to rescale the parameters o7, and op.

When applying our theory to unbounded spaces (e.g., X = R%), we use a truncation
argument to show that there is an event over a reduced state space on which this condition
holds with probability tending exponentially to 1. (See Appendix A for the details of this
argument. )

2.1.4 Lipschitz condition

Finally, we place a Lipschitz assumption—under the metric p—on the mapping from the
metric space X to the stochastic operators. Given the Markov chain setup in the metric
space (X, p), it is alluring to assume dimension-free Lipschitz bound on the mappings (L, by).
However, as the space X has diameter bounded by 1, such Lipschitz constants typically depend



on dimension for practical problems. Concretely, view the L-scale parameters (K, Ymax) as
constants and assume that the observations Ly 1(s;) each have rank at most . We then have

E(Desr(s)ll] > P ] trace(E[Len(e]) _ tracell)
r r r
The trace trace(L) typically scale as ©(d), even in the “easy case” when L is a constant
multiple of identity matrix.

So the Lipschitz constant for the mapping L; : X — R%*? is at least Q(d). On the
other hand, as a d-dimensional standard Gaussian random variable has norm Q(v/d) with
high probability, it is natural to assume the Lipschitz constant for the vector-valued mapping
b; : X — R? to be of order at least Q(v/d). We therefore make the following assumption:

Assumption 4. There exist constants or,op > 0 such that, almost surely for any x,y € X,
we have

IZ:(2) = LiW)ll.p < ord - p(z,y)  and ||by(x) = bi(y)l2 < 0pVd - p(a,y) (9)
forallt=1,2,....

Note that in Assumption 4, we explicitly rescale the RHS of the inequalities with factors
that depend on the problem dimension d, so that the pair (or,0p) should indeed be viewed
as dimension-free. The notation (o, 0y) is actually overloaded in Assumptions 2 and 4. In
practice, we can take the maximum of the bounds in the two assumptions. Besides, as shown
in Appendix A, for certain natural problem classes, Assumption 2 indeed implies Assumption 4
with discrete metric, up to logarithmic factors.

2.2 Some illustrative examples

Our assumptions cover a broad range of ergodic Markov chains, and the fixed-point equa-
tion (1) associated with their stationary distribution naturally arises from several problems.
In this section, we describe a few concrete examples of our general setup. We first discuss the
class of Markov chains satisfying our assumptions, and then describe the linear Z-estimators
associated with such problems.

2.2.1 Examples of Markov chains

By varying our choice of the metric p, we recover several important classes of Markov chains
that satisfy Assumptions 1 and 3.
e Consider a Markov chain defined on a countable state space X, and consider the discrete
metric p(z,y) := 1;%,. In this context, Assumption | corresponds to mixing time bound
in total variation—viz.

drv (0 Phmix, 5yPt"‘iX) < % for all pairs z,y € X.

This mixing condition is satisfied for some finite ¢,,;x when the Markov chain is irreducible,
aperiodic and positive recurrent. Moreover, this metric space has unit diameter, so that
Assumption 3 holds as well.

e As another example, consider the state space X = B(0, 1) C R equipped with the Euclidean
metric p(z,y) = [|Jx — yll2. We can define a Markov chain on this space via the random
evolution Xjy1 = T+1(Xk), where the random non-linear operators {7;}x>1 C X* are



drawn i.i.d. from some distribution. We assume that the expected operator operator T :=
E[77] satisfies the contraction condition |7 (x) — T(y)|]2 < 7||x — y|l2 with some v < 1.
Assuming the stochastic operator 7 to be Lipschitz and to satisfy a second moment bound,
this dynamical system satisfies the Wasserstein contraction condition under the Euclidean
metric.

2.2.2 Examples of linear Z-estimators

We now describe some interesting examples of linear Z-estimators, to which we will return in
later sections.

Example 1 (Approximate policy evaluation). We begin by considering the TD(0) algo-
rithm for approximate estimation of value functions. This problem arises in the context
of Markov reward processes (MRPs), which are Markov chains that are augmented with a
reward function r : X — R. A trajectory from a Markov reward process is a sequence
{(st, Rt) }+>0, where {s;}¢>0 is the Markov trajectory of states, and R; is a random reward,
corresponding to a conditionally unbiased estimate (given s;) of the reward function value
r(s¢). Given a discount factor v € [0, 1), the expected discount reward defines the value func-
tion V*(s) =E[ > 0207 Ry | 50 = s].

This value function is connected to linear Z-estimators via the Bellman principle. Let P
denote the transition operator of the Markov chain, and let £ denote the stationary distribu-
tion. Note that the P maps the space L?(X, ¢) to itself. With this notation, the value function
V* is known to be the unique fixed point of the Bellman evaluation equation

V =~PV +r. (10)

In general, this equation is non-trivial to solve, especially given a limited trajectory length.
In practice, it is standard to compute approximate solutions using linear basis expansions,
[BB96, TVRI7], and this approach underlies the family of TD algorithms.

Let {(bj}?:l be a collection of linearly independent real-valued functions defined on the
state space, and consider the linear subspace S of all functions of the form Vy(s) = Z;-lzl 0i0;(s).
This subspace defines the projected Bellman equation

V =Tlg(vPV + ), (11)

where Ilg is the orthogonal projection operator under L2(X, ¢).

By definition, the projected fixed point V can be written in the form V (s) = Z;l:l 0;0;(s)
for some vector § € R%. Some simple calculations show that this parameter vector must satisfy
the linear system

Eoé = ’yElé + ESN5 [RO(S)¢(S)] 5 (12)

where Yo = Es¢[¢(s)p(s) ] is the second-moment matrix of ¢(s) under the stationary dis-
tribution, and 1 = E[¢(s)¢(sT) "] is the cross-moment operator of the Markov chain. In
defining this cross-moment, the expectation is taken over s ~ ¢ and s ~ P(s,-).

This problem can be viewed within our framework by considering a Markov chain on the
augmented state space wy = (s, S¢41). Equation (12) defines a fixed point equation under the
stationary distribution of this Markov chain. Define the minimum and maximum eigenvalues
1= Amin(Z0) and 5 := Apax(Xo), along with the observation functions

beyi(we) = %Rt(st)ﬁb(st)a and  Lypq(wy) = 1g — %[QS(St)ﬁb(St)T - 7¢(5t)¢(8t+1)T]- (13)

10



With these choices, the stochastic approximation procedure (3) is the widely used TD(0)
algorithm. On the other hand, for a stationary Markov chain (s;):cz, the fixed-point equation
0 = E[Li1(wi)] -0+ E[byy1(ws)] is equivalent to Eq (12). Note that though the expression
for the mappings b;11 and L,y depends on unknown parameter 3, they can be absorbed into
the stepsize choice, and the algorithm works well without such knowledge.

Typically, the Euclidean norm ||¢(s)||2 of the feature vectors scales as v/d, and under the
stationary distribution £, the variance of any coordinate of ¢(s) is of constant order. Under
these conditions, the cross-moment matrix ¥ has operator norm of constant order. On
the other hand, as for the random observations, we have the scalings || Li+1]., = O(d) and
[bes1]]l2 = O(Vd), so that Assumptions 2 and 4 are satisfied. &

In the context of TD, it is natural to consider a sieve estimator. Given a collection of basis
functions {¢; }]O-’;l, we can define the nested family S1 C Sy C - -+, where S; denotes the span
of the sub-collection {¢; };l:l. Here the choice of the sieve parameter d is key: larger values
reduce the approximation error at the expense of increasing the estimation error. We discuss
how this can be done in Section 4.

Another extension of the TD(0) algorithm—one that becomes feasible under the Marko-
vian observation model—is the TD()) family of procedures. A fundamental question is how
well the solution of the projected fixed-point equation (11) approximates the true value func-
tion V*. The paper [MPW20] analyzes this quantity, and provides matching upper and lower
bounds in the i.i.d. setting. However, the Markovian observation model actually allows this ap-
proximation error to be reduced, albeit at the cost of increased estimation error, as discussed
in our next example.

Example 2 (Policy evaluation with TD(A)). The family of TD()) algorithms is motivated
by the following observation: since the value function V* is the fixed point of Eq (10), it is
also the fixed point of the composition of itself. Concretely, for any k > 1, we have:

k-1

V* = (yP)FV* 4+ (vP)r.
§=0

For any X € [0, 1), we take the weighted average of the above (infinite) collection of equations
using exponentially-decaying weight (1, A, A2,---), and obtain the following equation.

V=(1-\ i N (yPYEHLY 4 i N (v Py, (14a)
k=0 k=0

The solution V* to the equation (10) also solves Eq (14a).
Following the same route as TD(0), for a given subspace S of functions, we seek a solution
V) to the projected fixed equation equation

VN = (1= X)) Mg (vP)F VN 3 " Mg (vP)Fr, (14b)
k=0 k=0

in which the operator P has been replaced by the projection IIsP. Although the fixed points
of equation (14a) and the Bellman equation (10) coincide, the projected version (14b) has a
different set of fixed points.

11



Since the value function V™ lies in the linear space S, it has a representation of the form
VN (s) = ZJ 19]()‘ ¢j(s) for some coefficient vector V) € R?. From equation (14b), this
vector must satisfy a linear system of the form

S TONFE]0™ = [0 r81]0W + 3" () *E[Ro(s0)d(s-1)], (15)
k=0 k=0 k=0

where {s,}7° ___ is a stationary Markov chain following the transition kernel P, and we define
Yr = E[p(s_1)¢(s0) "] for each integer k. As it should, when we set A = 0, equation (15)
reduces to the TD(0) update from equation (12).

In order to use stochastic approximation methods to solve this equation, we consider an
augmented Markov process (11, 5¢, gt )iez in the space X2 x R?, which evolves as

St41 ~ P(st,+), and  gr = &(st) + YAGt—1- (16a)

If feature vectors ¢(s¢) lie in a compact set almost surely, we have g = 3320 (Y\)¥ (51—
Let £~ be the stationary distribution of this augmented Markov chain.” In terms of an element
w = (s,s",g) drawn according this stationary distribution, the fixed-point equation (14D)
admits the succinct representation

Eglgo(s) ' 10% = vEg[go(sT) 10N + Eg[Ro(s)g). (16b)

By choosing the observation functions

Liji(w) =la—v- (9:0(s1)" —v06(s001) ), brya(we) = v+ Ry(s1)b(s1), (16c)

for a scalar v > 0, this algorithm is a special case of our general set-up. In particular, by
substituting the infinite-sum expression for the random variable g; into Eq (16b), we obtain
the projected linear equation (15) under the low-dimensional representation. See Section 4
for a more detailed verification of the assumptions needed to apply our main results for this
problem. &

For our last example, we turn to a different class of problems involving vector autoregres-
sive (VAR) models for time series [L05].

Example 3 (Parameter estimation in autoregressive models). An m-dimensional VAR model
of order k describes the evolution of a random vector X; as a kt"-order Markov process. The
model is specified by a collection of m x m matrices {A*
according to the recursion

j—1, and the random vector evolves

k

Xiy1 = Z A X j1 + €41, (17)
=1

where the noise sequence (Et) >0 1s 1.1.d. and zero-mean. and supported on a bounded set.
is

Considering the (k 4 1)-fold tuple w; = (Xp41, X, -+, Xi—g+1), the process (wt)t>0
Markovian. Under appropriate stability assumptions on the model parameter, the process
mixes rapidly under the (k + 1)m-dimensional Euclidean metric. Let £ denote its stationary
distribution, and suppose for convenience that the chain is observed at stationarity.

4Such a stationary distribution exists and is unique under suitable assumptions. See 4.2 for details.
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In order to estimate the model parameters, we consider the following set of Yule-Walker
estimation equations:

E[Xi1 X/ = AE[X X, ] + ABE[X 1 X ]+ + AE[Xpn X)), (18)

for=0,1,--- k—1.

These equations form a km?-dimensional linear system for estimating km?-dimensional
parameters. Note that the parameters live in the space of matrix sequences, and so we slightly
abuse our notation for simplicity: L denotes a linear operator from RF*™*™ to itself, and b
is an element in R¥*™*™ At the sample level, for any collection A := {4; }5?:1 € RFxmxm of
system matrices, the stochastic observations are given by

[bt+1(wt)]g =v Xt+1XtT_é for {=0,1,...,k—1, and
k—1
(Liy1(wp))[A]e = A —v ZAth—thT—Z’ for ¢ =0,1,...,k—1.
=0

Once again, the parameter v is a scaling constant needed to fit into the fixed-point equation
framework, and is absorbed into the stepsize choice of the algorithm. &

3 Main results

We now turn to the statement of our main results, beginning with our upper bounds in
Section 3.1, followed by lower bounds in Section 3.2.

3.1 Instance-dependent upper bounds

In this section, we begin by stating some upper bounds (Theorem 1) on the behavior of the
Polyak—Ruppert averaged SA scheme (3b). These bounds are instance-dependent, in the sense
that they are specified in terms of an explicit function of the operator L and the fixed point
6. We then state a second result (Proposition 1) on the non-averaged iterates, which plays a
key role in proving Theorem 1.

3.1.1 Instance-dependent bounds on the averaged iterates
For any state s € X, define the functions
ema(s) := (bi(s) — b(s)) + (L1(s) — L(s))f, and ey (s) := b(s) + L(s)0 — 0.

Note that for a fixed state s, the quantity ey (s) depends on the random variables by (s) and
Ly(s), and so is a random vector, whereas by contrast, the quantity ey (s) is deterministic.
Letting (5;)22_ be a stationary Markov chain under the transition kernel P, we then define

—0o0
the matrices
(o.]
Siia = Ee[cov (emals) | s)], and Sin, = Y Eleame(G)emi(50) '] (19)
t=—0o0
Overall, the performance of our algorithm depends on the matriz sum X* := 334 + X3, as

2

well as the effective noise variance 5* := o2||0||3 + o2. In terms of these quantities, we have

the following guarantee:
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Theorem 1. Under Assumptions 1-3, suppose that we set the stepsize n and burn-in param-
eter ng as n = (c(ord + Y2a) (1 — Ii)n%mix)_l/g
universal constant. Then for any sample size n satisfying bg@n > 2t"‘“‘gclrLi;mma") log(cod), the
Polyak—Ruppert estimate (3b) has MSE bounded as

and ng = %n, where ¢ is a suitably chosen

E[[0n — 013] < £Te(( - L)™ (S + Shae) (L — L)1) + ¢ (F05) P log?n. (20

3|

See Section 6 for the proof of this theorem.

A few remarks are in order. First, and as shown in the next section, the first term
n'Tr((I — L)™'S*(I — L)"') is optimal for the Markovian stochastic approximation prob-
lem in an instance-dependent sense. This term appears in existing central limit results for
Markovian stochastic approximation [Forl5], whereas our bound captures this dependence in
a non-asymptotic manner.

The first term can always be upper bounded by ¢ ﬁQ_tmmd log? (cod).” On the other
hand, disregarding dependence on (or,0p) and logarithmic factors in the sample size, the

second term in the bound scales as (9(((1 m;‘)gn)M 3). Consequently, up to polylogarithmic
factors, we have

13) 5 Tt

E[)6, —8]3] < aznm (21)

Thus, at least in a worst-case sense, the second term is always dominated by the first term.

We note that Theorem | makes two types of tail assumptions on the random observations:
Assumption 2 with p = 2 requires dimension-free second moment bounds in any coordinate
direction, whereas the Lipschitz condition (Assumption 4) together with Assumption 3 (bound-
edness of the domain) imply a (dimension-dependent) uniform upper bound on the noise. The
two assumptions play very different roles in the analysis of high-dimensional problems. As
we will see in Proposition 3, such assumptions are naturally satisfied in the context of sieve
estimators, for which dimension d of the problem is selected adaptively based on sample size
n.

Finally, we also note that the requirement on the sample size n is nearly optimal, since
we require n = ﬁ( é‘fzﬁg) to make the estimation error (21) less than a constant (by seeing

or, and Ymax as constants). Up to an additional O (tnix) factor, the sample size requirement
in Theorem 1 also matches that of linear stochastic approximation in the i.i.d. setting [LS18,
MLW 20, MPW20]. This additional O (tyix) factor is unavoidable, which can be seen from
the following reduction from the Markov to the i.i.d.setting. Consider a problem instance
in the i.i.d. setup, given by a probability distribution P over R%*?¢ x R¢. Defining the state
(L¢, by), consider a lazy Markov chain that remains at the same state with probability 1 — ﬁ,
and jumps to an independent state drawn from P with probability ;=—. A Markov trajectory
of size n in this lazy Markov chain is approximately equivalent to (9 (n /tmix) samples in the
ii.d. model, and results in a multiplicative blow-up of O (tpix) in the sample complexity
requirement for the Markov case.

5This can be easily seen from exponential decay of the correlation; in particular, see equation (74) in the
proof of the theorem.
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3.1.2 Bounds on the non-averaged iterates

The proof of Theorem 1 involves first analyzing the non-averaged iterates. Since the upper
bound established in this step is of independent interest, we state and discuss it here:

Proposition 1. Under Assumptions 1—3, there are universal positive constants (co,c1) such

that for any integer p € {1} U [logn,p/2|, scalar T > 2ptmixlog(cod), and positive stepsize
11—k

RS (O, —20173(0%d+v?nax)7]’ we have

3
- - c
(B, — 6)%)7 < e 30=R)t (||g, — 6 2) /7 + %527d (22)

forallt=1,... ,n.

See Section 5 for the proof of this proposition.

Note that the guarantees on the unaveraged iterates in Proposition |—unlike those of
Theorem 1 for the averaged iterates—do not match the optimal instance-dependent behavior.
This is to be expected, since at least asymptotically, the unaveraged sequence converges to a
Gaussian random vector with covariance specified by the solution of a Riccati equation. (For
details, see Section 4.5.3 of the book [BMP12]). This covariance term need not match the
optimal statistical error.

On the other hand, by choosing n =< (113%, the bound in Proposition 1 matches the
worst-case bound in equation (21), up to log factors. We also note that in Proposition 1,
the exponent p can take values in two ranges: regardless of the value of p € [2, 0], one can
always take p = 1 and obtain an upper bound on the mean-squared error E[||; — ]|3]. This
bound only requires Assumption 2 to hold true with p > 2, which covers many important
examples (see Section 4). On the other hand, when Assumption 2 is satisfied with p > 2logn
and a stronger moment assumption is imposed, one can obtain a p-th moment bound for any
p > [2logn,p]. This bound can be readily converted into a high-probability bound for the
last iterate of stochastic approximation. It is worth noting that we study these two cases
separately, using slightly different proof techniques.

It is worthwhile making some comparisons between Proposition 1 and existing results on
the unaveraged forms of Markovian stochastic approximation. As we have noted in our exam-
ples, in many cases, the quantities (o, 0p,5) do not depend on the dimension, in which case
the error bound in Proposition 1 grows linearly with dimension d. In comparison, in terms
of our notation, the error bounds in the papers [BRS18, SY19] both exhibit quadratic depen-
dency on the quantity %. As we noted previously in equation (8), this quantity
scales linearly in dimension when the observations have a constant rank (independent of di-
mension), so that (even after optimal parameter tuning), the bounds from these parameters
scale at least proportionally to %. This scaling should be contrasted with the O(d/n) guar-
antees from our bounds. On the other hand, the analysis in the paper [DMN™21] involves a
different mixing assumption, and so is not directly comparable to our results. However, it is
worth noting that their bound ||y — ]| also has an explicit O (d/y/n) term (cf. equation (32)
in their paper), showing that the MSE bound grows quadratically with dimension.

3.2 Local minimax lower bounds

Thus far, we established instance-dependent upper bounds for the averaged SA scheme with
Markov noise. It is natural to wonder whether these bounds can be improved. Answering this
question requires the development of local minimax lower bounds, which we describe in this
section.
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3.2.1 Set-up and local neighborhoods

We begin with the set-up and the definition of local neighborhoods for our lower bounds.
Let P be an irreducible Markov transition kernel on a finite state space X with associated
stationary measure {p. Consider the solution (P) to the following fixed-point equation

0(P) = B¢, [L(s)] - 0(P) + Be, [b(s)]. (23)

where the maps b and L are known to the estimator, whereas the Markov transition kernel
is unknown. For some fixed Py with stationary measure &, we would like to lower bound the
number of observations required to estimate §(P,) to a given accuracy. In order to obtain
such a lower bound, we consider the fixed point problem (23) over a local neighborhood®
of the pair (Pp,§p). We assume that the estimator is based on a Markov trajectory {s:}/ g,
with initial state sq drawn according to the original” stationary distribution &y, and successive
states evolving according to the transition kernel P.

