
a
rX

iv
:2

2
0
6
.0

0
7
9
6
v
1

[c

s.
L

G
]

 1
 J

u
n
 2

0
2
2

Stabilizing Q-learning with Linear Architectures for
Provably Efficient Learning

Andrea Zanette† Martin J. Wainwright†,⋆

zanette@berkeley.edu wainwrig@berkeley.edu

Department of Electrical Engineering and Computer Sciences†

Department of Statistics⋆

UC Berkeley, Berkeley, CA

Abstract

The Q-learning algorithm is a simple and widely-used stochastic approximation scheme for
reinforcement learning, but the basic protocol can exhibit instability in conjunction with func-
tion approximation. Such instability can be observed even with linear function approximation.
In practice, tools such as target networks and experience replay appear to be essential, but the
individual contribution of each of these mechanisms is not well understood theoretically. This
work proposes an exploration variant of the basic Q-learning protocol with linear function ap-
proximation. Our modular analysis illustrates the role played by each algorithmic tool that we
adopt: a second order update rule, a set of target networks, and a mechanism akin to experience
replay. Together, they enable state of the art regret bounds on linear MDPs while preserving the
most prominent feature of the algorithm, namely a space complexity independent of the number
of step elapsed. We show that the performance of the algorithm degrades very gracefully under
a novel and more permissive notion of approximation error. The algorithm also exhibits a form
of instance-dependence, in that its performance depends on the “effective” feature dimension.

1 Introduction

The Q-learning algorithm [Wat89] is a classical and widely-used method for estimating optimal
Q-value functions. As a stochastic approximation procedure for solving the Bellman fixed point
equation, it comes with strong convergence guarantees when applied to tabular Markov decision
processes (e.g., [Tsi94, KS99, EDMB03, Wai19a, LCC+21]). When combined with function approx-
imation, however, the basic Q-learning algorithm need not converge, and can exhibit instability.
This challenge has motivated various proposals for stabilizing the updates. Among other modifica-
tions, experience replay is one ingredient that seems essential to state-of-the-art performance. From
a theoretical point of view, however, these mechanisms are not well understood. This state of affairs
leaves us with the following open question: is it possible to derive a stable Q-learning procedure
with rigorous guarantees for a broad class of problem instances?

On one hand, recent work has unveiled information-theoretic barriers applicable to any algo-
rithm [WAS20, Zan20, WFK20, WWK21, WSG21, FKSLX21]. On the other hand, there exist
several MDP models for which sample-efficient RL is possible. In particular, a recent line of pa-
pers [KAL16, JKA+17, SJK+18, ZLKB20, JLM21, DKL+21] provide analyses of RL procedures for
certain MDP classes, and provide procedures that have polynomial sample complexity, albeit with
non-polynomial computational complexity.

1

The starting point of this paper is to study Q-learning in some settings in which model-
free algorithms1 admit polynomial-time implementation. Examples include the class of low-rank
MDPs [JYWJ20, ZBPL20, AKKS20, AHKS20, ZCA21], and various generalizations thereof [WWDK19,
WSY20]. Although the underlying algorithms are polynomial-time, they can still require prohibitive
amounts of computation and storage in practical settings. For instance, the memory requirement
scales linearly with the amount of experience collected, which limits its practical applicability.

The Q-learning algorithm is popular in applications precisely because of its low computational
complexity, as well as memory requirements that do not scale with the iteration count. Thus, we
are led to ask whether it is possible to devise a version of Q-learning that is provably efficient when
applied to low-rank MDPs. We address this question in the general exploration setting, so that a
number of challenges come into play, including credit assignment, moving targets, and distribution
shift.

1.1 Our contributions

The main contribution of this paper is to design and analyze a variant of the Q-learning algorithm
that is guaranteed to minimize regret over the class of low-rank MDPs. Three main ingredients
are key in our analysis: (1) a second-order update rule for improved statistical efficiency; a set
of target networks [MKS+15] to stabilize the updates, and most importantly, a replay mechanism
called policy replay. This mechanism is similar to experience replay used in the deep RL literature
(e.g., [MKS+13]). While the second-order scheme and the target networks have been used in the
optimization and the RL literature before, the policy replay mechanism is one key reinforcement
learning contribution made in this paper. It stabilizes the learning process by eliminating the
distribution shift problem that naturally arises when converging to an optimal controller.