In order to quantify the complexity of estimation localized around the Markov transition
kernel Py, we define the following two notions of local neighborhood:

mPrOb(P()aE) = {P : Z§O(x) ' X2 (P(LZ', ) H Po(xv )) < 62}7 (243‘)
reX
mEst(PQ,E) = {PZ Hé(P) - é(PO)”Q < E}. (24b)

The two notions of neighborhood focus on different types of locality restrictions on the model
class: the local problem class 9p,o, contains all the Markov transition kernels that are “glob-
ally close” to a given kernel Py, measured by a weighted y? divergence. It is worth noting
that this weighted y? divergence has an operational interpretation. Suppose we draw z ~ &,
and then draw the next state y ~ FPy(x,-) accordingly the original Markov kernel Py, as well
as y' ~ P(z,-) under the kernel P. Then the weighted x? divergence is the x? divergence
between the joint laws of (z,y) and (z,y’).

On the other hand, the local class Digs; contains Markov transition kernels P such that
the solution §(P) to the fixed-point equation (23) lies in a local neighborhood of the given
solution §(P,), measured by the Euclidean distance. This problem class captures the complex-
ity specifically for solving the fixed-point equation, without the need to estimate the entire
transition kernel. In particular, it is easy to construct a Markov kernel P such that the so-
lution A(P) is very close to A(P,), but the distance between the transition kernels P and Py
(e.g. measured in weighted x? divergence) is arbitrarily large.

3.2.2 Instance-dependent lower bound

Our lower bound is proved on the smallest worst-case risk attainable over the intersection of
Nprob and Npst. We use the shorthand notation L(O) := E¢, [L(S)] Also recall the covariance
matrix X3, = Z?i_ooE[EMkv(gt)EMkv(§0)T]a as previously defined in equation (19), for a
stationary trajectory (s¢):cz under the transition kernel Py. Our bound depends on the local
radius

en =n" 12 \/trace (I = LO)=183, (I = LO)=T), (25)

5Doing so is necessary to rule out trivial estimators, and the possibility of super-efficiency.

"In our construction, both kernels Py and P are rapidly mixing and their stationary measure are sufficiently
close in TV distance that the choice of initial distribution does not affect the result. Drawing so ~ & is made
for theoretical convenience.
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which is the contribution of Markovian noise to the upper bound stated in Theorem 1.

We are now ready to state our lower bound. Recall that we have assumed that the kernel
Py is irreducible and aperiodic. We also assume the mixing condition (Assumption 1) holds
with the discrete metric p(z,y) = 1{;,, and mixing time ty;x, and that supp(Po(s, )) > 2
for all s € X.

Theorem 2. Under the assumptions stated above, there exist universal positive constants
(c,c1,c2) such that for any sample size n lower bounded as

t2 . o2 d2log?d 2¢(1+02)52t4 . d?
n 2 ¢ mlx(lL_,{)zog "y and nzai Z 46( +(1L_)H)4mlx— 10g6 (mincglo(s))’ (263,)
we have the minimazx lower bound
inf sup E[||6, — 0(P)[13] > c2?, (26b)

0, P

where N := Npyop (Po, €1 ﬂ) N Ngst (Fo, c1€n).

See Section 7 for the proof of this theorem.

A few remarks are in order. First, note that the minimax lower bound is with respect to
the problem class Ip,on (Po, cl \/% ) NNgst (Po, ¢1€, ), which requires both the transition kernel

P and the solution §(P) to be close to the given problem instance (Py, #(F)). The size of the
weighted x? neighborhood scales with the standard parametric rate \/d/n, as desired in such
problems. On the other hand, the size of the neighborhood around 6(Py) is proportional to
the local radius ¢, that appears in the lower bound. Operationally, this result indicates that
even if the estimator knows in advance that 6(P) lies in the ball B(0(F), c1,), one cannot
do much better than simply outputting an arbitrary point in this ball without looking at the
data.

Second, it should be noted that quantity 2 matches (up to a constant factor) the optimal
mean-squared error given by the local asymptotic minimax theorem [vdV00, GW95]. In
contrast to such asymptotic theory, however, Theorem 2 applies when n is finite, and does
not impose any regularity assumptions on the estimator. Furthermore, the radius ¢, that is
used to define the local neighborhood Mge(Fo,€r) is optimal in the following sense. On the
one hand, since the plug-in estimator is asymptotically normal [GW95], for any decreasing
sequence &), such that &/, > ¢, and ¢, — 0T, the minimax risk within the neighborhood
Nest(Po, €),) behaves asymptotically as 2 up to constant factors. On the other hand, for any
decreasing sequence ¢}, such that €, < &,, the minimax risk in the neighborhood Mgy (P, ),)
is at most &/,. In the latter case, the neighborhood is so small that it provides more information
than the data provides.

Theorem 2 matches the Markov noise term in Theorem 1, establishing its optimality
when the martingale part of the noise vanishes, i.e., L;(s) = L(s) and by(s) = b(s). The
lower bound does not capture the martingale part of the noise because we assume that the
functions L : X — R and b : X — R? are known to the estimator. In the setting
where these functions are also observed only through noisy i.i.d. data (L, b¢), Theorem 3
of the paper [MPW20] implies a lower bound of the form con~'trace (( — L©)~15%,, (1 —
E(O))_T). Combining it with Theorem 2 implies a minimax lower bound involving the term
chn~ ! trace (I — LON=(S 550 (T — I:(O))_T) in a properly defined local neighborhood,
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thus establishing the optimality of Theorem 1. Finally, we note that Theorem 2 requires the
sample size to be at least tmlxd2, which is more stringent than the O (tyixd) requirement in
the upper bound. While Theorem 1 holds true with a linear sample-size n = O (d), it is only
shown to be instance-optimal for larger n = Q(d?). This mismatch is due to the fact that
small perturbations of the Markov transition kernel in certain directions can destroy its fast
mixing property. That being said, Theorem 2 is still a finite-sample result, with polynomial
dependency on the quantities (tmix, d, ﬁ), and poly-logarithmic dependency on the smallest
stationary probability.

4 Some consequences for specific problems

In this section, we specialize our analysis to the examples described in Section 2.2, namely
approximate policy evaluation using TD algorithms, and estimation in autoregressive time
series models. By verifying the conditions needed to apply Theorem 1 and Proposition 1, we
obtain some more concrete corollaries of our general theory.

4.1 TD(0) method

Recall the TD(0) algorithm for policy evaluation, as previously described in Example 1.
We are interested in estimating the solution V* of the Bellman equation (10), and an ap-
proximation scheme is employed using the basis functions (qﬁj);l:l. Using the shorthand
0, o(s)) = 2?21 0;¢j(s) for the Euclidean inner product in R¢ with observation model
(Liy1(wi), big1(we)) defined in Eq (13), the averaged SA procedure (3) is given by:

n—1

~ (b
9t+1 = 9t { -9 3t+1) 9t> - Rt+1(3t)}¢(3t)a and 0, (Z) n_lno Z 0. (27)

t=no

To be clear, the update (27)(a) is the standard TD(0) algorithm with stepsize 1, whereas
the addition of the averaging step (27)(b) yields the Polyak—Ruppert averaged version of the
scheme. Note that we re-scale the stepsize 1 by a factor of § for notational convenience. In
the following subsections, we derive corollaries of our general theory for the averaged scheme
under different mixing conditions on the underlying Markov chain.

4.1.1 Markov chains with mixing in total variation distance

We first assume that the Markov chain satisfies a mixing condition (cf. Assumption 1) in the
discrete metric: i.e., after ¢y, steps, we have drvy (8 Pimix | §y Plmix) < % for any pair s,s’ € X.
Let & denote the stationary distribution of the Markov chain that generates the trajec-
tory {s:}+>0, and let P denote its transition kernel. Note that the augmented state vector
wr = (8, St+1) evolves according to a Markov process with mixing time ¢p,;x + 1. Moreover,
the stationary distribution of the pair w = (s,s") has the form s ~ ¢, s+ ~ P(-]s). We
denote the stationary covariance of the feature vectors as B := E,.¢ [qb ], and also
define the minimum and maximum eigenvalues p := A\pin(B) and 8 := )\max(B) We assume
that

(a) (0)
IB~Y2¢(s)||la < sV/d and |Ri(s)| << forall s € X, and (28a)
E¢ [(B_1/2¢(8), u)ﬂ <¢* forall u eSSt (28b)
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In order to state our result, we define the following quantities:

M =B By g gimp(s [#()0(s5) ] - BT,
e (8,87) i= B7Y2(p(s) "0 — v (sT) 0 — 7(5))d(5),  ema(s) := B V2(R(s) — r(s))o(s)

We also define the following covariance matrices according to Eq (19):

oo

Sine = Y Eleam (st se1)en(s0,51) ],

Sha = Esve[Elema(s)ema(s) | s]].

Finally, we define the quantity

5% i= 62 \JE[(6(51)T0 — v0(s11)0 — Rils))*], (29)

and let x := %)\max(M + MT). It is easy to see that k <y < 1. Assuming that p > 0, we are
then ready to state our main result for the TD(0) method.

Corollary 1. Under the setup above, take the stepsize n and burn-in period ng as

_ 1 1
1= BTNty 9 Mo = M, (30)

ogn% > 2tm(if(_§,i;g;)2dﬁ ® . The estimator V,, := 0,,¢ obtained from the Polyak—
(27) satisfies the bound

and suppose that :
Ruppert procedure

=5 = c - * * — 252 dbimix \4/3
E[”Vn - V”?Lz(x,{)] S ETI'{(Id—M) l(szV+EMG)(Id—M) T} +C(%) / 10g2 n,
(31)

where V is the solution to the projected fived-point equation (11) and ¢ > 0 is a universal
constant.

See Appendix E.1 for the proof of this corollary.

A few remarks are in order. First, we measure the estimation error in the canonical
| - llL2(x,¢) norm, instead of the Euclidean distance in R?. Consequently, the proof of this
corollary actually uses a generalized version of Theorem | proved for weighted 2 norms. On
the other hand, we note that the error bound (31) is with respect to the solution V to the
projected fixed-point equation. In the well-specified case where V* € S, this solution coincides
with the value function V*. In general, the approximation error needs to be taken into account,
and was the focus of the paper [MPW20]. In conjunction with this result, Corollary 1 implies
the error bound

B[V = V' 2] < e[l 4 A ((La = M) (92 0a = MM T)(Ia = M)~ T) ] 0 [V = V72
+ T (1y = M) ™ (Sinee + Siie)) Fa — M)~} + e L% )V log? .
(32)

In Section 4.2 to follow, we provide a general recipe to trade off approximation and estimation
errors to choose the value of A in the class of TD()) algorithms. Before that, we discuss two
extensions of Corollary 1.
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4.1.2 Markov chains with mixing in Wasserstein metric

Note that for Corollary 1, the mixing time condition is imposed with total variation distance.
When the state space X is continuous, e.g., the set X is a subset of R™, mixing in Wasserstein
distance could capture the geometry of the underlying metric better. In this section, we
extend our analysis to such settings, highlighting the dimension dependency in the sample
complexity.

Concretely, we consider a Markov chain (s¢)¢>0 on a compact domain X C R™, and a
feature mapping ¢ : X — R? We assume that the Markov chain admits a unique station-
ary measure &, and the mixing time assumption holds in Wasserstein-1 distance, so that
Wi (5thmiX, 5yPtmiX) < %HJE — yl|2 for all z,y € X. For the sake of normalization, we assume
that X C B(0,1) and ¢(0) = 0. On the feature mapping ¢, we assume the following:

Ju, >0, pulyXB:= ESN [(b s ] =< By, (33a)
Vo,y € X, |BTV?(g(z) - 6(y) )Hz < sVdz = ylla, (33b)
Vu e ST Ege[(u, B~ 1/2¢(s)>4] <4 (33c)
Vs, s € X, t>1, |Ri(s) — Ri(s)] <<lls — &'l|2, |Re(s)] << as. (33d)

Here, we regard the parameters (s, i, 3) as dimension-independent positive constants. Since
the state space X has diameter bounded by 2, the feature mapping ¢ satisfying equation (33a)

necessarily has Lipschitz constant of order O (\/E) For a simple example, take the state

x itself as the feature vector (after appropriate re-scaling), which corresponds to the case of

m=d and ¢(z) = Vd - x.

With this set-up, we have the following guarantee:

Corollary 2. Assuming the conditions in equation (33), taking stepsize and burn-in period
as equation (30), for the Polyak—Ruppert averaged stochastic approximation procedure (27),
the bound (31) holds.

See Appendix E.2 for the proof.

Corollary 2 shows that the same instance-dependent bound holds true for a continuous
state space setting. Such a bound is useful for many applications, one of which is the case
of quadratic value functions, where the dimension satisfies the relation d = m? the map-
ping ¢ takes the form ¢ : & — m - zz . Assuming that the process (st)t>0 is supported in
a unit ball B(0,1) and has well-conditioned stationary covariance, it is easy to verify that
Assumptions (33) are satisfied with dimension-free constants (s, i, 8). This example is partic-
ularly useful for policy evaluation in Linear Quadratic Regulators (LQR). Nevertheless, our
results hold more generally for any random dynamical system that is rapidly mixing in the
W, distance.

4.1.3 Analysis of a sieve estimator

The optimal dimension dependency in Theorem 1 allows us to obtain optimal estimators
for various classes of non-parametric problems, in which the dimension is a parameter to be
chosen. In particular, sieve methods are a class of non-parametric estimators based on nested
sequences of finite-dimensional approximations. In this section, we analyze the behavior of a
stochastic approximation sieve estimator in the Markovian setting. The optimal dimension
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dependence in our theorem recovers the minimax optimal rates for estimation, while our
instance-dependent bounds help in capturing more refined structure in the problem instance.

Concretely, assuming that the Hilbert space L2(X, ) is separable, let ((bj)]o-‘;l be a set of
(not necessarily orthogonal) basis functions. We consider the case where the mixing condition
holds true with total variation distance®. The following assumptions are imposed on the basis
functions:

Vi e N*, suplo;(z)] <, (34a)
zeX

Vd € N+7 plg < [ES~§ (¢j(s)¢f(s))]j’ge[d} < Blg, (34b)

Vi >1, sup|Ri(z)| <s. (34c)
zeX

The first assumption is standard in nonparametric regression, and satisfied by many useful
basis functions such as the Fourier basis and Walsh-Hadamard basis. The second assumption
relaxes the orthogonality requirement on the bases, by only requiring the Gram matrix to be
well-conditioned.

We define the noise level ¢ using the second moment:

52 =¢2 \/E[(V(st) — AV (8441) — Rt(st))2]. (35)

Once again, we run the averaged stochastic approximation procedure (27) on this problem.
A crucial point of departure from the parametric models discussed above is that the number
of basis functions d,, in sieve estimators is chosen based on the problem structure and sample
size. Let S(d,) := span(¢1, ¢a,--- ,¢q,) denote the subspace spanned by the first d,, basis
functions. The following result is a direct corollary of our theorem, and covers the case of
fixed d,,; we discuss the trade-off between approximation and estimation error in the choice
of d,, presently.

Corollary 3. Assuming the conditions in equation (34), take the stepsize and burn-in pe-
riod as in equation (30). Assuming that u,B,s < 1, the Polyak—Ruppert averaged stochastic
approximation procedure (27) satisfies the bound (31) with d = d,,.

See Appendix E.3 for the proof.

Recall that by taking into account the approximation error, the error for estimating the
true value function V* takes the following form:

E[IVe = V*IE2e)] < e[l + Auax (T = M) (4% Lg = MM YT = M)~ T)] inf [V — V*I22x 6

+ETr((I = M) (St + Zhie) ([ — M)™T) + c(%) 3 10g2 .

Let {¢]}+°° be an orthonormal basis of L2(X, &) such that span(¢y, - - - , 1) = span(¢1,--- , Pq)
for any d > 1. (For instance, one can let {QJJJ} 1 be the Gram-Schmidt orthonormalization of
the original basis functions). Given a non- 1ncreasmg sequence {c; }52 52, of positive reals such
that lim;_, 4 oj = 0, we first let Ho be a linear subspace of L2(X,¢), consisting of all the

8By following the approach in the previous subsection, the analysis can also be extended to the case of
mixing in Wasserstein distance.
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finite linear combination of basis vectors {w]} equipped with the following inner product:

=D
Yu,v € Ho, (u, v)y Za] ) - (v, ¥5).

Note that the summation shown above is actually finite, since both both sequences ({u, wj>)j_
only have finite non-zero entries. We then define the inner product space (H, (-, -)3) as the
completion of (Ho, (-, -)7,)- It is easy to see that H is a Hilbert space, and a linear subspace
of L(X,¢).

For any V* € H, the estimation error is at most (in the worst-case)

E[|Va = V2] <

For example, when the eigenvalues of Hilbert space H decay as a; =< 2% for some s > 0,

* dn mix
an ||V |3, + Frimgees. (36)

the estimator achieves a rate of O((tmix/n)%il), which matches the minimax optimal rate
proved by Duan et al. [ DWW21] in the i.i.d. setting, but with a multiplicative correction to the
effective sample size by a factor ¢,;x to accommodate Markovian observations. Furthermore,
since one can estimate the quantities (M, X3, X3;¢) in the bound (31) using O (d) samples,
instance-dependent model selection can in prlnmple be conducted. Bounds of the form (36)
thus open the door to asking important questions of this type.

4.2 TD()\) methods

Now we turn to stochastic approximation methods for the TD(\) projected fixed-point equa-
tion (14b), with some given A € [0,1). With observation model (L;y1(w;), byy1(wy)) given by
Eq (16¢), the averaged SA procedure (3) can be written as

Orr1 =0 — 77{<¢(3t) —79(se11) ", 0p) — Rt(st)}gm where (37a)

= YAgi—1 + ¢(s¢) and, (37b)

On = 2 Z 0;. (37¢)
t=no

The update on g; is the so-called “eligibility trace” in the TD(A) algorithm. As before, we
assume the two bounds in equation (28a), and assume that the mixing time condition I
holds true for the chain (s¢)¢>1, with discrete metric and mixing time tpyix. We consider the
augmented Markov chain w; := (St,8t+1, %gt) € X2 x B(0,1) and begin by establishing
mixing conditions on this augmented chain.

Proposition 2. Under the setup above, consider the metric
p((Sl,SQ,h), (sﬁ,sé,h’)) = %(1317583 + Lgze, + Ilh — h'Hg). (38a)

Taking T = 4(tmiX + ﬁ), the augmented chain {wt = (s, St+1, %gt) satisfies the

Feso
mizing bound

Wi (L(wr), L(w})) < =p(wo,wp) (38b)

DO | =

for two chains (wy)i>0 and (wy)i>o starting from wo and wf), respectively. In particular, the
stationary distribution & of the chain (w¢)i>o exists and is unique.
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See Appendix F.1 for the proof of this proposition.

Taking this proposition as given, we are now ready to present our main corollary for TD(\)
procedures. We consider the following instantiation of quantities in Theorem 1:

The projected linear operator (1 — \) > 720 A¥(yIIsP)**! in the equation (14h) can be
represented in the orthonormal basis of the subspace S as

My =1y = B™PE( o 6l0o(9)" —90(s) T B2
8,51, A9~

= (1= NB 2 "Ny FE [G(s0)d(s141)] B2
t=0

The Markovian and martingale part of the noise (in the low-dimensional subspace S) takes
the following form:

Eniv A (5,57, 1(\_/%\9) =B72(¢(s) "0 — vp(sT)I —1(s))g,

1—9A
+
emaa(s,s™, T 9)

Finally, we define the covariance matrices ¥y, y and ¥y,q y according to Eq (19):

- 1—~A 1 -9\
EK/ﬂw,A = Z E[EMkv,A(St,SHl,ﬁgt)ﬁl\/[kv,,\(so,shﬁgof],

t=—00

E*MG,A = Ege [E [EMG,A(S)EMGA(S)T | SH

As before, we let 8 := Apux(B), 1t := Amin(B) and k) := %)\max(MA + MAT), and define the
quantity ¢ according to equation (29). Note that a straightforward calculation reveals that
Ky < % < 1. Assuming that p > 0, we are then ready to state our main result for TD(\)

methods.

Corollary 4. Under the setup above, take the stepsize and burn-in period as

_ 2/3
= (1=7) 75, ond ng = %n, (39a)
eB((141)d(1—rn)n? (tmix+ 1255 ))
2tmix+Tox) (<" d+1)52 5

and suppose that bg”gn 2 — AP aE Then the value function estimate Vi,(s) := (6, ¢(s))

obtained from the Polyak—Ruppert procedure (37) has MSE bounded as
E[|[V; - VY I22x.6)) < en " Tr((La — M) ™! (Shpee + Shie) (Lo — M) ~T)

B25%d (tmixt v ) \4/3
+C(u2(1_£A)2(1jy;)él) *1og?n, (39b)

where VN is the solution to the projected fized-point equation (11).

See Appendix F.2 for the proof of this corollary.
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A few remarks are in order. First, using the same argument as in Corollaries 2 and 3,
one can extend the results for TD(\) to the cases of continuous state spaces with Wasserstein
mixing, as well as to nonparametric sieve estimators. As is well-known, different choices of
the tuning parameter A interpolate the “temporal difference” method, in which we aim at
solving the Bellman equation, and the “Monte Carlo” method, in which the value function
is estimated directly by averaging the rollout of a Markovian trajectory. For example, on
the one hand, letting A = 0 recovers the instance-dependent upper bound for TD(0) method
in Corollary 1. On the other hand, by taking A = v, we have k) < % < %, and the
dependence on the discount factor v appears only through the variance of the noise, instead
of through the conditioning of the matrix M. In the next section, we sketch a recipe for the
instance-dependent selection of A that also takes the approximation error into account.

4.2.1 Using instance-dependent results to select \

Recall that the TD()\) algorithm aims at estimating the solution VN to the projected fixed-
point equation (14b). The linear operator in the unprojected fixed-point equation (14a) sat-
isfies the norm bound

—-A
I =20 D N PR e o ey < (1= A) D AR+ = G501,
k=0 k=0

Consequently, invoking Theorem 1 of the paper [MPW20], the approximation error satisfies
the bound

B . A . *
[V = Vo) < oMy =350 - ink [V = V72,

where (M, 2) := 1+ Ao (lg— M) 71 (z21— MM ") (14— M)~ ") is the approximation factor.
Combining with Corollary 4, we obtain the following bound on the distance to the true value
function:

526°d(tumixt 125 ) )4/3
=) (T—7A)2n

+ £Tr (I — M) ™ (S + Shae) (Ta = My) ™) (40)

log?n

i * —)\ . *
E[HVn -V H]]zﬂ(X,ﬁ)] < COZ(M)\, (i_)\?y’y) ’ ‘I/Hefg HV -V H]]zﬂ(X,ﬁ) + C(

for a universal constant ¢ > 0.

It can be seen that a(M 2 %) <d % for a universal constant. We also recall that
Ky < % If we take the parameters (i, 8,<) to be of constant order, in the worst case, the
upper bound (40) takes the simplified form

11— )‘7 . * (|2
— ‘1/HefSHV — V|2 x,e) + ¢

(tmix + ﬁ)d
(1=7)*n

From such an upper bound, it may appear that the optimal choice of A is always
A=9A (1 —=1/tmix), so that the approximation factor is minimized and the variance remains
controlled. However, this choice could be overly conservative, since the actual variance with
small A can be significantly smaller, with the feature vectors still having bounded one-step
cross-correlation. Choosing the parameter A close to 1 cannot take advantage of small one-
step correlation. On the other hand, a fine-grained bound of the form (40) can be used to
perform instance-dependent model selection, as follows:

E[H‘A/n - V*Hu%?(x,g)] sc
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e Construct a uniform finite grid 0 = Ay < Ay < --- < A, = 7y for possible values of A.
e For each /¢ € [m], compute the TD(\;) estimator, and construct empirical plug-in esti-
mates (MML,Z Mkv, A,y 237 MGML) for the matrices (MA7EK/H{V N 2MG /\) by replacing the

expectations by empirical averages. Similarly replace 6V by §n

e Estimate the approximation factor a(M 2 (tizj) and the covariance (I; — My)~*( Miv T

ve) g — M. y)~ " by plugging in the estimated matrices described above, for each A = ),
with ¢ € [m]. Based on prior knowledge about the scale of the optimal approximation error
infyes |V — V*2, (X.€) select Ay in the grid that minimizes our estimate of the total error
according to equation (40).
Note that the procedure above is simply a sketch; a formal proof of correctness would
show bounds that are uniform over all m estimators. It is an important direction of future
work to provide sharp non-asymptotic analysis of such a model selection procedure.

4.3 Autoregressive models

Next, we turn to Example 3, the multivariate auto-regressive model. We study the stochastic
approximation procedure in which, for any i € [k], we have

e
—
3
|
—

; . ~i 1
=AY (Y AVX X - XX ), and AD =

A0 _ A9
t+1 n—ng 2 t

<.
Il
o

The first step in our analysis is to establish necessary and sufficient conditions for the existence
and uniqueness of the stationary distribution of the process (17). The following km x km
matrix plays a crucial role in this context:

(AT A5 - Ax
I, 0 - 0
Ro=|0 I, 0 0
0 0
0 0 In O]

In the noiseless case, the stability of the linear dynamical system is equivalent to the following
Lyapunov stability condition (see e.g. [Nem01], Section 3.3):

3P, > 0,Q, = 0, such that R] P,R, = P, — Q.. (41)

Clearly we have P, = Q.. We let f := A (Ps) and p := Apuin(Q«). Based on stability
theory for discrete-time linear systems [BD09], condition (41) is necessary for the stationary
distribution to exist. In the following proposition, we show that this condition is also sufficient,
with a concrete mixing time bound.

Proposition 3. Under the Lyapunov stability condition (41) and assuming that the noise has
bounded first moment E[||€t||2] < 00, the stationary distribution & for the sliding window w; =
(Xt41, X, -+, X4—g+1) of the auto-regressive process (17) exists and is unique. Furthermore,
the mizing assumption 11s satz'sﬁed with Wasserstein distance in RETD™ gnd o mizing time
bound tmix = ck + c& (1 +log & )

See Section G.1 for the proof of this claim.
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In addition to this mixing guarantee, we also make the following assumptions on the noise:

Ele] =0, sup E[(u, e)*] <<, and [et]]2 < sv/m, as. (42)
uesd—1

We are now in a position to consider the problem of parameter estimation using
stochastic approximation. Consider the vectorized version of the parameter 6 =
vec( [A(l);A(Q);--- ;A(k)]) € RF™* The population-level Yule-Walker estimation equa-
tion (18) can be written as
([Ty=il; jep ©Tm)0 = vee([TiiTa;- - 5T ] ) (43)
H*

where I'; := E[XZ-XOT] € R™* ™ for i € Z. We assume that
1
i(H* + (H*)T) = h*Iiy,, for some h* > 0.

In order to state the main corollary of Theorem 1 to auto-regressive models, the following
quantities are relevant:

N
—_

et (wr) == vee (Y AV X, — X)) - (X1, X, - X[,])

<.
Il
o

E*Mkv = Z E[EMkv(wt)EMkv(WO)T]-

t=—0o0
Corollary 5. Under the setup above, take the stepsize and burn-in period as

1
C(nz (g log g) (h*)2§4k3m258/us)

n= 73, and ng= %n, (44a)

and suppose that longn > (k‘ + glog §)§4k"3m2$§*)2‘ Then the Polyak—Ruppert estimator

(fﬁf) )jelk) satisfies

k
STE[JAY - A3 < ETr((H @ In) ™ S (H* © L) ™)
=1
m2. mazx v(s v(s T 4/3

A few remarks are in order. First, the leading-order term in the bound (44b) matches
the variance of asymptotic efficient estimators for AR(m) models, up to a constant factor
(see [BDO09], Section 8). This simply follows from the fact that the plug-in Yule-Walker
estimator is asymptotically efficient for auto-regressive models. On the other hand, Corollary 5
is completely non-asymptotic, holding true for any reasonably large sample size. Note that
the sample complexity lower bound exhibits an O (59 / ,ug) dependency on the conditioning
B/u of the Lyapunov stability certificate (Py, Q). In particular, a term linear in 8/u arises
from the mixing time glog g, and all other factors are from the almost-sure bounds on || X||2
and moment bound sup,,cgm-1{u, X;)*. If we instead assumed these quantities were bounded
explicitly as in some prior work [JKNN21], the factor 48¢*k? /u® in the sample size requirement
and stepsize choice can be replaced by such a bound.
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5 Proof of Proposition 1

We begin by proving the bound on the last iterate claimed in Proposition 1. Define the error
term A; := 6; — 0, as well as the noise terms

Zi1 = Lip1 — L(sy), Gea1 = (Lo — L(5¢))0 + (b1 — b(st)), (45a)
Ny := L(s) — L, vy := (L(s¢) — L) + (b(s¢) — b). (45b)

Using this notation, we have the recursion
A1 = —nI = L)Ar + n(Ne + Ziga) Ay + n(ve + G )- (46)

Taking squared norms on both sides yields the bound [|Asy1[2 < S| T;, where

Ty o= ||(I —n(I — L)) A3, T3 :=2n((I —n(I — L)A¢, (Zeg1A¢ + G41))s
Ty :=2n((I —n(I — L))Ay, NeAy + 1), and Ty := 40 (|| NeA13 + | Zep1 A3 + 1o |13 + Nlvell3)-

Beginning with the term 77, expanding the square and then invoking the condition (5)
yields

Ty = | A? = 20(Ay, (T = D)A) + 72T — DA < (1= 2n(1 — &) + 202 (1 + 120 ) 1A%

As for the cross terms involved in 15 and T3, we note that

2((I = L)Ay, NAy) < [|(T = DA + INALE < 201 + via) AL + [N A3,
2((I = L)Ay, ve) < (T = D)A3 + [el3 < 21+ vmas) A5 + [lw13,
2((1 — L)Ay, Zip1Ay) < (I = L)AL + 1 Zes1 Al < 201+ a) 183 + 1 Zes1 A3,
2((I = L)Ay, G1) < 1T = D)AE + 1641115 < 201+ ) 1ALS + G413

We collect the above bounds on the sum 3.+, 7; and use the stepsize bound 1 < 12(T’YT)
which results in the recursive inequality

[A1]5 < (1 =01 = &) A3 + 20 (A, NeAy) + (A, 1))
::Hl(t)
+2n (A4, ZipaAr) + (At Ga1)) 807 (INAS + (| Zeer A3 + G ll3 + le]13) -

‘=Ha(t) =H3(t)

Multiplying both sides by e?”(=#)(t+1) and using the fact that (1 —n(l — /{)) < e M=K we
have

en(l—n)(t-l-l) ”At-HH% < en(l—n)t”AtH% + 2nen(1—n)(t+1) (Hl (t) + Hg(t)) + 87]2€n(1_’i)(t+1)H3(t).

Unrolling this expression yields

n—1 n—1
e”(l_“)”HAnH% <[22 + 2?72677(1—/4)(1&—1—1) (Hl(t) + Hg(t)) 1 8n? Z:ev7(1—z»z)(zf+1)Hg(t)7
=0 t=0

(47)

which is the key recursion underlying our analysis.
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5.1 Analyzing the recursion (47)

Note that the running sum Ms(n) = Z?:_(]l e"1=L Hy(t) is, by construction, a martingale
adapted to the filtration (F})¢>o. In contrast, the analogous quantity defined in terms of the
process Hi is not an adapted martingale. In order to circumvent this obstacle, our proof is
based on introducing a surrogate version H of the process Hq, such that the running sum

n—1
My(n) = 3 MR (1 4 7)
t=0

can be decomposed as a sum of 7 martingales. See the proof of Lemma | for the details of the
construction of Hy. This decomposition allows us to apply standard maximal inequalities for
martingales. Of course, we also need the bound the moments of the differences H;(t) — Hi(t);
see Lemma 1 for the bound that we provide on this difference.

We prove the MSE bounds and higher-moment bounds using slightly different analysis
tools. In order to study the mean-squared error (the case p = 1), we note that both M;(¢) and
Hs(t) have zero expectation for any ¢t > 0. Taking expectations on both sides of equation (47),
we obtain the bound

n—1 n—1
eﬁ(l—n)nE[HAnH%] < IIAollg +2n Z en(l—n)(t+l)E[ ‘Hl(t) _ Hl(t)‘ ] + 8?2 Z en(l—ﬁ)(t+l)E[H3(t)]‘
t=0 t=0
(48)

For higher moments, our analysis of the recursion (47) is based on a Lyapunov function
®,, and auxiliary function A,, given by

(1—r)
= (E[ sup en(l_n)tpHAtng])l/p, and A, = max e t<I>t.
0<t<n te{0,1,...,n}

By applying Minkowski’s inequality to the recursion (47), we obtain the upper bound

1
@, < @ +4n(E sup [My(1)f) )P 4 an (B( Ze“ S H, (8) — Hy(8)])7) 7
<t<n

+4n(E sup [Ma(t)[?)"? + 160 (E( Z e"=P g (1)) 7. (49)
0<t<n

In order to complete the proof, we need to control each of the terms on the right-hand side.
The following auxiliary results provide the needed control; in all cases, the quantities (¢, cg)
etc. denote universal constants; the number n in the following lemmas is seen as a general
iteration index, instead of the total sample size in the final statement of the theorem.

Our first auxiliary result guarantees the existence of the surrogate variables Hy(t) with
desirable properties:

Lemma 1. There is a surrogate version {Hi(t)}y>o of the process {Hy(t)}i>0 such that
E[H(t)] =0 for any t > 0, and for any integer p € [1,p/2], scalar T > cptmix log(cotmixd) and

stepsize n < m we have the following bounds for any n > 0:

B[ Hi(n) = i) 1)V < o7 ((do} +22) - (A ol)? +5%),  (500)
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and for any p > 2, we have that
cp??

(E sup |My(t)P)"" <
0<t<n n(l — k)

(UL\/g(I)n + 5y e”(l—“)”fbnd). (50b)

See Section 5.2 for the proof of this claim. We note that it is especially challenging to prove
the bound (50a).
Our second auxiliary result is a more straightforward bound on a martingale supremum:

Lemma 2. The process My is a martingale adapted to the filtration (Fi)i>o. Furthermore,
for each p € [1,p/2], T > 2ptmix log(cod) and n < m, for any n > 0, we have that

(oL Vd®, + 5/ en1=rnd,d). (51)

3/2.1/2
(E sup ’M2(t)‘p)1/10 < PT
0<t<n n(l — k)

See Section 5.3 for the proof of this claim.

Finally, our third auxiliary result provides control on the process Hs(t):

Lemma 3. There is a universal constant ¢ such that given T > cptmix log(cotmixd) and stepsize

n < m, for any p € [1,p/2], we have

(E[Hst)"]) "7 < c(pP02d + 12ne) B[ Ar_rvol 2]) 77 + cp?52d. (52)

See Section 5.4 for the proof of this claim.

We now use these three lemmas to complete the proof of Proposition 1. We prove the case
of p =2 and p > logn separately.

Proof in the case of p = 2: By Lemma | with 7 = ctyix log(cotmixd) and Cauchy—Schwarz
inequality, we have that

n—1 n—1
E[ 3" 0y (0) — Hi(1)]] < enr Y "0 (03 + A2 B[ Ar-rvoll3] + 5%)
t=0 t=0

cT?d =
< T cenr (0 d + V) ; 10— [|| A3].

Similarly, by applying Lemma 3 to the last term of equation (48), we obtain the bound

n—1 —2 n—l
> MDB[y(0)] < eI+ cefoFd ) S IV EAIB)
=0 t=0

Combining them with the decomposition (48), we find that e">=®"E[||A,[3] is upper
bounded by

_2d n—1
1 A]|2 + ch 10 enr(ofd + ) D U TVEAE] for any n = 1,2,
t=0

(53)
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In order to exploit this recursive upper bound, we define the partial sum sequence
Sn =10 e”(l_“)tIE[HAtH%]. Equation (48) implies that

nTo *d (l—n)n

Sp < 8o+ c—— 1_r¢ + (L4 en*r(07d + Voax)) Sn—1

P r(o} A4t | 7775’261 TN (o din (1) ()
< SO Z e max 1 - . Ze 4y L ﬁ/max n

t=0
3 3erad
3 n-mg 4 370 e
ST St et

Substituting back into the recursion (53) yields

6 K)n nTo3d 2cra2d

E[lA]3] < T T Ag 3 + eT—— +en T(ULd—i—'ymaX).m
< e—n(l—n)n/2‘|A0||%+C/7iTU d’
- K

which completes the proof of the MSE bound.

Proof in the case of p > logn: Now we turn to prove the p-th moment bound under
Assumption 2 with § > logn. Recall that we analyze the growth of the Lyapunov function
®,,, and we start from the decomposition (49).

The first term in equation (19) is simply ||Ag||3, and the second term is controlled using
equation (50b) in Lemma 1. In order to bound the third term, we apply Holder’s inequality,
and obtain the bound

n—1 n—1
£(Y 0 (1) — (1)) < ( Zeé%p“ii” LS TR [ ) - B ).
t=0 t=0

By equation (50a) in Lemma 1, this quantity is at most

n—1
(n(1 — R))l—pen(lizﬁ)pn Z e (er(p*o7d + V2 (E[HAt—rvOng] ) Yy crp?a?d)”’.
=0

We then obtain the inequality:

n—1
E(Zen(l—n)t ‘Hl(t) _ ﬁh(t)‘ )p)l/P
=0

en(l—ﬁ)n ) e%n(l—n)n n
Z  5%1d 2 2 d 2 D
T](l—H)J T +C(p or, +/7max)7_

en(l—rk)n ) e3n(1—k)n 7
< epP——5%rd + c(pPoid + 2, ) T————
77(1 — K/) ( L max)

ent=rn e3n(l—r)n
< ep? ——5%rd + c(p?oid + 2, )T
77(1 — H) ( L max)

< cp?
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Similarly, the fourth term on the right hand side is controlled using Lemma 2, and the bounds
for the last term are based on Lemma 3 and the same strategy as above. Concretely, combining
Hoélder’s inequality with the bound (52) yields

n(1—r)pt

n—1
Zenﬂ ()" < Zem Ty Bl 1)

t=0

This quantity is at most

n—1
(n(1 — ﬁ))l_pen(lizﬂ)pn Z T (c(PPold + Vhax) (E[HAt_TVngp] ) Vr g cp®52d)”.
=0

Noting that each term satisfies the inequality e (E[l|A- Tvonp])l/p < A, for t € [0,n].
We conclude that the moment (E( 2?2—01 e"I=RL . 3(15)) ) P i upper bounded by

en(l—r)n ) 5 o ) e%n(l—li)n
a4 e(pold+ 2 )
a0 w4t e ) S

Collecting the above bounds and substituting into the decomposition (49), we note that

nl/PA,,.

3
b, <Py+c 1p_77 (JL\/E<I>n +5 e"(l_“)"fbnd)

(1 K)n e%n(l—n)n
 F%rd+ (pPodd+ 2 )
e R )na—n)

3 3
p3Tnd dr  (1-k)
—¢ ¢ ’I’] R)Nn
=% + - 7 0n + C77 1_
en(l—r)n e3n(l—r)n

ﬁ&z’rd + Cn(pzo'%d + /7121133() ﬁTAn

+ cp® l/PA,

< Py + 4eoy,

+ cp*n

In the last step, we apply Young’s inequality to the term +/e?(1=%)n®, d, and use the condition
p > logn to the last term so that nt/r <e.
Taking the stepsize n < m, we arrive at the following bound valid for any n € [1, €P]:

n(l—r)n H) ?7(1 K)n d
e 5 (I) < 2®0+Cp 776176'27'd+07]p0’l/1—% A
K —

Note that the right-hand-side of above expression is monotonic increasing in the index n. For
any integer pair (¢,n) such that 0 < ¢t < n < eP, we have the inequality:

n(1—r) sn(l—r)t d
e t‘I’t < 2Py +cp 77617027-61[4_ cnw Ay
K _
577(1—/4)n d
<29y + cp37767527—d + cnm A,
l=+ 1-k
Given the value of n fixed and taking supremum over ¢ € {0,1,2,--- ,n} in the left-hand-side,
we arrive at the conclusion:
(-r) In(1—r)n it
An= sup e T @ <200+ epPn” 527d+cn%—m" A,
t€{0,1,,n} 1- 11—k
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. . 1—k .
Given the stepsize n < Pl AT we arrive at the bound

3
(ENAB)!7 < ed107mny, < e s (B2, 5) 7 + 2L 52,

which completes the proof of the theorem.

It remains to prove our three auxiliary lemmas.

5.2 Proof of Lemma 1

We break the proof into three steps. In the first step, given in Section 5.2.1, we con-
struct the surrogate process, whereas the remaining two steps are devoted to the proving
the bounds (50b) and (50a), as detailed in Sections 5.2.2 and 5.2.3 respectively.

5.2.1 Construction of the surrogate process

We first claim that for any ¢t = 1,2,... and any 7 € {0,...,t}, there is a random variable
s¢ € X such that s; | Fr—r ~ &, and
(E[p(se,50)" | .Ft_T])l/p < cgexp (— m) for each p > 2. (54)

Here ¢j is a universal constant.
Our construction is based on the following bound on the Wasserstein distance:

Lemma 4. Under Assumptions 1 and 3, the Wasserstein distance is upper bounded as

Wi, (0:P7,€) < coexp{ =]},

tmix

valid for any x € X and 7 > 0.
See Appendix B.1 for the proof of this claim.