Taken together, these algorithmic tools yield state-of-the-art regret bounds on H-horizon low-
rank MDPs with d-dimensional feature representations. At the same time, they preserve one of the
most important features of Q-learning, namely a memory requirement that—thanks to the policy
replay mechanism—grows only logarithmically with sample size.

We now provide an informal preview of our main result. We consider an MDP with a finite
action space of cardinality |A|, and take (rescaling as needed) the optimal value function to be
bounded in [0, 1]. Letting K the number of episodes elapsed, we have the following:

Theorem 1 (Informal statement). There is a Q-learning algorithm that achieves the regret upper
bound Õ(H2d3/2

√
K) while using Õ(d3H2) storage and per-step computational complexity O(d2|A|).

To our knowledge, this is the first regret bound for Q-learning with any function approximator,
which makes it the first algorithm with bounded memory complexity for the considered setting. The
regret bound is competitive with the state-of-the-art results [JYWJ20], in particular sub-optimal
by a factor of H in the regret bound.

In this work, we also introduce a new notion of model misspecification, one especially well-
suited to the analysis of temporal difference RL algorithms. It is a much weaker requirement
than the ℓ∞-norm bounds on mis-specification adoped in prior analyses; instead, it involves the
expected off-policy prediction error. To the best of our knowledge, this leads to the mildest form

1Sample efficient learning algorithms have also been obtained for other settings, see the papers [AJS+20, MJTS20,
MCK+21].

2

of approximation error control for regret-minimizing algorithms using temporal differences and
function approximation.

Our results are also partially instance-dependent, in the sense that we obtain faster rates for
“easier problems”. In particular, we show that the dimension d in Theorem 1 can (mostly) replaced
by the effective dimension, a quantity that can be much smaller. We are not aware of instance-
dependent results of this type when the algorithm is not provided with side knowledge of the problem
structure.

1.2 Relation to past work

There is a long line of past work on Q-learning for tabular problems, with results in both the
asymptotic settings (e.g., [WD92, Tsi94, JJS94, S+98]), as well as the non-asymptotic setting
(e.g., [KS99, EDMB03, Wai19a, LCC+21]). Other work on Q-learning in tabular problems has
derived regret bounds that are also near-optimal [JAZBJ18, ZZJ20].

It is well known that once function approximation is introduced, then the Q-learning algorithm
may diverge [Bai95]. Such divergence does not occur in certain special cases, including when the
dynamics are restricted to induce similar directions in feature space [MMR08], or the function ap-
proximators are ℓ∞-contractive in an appropriate sense (e.g. [Gor95]). Related results are presented
in the papers [TVR97, PP02, MM09, LLG+20, BRS18, LS18]. In contrast, our analysis does not
impose such conditions. We also note that there is some recent analysis of Q-learning with deep
neural networks [FWXY20] that leverages connectionms to neural fitted Q-iteration [Rie05, MS08];
see also the papers [CYLW19, CMS20].

Some of the algorithmic techniques used in this work—specifically, the use of target networks
and experience replay—are believed to be essential to recent empirical successes in reinforcement
learning. Experience replay was introduced by Lin [Lin92], and popularized more widely by the
influential paper [MKS+13]. To be clear, our replay mechanism differs in that it does not store past
rewards and transitions; this fact is essential to maintaining low memory complexity. Our replay
mechanism is related to the policy cover mechanism [AHKS20, ZCA21], but differs in that it needs
to store high performance policies, and it is not used as starting distribution for policies roll-outs.
As for target networks, they have also been a core component of past empirical successes [MKS+15].

We note that recent work by Agarwal et al. [ACJ+21] also shows the importance of forms of
experience replay, in establishing a result related to our Theorem 2. Our work shows that experience
replay is not needed when the controller is stationary. Indeed, our primary contribution is in the
exploration setting (cf. Theorem 1), whose literature we discuss next. A related and concurrent
work in the exploration setting is [LS22].

To the best of our knowledge, this paper constitutes the first analysis of an exploratory form
of Q-learning combined with function approximation. It can be compared with the work of Jin et
al. [JYWJ20], who proved guarantees for exploration based on a form of least-squares value iteration
(LSVI) with optimism for the class of low-rank MDPs. However, their algorithm has a space com-
plexity that grows linearly with time, and the approximation error requirements are expressed via
sup-norm (ℓ∞) bounds. Better approximation error requirements with respect to a fixed compara-
tor are given by policy gradient methods [AHKS20, ZCA21], whose memory complexity still grows
with the required accuracy2. Our work shows that attractive approximation error guarantees are

2In the paper [AHKS20], the policy cover grows linearly with the iteration count while the method [ZCA21] needs
to store past trajectories to perform data reuse.