We now use Lemma 4 to construct the desired process. We begin by constructing a cou-
pling conditionally on the o-field F;_,: let s; be a state whose conditional law is £, satisfying
the identity:

Elp(st,51) | Fir] = Wi, (L (st | Fir),£)- (55)

The existence of such s; is guaranteed by the definition of Wasserstein distance. We now
bound the relevant quantities based on this construction.

Combining the identity (55) with Lemma 4 yields E[p(st,gt) | }}_T] <cy-2
plying Cauchy—Schwarz inequality and invoking Assumption 3, we find that

(Elp(sts50)” | Fiee])77 < (Blp(s0,50) | Fies]) - (B[p(s1, 5077 | Fies])

< (E[p(s1,5) | For])
< o 2" Ter (56)

5] Ap.

which establishes the claim.
We now use the sequence of random variable s; just constructed to define the extended
filtration F; := O'((Sk)ogkgt, (Sk)o<k<ts ((Lk, bk))0<k<t)’ as well as the surrogate quantities

V= (L) — L)0+ (b(5) —b), and  Hi(t) == (Au_ryvo, 21) + (Do (LG = L) Ag_ryvo)-
Note that by definition, we have E[ﬁl(t) | ]-N'(t_T)VO] =0 for each t =0,1,2,....
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5.2.2 Proof of the bound (50b)

We first perform a decomposition on the process Ml. In particular, for ¢ € {0,1,--- ,7 — 1},
we define the stochastic process Ml(g) (n) = Z?:_ol e"1=R) ) [ (¢ + T)1{¢tmodr=¢}- Clearly,
we have Ml(n) = Z:_ol Ml(e) (n) for any n > 0. Furthermore, we note for any ¢t > 0, we have

the relations:
E[H(t+7)| /] =0, and Hy(t) € F

Ao

So for each ¢ € [0, 7 — 1], the process M, is a martingale adapted to the filtration (]f:})

£>0°

By the BDG inequality, we have the maximal inequality (Esupy<;<, ’M1(£) t)P) W <

cp(E([Ml(z)]n)pp)l/p, valid for all £ = 0,1,...,7 — 1. Similarly, for the quadratic variation
term []f\\/[/l(g)]n, we have that

|_7L71J
E[([Ml( )] P/2 Z 677 (1—r)(kT+71+20) HH (k7+£)||2)17/2]

k=0

nl
E=Y

Z N=—r)p(kT+r+0) | [HHl(/ﬁT—i—@ ”P Ze 21 ™n(1—k) )

k=0
which is at most
n—1
(nr(1 =) "3 OB |20 1, (L) = DA "] +E[ 20 AP ]) L mod ey
t=1

Invoking the tail condition in Assumption 2 under the stationary distribution, we have that

E[|2(As—r, (L) — L)Ar—r)|" | Fir] < (porVd- | A—-[3)", and
E“@t, AP | Jtt—'r] < (p&\/E- HAt—THZ)p-

Substituting into the moment bounds for [Ml(g)]n and combining the results for ¢ =
0,1,--- ,7 — 1 using Minkowski’s inequality, we arrive at the bound

(E sup |My(t)[)"”

0<t<n

T—1 — 1
(E sup [M7(t)]P)""

-0 0<t<n

romp %) (1—r)n .
< \/_+ {paL\/_ Olila<x [e"(l (EHA H2p)1/p] te T paf max [e"(l t/Q(EHA Hp)l/p]}
(nr(1—r))2"?
™ _
(1-r)n
) (porVd®, + ps\/en ®,d),

IN

which completes the proof of this lemma.
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5.2.3 Proof of the bound (50a)

By Minkowski’s inequality, we can upper bound the error as
(E [(Hl (t) — Hy (t))p])l/p < 22:1 Ji, where

Jl = (E[(At_—r, Vg — gt>p])1/p7 J2 = (E[<At - At—Ta Vt>p])1/p
Jy 1= (E[(Ar, (L) = Lls) Ar?])7, o= (BLA = Arr, N )?]) 7
Js = (E[(As, Ne(A — At—r)>p])l/p Jo = (E[{Ar — Ay—ry Ni(A; — At—7)>p])1/p

The terms J; and J3 can be controlled using the bound on p(s, ;) and the Lipschitz condi-
tion (4); doing so yields the bound

Ty < Gd(E[)| Ar|? - Elp(s0,5)" | Fior]])'P < 2c06d(El| A, [2)"/7 - 27 %hain,  and
Js < ond(E[| A2 - Ep(s1,50)" | Fior]]) P < 2c000d (B Ay |2) 7 - 27 29mix

Given the time lag parameter 7 > cptpmix log(cotmixd) > 2ptmix log (%), we have the bound

Ji < naVAd(E| A B, and Js < mnopVA(E| A |2P) . (57)

Turning to the Js term, applying the Cauchy—Schwarz inequality yields

o~

7

< (El|Ar— A [27)% - (Elnl2)% 2 (A — Ay [2)% - pov/d. (58)

where step (i) follows from Assumption 2.
The terms J4 and Js can be controlled via once again replacing s; with its surrogate s;.
First, by Cauchy—Schwarz inequality, we note that

1 1 1
< (BJlA; — A3 ) C(BIN AP, 5 < (BIA = A7) % - (BINS A1) 2.
Using the decomposition Ny = (L(3;) — L) + (L(s¢) — L(5;)), we note that
A 2p QL ~ A 2p % DA 2 QL
(ENeA—-[13") % < (EI(LG) — L) A [57) > + (EI(L(se) — L(3)Ar—r[15")

We bound the conditional expectations of the quantities above. The first term can be con-
trolled via Assumption 2:

~ 2
E[(L(G:) = DA | Fier] < (01pVd) || A I3,
and the second term is controlled using the Lipschitz condition 4:

E[(L(st) — L) Ae—r |3 | Fier] < (ord)? -Elp(st,30)% | Foer] - [ Der |3
< (opd)® - ¢ - 2" Fonix - HAt—Tng-

Consequently, taking 7 > 2t,;xplog(cod), we have the bounds

1 1 1 1
(BINA,_A|2)% < orpVd- (B|A_,|2)%, and (B[N, A ||?)% < oppVd- (B|A,_,|2)2
Putting together the pieces, we arrive at the bound

J. Js < 2(E|lA; — A 2p%' \/EEA 2p%
4+ J5 < ( A t—THQ) oLp ( I t—TH2) . (59)
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By the Lipschitz condition (4) and the assumed boundedness (3) of the metric space, the term
Je admits the simple upper bound

Jo < (E[INAPIA — A |Z])7 < o1d(BI|A — Ar_||Z) 7 (60)

From all of these bounds, we see that the remaining crucial piece is to bound E[|A; — A, || 3.
In order to do so, we require the following two helper lemmas

Lemma 5. Given p > 2 and { > 0, the iterates (3a) with stepsize n < (6(Ymax + O’Ld)f)_l
satisfy the bound

E[1Are — AB))? < ent(ymax + o) (B[ Ac3]) 7 + 3npe/da, (61a)

and consequently,

SENIANEN " — 6nptv/do < (B[ A0elZ)7” < e(B[IANE) " + 6mpevdo.  (61b)

See Appendix B.2 for the proof of this claim.

Our second auxiliary result is of a bootstrap nature: it is based on assuming that for
some given an integer p > 2, fix any integer 7 > 2tyixplog(cod), there exist positive scalars
wp, Bp > 0 such that

E[1Are — AJEN Y < nep - (B[ 2B + 18,0 (62)

for any t >0, n < and ¢ € [0,7]. We then have the following guarantee:

1
48('}/max +or, d)T

Lemma 6. When the condition (62) holds, then, for any t > 0, n < m, and
¢ € [0,7], we have

(E[IAve = AB)Y? < n(12(pVaors + ) O+ L) (BIAE) P + (7 + )V o)
+n(2ptVd + %5,7)5. (63)
See Appendix B.3 for the proof of this claim.

We now complete the proof of the bound (50a) by using a bootstrapping argument in order
to obtain a sharp bound on E||A; — A, 5. Let wl(,o) = eT(VYmax + ord) and ﬂl(,o) = pr/d,
and define the following recursion:

W;z()i—i_l) —_ %wz()z) + 12(1)\/80'[, + ’Ymax)Tv
By Y = 185 + 2prvVd + 29 (12(pVdoL + Ymax) T + Sy ) pTV.

It can be seen that as ¢ — oo, the sequence (wg),ﬂ;(f)) converges to a unique limit (wy, 3, );
this limit is the unique fixed point of the iterates defined above.

By Lemma 0, if the iterates satisfy the bound (62) with constants (wl(,i), I()i)), then it also

satisfy the bound with constants (wl(f“), I()Hl)). By Lemma 5, the iterates satisfy bound

with constants (wl(,o), I(,O)). An induction argument then yields the bound for any (wg),ﬂl(,i)).

In particular, the bound is satisfied by the fixed point (w;, B, ).
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Solving directly for the fixed-point equation, we find that

Wy = 24(p\/EaL + ’YmaX)T, and 3, = 4pTV/d + 9677(p\/&0L + ’ymax)pTQ\/E.

Taking the stepsize n < m, we arrive at the bound

(B[ A — AJB]) P < 2407 (pVdoL, + Ynas) (B AR) P + 6npr/da, (64)

for any t > 0 and ¢ € [0, 7].
Collecting the bounds (57), (58), (5¢

59), (60) and (64) and taking the stepsize n <
m, we arrive at the bound

E[H(®) ~ B0)P]) Y < enpPr((do? + ) - (EIAAZ)? +5%d),

thereby completing the proof of the bound (50a).

5.3 Proof of Lemma 2

By the BDG inequality, we have the bound (E supg<;<, |M2(t)[F) Vr < cp(E([Mg]n)p/z)l/p,
valid for all £ =0,1,...,7 — 1.

As for the quadratic variation [Ms],, applying Holder’s inequality yields

E[([M p/2 Zenl ) H Ha()]|2 )p/2]

n—1 n—1

2 —
< (B[ Ha ) ]) - (30 e
t=0 t=0
n—1

< (n(1—r) 72T P E]2(A, Zit AN ]+ E[12(G1, A)IP)).
t=0

For the moment terms above, we invoke Assumption 2, and obtain the following bounds

d
E[[(As, Zinn D) | F] < AN -E[(D (e, Ze1 D)) | F) < (porVd - A3,

.
Il
i

M=

E[[(Gry1, AP | F] < NAS-E[(D) (ej, ¢1)?)” P/ | F] < (pavVd- || Adl2)".

<.
Il
—

Substituting into the bound above, we find that

(E[([Ma]n ”/QD””
(n(d-x

|>—l

< T{pO’L\/_ ma<x [677(1 K) (E”A H2p)1/p] 6’7 2 pa[&?ﬁ} [en(l nt/2(E”A ”p)l/p]}
= 7;(11_&) (porVd®, + poy/en1=nd,d).

36



5.4 Proof of Lemma 3

Recall the definitions (45a) and (45b). By Minkowski’s inequality, we have the upper bound

(E[Hs(t)!])"7 < (BINANZP) P + (B Zea A 2) 7 + (B Ceia 1) + (Bl 2) 7,
(65)

For the martingale part of the noise, we note that Assumption 2 implies that

1 1 _
(Bl Zea A2 | )P < p*ord - | A, and  (E[¢ | )7 < pPa%d.

For the additive Markov noise, applying Assumption 2 yields the bound (EHVt”gp ) L/p < p?52d.
For the Markov part of the multiplicative noise, we make use of the construction given in
Section 5.2.1, where we showed that for a given 7 > 0, there exists a random variable s; such

pn

that s | Fi—r ~ &, and E[pp(st, St) | ]-}_T] <cp- 9" Tmix . Observe the decomposition
NiAy = (L(st) — L(31)) Ap—r + (L(31) — L) Ap—r + Ne(Ap — Ay_y).

Using the Lipschitz condition (4), we have that

~ 1—_T
E[H(L(St) - L(st))At—Tng | ]:t—T] <cp-2 fmix (O-LdHAt—T||2)2p'
For any 7 > 2ptix log d, we have the bound
~ 1 1
(B[ (E(s:) = L)) A 37]) 7 < poid- (BIAZ) .
By the moment bounds (2) on the stationary distribution, we have

E[|(L(3) — L) Ar—r 137 | Fier] < (2por V|| A1)

For the last term, we use the Lipschitz condition 4 as well as the boundedness condition 3
of metric space. In conjunction with the inequality (64), for 7 > 2ptnix log(cod) and stepsize

n < W, we arrive at the bound

(E[IN(A — A )[IZ]) P < 02 - (B[[|Ar — Apr||Z]) 7
< n? o3 22 (pPoRd + A 2) (B[ A7) 7 + en®pPo? 52dr?
< e(pP*03d + V) (B[ A+ |[2]) P + cp?57d,

for a universal constant ¢ > 0.
Collecting the bounds above and substituting into our initial bound (65), we find that

(E[Hs (t)]) "7 < c(p®02d + ) (E[| A 1Z]) 7 + cp?62d,
as claimed.
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6 Proof of Theorem 1

From the defining equations (3a) and (3b), we have the telescoping relation

n—1

0n—0n,

ﬁ(n—n(;)) - n—lno z : (Ht — Li4160; — bt"‘l) = ([ B L)(@n —0) + n—lno g + n—lno T"Oﬂ (66)
t=ng

L (Lig10p+bps1 — B[ Ly 10+ b 1| F]) and Cog oy i= o2 S0 (L(s4)0,+

where Uy = > 10 —no n—ng Zat=ng

b(s;) — Lb; — b). Some algebra yields

~ _ _iy-1(e,— _Fy— e
5, _g= 4D (0nOng) D) Mng (D Mg o p g (67)

n(n—ng) n—ng n—ngo

From the triangle inequality, it suffices to bound the norms of I, I» and Is.
In the following, we prove a slightly stronger claim, which gives bounds on an arbitrary
quadratic loss functional. In particular, given a matrix ) = 0, we seek bounds on the -norm

18n Bl == \/ (B — )T Q(Br — 0).

6.1 Bounding the three terms

We now bound each term in the decomposition (67) in turn.

6.1.1 Bounding the term I;

The bound for term I follows directly from Proposition 1. In particular, given a sample size
n > ( -y log (|60 — 0]]2d/n) and burn-in period ng = n/2, we have

_ cn oo cnoo_
E[|6, — 0])3] < - Ha%d, and E[[|f,, — ]3] < - Ha%d.
Noting that ||(I — L)~Y., < (1 — k)%, we conclude that
cG2T
E[I1113] < Amas @E[I111] < Auo(Q) - 72250 (68)

6.1.2 Bounding the term I

For the term I, note that the process (¥;);>p, is a martingale adapted to the natural filtration.
Its second moment equals the quadratic variation:

4

E[I2]15] = E[[QY*(I — L) ™ ¥]uen ) Z [I1( = L) (L1 — L(5))0¢ + brs1 — b(se)) 5] -

t=no

By the Cauchy—Schwarz inequality, we have the bound

n—1 n—1
E(IL13] <& > E[lU - L) Gl + = Z E[I(I — L)' Zi1 A|3)]
t=ng t=no
= 16 =
< LT (QU - 1) Shia(l - L)7T) + 12D S R, )]
t=ng
16 7y~ 1y -7 1602d  cndr =2
< BT ((1 - L)' Sie = D)7 + M) - oy - 4257 (69)



6.1.3 Bounding the term I3

Applying the Cauchy-Schwarz inequality yields

n—1 n—1
E[(I = L) " Tognl3] <2E[I Y (I = D)7 wl3] +2E[|l Y (I - L)' NiA3].  (70)

We make use of the two auxiliary lemmas in order to control the terms in the decomposi-
tion (70).

Lemma 7. Under the setup above, for a sample size n satisfying the bound

logn =
2tmix log(cod), there exists a universal constant ¢ > 0 such that

_ 62 —2
E[ Y (I =L 'wld] < (n—no) - Tr(QU — L) " Sy (T = L)1) + X @) - %110g2(c0d).

t=ng

See Section 6.2.1 for the proof of this claim.

Lemma 8. Under the above conditions, there exists a universal constant ¢ > 0s such that

for any scalar T > 3tmix log2(codn) stepsize 1 € (0, m] and burn-in time ng >

T+ Ty ) log(nd), we have E[|| > 7~ 730 NAZ] < en*n®r2d?o? 62

See Section 6.2.2 for the proof of this claim.

We now exploit the preceding two lemmas to upper bound the term I3. We have

n—1

E[|L)13] < ¢y Ell Z I = L) ') + GBI D (= D)7 NeA2)]
t=no t=ng
8Tr(QU—-L) 'Sty (I-L)~T c 2724202 52
< ( it ) + Anax (Q) - (ltm‘ﬁ log?(cod) + Amax(Q) - ’7(17@%
(71)
Collecting the bounds (68), (69), and (71), we find that
E[6, - 013] < £Tr(QU — L) (Shia + Zine) (I = L)77)
€% tmixd 160%2d  endtmi
A . mix L . mix _9
+ Ana(@Q) [77(1 —k)pBn2 (1—-k)2n 11—k 7]
ct?. 5%d en?t? . d*o?5?
A mix 1 d mix L
+ max(Q) [(1 _ ) Og (CO n) (1 _ /{)2 ]

2 2
For a sample size n lower bounded as logng ~ 2 2t“‘“‘gfg—2’yma") log(cpd), we can take the optimal

stepsize n = [c((l — H)n2tmix(0%d + 'Ygaax))] o

. With this choice, we have

2
ofdtmix \4/3, o
—_— 1 .
(1-— /f)2n) o8 N

(72)

E[l|f, — 013] < £Tr(QU = L)™' (Shia + Zine) (I = L)7T) + A @) - (

Setting @) := I; completes the proof.
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6.2 Proof of auxiliary results

In this section, we prove the two auxiliary results used in the proof of Theorem 1: namely,
Lemma 7 and Lemma 8.

6.2.1 Proof of Lemma 7

Given an integer k£ > 0, we define the k-step correlation under the stationary Markov chain
as

pk = Eye gprs, [(QY2(I — L) 'w(s), QI — L) 'w(s))].

Clearly, we have pug > 0, and by Cauchy—Schwarz inequality, for any k£ > 0, there is:

a] < \/Eamell( = D) 0(6) 13 - {/Bone|(1 = L)~ 0(s) 13 = po.

The desired quantity can be written as Tr(QY2(I—-L) 'S5, (I—L) " TQY?) = po+2 352 -
Expanding the squared norm yields

n—1
E[ Y QVPI-L)'ulfl = Y. E[QV*(I-L) 'w(sy), V(I L) 'v(s,))]

t=no no<ti,ta<n—1
n—mo—1
= (n - no),uo + 2 Z (n —ng — k‘),uk.
k=1

We claim that the cross-correlations puy satisfy the bound

O Qlep @ | 15t
(1-r)?

We return to prove this fact momentarily. Taking it as given, this inequality, in conjunction
with the bound |ug| < po, can be employed to bound the tail sums needed for the proof. We
have

lpx| < co (73)

n—no—1

Z Kk
k=1

With the choice 7 := 2tix log(cod), simplifying yields

1Rl < -
<ZT!Mk\+ Z K| < m%p0 + 2¢o Z k-2 %mix.

k=1 k=741 ( ) =741

n—mo—1 2-92 72 2
T40°d o d o I+l
> k| < 7_“@! > 4 92002 J‘QW 2 2t mix (T 4 1+ 2tmix) - 27 i
p (1-k) (1—k)?
27262d
S )ZH\QWOW

and for n satisfying 1 — > 2log(codtmix), we have:

o0 52d2)|0 %0 . 52d2]|0 =2
E <92 7"1’5 -2 Zmix < 2¢)———=2 . 2" Zmix < 2¢9——-=—||Ql..-
k] < 20 (1—k)? i = =0 (1—k)? = =0 (1—k)%n? 19N

k=n—ng
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Putting together these bounds yields

n—1 n—mo—1
E[HZ(I_E)_IWHEQ] (n —no)( M0+QZM —2(n —ng) Z s — 2 Z kpus
t=ng k=1 k=n—ng
N - 37252
< (n—mng)-Tr((I - L)' Syp (I = L)1) + = )QIIIQIIIOP,

which completes the proof of the lemma.

Proof of equation (73) Let sp ~ £ and (s¢)¢>0 be a stationary Markov chain starting from
sp- By the construction given in Section 5.2.1, there exists a random varlable Sk, such that

Sk is independent of sg, S ~ &, and such that E[p(sk, Sk) | 30] <cq- 9! trmx. We then obtain
the bound

il = [E[QV2(L = L) w(s0), Q21 = D)7'w(s0)]|

E[QY2( L)~ vlso). B[Q'( ~ )™ 'wi(@) | so])]
+[E[QUA( = 1) wlso), B[QY2( = 1)~ (vls) — v(E) | s0])]
<0+ E[IQV2(1 — L)~ w(s0)IB] - \/E[IQV/2(I — L)~ (v(sk) — (i) I]
< Vo T B[, 50)2 - (01 0] + o)

k

" Bt (74)

IN

On the other hand, applying the moment condition (2) yields o < (—g E[Hl/(so)HQ] <
%ngmop. Substituting this bound into our previous inequality (74) completes the proof.

6.2.2 Proof of Lemma 8

The proof of this claim relies on a bootstrap argument: we bound the summation of interest by
a more complicated summation that involves product of noise matrices. Recursively applying
the result for m = log d times yields the desired bound.

Lemma 9. Given any integer m > 0, deterministic sequence 0 = kg < k1 < -+ < ky, < ng,
and scalar T > 3mtmixplog(codn), we have the second moment bound

HZ HNt ky ) Atk |13]

t=ng =
kem+T n o omtl
< 2n2d2m0%m+2 ’ idtmixa'2 + 47727— Z ” Z { H Ni- ki A= karl}”ﬂ
1—=x Emy1=km+1 t=no
km 4T
+ dn*r Z E[] Z {HNt b (Ve + Cimbnaa 1) ], (752)
km+1=Fkm+1 t=no
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and in the special case m =0, we have

n—1 - n
’ [H tgn:o NtAt”%] = ca%d ) (nT + n2n20%d7-2) %dtmbﬁz + 47727— klzz:l g [H t;m NeNp— gy Ay Hg]
4t Y B[ Ne(veeky + Georas) 13- (75b)
ki=1 t=ng

See Appendix C.1 for the proof of this lemma.
The following lemma controls the last term of the bound (75a):

Lemma 10. Under the setup above, there exists a universal constant ¢ > 0, such that for any
integer m > 0 and deterministic sequence 0 = ko < k1 < -+ < k,,, < ng, we have:

n—1 m—1

B Y (T Ne=r,) mtm + G 13] < e(n® + nd(kp + tmix log(cod))) 07" d* 5>,

t=ng §=0

See Appendix C.2 for the proof of this lemma.

Taking these lemmas as given, we now proceed with the proof of Lemma 8. Given the
scalar 7 := 3tmix logz(codn), we define

N = 02k0<kf1<1.p.<km<7 Il ;n:o U Ni—;) Diiy, 3]
form=0,1,2,--- ,logd. By equation (75b) and Lemma 10, we have the bound
§0 < cord- (nT +n’noidr? )1—dtmle2 + 4027291 + 4en® % (n® 4 nd(T + tmix log(cod))) 07 d* 52
< 42725, + P2l d2 ol .

In deriving the last inequality, we used the inequalities 1 < —27 and n > T H)n

By equation (75a) and Lemma 10, we have the recursive relatlon
2m+2 nlog " 52
oL 1—
<A s + en®omd* 52 - logd n.

2m+2d2m+2 2

O < AP 0 me1 + end* o + en*r*nlo?

Recursively applying these bounds yields

m—1
o < (41727'2)7”.6m + 67727127'2(120'%5'2 +c- Z (47727'2)‘17120%‘1(12‘152 < (41727'2)mﬁm + 367727127'26120%52.
q=1

In order to control the term $),,, we employ the coarse bound
m Nt mixde?
By ¢ H Vet e B] <0 5 EONCET e, s ] < (o, R
t= no = t— =no ]:0

< en?0¥md?*™ 252, Consequently,

Taking the supremum and noting that n <

+
we have established that $ < 3cn?n T2d20' [1 + (27]7'0Ld) 27 ]. Taking m = [logd] and
n < GTclrLd, we have (2777'0Ld272n7i2 )™ < 1, and thus $9 < 6en’n?r2d?025%1og n, which

completes the proof of this lemma.
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7 Proof of Theorem 2

Our strategy is to prove a Bayes risk lower bound. We construct a prior distribution over
transition kernels by perturbing the base matrix Py appropriately. We then apply the Bayesian
Cramér—Rao lower bound to obtain our result.

Let us describe the construction in more detail. For each s € X, suppose we have a
perturbation vector hy € R¥. Use these to define the perturbed transition kernel

P, R ha (y)
Py(z,y) == Zze;(;oy():;)ehw(z) for each z,y € X.

Note that by construction, for any = € X and any h, € R¥X, we have
supp(Ph(x, )) = supp(Po(x, )) Since Py is irreducible and aperiodic, so is Pj,. Therefore,
the stationary distribution &, of P, exists and is unique. When the perturbation is small
enough, a quantitative perturbation principle can be obtained, which we collect in Lemma 11
below.

It remains to specify how the perturbation vectors are generated. We parameterize h with
a linear transformation, writing h = Qw for a linear operator () to be specified shortly, and
a random vector w € R? drawn from a distribution p. In particular, given a collection of
vectors {qz(y)}ayex C R? we consider the linear transformation @ : R? — R**X given by
wos [, 0], e

Next we specify the prior p, and along with some associated notation. Define the subspace
Hy, := {f € R* : E¢, [f(s)] = 0}, and note that P, maps Hj, to itself. Furthermore, since P,
is irreducible and aperiodic, the mapping (I — Py) is invertible on Hy. Consequently, for any
function f : X — R, the following Green function operator is well-defined:

Anf = (I =Py - (f —Eeg,[f]) € R™.

We also define an operator Pp, on the space of real-valued functions on X as follows:

Prf(z) :=Eyop,(z)[f(Y)]

Importantly, P, is an operator mapping functions to functions, and distinct from the matrix
Py. It is straightforward to see that the operator P, commutes with the operator Aj, for any
perturbation matrix h. Finally, for any h € R**¥ and for all z € X, we define

gn(@) = (1o = Eg, [L(s)]) " (AnL (@) - (Pn) + Apb(x)). (76)

Since the proof works under the perturbed probability transition kernel Py, it is useful to
study the effect of small perturbation on its stationary distribution. The following lemma pro-
vides non-asymptotic bounds on the mixing time of perturbed Markov chain and its stationary
distribution &y, which will be useful throughout the proof.

Lemma 11. Under the setup above, suppose that hpyax = maxzex [[hz|lco < ﬁ. Then
the perturbed transition kernel satisfies the following.

e The Markov transition kernel Py satisfies the mizing condition (Assumption 1) with the
discrete metric and mizing time 4t mix.

o The stationary distribution &, satisfies the bound

&o(s En(s —1 1
max { log 27, 1og £33} < i (2 + 108 At + 108 o) hana
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See Section 7.1 for the proof of this lemma.
With this notation in hand, we are ready to construct the prior distribution on w. We
begin with the following one-dimensional density function, taken from Tsybakov [Tsy08]:

pu(t) = cos® (%) - Lie[—1,1]- (77a)

Also, define the positive-definite matrix A := Ex. ¢, [COVYNPO(X’,) (go(Y) | X)], and let A =
UDUT denote its eigen-decomposition. For a random variable 1) ~ u®?, define the perturba-
tion parameter

w = %UD‘V%, (77b)

and let its density denote the prior distribution p. Note that for any w € supp(p), we have

[Aw|ls = [[UDY24)||y = ||DY?))l2 < V/trace(D)/n = \/trace(A) /n. (77¢c)

The final ingredient in our construction is to specify the linear transformation Q. For each
xz,y € X, we set

4:(y) == 90(y) — By opy(z,) [90(5")] (77d)

where the Green function g is defined in equation (76). Recall that h = Quw for w ~ p. This
specifies our prior over transition kernels, and concludes the construction.

Next, we state the version of the Bayesian Cramér—Rao bound that we use. Before stating
the result, it is useful to introduce the general setup and basic notation for parametric models.
Given a family Pg = (IP’?7 RS @) of probability distributions of sample X € X, parameterized
by n € ©, where © is an open subset of RY. Assume that each element in this family is
absolute continuous with respect to a base measure A over X, and denote the Radon—Nikodym
derivative by p, = %:7. Assuming differentiability and integrability of relevant quantities, for
any 1 € ©, we define the Fisher information matrix I(n) as

I(n) == Ex~p, [Vylogp,(X)V,logp,(X)"] € R™.
Now we are ready to state the Bayesian Cramér—Rao lower bound.

Proposition 4 (Theorem 1 of [GL95], special case). Under the setup above, given a prior
distribution p with continuously differentiable density and bounded support contained within
O, let T : supp(p) — R? denote a locally continuously differentiable functional. Then for any
estimator T based on observing X, we have

E E |T(X)-Tm|3}> (f trace (55 ) plmyan)”

> ) (78)
n~p X~py J trace (I(n)) p(n)dn+ ||V log p(n)|[3p(n)dn

In order to complete the proof, we provide non-asymptotic estimates on the three quan-
tities involved in the right-hand-side of Proposition 4. These require a few technical lemmas,
whose proofs can be found at the end of the section.

Bounds on the term trace (Vwé): We state two technical lemmas that are helpful in

bounding this quantity. The first computes the Jacobian matrix of the desired functional 6(h)
with respect to the parameter w.
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Lemma 12. Under the given set-up, for any w € R, we have

Vwé(Ph) = EXNﬁh COVprh(X7.) {gh(Y) — Phgh(X),go(Y) — Pogo(X) ’ X}] (79)

See Section 7.2 for the proof of this lemma. Next, we control the RHS of equation (79) by
replacing gp with gg.

. . ct? . a%d2 log? d
Lemma 13. Under the given set-up and for a sample size lower bounded asn > T

and maxzex ||hzllco < , we have

_1
128t mix

14+02)52t* . d?
Eze, [195(2) — g0(2)[3] < L Ll 1ogb 4.

Furthermore, for any w in the support of p, we have

=214 3
g tmixd

16(P) — B(R)] < 2 trace(A)/nJr\/c(HU%) i g6

ming &o(x) °

=) log

See Section 7.3 for the proof of this lemma.

Combining these two lemmas yields

trace (Vwé)
> Ex~g, [ varyp,(x,) (90(Y) — Pogo(X) | X)]

~Exeg, [yvary~r,(x) (90(Y) — Pogo(X) | X)] - \/Ezng, [l91(2) — 90(2)]]

> trace (A) — /trace (A) - C(l(irfi))g t%‘;xd log? mmzdgo O

. . 2 2d21 2d 2¢(1 2724»d2
Now given a sample size lower bounded as n > Ct"“"gL_ R)Qog + c((lj;’;iljaz&‘;{) log" minxdfo @
we can conclude that
trace (V,,f) > 1 trace(A) for any w in the support of p. (80)

Bounds on the Fisher information I (w): We now state an upper bound on the Fisher
information of the observed trajectory:

Lemma 14. Under the given set-up, for any w € RY, if hpay := max, ||h||le satisfies the
inequality hyt > ctmix(log hl 4+ log(min 50)_1), we have

max

10 (w) := By [V log Pr (s3) Vi log Py (s8) '] = 2Ex s, [ covyop, (x. (ax(Y) | X)].
See Section 7.4 for the proof of this lemma.

In order to apply the preceding lemma, we must verify the condition on hpyay for our
setting. Under our construction, we have maxyex [|hzl|cc = maxy yex(go(y) — Pogo(x), w).
Note that Assumption 2 and Lemma 17 in the Appendix together imply the following bound
for any 6 > O:

€o(s : [{go(s), w)] < 706t“f"||w||2 log?4) > 1-4.

—K

45



Taking § := %minsex &o(s) > 0, we have the uniform bound

1?;1&(“90(3)7 w)| < Dhmiellwllz 1603 (g min o(s)).

Note that Py is a probability transition kernel, for any s € X, the vector Pygo(s) lies in the con-
vex hull of (go(s)) So we have the bound maxgex [(Pogo(s), w)| < maxsex [(go(s), w)| <

CTtmix ||w]|2
11—k

s'eX’
log? (d/ ming &y(s)). Putting them together leads to the bound

max ||y oo < 268 tmix||wl|2 log® (d/ min &(s)).
zeX s
Now given a sample size

n > ct3. 52 - trace(A) - log® ——4 (81)

mix ming &o(s)’

we have that max, ||hy]|co < ﬁ. This satisfies the condition in Lemma 11 in the appendix.
Applying this lemma, we see that the condition

B = Ctmix (log hphy + log(min &) ™!

is satisfied, so that Lemma 14 guarantees that

trace (I(")(w)) < PRy ¢, [vary .p, (x,) (9o(Y) — Pogo(X) | X)]

(3)%n - Exng [varyopyx.) (90(Y) | X)]
= 2%" trace (A) (82)

IA

The last inequality follows because &, < 2&y Ppy(z,-) < 2Py(x,-) for all z € X.

Bounds on the prior Fisher information: From Lemma 10 in the paper [MPW20], the
density p of w has Fisher information

I(p) = UD'2[ (u®)DV2UT = nrA. (83)

Consequently, we have [ ||V log p(w)|3p(w) dw trace (I(p)) = n - trace(A).

Putting together the pieces: Combining the bounds (80), (82), and (83) and applying
Proposition 4, we obtain the lower bound

ig}f /]Rd Exr~pg, [H§n — 0(Pguw) 3] p(dw) > m trace(A). (84)

It remains to relate the matrix A to the local complexity ¢, in the theorem. In order to do
so, we require the following lemma.

Lemma 15. Under the setup above, for any function f : X — R such that B¢, [f(s)] =0, we

have Ex ¢ yvpy(x,) [ (Aof(Y) — Pvof(X))2} =Y e JE[f(s0)f(sk)], where (sp)rez is a
stationary Markov chain following Py.
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See Section 7.5 for the proof of this lemma.

Applying Lemma 15 with f;(s) = ((Ig — E(O))_I(L(s)é(Po) +b(s)), ¢;) for j =1,2,--- ,d
respectively, we arrive at the chain of equalities

d
trace(A ZEXN&),YNPO [(Aij( ) — PoAij(X))2]
7j=1
d 00
= Z Z E[fj(s0)f;(sk)] = trace((I — LOY= s, (I — E(O))_T) =ne2.
Jj=1k=—00

Thus, the right-hand-side of equation (84) is exactly 4(5 +7r)
It remains to bound the size of the neighborhood. Given a sample size n satisfying the

bound (81), Lemma 13 implies that ||#(FPy,) — 0(Py)|2 < % Consequently, for any w
on the support of p, we have Py, € Npst (o, 26p,).

On the other hand, for any w € supp(p) and any = € X and perturbation h = Qw, we
have

X2 (Ph(x7 ) || P0($7 )) = EYNPO(Z‘,~) [(I;ggg;; — 1)2]

=By~ py(a,) [(ehZ(Y) - 1)2] : (Zpo(ib, z)ehz(z)) 2
zeX

()
< Eypy(on [0 = 1)7]
(i)

< e Byopye [he(Y)?],

where step (i) follows by using Jensen’s inequality to assert that
S Pola, )l ) > Teex Pleahe() — 1,
zeX

and step (ii) follows from the inequality | — 1| < e - |z, valid for = € [-1,1].
Accordingly, the average y?-divergence admits the bound

> o) z,) || Pox,-)) < e Exugy yorx,) [(w, go(Y) — Pogo(X))?]

reX
<e-w Aw < %l.

For any w on the support of p, we thus have Py, € Nprop (L, € \/7 ), as claimed. The Bayes
risk lower bound (84) then implies the desired minimax lower bound.
7.1 Proof of Lemma 11

The proof relies on a total variation distance bound on the transition kernel. In particular,
for each s € X, we have

drv (Po(z,-), Py(z,-)) < \/%Xz (Po(z,-) || Pz \/ 1Y Po(x,y) 113’;(?53 ~1)?

yeX

2
< 3 (el — 1) < e max . (55)
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The last inequality follows from the fact that ||h;]le < 1.

Next, we turn to proofs of the two claims. We first prove the mixing time bound. Note that
the non-expansive condition (6)(b) is automatically satisfied with ¢y = 1 for total variation
distance (by a naive coupling). Given a fixed pair z,y € X, invoking Lemma 4 with 7 = 4,
yields the existence of a joint distribution over the random sequence {xj }o<x<- and {y }o<i<r,
such that {x;} and {yx} follows the Markov chain Py, starting from zy = z and yo = v,
respectively. Furthermore, we have the bound ]P’(a:T =+ yT) < %.

Now we construct a coupling between the original chain and perturbed chain. Taking the
initial point Ty = x, we iteratively construct the sequence {Zj }o<r<, as follows: given z;, and
xk, we construct the conditional distribution of Zj11 as follows:

o If x;, = Ty, we let ]P)(fk-i-l # Tpaq | ﬂjk,:fk) =dyvy (P(](:Ek, )y P (g, ))

o If z # 7z, we simply take Tp,1 and x4 to be conditionally independent, following
their respective transition kernels.

We construct the sequence {yy}o<r<, in a similar fashion.
By the union bound, it follows that

T—1 T—1
P(ar #3r) <O E[P(wer1 # g | 2p = Tk)] = > Eldov (Po(@s, ), Pala, )]
=0 =0
<

detmix - Iilgg\\hxﬂoo < %.

In the last step, we have used the total variation distance bound (85).
Similarly, the process {y;} satisfies the bound P(yT + 177) < %. Putting together the
pieces, we conclude that

dTV((sJ/‘P;L—véyP}‘LF) < ]P)(%T A g‘r) < P(%T A 1’7-) +]P>(x7 A y’r) +P(yr # g'r)
1,1,1_1
<gtits=g3

which shows that the perturbed chain P}, satisfies the condition (6)(a) with mixing time
T = 4t pix-

Next, we prove the perturbation result for the stationary distribution. Given any fixed
initial distribution 7, note that for any deterministic sequence (xg,x2,- - ,Z,), we have the
following expression for the Radon-Nikodym derivative:

n—1 n—1
dPr (x07x17"'7x") _ H Py (r,Tpt1) H Mo (Pht1)
- Po(zg,zk - hay (v) :
dPy (xo,m,“-,xn) paters 0(@kTh+1) P Syexe kY P(zy,y)
We then have the max-divergence bound

dPy, (mo,ml,m ,xn)

Do (Ph (xg) || Po (xg)) = sup dPo (;po T1, mn)

Ty eXn

log < n-max || hz co-
x

Taking the marginal distribution, we see that the bound Do (mo P} || moFP§') < 1+ hmax holds
for any initial distribution 7y and any n > 0.

To obtain the desired claim, we take mg to be the stationary distribution &, of the chain
P, and let n = ty;x log (m) Note that moP]' = ¢, in such case. On the other

hand, by Lemma 4, the total variation distance can be upper bounded as drv (WOP(;‘,&]) <
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_n_
2 e < hmax -mingex &o(x). Note that this bound is smaller than min,ex {o(z); it translates

to the max-divergence bound

< max

zex | So(2) Tmingex fo(x) — Pmax-

o(@)
Finally, applying the triangle inequality yields
Doo (&n || €0) < Doo (mo By || moFy') + Doo (o' 1] €0)
< (n + 1)hmax < tle (2 + log hmax + IOg m)hmax,

which proves the second claim.

pn pn drv (7o P50
D (703 || €0) = max log 512 niw | < lnie)

7.2 Proof of Lemma 12

We first consider the functional h — 6(P,) := (I — Eg, [L(s)])_lEgh [b(s)]. Note that the
stationary distribution &), satisfies the identity &, P, = &,. Taking derivatives, we obtain the
following equality for all z,y € X:

0/38 aPh
() T =8 gy

Note that the linear operator (I — Pp,) is invertible on the subspace Hy. For any f € Hy,
we have

9 o %n(2) _ .
ahw(y)Egh [f(s)] = o O (y) - f(s) = &n(x) Pr(z,y) - []-z:y — Py(x, z)]zex . (I — Ph) |Hh - f.

= & (@) Pu(z,y) - [Lamy — Pu(@,2)] oy

In the above expression, the notation (I — Ph)_1 |Hh denotes the inverse of the operator I — P,
within the subspace Hp,, a bounded linear operator on this space. Note that the derivative is
invariant under translation. For any f € R¥, define the auxiliary function f := f — Ee, [f],
and write

0 P B ) )
mEgh [f(S)] 8hm(y) Fen [f(s)} = &n(@) P, ) - [12=y = Py(, Z)] zeX (I - Ph) 1|Hh - f

= En(x) Pu(,y) - [Lomy — Pul2,2)] oy - (I = Ph)_l\Hh (f = Ee, [f])
= &u(@) Pa(,y) - (Anf(y) = Palx, 2)Anf(2)). (86)

zeX

On the other hand, we can express the desired functional (P,) in the form above. In
particular, setting L") := Eg, [L(s)] and b = Ee, [b(s)], we see that for any z,y € X, we
have

o))

1 OLM)
Ohe(y)

— () —1 0 - 0

= (1-L") ((m% [L(s)]) - 0(Pn) + () e [b(s)])-

Following the formula (86), we conclude that

QBJ:(I—BMY

I— LMY %™ 4 (1 — L™
() ( ) ( )

90(Py)

D) = @B (T = 1) A (E()0(Ph) + b(y))]

— & (@) P2, y) D Pulz,2) (I — LW) 7 4, (L(2)8(Py) + b(2))]. (87)

zeX
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Recall the shorthand notation from before, where for each s € X, we defined

gi(s) = (I - L) ™[4, (L()A(By) + b(s))].
Given w € R?, if we parameterize the perturbation as h = Qw, the chain rule yields
Vul(Py) = Q" -V,0(P)

=Y " a@)( Y. Pulz,)g — (3" Pulz,)9®) (O Pule, 9)gn(®)aa ) )

zeX yex yex yeX
=Ex~¢, [COVYNP,( X, (gh( ) = Prgn(X),qx(Y) | X)]v

as claimed. O

7.3 Proof of Lemma 13

The following technical lemma is used throughout the proof, and proved in Appendix D.1.