3

not unique to policy gradient algorithms: temporal difference methods also inherit favorable—albeit
different—guarantees. While this has recently been noted in the offline setting, such guarantees were
enabled by a dataset generated from a stationary distribution [XCJ+21], as opposed to a reactive
controller [ZWB21], which is the standard case in the exploration setting.

Finally, to our knowledge none of algorithms discussed so far inherit instance-dependent regret
bounds while being agnostic to the setting. The bulk of past instance-dependent results corre-
spond to tabular problems (e.g., [ZB19, ZBJ19, SJ19, YW21, TPL21, AMP21, XMD21, WSJ21,
YYD21, KXWJ21, XKWJ22]; a few exceptions include the logarithmic regret bounds given in the
paper [HZG21] and the recent paper [WCS+21], as well as some partially instance-dependent re-
sults on kernel LSTD [DWW21]. Other studies related to Q-learning include the papers [LXY22,
YLCF22, SLW+22, SMSC21, XZZ21].

2 Background and problem formulation

We begin by providing background and describing some structural assumptions related to our anal-
ysis.

2.1 Finite-horizon Markov decision proceses

In this paper, we focus on finite-horizon Markov decision processes; see the standard references [Put94,
BT96] for more background and detail. A finite-horizon MDP is specified by a positive integer H,

and events take place over a sequence of stages indexed by the time step h ∈ [H]
def
= {1, . . . ,H}.

The underlying dynamics involve a state space S, and are controlled by actions that take values in
some action set A. In the analysis of this paper, the state space is allowed to be arbitrary (discrete
or continuous), but we restrict to a finite action space.

For each time step h ∈ [H], there is a reward function rh : S ×A → R, and for every time step h
and state-action pair (s, a), there is a probability transition function Ph(· | s, a). When at horizon
h, if the agent takes action a in state s, it receives a random reward drawn from a distribution
Rh(s, a) with mean rh(s, a), and it then transitions randomly to a next state s′ drawn from the
transition function Ph(· | s, a).

A policy πh at stage h is a mapping from the state space S to the action space A. Given a full
policy π = (π1, . . . , πH), the state-action value function at time step h is given by

Qπ
h(s, a) = rh(s, a) + ESℓ∼π|(s,a)

H∑

ℓ=h+1

rℓ(Sℓ, πℓ(Sℓ)), (1)

where the expectation is over the trajectories induced by π upon starting from the pair (s, a). When
we omit the starting state-action pair (s, a), the expectation is intended to start from a fixed state
denoted by s1. Any policy is associated with a value function V π

h (s) = Qπ
h(s, πh(s)), along with a

Bellman evaluation operator

T π
h (Qh+1)(s, a) = rh(s, a) + ES′∼Ph(s,a)EA′∼πQh+1(S

′, A′).

Under some regularity conditions [Put94, SB78], there always exists an optimal policy π⋆ whose
value and action-value functions achieve the suprema

V ⋆
h (s) = V π⋆

h (s) = sup
π

V π
h (s), and Q⋆

h(s, a) = Qπ⋆

h (s, a) = sup
π

Qπ
h(s, a).

4

uniformly over all states and actions. We use Eπ[φh]
def
= E(Sh,Ah)∼π[φh(Sh, Ah)] to denote the ex-

pected feature vector at timestep h.

We analyze algorithms that produce sequences of policies {π1, . . . , πK}, and for any such se-
quence, we define the regret

Regret(K)
def
=

K∑

k=1

Es1∼ρ

(
V ⋆
1 − V πk

1

)
(s1). (2)

Whenever we have a sequence n1, . . . , nk of values we denote with n1:k =
∑k

i=1 n
i their sum.

2.2 Structural conditions

Let now us lay out some assumptions on the MDPs and function approximation schemes.