Lemma 16. Given a perturbation vector w satisfying ||w|2 < Lor , for h =
2¢tmixoL \/d I"Am op logd

Quw, the matriz I — L") is invertible, with || (I — Bh))_lww < 2.

1-k
Before proceeding with the proof, we note two direct consequences of Lemma 17 from
Appendix D.2. First, by taking f(z) := (ej, L(z)u) and f(x) := (e;, b(x)), applying the
tail assumption 2 and the boundedness assumption 4, we have the following second moment
estimate for any u € S*! and j € [d]:

Ex~¢, [(ej, .AhL(X)u>2] < ct?nixcr% log?d, and Ex~e, [(ej, Apb(X)) ] < ctrzmxab log? d.
(88)

Second, by taking f;(x) := (e;, L(x)0(P)+b(x)), for any integer p > 1 and K > 0, Markov’s
inequality yields the bound

Pxeg, [Anfy(X) 2 K| € K™ Exg, [Anf;(X)] < (2leslonlflatoiosdyr,
By taking K = 2cp?tmix(o]|0]|2 + 03) logd and p = —2log mingex &o(x), we find that

_ 1 . .
Px-g, [Ahfj(X) > 8ctmix(oLl|0]|2 + o3) log? (%)} <3 lglelgglfo(x) < I;g}lgﬁh(x),

mingex &o(z
Since &}, is a discrete measure, this high-probability bound implies a deterministic bound

Apfi(x) < 8ctmix(or]|0]|2 + o3) log? (%) for all x € X.

T )

Combining the estimates for all j coordinates yields the bound

ctmix (oL |0 o d
max lgn ()2 < i mass A [£5(0)] o < ColorlPlztoniioqs (od oy (80)

= —K mingex o (x)

Given the two lemmas and facts derived above, we now proceed to the proof of Lemma 13.
Taking derivatives on both sides of equation (76), we obtain

Vugn(z) = (I — LM)™ AhL() Vuwl(Pr)
+ (I — LY (Vo dn) (L(2)B(Py) + b(2))

— (Ig = LW) 7' (L) (Ig — LMY Y (ALL(2) - (Py) + Anb(2))
=: Jy(h,2) + Jo(h, z) + J3(h, 2).
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We then have the integral relation

1 1
gn(z) —go(z) = /0 Vuwgsh(z) - w ds = /0 (Ji(sh, z) + Jo(sh, z) + J3(sh, z)) - w ds.

It thus suffices to prove individual upper bounds on the terms Jy(sh, z) - w, Jo(sh, z) - w and
J3(sh,z) - w

Bounds on the term J(sh,z) - w: Invoking Lemma 12, we have

Vul(Py) = Exg, vor,x,) [(9n(Y) — Prgn(X)) (go(Y) — Pogo(X))T]-

Consequently,
IV w8 (Pr)w2
< [lcovxng, yary(x,) (90(Y) = Pogo(X)) - wll2

+ [[Ex~e, [covyop,(x,) (gn(Y) — go(Y) — Pogo(X) + Pogo(X),g0(Y) — Pogo(X))] - wlo.
For perturbation matrix h satisfying the condition max 1helloo < m, Lemma 11 implies
the sandwich relations

%50 <&, = %50, and %Pg(:n) = Py(zx,-) < %Po(x), for all x € X.

For the first term in above decomposition, we have

| oV x g, vy (x,) (0(Y) — Pogo(X)) - wll2 < 3|l covxgy yary(x,) (90(Y) — Pogo(X)) - w2

= §|]AwH2 < %\/trace( )/n,

where the last inequality is due to the bound (77¢).
For the second term in the decomposition, we have

[Ex~e, [covyop,(x,) (9rn(Y) —go(Y) — Pogo(X) + Pogo(X),go(Y) — Pogo(X))] - wll2

= sup, Ex e, y~py(x,) [(gn(Y) = go(Y) — Pogo(X) + Pogo(X ))T “(go(Y) - POQO(X))TU’]

< sup \/EXNQL [{(gn(X) — go(X)), v)?] - \/EX~5h,Y~Ph(X,-) [((go(Y) — Pogo(X))Tw)Q]

veSd—1
< 3V Awy/Ex, |gn(X) — g0(X) 3.

By equation (77b), on the support of the prior density, we have the bound wlAw =
n~ YT D YV2UTAUD Y2y < i. Consequently, we have the upper bound

IVuf(P)ulls < $1/ 520 184 /4 By g [lgn(X) — go(X)I. (90)

Collecting the bounds above and invoking equation (88) and Lemma 16, we obtain the
following bound on the desired term:

Ey e, [ J1(€h, Y)w|3]

<| (Id — LN Byg, [MnL(Y) - Vif(Po)wl3]
C=E 3EY~&h[HA£hL( ) - Vil (Pon)wl3]

p o7dlog®d - ||Vu0(Pu)wl3

(1 ,@) mlx

IN

| /\

dlog?d A t2. 02d%log?d
"“"?i’z)"g ) TP sup B, g (X) — go(X) B,

IN
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Bounds on the term Jy(sh,z) - w: For any function X — R? and z,y € X, we note that

sl Anf =~ = P) ", o+ (1= P) S
= —Aw [lszxph(x’ y) ’ (15,23/ - Ph(gj, 3/))]s,s’€X ’ Af
= A [LomaPule) - (Anf () = 2 Pl D AS ()] e

We can then derive the formula for derivative with respect to the parameter w, as

(Vo)) = 3 (G And () - aa(s)”

z,yeX

== " Pule,9)Anla(2) - (Anf(y) — PuAnf (@) - (g0(y) — Pogo()) "

z,yeX

== 3" Y (Pi(z.x) — () Pale,y) (Anf(y) — PuAnf(2)) (g0(y) — Pogo(a) -

z,yeX t=0

Substituting f(z) = L(2)8(P,) + b(z), we note that Ay, f = g, and consequently,

(VwAp) (L(2)0(Py) + b(2))

o

=2 (Ex~pt(z),y~py(x.) [(9n(Y) = Prgn(X)) (g0(Y) — Pogo(X))T]

o

—Exrgy vmr,(x.) [(Gr(Y) = Prgn(X)) (go(Y) — Pogo(X))T])
=: Z Dt(Z).
=0

Next, we estimate the difference term above in two different ways, depending on the value of
t. On the one hand, note that

EZ~§hHEXNPg(Z,),YNPh(X,.) [(gh(Y) - Phgh(X)) (go(Y) - POQO(X))T]WH%

< sup, Ign(y) — Prgn(@)3 - Exmg, vor, (x,) [(w, g0(Y) — Pogo(X))?]
x,ye

< 48H§ lgn(@)115 - Exng, vop,(x.) [(w, go(Y) — Pogo(X))?],
re

where the bound for the factor sup,cx |lgn(z)||3 follows from equation (89). For the latter
term in the display above, we note that

Ex g, v, (x,) [(w, oY) — Pogo(X))?] < 2Ex gy vmro(x,) [(w, go(Y) — Pogo(X))?]
< 2w Aw = 22,

n

Putting together the pieces yields the first estimate

Bame, (10U Z)0lB] < ST 10g0 ().

(1-k)? mingex §o(x)
On the other hand, given z € X and the Markov chain (s;);>0 starting from sy = z, for

_t
any t > 0, there exists a random state s; such that s; ~ &, and we have P(gt #+ st) < Py
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Define a random variable s;41 by setting ;41 = s;41 whenever s; = 5;, and drawing S;41 ~
P(5sy,-) otherwise. From this construction, we have

[Di(2)wll2 < sup {E[UT (gn(st+1) — Prgn(s)) - w' (go(si+1) — Pogo(se)) | 2]

ueSd—1
—E[u' (ghGit1) — Prgn(3) - w' (go(Git1) — Pogo(51)) | ] }
< sg£1 E[uT (gn(st+1) — Prgn(se)) - w' (90(st+1) — Pogo(st))Ls, 25, | 2

+ Sudp ) E [UT (9h(§t+1) - Phgh(gt)) cw! (90(§t+1) - 73090(87)) 1g,45, | Z]-
ueSI—

Applying the Cauchy—Schwarz inequality twice yields
Ezng, [ De(Z)wl[3]

<E[|lgn(sis1) — Pagn(s)la]"”  E[w (go(si11) — Pogo(s0))*]"* - E[14,25]""

~ 1/2 ~ ~\\871/4 1/4
+E[lgn(5e+1) — Prgn(se)l3] / E[w" (g0(5t+1) — Pogo(51))] / -E[1,,43,] /
thmx — -

< o pa® dlhlly - log® d - 27 i,

corresponding to the second estlmate
Finally, setting 7 = ctmix log 5 tmixd < yields

Z eTEZ~£h [ID(Z)wl]3])

t:O t=0

/\
M
('b

~|<~4.

Ez~g, [l ZDt Jwll3]

IN
E
><

d
(1- /4) log (minzex &o(x) ) )
so that

EZth [HJ2(€h Z)w”Q] — (imx/i)‘ln IOg (minzggfo(z))'

Bounds on the term .J3(sh, z) -w: By equation (86), for any vector u € S¥!, we have
L(h Z En(x)Pr(x,y) (AhL(h ZPh (2, 2) An LM (2 Nu- g (y) "

For any z € X, we obtain

IV (L) gn(2)w]2
= sup Exog, yvep, o[t (AL (V) = PhALL? (X)) gn(2)ax (V) Tw]

ueSd—1

< sup \E(uT (ALO(Y) = PRAL® (X)) gn(2))? - E[(ax (V) Tw)?]

ueSd—1

< Ctmixorl|gn(2) |2 log d -

where the final inequality is due to equation (88). Combining with Lemma 16, we have the
bound

c 2
Ezne, [ 73(Ch, Z)w||3] < 7%z -+ thixoi log” d - Ezng, [[lgn(2) 3]

K

C”(Ll” ;fg:;; log? d.

IN
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Finishing the proof. Collecting the bounds for J;, Jy and J3 and for n > mlx(ciLCf)log d7

we have

0<¢<1

which completes the proof of the first claim of the lemma.
For the second claim, we combine the first claim with equation (90) and obtain

race(A) c(140%)a%tt, a3
|Vl (Pr)wllz < %\/t @) \/( (1Ln 135~ log” (minxdfo(:c))'

Taking the integral yields

1+02)52tt . d3
18(P) = 6(Fv)]|2 < / V(P o|de < 3/ 22 W S oS (o),

which proves the second claim.

7.4 Proof of Lemma 14

We first compute the Fisher information with respect to the perturbation vector h, and then
transform this via chain rule into a formula that holds with respect to the parameter w. We are
interested in the matrix 10" (h) := Ey, [Vilog Py (sp) Vi logPp(sh)T]. When the Markov chain
P, is run under the initial distribution &y, the joint distribution of the observed trajectory
(st)j—o can be factorized as PP, (30, S1, " ,sn) = &o(s0) - [Tieq Pr(si—1,st).

Let us now study the Fisher information matrix. For any pair z,y € X with P(z,y) > 0,
performing some algebra yields the expression

n
8hf(y) log Pp, (50,51, ,8n) = Z Loy y=2 (Ls=y = Pa(,)).

Consider the natural filtration F; := o(sg, s1,- -, st). Note that under the transition kernel
P, we have the identity

E, [1st,1:x(1st:y - Ph(xay)) ’ E—l] = 157:—1:55 : (Eh [1St=y ’ St—1 = x] - Ph(xvy)) =0.

Therefore, the process {Vy logPy(so, 51, ,sn) }n>0 is @ martingale adapted to the filtration
{Fi}>0. Its second moment is given by

n

S = E[Vh log Py (sq) - V; log]P’h(sg)] = ZE[Vh log Py, (st—1, 5¢t) - V; log Py, (s¢—1, st)].
t=1

We find that

S = [1:(:1::(:2 : ZE[]-Zj:stfl . (1St=y1 - Ph(xhyl))] : (18t=y2 - Ph(x27y2))](

z1,91),(%2,y2)

n

= Zdiag({Ph (s-1 =) - Ph(x,y)}(xvy)) - Z [Pr(si—1 =) - Py(z,y1) - Pu(x,y2)] (z,91),(z,y2)"
=1 =1

o4

(1402 )52 g2
sup Eze, [9en(2) — 90(2)|3] < ( +(1L_)R)4;{“X log® (mmzdgo(m)) + %OiléglEZ%h [lgen(Z2) — go(2)|13],



Consequently, the Fisher information matrix is a block diagonal matrix I (h) =

diag({lg(cn)(h)}mex), where each block matrix Ig(cn)(h) € R®*X takes the form

Iin) (h) = Z]P)h(st—l = $) : [diag({Ph($7y)}yex) - [Ph($7y)] yeX [Ph(x7y)] ;/FEX] .

By Lemma 11, for hy,., satisfying the mequahty hmax > ctmlx( log hmax—l—log(min {0)_1) for
some constant ¢ > 0, we have the bound &, < & = 3¢, and hence $PF¢, < PF¢ =< 3PF¢,
for each £ =0,1,2,.... From this Sandwiching, we find that

IM(h) <3 ZPt Y (x) - [diag({ Pu(a ) }yex) = [Pa(@ )], ex [Ph(%y)]z—/rex]

= %Sh(w [diag ({Ph(@, 1)}, cx0) = [Pa(@,9)] e [P, 9)] e
Turning to the Fisher information, we compute
I (w) = QTIMMQ =2 33" (@) (D Pule, ) ae e (0) T — (Y. Pule.)a®) (Y. Pala. 1)) )
zeX yeX yeX yeX
= LBy g, [Byop,x) [ax(Vax (V)] = Eyp, x.) [ax (V)] - Byop, x. [ax (V)] ']
= FEx~e, [covp,x,) (ax(YV) [ X)].

7.5 Proof of Lemma 15

For each k € Z, by the definition of the Green function, we note that
f(se) = Aof(sk) —E[Aof (skt1) | sk] = Aof (sk) — PoAof (sk). (91)

By stationarity, we have

o

> E[f(sk)f(s0)] = E[f*(s0)] +2 ) E[f(s1)f(s0)] 2 _E[f(50)?] |+ 2E[f(s0) - > _E[f(
k=1

k=0

—

k=—o00
where step (i) makes use of the dominated convergence theorem, in particular by noting that
|E[f(sk) | s0]| < || flloo - 21=F/tmix from Lemma 4. Consequently, we can write

e}

> E[f(sk)f(s0)] = —E[f*(s0)] + 2E[f(s0) - Aof(s0)]

k=—o00
(3) “E[(Aof(s0) - P()AOf(SO))z] + 2E[ (Ao f(s0) — PoAof(s0)) - Aof(s0)]
— E[(Aof(50))%] — E[(PoAof (50))7],

where step (ii) follows from equation (91).
With E denoting expectation over X ~ &), Y ~ Py(X, ), we have

E[(Aof(Y) —Pvof(X)) | =E[(Aof(s1) — Pvof(So)) ]
[( Aof(51))*] + E[(Podof(50))°] — 2E[(Aof (51)) - (Podof(50))]
E[(Aof(50))°] +E[(Podof(50))?] — 2E[E[Aof(s1) | s0] - (PoAof (50))]
—E[(Aof(so)) |- [(Pvof(So))2],

and combining the pieces completes the proof of this lemma. O
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8 Discussion

In this paper, we established sharp instance-optimal guarantees for linear stochastic approxi-
mation (SA) procedures based on Markovian data. Under ergodicity along with natural tail
conditions, we proved non-asymptotic upper bounds on the squared error of both the last it-
erate of a standard SA scheme, as well as the Polyak—Ruppert averaged sequence. The results
highlight two important aspects: an optimal sample complexity of O(tpnixd) for problems in
dimension d with mixing time ¢;y; and an instance-dependent error upper bound for the av-
eraged estimator with carefully chosen stepsize. Complementary to the upper bound, we also
showed a non-asymptotic local minimax lower bound over a small neighborhood of a given
Markov chain instance, certifying the statistical optimality of the proposed estimators. Our
proof of the upper bounds uses a bootstrapping argument of possibly independent interest.

Throughout the paper, we have introduced novel techniques of analysis and motivated
several open questions. In the following, we collect a few interesting future directions:

e Nonlinear stochastic approximation and controlled dynamics: Our paper focuses
on linear Z-equations where the underlying Markov chain does not involve a control.
Though this setting already covers many important examples (as described in Section 2.2),
its applicability to practical problems is still relatively restricted. To set up a general frame-
work, one could consider a controlled Markov chain (s;);>0 where the transition is given by
se41 ~ P(-s4,0;). For any 6 € RY, let & be the stationary distribution of the Markov chain
P(-|-,0) induced by the control . Given a non-linear operator H : X x R — R, suppose
that we wish to solve the equation E, ¢ () [H (0; 8)] = 0; see Benveniste et al. [BMP12] for a
summary of classical asymptotic theory for such problems. The analysis tools introduced in
this paper provide an avenue by which one could obtain optimal sample complexity bounds
(especially in terms of dimension dependency) and instance-dependent guarantees for such
problems.

e Online statistical inference: By carefully choosing the burn-in period, one can show that
the Polyak—Ruppert estimator §n is asymptotically normal and locally minimax optimal.
In particular, under suitable conditions, the following limiting result holds true (see the
paper [Forl5] for details):

~ —

Vi, —0) % N((Li = D)7 (Siie + Sine) (L — D)77). (92)

In order to construct confidence intervals for the solution § with streaming data, it suf-
fices to estimate the asymptotic covariance in equation (92). In the i.i.d. setting, online
procedures have been developed to estimate such covariances, with non-asymptotic error
guarantees [CLTZ20]. The problem becomes more subtle in the Markovian setting, as the
matrix 3y, involves auto-correlations of the noise process. It is an important open di-
rection to construct online estimators of this matrix to enable inference in a streaming
fashion.

e Model selection and optimal methods for policy evaluation The policy evaluation
problem involves manual choice of two important parameters: the feature vector dimension
d and the resolvent parameter A in TD(A). In Section 4.1.3 and 4.2, we provide optimal
instance-dependent guarantees on both the approximation factor and the estimation error,
for a fixed choice of d and A\. An important direction of future research is to select such
parameters adaptively based on data, possibly under a streaming computational model.
Ideally, we want the risk of such estimator to attain the infimum of the right hand side
of equation (39b), over A € (0,1) and d € Ny. A possible candidate approach towards
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such a model selection problem is the celebrated Lepskii method for adaptive bandwidth
selection [Lep91].
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A Auxiliary truncation results related to the assumptions

In this section, we present two auxiliary results on the relations between assumptions 2, 3,
and 4. These results are based on truncation arguments.
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A.1 Assumption 2 (almost) implies assumption 4 under discrete metric

For the discrete metric p(z,y) := 1%, the Lipschitz assumption 4 is equivalent to the
following uniform upper bounds:

IZe1(se) = Lllop < ord - and  [lbey1(se) = bll2 < o Vd.

The following proposition provides uniform high-probability upper bounds on such quantities
based on the moment assumption:

Proposition 5. Under Assumption 2 with p = +o0o, there exists a universal constant ¢ > 0,
such that for any 6 > 0, the following bounds hold true uniformly over t = 1,2,--- . n, with
probability 1 — §:

i d
and  ||bes1(s¢) — blla < eVd - oy log 1o

= (93

nd
IZe+1(s) = Lllop < cd - 011og —

We prove this proposition at the end of this section.

When the random observations (Li41,b¢11) are not almost-surely bounded, but satisfies
the moment assumption 2 with p = +00, we can apply our theorems on the event that Eq (93)
holds true, and the main theorems hold true conditionally on such an event, with constants
(o1, 0p) inflated with a factor log(nd/d).

Proof of Proposition 5: For a given ¢ € [n], we note that:

d

_ _ 2
Wen = LI, < 1o — DI = 3 [e] (Besa — Bed]
je=1

For each pair j,¢ € [d], Assumption 2 implies that:

P (|e] (Eis0) = D)o = con log(nd0)) < 5o

Taking union bound over all the coordinate pairs (j, ¢) and substituting into above expansion,
we have that:

P (’”Lt—i-l —L||op > cd - oy, log(nd/é)) <4/(2n).

Similarly, for the vector-valued observations by11, we have the following bounds with proba-
bility 1 — §/n:

U

[Br1 = BlI3 < Z (b1 —1))” < cojd - log® (nd/5).

Taking union bound over t = 1,2, --- ,n, we complete the proof of this proposition.

A.2 On the stationary tail and boundedness assumption 3

Note that in many applications, the Markov chain (s;);>¢ lives in an unbounded state space.
However, as long as the stationary distribution ¢ of P is sufficiently light-tailed, a simple
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truncation argument applies, which we illustrate for completeness. Concretely, suppose that
there exists a constant o, > 0, such that the following bound holds true for any p > 2:

Esee[p(s, s0)P] < pl- ab. (94)
Given a stationary Markovian trajectory {s:};, consider the event
éns = {Vt € [1,n], p(s0, s¢) < 20,log ¥ }.

By the tail assumption (94) and a union bound, it directly follows that P(éanv(;) >1-6.
Consider a truncated Markov transition kernel P’ defined as

Ve eX,ZCX, Pl(z,2):=P(z,ZNnB(0,20,log(n/s))) + P(z,B(0,20,log(n/s)))1secz.

In words, the Markov chain P’ attempts to make the transition from s; to s;y1 according to
the transition kernel P’. If the state s;1 lies in the ball IB%(O, 20, log(n/é))c, we keep it as is;
otherwise, we let the next-step transition be deterministically sq.

Given a trajectory {s}}}_; of the Markov chain P’ there exists a coupling such that

P({siHy # {siHi) < P(655) <6

One can then proceed by working on the high probability event &, s, where the Markov chain
has a effective diameter of O(O'p log %)

B Auxiliary results underlying Proposition 1

This appendix is devoted to the proofs of auxiliary lemmas that are used in the proof of
Proposition 1.
B.1 Proof of Lemma 4

Throughout the proof, we let x € X be an arbitrary but fixed state. Note that any positive
integer 7 can be represented as T = ktyix + g with £ € N3 and 0 < ¢ < tix — 1. We show
the desired claim by induction over k£ > 0.

Base case: When k& = 0, Assumption 3 implies that

Wi (8, P7,€) < sup p(s, s') < 1 < co,

8,8’

so that the base case (k = 0) holds for our induction proof.

Induction step: At step k of the argument, the induction hypothesis ensures that
Wl,p(5mPktmiX+q,§) <cg-27F forqg=0,1, - tmix — 1. (95)

We now need to show that the result holds for any 7 = (k+1)tmix+q, where g € {0,1, ... tmix—
1} is arbitrary. We do so via a coupling argument. Take a random initial state y ~ &,
and consider two processes {s;};>0 and {s}};>0 starting from = and y, respectively. Their
joint distribution is defined as follows: choose the coupling between the law of sy . +, and
Sht,i+q tO satisfy the identity E [0(Sktmictqs Skt + q)] = Wi (6, PFtmixta ¢) . Conditionally on
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(Sktomintqs S;ctmix n q), Assumption 1 guarantees the existence of a coupling between d,, N Ptmix
and sj, +thmix such that
1

B[00 (k1) tmis 07 S0t Dtminta) | Shtmisctar Skt ta)] < 5P (Sktuminta Skt ta)-

Taking expectation on both sides and substituting with equation (95), we find that
k+1)tmix —(k+1
lep(éxp( ) +q=§) < E[p(s(k+1)tmix+q’S/(k+1)tmix+q):| <o 27*FD,
which completes the proof of the induction step.
B.2 Proof of Lemma 5
Our proof is based on the following intermediate claim
1 1 =
E1Ael5) " < e(®[1ANB]) P + 6nptv/d(L 0]z + o). (96)

This bound, which we return to prove at the end of this section, is a weaker form of the claim
in the lemma.

We now use the bound (96) to prove the lemma. Applying Minkowski’s inequality to the
recursive relation (46), we find that for any p > 2, the p" moment is upper bounded as

B[ Arser1 — AJENY” < B[ Are — DB + 0B Leserr DrrelB) 7 + (B[ lvrre + GreralB]) -

For the martingale part of the noise, we take the decomposition Lyiyy1 = L(St14)+ Ziipt1-
By Assumption 2 and Holder’s inequality, we have the bounds

d
P
E[|| Zirer1Depells | Fe] < d2 ZE[(% Zyor1 Do)’ | Fi] < (porVA)"E[|Arsellp | 7], and
=1

d
p _
E[lIGrreslly | Fi] < a2 ZE[<€J‘7 Craea1)” | Fi] < (VAP - (oLl|0]l2 + 0b)”
j=1
Similarly, for the Markov part of the noise, we have:
e lB) < (VAP - (o1]|0]l2 + 03)".

On the other hand, the Lipschitz condition (4) and the boundedness condition (3) of the
metric space imply that

E[

I Lises1(s) = Lo, < ord, and ||b(s) — b < opVd for all s € X.

Substituting into the decomposition above, we arrive at the bounds

(E [||Lt+£+1At+é||‘g])l/p < (Ymax + orpVd + or,d) (E[HAHEHng/pv and
(E[HVH—Z + Ct+£+1||g])1/p < 229\/3(01”5”2 + O'b)-

Applying equation (96) yields

E1Ares1 — AdE)Y? < B[ Arre — Ac]))” + en(vmax + ord) (B[ A[])
+2(1 + 6n)npVd(or |02 + o).
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Solving this recursion leads to the bound
Avis— AJPNYP < AL lP1 /P Vd 7]
(E[lAwe — AE]) " < enl(ymax + ord) (E[|Adl5]) " + 3nuptvd(or]|0]2 + ov),

which establishes the first claim.
Since the stepsize is upper bounded as n < (2en€ (Ymax +0Ld)) _1, we have the lower bound

EAmelB]) " > E[IAAE) Y = E[IAre — AddB]) Y
> LE[IANE])Y — 3upeVd(oL 6]z + o).

which, in conjunction with the bound (96), establishes the second claim.

Proof of equation (96): Applying Minkowski’s inequality to the recursive relation (46)
yields (for any p > 2) a bound on the p** conditional moment:

B[ A |EDY? < EIIT = nLiper) Desel ED + n(B |vese + Gren|B]) 7. (97)

Our next step is to bound the two terms above.
Substituting into the recursive relation (97), and applying Minkowski’s inequality, we find

that the moment (E[HAt+£+l”g])l/ P'is upper bounded by

(1 + 1ymas) (E[1 Ao [B]) 77 + nord (B[ ArelB]) 77 + 20pVd (o182 + o).

Solving this recursive inequality leads to
B[ AeselB])"” < exp (0 (max + o2.d)) (E[A6]B]) P + 20pv/d(oL]|8]|2 + 05)).-

For any stepsize n € ( ) Z]? we have

0’ ('YmainLd
(EAwel8]) " < e(IANE1) " + 6nptVd(o1 )]z + o),

which establishes the claim.

B.3 Proof of Lemma 6

For notational simplicity, we extend the process (A;);>0 to the entire set Z of integers, in
particular by defining A; := Ag for negative integer t. Note that under our assumption,
Lemma 5 and the assumed bound (62) both hold true for the extended process, with index
set t € Z. Moreover, as in the proof of Lemma 5, for each p > 2, we have the moment bound

E[1 A1 — AJEN " < B[ A — AB) " + 0B [ Leserr AreelB]) 7
+ U(E[HVHZ + Crro41 ||I2)Dl/p-

Our next step is to exploit the coarse bound (62) so as to obtain upper bounds on the

second term (E[HLHEHAHZHIQJ])U P Given the time lag 7 > 0, we take the decomposition
Apig = Apyor + (Apre — Apro—7), and by Minkowski’s inequality, we have that

EI L1 DellB]) 7 < (B[l Lerers Dere—r 8] + (B[l Lirers (Bepe — Ao [B]) 7
(98)
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The latter term of the bound (98) can be controlled through Assumption 4:

| Lte41(St40) (Atr — Ato—r)|l2 < (Ymax + 0Ld)[[Aprr — Atpo—rll2,  as.

The distance ||A¢r¢ — A¢rp—-||2 is controlled via the coarse bound (62). Putting together the
pieces, we find that

(B[l Lot er1(Dpge — At+£—r)||‘g])l/p <0 (Ymax + ord) - (wp (E[||At+z—r||§])l/p +B,0). (99)

In order to bound the former term (E[HLH@HAHZ_TH’Q’])l/p in the bound (98), we invoke
Lemma 4, and obtain a random variable s;,, such that

T

~ ~ 1 1—5——
Stve | Fipo—r ~ &, and (E [P(StM, Sio—r)" | ]:t-}—Z—T]) /P <cpr2 Zhmip, (100)

By Assumption 2, we have the bounds

IN

(oY Arser|f, and  (101a)
(VoL V|| Avso—s Il (101b)

E| Zeves1Deqo—r 15 | Fro—r]

E[(L(Gtre—r) = L) - Atyo—rllh | Fere—r]

IA

Invoking the moment bound (100) and using the Lipschitz condition (4), we find that

E[H (L(gt—i-f—'r) - L(St—i-f—'r)) : At—i-f—'r”g ‘ th—i-Z—T] < E[”’L(gt—i-f—'r) - L(St—i-Z—T)ng ’ th—i-Z—T]

T
< (opcod 27 2tk [|Ap_r[l2)”. (101c)
Finally, we have the operator norm bound
1A e—rll2 < Yo | Bter 2 (101d)

Collecting the results from equations (101)(a)—(d), we arrive at the bound

T

1 l—g ' —
(E[HLt—M—l—lAt—l—Z—THIQ) | ]:t+£—r]) v < (2]9\/301 + Ymax + oLcod - 2 2tmix”) [Atte—rll2. (102)
According to Lemma 5, given a stepsize bounded as 1 < (6(ymax + O'Ld)T)_l, we have

(El|Avse—I18) "7 < 2(E[|Avse|8) " + 12npTVd (o1 |]]> + o).

Collecting the bounds (99) and (102), and substituting into the decomposition (98), for
T > 2tmixplog(cod), we arrive at the inequality:

(E[||Lt+£+1At+é||§D1/p < 2((29\/301 +Ymax) +7p (Ymax +01d) ) - ((E||At+z||l2))l/p+77p7'\/a5)
+ n(/ymax + O-Ld)ﬁpa-'

By following the derivation in the proof of Lemma 5, we can show that the third term is
upper bounded as

(E{llvete + Ct+£+1||g])1/p < 2pVd(op|0]l2 + o).
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Substituting back into the original decomposition, we find that the difference in moments
1 1/p .
D= (B[ Arser1 — AJBEDY? = B[ Arre — AdB]) " is bounded as

D < 20{ (pVdor + Ymax) + 1 (Ymax + 1) b+ (B[ Arsel§)” + npr/do)
+ (27717\/8 + 772 (’Ymax + ULd) Bp)

Lemma 5 implies that (E[|[Aze[5]) Ur < e(E[A5]) YP | 6npy/dz and solving the recursion,
we arrive at the bound

(E[l1Arse — AdE])
< 1200((pVdor, + Ymax) + 10y (Gonax + 01d)) - (EIAS) Y + np(r + €)Vdo)
+ (2npVd + 0* (Ymax + o1d) By) (G
< n(12(pVdor + Ymax) ¢ + %) ((IEHAA[’Q’)I/” +ap(r + OVd5) +n(2ptVd + 18,) 5,

for any 7 > 2tnixplog(cod) and stepsize choice n < m.

C Auxiliary results underlying Theorem 1

In this appendix, we prove two auxiliary lemmas that were used in the proof of Theorem 1.

C.1 Proof of Lemma 9

According to Lemma 4, given 7 > 0 fixed, for any ¢t > 7 + k,,,, there exists a random variable

~ ~ ~ 1———
8t—ky, such that 8y | Fip,—r ~ & and E[p(st—kys5t—km) | Fior—kn] < co-2 Imix. By
Assumption 1, conditionally on the pair of states (s¢—,,, St—k,, ), we have the following bound
for j € [m]:

Wp,l (ij_kjilést,kj ) ij_kjilé’svt,kj) <c¢- p(st—kj ) gt—kj)u a.s.
Consequently, there exists a sequence of random variables (gt—kj)ogjgm—la such that the
following relations hold true for j =1,2,--- ,m:

St—kjy | Ft—bm ~ PFi=ki—15. and

St— kj’

m+1—j

E[p(St—k;_1>St—k;_1) | Frn—e] < cq (St ks St—hm) -

Based on above construction, we consider the following decomposition:

(H Nt—kj)At—km = (H N(St—k H (51— k; At—km—'r + H (51— k At—km—r
J=0 J=0 j=0 j=0
H (8t—k;) (Aicky, = Direky) = Qu(t) + Qa(t) + Qs(t).
7=0
(103)
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In the following, we bound the moments for the summation of the three terms above, respec-
tively. For the first term, we note the telescoping equation:

[T Ge—r) = [T NGk, =D ( H (st-k;))  (L(st—r,) — L(Gi,)) - ( [ NGizr,))-
j=0 j=0 g=0 ;=0 Jj=q+1

Note that each matrix in the product has operator norm uniformly bounded by o;d. We can
then use the Lipschitz condition 4 as well as the bound on the distance p(s;_g,, St—t,), and
obtain the bound

m
|||HN siky) = [ NGr-r )2, | Frorpr]
7=0

m T
< (m+1) - (o0d)™ > E[IL(st—,) — LG— 2 | Fickp—r] < (m+1)*(coopd)™ " - 27 Tmix.
q=0

Applying the bound on ||A;_;||2 in Proposition | and taking 7 > 3mtmnixplog(codn), we find
that

m
E[[|Q1 ()] WHN St—k;) H G2 | Frotop—r] - 1 A7, [13]
m—+1
< (m+1)%(coopd)™ . 2 tmlxcamdlbi no< 52 (104)

Now we turn to bounding the term Qs(t). First, we note that

E[IQ:2(t)I3] <El H Gemr )2, - IN Btren) At 3]
J:

< (0Ld)*E[||N St—tp) At——r 3] < (00d)*™ - 0Fd - E[|| Ak, —1I3]-

By Proposition 1, for ¢ > ng and ng > 2(7 + kn), we have: E[[|A¢_g,,—-[3] < Zktmixds?.
If m = 0, we have that E[N(§t+—r) | .7-}] = 0 almost surely for each ¢t > ng. For m > 1, the

conditional unbiasedness does not hold true, but we still have the following upper bound on
the bias

m m
IE[T] N Geknir—i) | Fi)llop = sup E[(u, [T NGesrmtrr;))]
=0 u,vGSd*1 =0
m—1
< sup E[INGikosr) ullz - I [T NGestomtr—i)llon - INGrir)oll2]
u,veSd—1 j=1
< (o)™ sup \/EINGirinsr) Tull} - EINGror ol

u,veSd—1

< (opd)™ 1. oid.

68



Denote Y; := H;-”:O N(s¢—r;) and Y, = H;”:O N (8t_;) for any t > ky,. We have the expansion:

(IS Qul3] < 2E[ S EFi] - Arcpr 3] + 2E[ S (% — EF) - Ar—p—r ]

t=ng t=ng t=ng

n
< 2 (@™o S El|A g, I

+2 Y E[(Y; —E[i]) - Ark,—r, (Vs — E[Y3]) - Agg,—r)].
no<s,t<n—1

Note that in the special case of m = 0, we have IEDNQ] = 0 so that the bound holds without
the first term on the RHS.

For t > s + 7 + k,,, we have the relations
E[(Y: —E[Y)]) - Apotpor | Fiokp—r] =0, and (Y —E[Yi])  Ay_ppor € Fpotprs

meaning that the product term vanishes when |s — ¢| > 7 + ky,,. Therefore, we arrive at the
bound

n—1
E[ Y Q)] <

t=ng

cn

1_ﬁdtmiX52 m = 0.

(105)

(2n2 (dmazn+1)2 + 4n(ky +7) - (opd)*>™ - U%d) . %dtmixﬁ2 m>1,
4n70%d'

Now we turn to the last term in the decomposition (103). We start with the decomposition:

A=Ay ;=1 Z (Lt—£+l(3t—€)At—£ TVt Ct—e+1)-
=1

We therefore have the following decomposition:

n—1 n T n T
E[l > Qs3] <4’E[| D {Ye- (D Ze k18t b—) Y31 +47°E [ D {Ye- (LD Atpp—e) }I3]
=1 =1

t=ng t=ng t=no

+ 4772E[H Zn: {y;- (ZT:Nt—km—ZAt—km—Z)}H%]

t=ng (=1

HAPE[ DAY (D (W—kp—t + Gmn—t41)) }I3]

t=ngo /=1

For the martingale component of the noise, note that each term H;”:O N(s¢—k;)  Zi—eg1(St—1)
has zero conditional mean conditioned on F;_y;. We have that

n n—1
B Y YiZi—ty—t41 Stk ) Dt—t—el3] = D E[I1Y: 21—t 41 (St—ku—6) Aty —el3]
t=no t=no
n—1
< (oA™Y N "B Zic k-1 (St =) Dt—p—el13] < 07T 1Lt 5.
t=ng
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From the Lipschitz condition (4) and the boundedness condition (3) on the metric space,
it follows that ||Yi|le, < (0d)™! almost surely. Using this fact, the second term can be
bounded as

E[]l Z {vi-( LZAt km—t) 3] < nr(opd)? ™ 202 0 Z > ENA kel

t=ng t=no (=1

2m+2,. 2 c 2
<P (ond) ™22 T dtmix0

Collecting equations (1() ) and (105) as well as the above bounds for @3, we arrive at the
upper bound E[|| Zt . (H;n:(] Nt_kj)At_km 13] < Z§:1 T}, where

Ty = nd*moim+? (14?722 o d?0f + P2 d%07 /n) - 2L dt i
T2 = 47’]2E[H Z {Y;t( Z Nt—km—ZAt—km—f) } ||%] ) and
t=ng (=1
n T
Ts o= 4B (|| Y {Vi(D (vt—rm—t + Gotm—r+1)) HI3]-
t=no =1

In the special case of m = 0, we have:

n—1 T n
cn _
E[]l tgﬂ:{) NtAtﬂg] < cotd- (nT+ n2n2a%d7'2) T—x Hdtmixo'2 +4n’T klZ::lE[H tgﬂ:{) NieNg—gy Aty H%]

+ 4Py Z E[H Z Nt(Vt—kl + Ct—kﬁl)H%]'

k=1 t=no

which completes the proof of this lemma.

C.2 Proof of Lemma 10

We study the bias and variance of the summation separately. For the bias term, we have:

m—1 m—1
IE[( H Ni—te;) (Viekm + Cttomt1) ] ll2 = SlldplE (( H Ni—;) (Viekom + Ct—boms1), 2)]
j=0 zZE€S j=0
(@) o
< sup EINT =3 - [BI( 1] (s o) 18]
(i1)
< opVd - (opd)™ - 26V d = 2(o,d)™5, (106)

where step (i) uses the Cauchy—Schwarz inequality, and step (ii) follows by invoking the
moment assumption 2 as well as the Lipschitz assumption 4.
For t € [k, n], we define

m—1 m—1
At 1= H Ni—;) (Viekom + Ctbimt1) H Ni—;) Vit + Cbomt1) -
j=0 7=0

70



We have

E[[IA:13] H INe 1 12,) - Vb + Gt 3] < (0£d)*™ - B[k + Crpa[l3]

< d2m+10_%m5_2 ]

For integers ¢t > 0 and ¢ > k,,, by Lemma 4, there exists a random variable s/, , such

_ l—km
that Sppp_p,, | Fr ~ &, and that E[p(8t+g_km,§t+g_km) | .7-}] <cy- 2 i . By Assumption 1,
conditionally on the pair of states (si4¢—k,,, St+¢—k,, ), We have the followmg bound for j € [m]:

kj—kj_ kj—k; ~
W1 (PFih 15st+e,k , P56, K, ) < co p(Stre—i; Stre—r,), as.