2.2.1 Linear function approximations

For each h ∈ [H], let φh : S × A 7→ R
d be a given feature map. Throughout this paper, we assume

the uniform boundedness condition

sup
s,a
‖φh(s, a)‖2 ≤ 1 for all h ∈ [H]. (3)

For a given parameter vector θh ∈ R
d, define the function fh,θ(s, a)

def
=
〈
φh(s, a), θh

〉
. With a

slight abuse of notation, given a partitioned vector θ = (θ1, . . . , θH) ∈ (Rd)H , we use the shorthand
fθ = (f1,θ1 , . . . , fH,θH) for the associated collection of functions.

In this paper, we study algorithms that produce linear functions in the class

Q(lin) def
=
{
fθ | ‖θh‖2 ≤ 1 for all h ∈ [H]

}
. (4a)

Note that the bounded feature map condition (3), in conjunction with the Cauchy-Schwarz inequal-
ity, implies that

‖fh,θh‖∞ = sup
s,a
|fh,θh(s, a)| ≤ 1 for any fθ ∈ Q(lin). (4b)

Consequently, the function class is contained with the larger class of action-value functions (s, a) 7→ Qh(s, a)
that are uniformly bounded in sup-norm—more precisely, the class

Q(all) def
= {(Q1, . . . QH) | ‖Qh‖∞ ≤ 1 for all h ∈ [H]}. (4c)

The definitions above can be specialized for a specific timestep h in a natural way, in which case we

denote the corresponding function spaces by Q(lin)
h and Q(all)

h .

5

2.2.2 Bellman conditions

Our work covers both the settings with low inherent Bellman error (e.g., [MS08, ZLKB20]) as well
as low-rank MDPs (e.g., [YW20, JYWJ20]), which we introduce next. In both cases we assume

that Q(lin)
H+1 = Q

(all)
H+1 = {0}.

Assumption 1 (Bellman closure). We say that an MDP and a feature representation φ have zero

inherent Bellman error if for each h ∈ [H] and any Qh+1 ∈ Q(lin)
h+1 , there exists Qh ∈ Q(lin)

h such that
Qh = ThQh+1.

Assumption 2 (Low-Rank). An MDP is low rank with respect to the feature representation φ if
for each h ∈ [H], the following holds:

∀Qh+1 ∈ Q(all)
h+1, there exists Qh ∈ Q(lin)

h s.t. Qh = ThQh+1.

It can be shown that the class of low-rank MDP models is strictly contained within the class of
MDPs with zero inherent Bellman error; see the paper [ZLKB20] for further details.

Model misspecification: When the representation conditions do not exactly hold, we need to
measure model misspecification. With this aim, we introduce two definitions of model misspec-
ification that are appropriate for RL with temporal difference methods. The first one measures
the violation of Assumption 1 with respect to a stationary external controller, while the second
one measures the violation with respect to Assumption 2 when a single stationary controller is not
available.

Before stating the definitions, let us introduce some more notation and terminology along with
their motivation. Let π be a policy that generates a dataset used to fit a predictor. Using the data
generated by π, we will make predictions about a target policy π which could be arbitrary. The
predictor that we seek should fit T Q′ where Q′ ∈ Q(lin) or Q′ ∈ Q(all) depending on whether we
seek to quantify the violation of Assumption 1 or Assumption 2, respectively. Accordingly, define
the population minimizer θπ,Q

′,h along π with Q′ as next state value function as

θπ,Q
′,h def

= argmin
θ∈B

E(Sh,Ah)∼π

{
〈φh(Sh, Ah), θ〉 − (ThQ′)(Sh, Ah))

}2
. (5)

Let us now state a definition of model misspecification that measures the violation with respect
to Assumption 1 (Bellman closure) whenever there exists an external stationary controller π. This
definition involves a non-negative error term ν ≥ 0 referred to as transfer error.

Definition 1 (Model Misspecification w.r.t. Bellman Closure). An MDP and a feature map φ are
ν-misspecified with respect to the Bellman closure condition and the stationary policy π if for any
policy3 π and action-value function Q′ ∈ Q(lin) the best on policy fit Qh : (s, a) 7→ 〈φh(s, a), θ

π,Q′,h〉
along π satisfies the bound

∣∣∣
H∑

h=1

E(Sh,Ah)∼π

[
Qh(Sh, Ah)− (ThQ′

h+1)(Sh, Ah)
]∣∣∣ ≤ ν. (6)

3When we measure the errors with respect to Assumption 1, it would be enough to consider policies (π, π) in the
class

Π(lin) def
=

{

π | s 7→ argmax
a

〈

φ(s, a), θ
〉

| ‖θ‖2 ≤ 1
}

∪ {π⋆}

6

In summary, Definition 1 measures the average Bellman error that arises when evaluating the
predictor fit on the controller’s distribution along other distributions. This is a significantly more
generous requirement than ℓ∞ model misspecification, and is algorithm-independent. Notice that
the expectation is inside the absolute value. We conclude by presenting an extension of Defini-
tion 1, one that applies to the exploration setting where there is no single stationary controller that
generates the dataset.