Consequently, there exists a sequence of random variables (§t+3_kj)0§j§m_1, such that the
following relations hold true for j =1,2,--- ,m:

~ kj—k;
Sttty | Ftot—ky ~ P9757155 and

St40— kj”
E[p(St40—t;_1» St4t—k;1) | Fatmtn] < T p(Sttmtoms Bttty )-

Given the random variables constructed above, we can then construct the proxy random
variable for A;qy:

m—1

m—
At = H (Stye— k (§t+£—km) + Ct+e—km+1(§t+£—km)) - E[( H Nt—kj) (Vt—km + Ct—km+1)]-
=0 j=0

By stationarity, we have E[XHZ | ]-}] = 0 almost surely. In order to bound the difference, we
note the telescope relation: Xt+g — Mar = ZZ:Ol Eémm) + E(mix), where

q—1 m—1

By = (TT N Gerei ) (EGen,) = Elstres)) ( TT NGrven)) (i) + Gorempntn Gretn)),
Jj=0 Jj=q+1

and E(®) = [T N(sipemk,) - (Vitmtn) + Sttt Gertmtn) — V(Stat—py) +

Cttmtom+1(Stqt—k))-
Using the Wasserstein distance bounds and Lipschitz condition 4, we find the conditional

expectation A = E[HE(gmw) |2 | 7] is bounded as

A< (ord)™ 'E[|L(stre—t,) — LGrpet)op - 1VGrre—re) + Coremtort Gere—r) |12 | Fi)

< (ULd)m\/E[P(St+e—kq,§t+e—kq)2 | 7 - \/E[\\V(§t+z—k) + Gt Grre—n) |12 | F
kg
< (opd)™ey -2 Zmix - 2d5,

and the conditional expectation B = E[|E(™%)||, | %] is bounded as

B < (01d)" (\E[IGersk11 (st50-) — Goreirr Geren)I3 | Fi] +\/E[w(stse-1) — v(Geren) 3 | 7))
L—km
< (ord)"docy - 2" T .
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Consequently, we can bound the cross term as

E[(A, Ae)] = B[, EQre | B +E[O E[A e — Mg | Fo])]
<SO+E[Mell2 - Bl[[Are — Aeyellz | Fi]]
< 1260d™ 1075 - 27 2mix - 1 /E|| A2
< 1260226252 2 s

Taking 7 = 16t,ix log(cod), we can control the cross terms in two different ways:

VE[X3 - \/E”)‘t—i-é”z < dPtloine?, 0 <l <kp+T,

12cod®™T203m52 . 27 Tomix < dP?moime? 0> Ky + T

E[(At, Aqe)] < {

Summing them up these terms yields
n—1 n—1

E[ D Ml3] =D ElMdZ+2 Do E[w, A)] < (k47 + Dnd® o5 + nd"of" 5%,
t=ng t=ng no<t1<ta<n-—1

Combining with the bound (106), we find that

n—1 m— n—1 m—1 n—1
B[l D ( H Neot)) Vet + Gt ) 3] = 1D E[CT] Neoty) (Wrmton + Gmtntt) )13+ EL D Aell3]
j=0

t=ng j=0 t=no t=ng

<c(n® + (b + T)nd) o™ d* 52,

for a universal constant ¢ > 0.

D Auxiliary results underlying Theorem 2

In this section, we collect statements and proofs of some technical lemmas used in proving the
lower bound in Theorem 2. Recall that the lower bound is defined by a local neighborhood of a
given Markov chain with transition kernel Py. Given a perturbation matrix h = Qw, the prob-
lem instance (l_}(h),l;(h)) is the expectation of (L(s),b(s)) under the stationary distribution
& of Py. Recall the definition (76) of the Green function gy,.

D.1 Proof of Lemma 16

By following the derivation of equation (86), we find that

s I = (@) Pu(e, ) { AL (y) = 3 Pal, 2)AL(2) }.

zeX
Consequently, for any u € S*!, we have the bound
7,(h) ST _ .32
IV (L) flop < sup_| \/ Ey~g, [(2TAnL(Y) \/ Ex g, vmp, (. [((90(Y) — Pogo(X)) Tv)7]
Z,0€
T N\2
< Sgdpl Ey~eg, [[ARL(Y )ul|3] Ex gy ~po(x,) [ ((90(Y) — Pogo(X))Tv)"]
IS

< ctmixorV/d - [|A]op log d.
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‘We thus obtain

1
IZ® — LO,, < sup [[(Z?) — LO)ull; < / sup ||V (LE9*)0) - w]ods
u€eSd—1 0

ueSd—1

< ctmixor\/ d - trace(A) logd - ||w]|2.

Now given a perturbation vector satisfying the bound ||w||s < 2Ctmix0'L\l/;'T"Amop od’ Ve have
the following bound for any u € S
(7 = LW)ully > [|(7 = LC )UHz - H(L(h LOYull2 = (1 = x) = IL™ = LOY,, > 15,

which implies that ||[I — L")~1|., < 2, as claimed.

D.2 A useful moment bound

Finally, we state and prove a moment bound that is useful in multiple proofs. Recall that
the operator Py, is a the perturbed probability transition kernel under perturbation matrix A,
and the operator Ay, is the Green function operator associated with this transition kernel.

Lemma 17. Consider a bounded function f:X — R, and a perturbation vector h satisfying
the condition in Lemma 11. There there exists a universal constant ¢ > 0, such that for any
mteger p > 1
1
201\ 35 { 2 F { 171158 }
Ex~ X 7 < ¢ ix [Exn X)P 1 — e
( X Eh[('Ahf( )) ]) < cplmix|Ex~g, [f( ) ] 0g Ex~e, [f(X)2p]
The proof is similar to that of Lemma 7. For any function f : X — R such that E¢, [f(X)] =
0, we first observe that Ay, f(s) = > 5 Pr f(s) for all s € X. Note that Lemma 11 guarantees
that the perturbed chain satisfies Assumption | with mixing time 4¢,,;x. By Lemma 4 and the
coupling definition of total variation distance, for each t > 0, there exists a random variable
_t
S¢ such that sy | sg ~ &, and P(gt # s¢ | s) < o T |
By construction, the state s; is independent of s. Consequently, we have the equivalence

Anf(s) =372 0E[f(sk) — f(5k) | 5], and for any a > 0,

Eovg, [(Anf ()] < (D PE(E[f (s) = fGi) | 5])° Ze
k=0

< al72 S 2PRE [ £(sy) — FE)IP].

k=0
We bound the moment of f(sy)— f(5k) for different values of k in two ways. On the one hand,
Young’s inequality directly leads to the following naive bound

E[|f(sk) = fGI*] < 2P (B[f(s1)*] + E[f(51)*]) = 2% Esng, [/(5)*].

On the other hand, for any bounded function f, we have

~ - 1—__k
E[1f(sk) = FGRIP] < IFIZE-P(sk # 55) < I FIZE -2 tomix.
Combining the two estimates yields the bound

E[(Anf ()] < a2 {22 0T g [£(5)7] + IF12 DD ek 2! ],

k=7+1

valid for any o > 0 and 7 > 0. Setting 7 = ctyix log E[”{” X)%] and o = yields the claim.

L
167p
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E Proofs for TD(0)

We stated three corollaries applicable to this method, and in this section, we prove each of
them in turn.

E.1 Proof of Corollary 1

The bulk of the proof involves verifying the conditions needed to apply Proposition 1 and
Theorem 1, but some additional care is needed in order to deal with non-orthonormal basis
functions (¢;);eq- First, we note that the SA procedure (27) can be equivalently written as

Or41 = (1 = nB)0; + nBLy11(wi)b; — nBbe1(wy), (107)

where Ly (wi) == (Ia—B7"¢(s0)d(st) "+7B87 d(s1)¢(se1) ), and byy1(wi) := 87 Re(s)p(s1)-
This is an SA scheme with stepsize nf.
For any matrix A € R define k(A) := %)\max (A + AT). We verify the eigenvalue
condition (5) by noting that
P (L L) =1 = 55 (1Egng st ap(s [0(5)0(sT) '] — Ee[o(s)(s)"])

=1 — DX (B2 (1 = ML) BY?) = 1 41— k) <1,

and
IZlop <14 5 (1Bsme st mp(s) [6(5)0(s™) ] llon + e [@(5)(5) ] llo) < 3.

For the two-step sliding-window Markov chain w; = (s¢, $¢41), Assumption | holds with mixing
time (tmix + 1) in the discrete metric, and the metric space has diameter at most 1. It remains
to verify the boundedness and moment assumptions.

In order to verify Assumption 4, we note that the bounds (28a) imply that

IZec1(s0)lop < 1+ 5 (6(s)(st41) o + lE(5)6(50) "llop) < (1 46)d,  and
ber1(se)ll2 < FIRe(s0)] - lo(se)ll2 < <*V/d/B.

Turning to the moment assumption, given any vector u € S%~! and coordinate vector ej, we
have the bounds

Eqc.stmp(sn] (6] d(s)(s) Tu)?] < \/EM (e] o(s ()" - \/EM (uTe(s))'] < B%4,

e[ (6] 0)6(5)0)°] € Bacel(¢] 6(5)) ] Y Eang[(u70()"] < 67", and
Ese[(e] Rt<s><z><s>) ] < CEoe[(e] 6(5))7] < B,

Finally, the quantity & from equation (29) is bounded as

%%E[(em (Les1(we) = D)0 + (besr (we) — b))?]

S I;g[ig]( 6], St \/ St TG ’ygb(stH)TH Rt(st))4] S 6’2.

Invoking equation (72) with the test matrix @) := B and substituting with the representation
V(s) = (0, ¢(s)) yields the claim.
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E.2 Proof of Corollary 2

We prove this corollary by verifying the assumptions used in our main theorem. Assump-
tion 2 directly follows from (33c¢) and the boundedness of reward; Assumption | is ex-
actly the W; mixing time bound imposed on the Markov chain. In order to verify that
L(s,sT) =15 — 87 (¢(s)p(s) " —v9(s)p(sT)T) satisties Assumption 4, we first note that

LE(s1,57) — L5205y < 310(51)8(50)T = 9(52)6(52) Ly + J(0)8(5H) T = $(52)(53) -
By adding and subtracting terms, we have the bound
I6(s1)6(51) — 6(52)6(52) Ly < {65002 + 6521 } 16s1) — 6(52)1
< 228dlJs, - ),

The step (i) follows from the Lipschitz condition (33b) and boundedness of the metric space X.

More precisely, we have [[¢(s1) — ¢(s2)[2 < <v/Bd|[s1 — s2[|2 and [[¢(s1)[|2 = [[¢(51) — #(0)[|2 <
¢v/fBd. A similar argument yields that

lo(s1)d(sT) " — d(s2)(53) Tllop < Pd(llsT — 53 ll2 + lls1 — s2l2)-

Putting together the pieces, we have shown that the mapping L : X — R%*? is 3¢2d-Lipschitz
with respect to the metric p((s1,s7), (s2,53)) = [[s1 — s2ll2 + [[sT — 55 2
Similarly, for the vector observation b;(s) = R:(s)¢(s), we note that for any sq, s € X

[be(s1) — be(s2)ll2 < [Re(s1) — Re(s2)] - [|#(s1) 2 + [Re(s2)] - |p(s1) — H(s2) |2
< 26v/d/Blo(s1) — P(s2)ll2s

which shows that b : X — R%Y# is 2¢2v/d-Lipschitz. Having verified the assumptions, we
complete the proof by following the same steps as in the proof as Corollary 1.

E.3 Proof of Corollary 3

In order to verify that Assumption 4 holds with respect to the discrete metric, note that for

any d, > 1, we have ||b(s)]|2 < 51/2 ( ) < B \/_n, and

2
L (s 82)lop < T4 5D 65(s1) + 54| D 62(s1) - (| Y 02 (s2) < Lo=dly
j=1

j=1 j=1

Turning to the moment condition, let E denote expectation over a pair s ~ £ and
* ~ P(s,-). Then for any vector u € S ! and index j € [d,], we have

E[(ej, L(s,s+)U>2} <3+ %E{((e]—, B(s)) (p(sT), u>)2} + %E[((ej, o(s)) (o(s), u>)2}
<3+ 2 le5l% - E[(6(s), w)’]
<34 5¢°

For each t = 1,2,..., we also have E[(e;, bi41(s¢))?] < %HRtHgO B [05(s)?] < %, which
is an order-one quantity. Following the same steps as in the proof as Corollary 1 then yields

the claim.
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F Proofs for TD())

We first prove Proposition 2—the mixing time result—and then use it to establish Corollary 4.

F.1 Proof of Proposition 2

We prove the claim via a coupling argument. Consider two initial states wo = (S0, 1, ho) and
wy = (s, s1,h}). By Assumption | (mixing time) for the original chain in total variation
distance, there exists a coupling between a chains (s;);>1 and (s});>1 starting from s; and
bt | {St,st}kt"”"ﬂ) < 1. Furthermore,

whenever s; = s} for some t > 1, the two processes are always identical from then on. Let

(g91)i>0 and (g;)i>0 be the eligibility trace process (37b) associated to (s¢)i>0 and (s})i>o,

respectively, and let h; = ! \/)ﬁgt and h; = 1 \/% g;-

s} respectively, such that P(S(;H_l) it 7 S(k_H)

Under this coupling, we note that P(ss,,, 11 # 83y 1) < %. Conditioning on the event
& = {341 = sétrxlix+1}7 for any t > 3tmix + 1, we have

[herr = hipille = YANhe = Billa = - = (YN 2 mx Ry = iy o (108)
We split the remainder of the proof into two cases.
Case I: s 75 si:  The coupling bound implies that P(&) > %. On the event &, for 7 >

tmix + 1+ 7= )\, we have the bound ||hi11 — b2 < %6”hgtmix+1 — hgtmiXHHg < % almost
surely. Under thls coupling, we may write

E[p((ST7ST+17hT)7 (32—732—+17h‘r))] = %( ( 7é S ) +P(ST+1 7& 3;—4-1) + E[Hhr - h;—”2])
< 3P(6°) + 1E[|hy — BL|2 | €]
<i=1-41, .0 < 2p((s0. 51, ho), (54, 51, ho)),

which proves the Wasserstein contraction in this case.

Case II: s; = ¢ In this case, the coupling construction ensures that s; = s, for any ¢ > 1.
Invoking the bound (108) then yields

E[p((sTasT-i-lth)?(3;—732—+17h7))] = %E[HhT _h;—HQ] %”ho _h0”2 % (w07w6)7

which establishes contraction in this case. Combining the two cases proves the proposition.

F.2 Proof of Corollary 4

We note that the SA procedure (37a) can be written as

Or41 = (1 = nB)0; + nBLy11(wi)b; — nBbi1(wy),

where Lyy1(wi) = (Ig — %gtcﬁ(st)T + ’Y%gtfﬁ(StJrl)T) and byy1(wr) = 5 Re(st)ge.

Recalling that My = (1 — \)y Y520 Xy L B=Y2E [¢(s0)d(se+1) T | B~Y/2, we first study
the eigenvalues of the symmetrized version of M), and relate these back to those of
L= Eg[LtH(wt)]. Note that by the Cauchy-Schwarz inequality, for any vector u € ST,
we have

uT B E[g(s0)0(s0) 1B~ < \JE[(uT B-120(s0))] - E[(uT B-1/20(s,))?] = 1.
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We therefore have the bound 1 Apin(My + M) < (1 = Ay 3 72(7A)! = (tisz. As in the
proof of Corollary 1, we can deduce that

D (L+LT) = %Amax(Blﬁ(MA;% )BI/2) > U=

Next, we verify Assumption 2 on the noise moments. By the update rule (37b), under
a stationary trajectory, we have the expression g; = Zk:O(V)‘) $(s¢_p). For any u € S41,
invoking Holder’s inequality yields
o o
E[(ge, u)'] < (305 S ONPE [, é(si—i))'] < B2 (55)"
k=0 k=0

In other words, for all standard basis vectors e;, we have

E[(e;, Lt+1(wt)u>2] <1+ \/E [(ej, d(s¢)) \/E [{ge, u)] <1 +2(1 w\)
E[<ej7 bt+1((dt)u>2] = WEKQM €j>2] S B(IEVAF'

It remains to verify Assumption 4. Note that for any pair w = (s,s4,h) and w’ = (¢', 5", 1),
the operator norm 7" := || L1 (w) — Ly1(w')]op is almost surely upper bounded as

T < B (187 4(s) — (W) (" lup + IR 6(5) — ()T () lo)

VB (= )T (Vo + IET(S5") — D5V llp + I(h — H)T Sl + T (8(5'y) — 0(5:4)) o)
B (Laper + 1y, 20+ B = Wl2) = £ p(w, o).

Finally, we note that the quantity & defined in equation (29) satisfies the bound

sup E[(ej, (Ler1(w) = L) + (b1 (wr) — b))?]

IN

IN
[\
2}
N
U

jeld
4 52
< SUP VE[(€j, g0)! \/ G(50)T0 —p(5141) 70 — Re(s1)) ] < =7
Invoking equation (72), with the test matrix  := B and substituting the expression

V(s) = (0, ¢(s)) yields the claim.

G Proofs for vector autoregressive estimation

In this section, we present proofs of results on vector autoregressive models, as introduced in
Example 3.

G.1 Proof of Proposition 3

We prove the claim by a direct construction of the coupling. Given two initial points
wo = [XlT,XOT,--- ,XTkH]T and w) = [X JXOT X/_T,Hl]T, we consider a pair of
stochastic processes (X;);>1 and (X/);>1 starting from wp and w’, respectively, driven by

the same noise process (g¢)¢>0. Introduce the shorthand Y11 = [Xt+1 Xt_k+2]—r (note
that Y41 is a sliding window with length one unit shorter than w;). We have:

1Yi1 = Y/ l5, = IRV =Y)|5 = IVi = Y/II5, — IV — Y{|l5.
< (1-4)|v = Y/|I3..
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Consequently, the augmented processes w; = (X1, Xty , Xpgr1) and w; =

(X741, X, -+, X|_j4) satisfy the bound

lwe = willz < 1¥epr = Y ll2 + 12 = Yl2 <

\/ﬁ(\lﬁﬂ = Yl

p.+ Y —Y/llp.)

)\max P* t
< 2/l (1 — £ [lwo — whl

)\min(P*)

Note that since P, = @Q,, we have )\min( ) > )\mm(Q*) = p. Taking tnix = c& (1 + log 2 )

yields the contraction bound |jw;
sides completes the proof.

mix tmix ”2 —

G.2 Proof of Corollary 5

We begin by showing norm bounds and moment bounds on the process (X¢)i>o.

nition (17) of the process and stability, the block vector Y; := [Xt X1

llwo — wpl|2. Taking expectatlons on both

By defi-
i
Xi—ps1]

satisfies the recursion Y; = Z;}io Riet_iel, where e is the standard block basis vector equal

to identify on the first block. We therefore have the bound

o0
<u2. 0

P*—u
1=0

IXill2 < S 11Yellp. <

Moreover, for each u € S™~!, we have

|-
S

e

E[(Xe, w)'] < (D] e‘%)

i=0
c(B/)’ D e?
=0

Next, we proceed with verifying the assumptions used in Theorem 1. Letting v :=
the stochastic approximation procedure can be rewritten as

Orp1 = (1 — )0 + (9t - V([Xt JXt+1 z]

E [(Ri&g_iel, ue1>4]

m|§' T':M 8

= |R
TR
@
IN

Q\
—
s

'\’| A
SN—

S

® Im)Ht +uv- Vec( [Xt+1XtT

1,j€[m]

Observe that the matrix L := I;,,2 — vH* ® I,,, satisfies the eigenvalue bound
%)\max(ﬁ + ET) <1 — Amin(H" + (H*)T) <1-vh*

On the other hand, the empirical observations satisfy the almost-sure bounds

64

1L (@) = Lllop < v D [Xii X1 4], v 5i*mhk and

il <

b1 (wr) = blop < v | [Xen XiT oo Xy X k+1] Ie <v- SPmvE.

For two collections of matrices U = (U(j))?:1 and V = (V(j))§:1 C Rmxm
Z§:1 D)2 = Z§:1 V@ g = 1, the corresponding moment can be bounded as

k-1 k-1
E[(vec(U), (Lit1(we) — L)vec(V))?] < v’E[( Z w®, Zv(j)Xt—lelg>F)
=0 Jj=0
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which is in turn at most

k—1k—
ZZ\/ Xt®44 UTUO (U)Ty® \/E X®4 V(]) V(j),(v(j))Tv(j)],
=0 j=0

In order to bound this last quantity, we let (U®)TU® = S A2uu] be its singular value
decomposition, and note that

BLXEA) (000, @000 = B[] (33wl 3]

=1
= > B[ i iy g, us] - NN < ¢ (25)' ZV (2 0O
Putting together the pieces, we have
_ 4 k—1k—1 - e
E[(vec(td), (Lii(w) = Lvee(V)?] <2k (5)" - 37 3 IUOIRIV Ol < e(v - Z5)
{=0 j=0

Similarly, we can prove analogous moment bounds on b;y(w;). In particular, for indices
¢ € [k] and i,7 € [m], we consider the coordinate direction of the (i,7) entry in the ¢-th
matrix to deduce that

E[(egi . (brs1(wi) —)?] < v°E[(eie) , Xpy1X1—041)?]

<R[, X)) - JBLET, X)) < ¢ (v 25

Applying Theorem 1 completes the proof of this corollary.
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