Definition 2 (Model Misspecification w.r.t. Low Rank). An MDP and a feature map φ are ν-
misspecified with respect to the low rank condition if for any two policies4 π, π and action value
function Q′ ∈ Q(all), the best on policy fit Qh : (s, a) 7→ 〈φh(s, a), θ

π,Q′,h〉 satisfies the bound (6).

The primary distinction between Definition 1 and Definition 2 is that the latter needs to hold when
Q′ ∈ Q(all) instead of just Q′ ∈ Q(lin).

3 Algorithms

This section is devoted to a description of the Q-learning procedures analyzed in this paper. We
begin by providing some intuition for our algorithms in Section 3.1. Section 3.2 is devoted to
the description of Stabilized, Second-Order, Streaming Q-learning algorithm, or S3Q-learning for
short. It corresponds to a stabilized and streaming form of Q-learning that estimates the optimal
policy based on data drawn from some fixed (stationary) controller policy. We use this algorithm
as a building block for the more sophisticated algorithm described in Section 3.3, which allows
for the data-generating policy to also change, essential to obtaining an overall scheme with low
regret. We refer to this procedure as Sequentially Stabilized Second-order Streaming Q-learning, or
S4Q-learning for short.

3.1 Some intuition

Let us begin by providing some intuition for the algorithms that are proposed and analyzed in this
paper. When the basic form of Q-learning is implemented with linear function approximation, the
updates are performed directly on the parameter θ associated with the linear representation. Upon
observing the tuple (sh, ah, rh, s

′
h), representing the experienced state, action, reward and successor

state at level h, the update rule for a user defined learning rate α ∈ R takes the familiar form

θh ← θh − α
[〈

φh(sh, ah), θh
〉
− rh −max

a′

〈
φh+1(s

′
h, a

′), θh+1

〉

︸ ︷︷ ︸
TD error

]
φh(sh, ah). (7)

Although Q-learning is a form of stochastic approximation, as are stochastic gradient methods, the
above update is not equivalent to stochastic gradient. However, for the purposes of analysis, it is
useful to consider some restrictions under which it can be related to a stochastic gradient method.

For a moment, let us additionally assume that (a) the next timestep parameter θh+1 is never
updated, and (b) the tuple (sh, ah, rh, s

′
h) is drawn from a stationary distribution. When these

4When we refer to Assumption 2, it is enough to consider policies in the class

Π(exploration) def
=

{

π | s 7→ argmax
a

{〈

φ(s, a), θ
〉

+ α‖φ(s, a)‖M
}

| ‖θ‖2 ≤ 1, 0 4 M ∈ R
d×d

, 0 ≤ α ∈ R

}

∪ {π⋆}.

7

conditions are met, the update (7) corresponds to a stochastic gradient update as applied to the
squared loss

θh 7→ E(Sh,Ah,Rh,S
′
h)

[〈
φh(Sh, Ah), θh

〉

︸ ︷︷ ︸
predictor

−
(
Rh +max

a′

〈
φh+1(S

′
h, a

′), θh+1

〉)

︸ ︷︷ ︸
fixed target function

]2
, (8)

where the expectation is over the stationary distribution that generates the data. This is an algo-
rithm that we know how to analyze.

With this perspective in place, our high-level idea is to enforce these two conditions—namely,
a fixed target and a stationary distribution for drawing samples. However, so as to be able to
estimate an optimal policy while incurring low regret, the next state-value function and the sampling
distribution cannot be “locked in” forever, but instead need to evolve with time. The core algorithmic
contribution of this paper is the design of a device to periodically update the next-state value
function and the sampling distribution so as to allow convergence to an optimal controller in a
stable way. In addition, we use a second-order update in place of the first-order scheme (7) so as to
achieve improved statistical efficiency.

We first describe an algorithm for the controlled setting, in which stream of states, actions,
rewards and transitions are generated by a stationary controller. In this case, only the next-state
action value function needs to be updated periodically, because the distribution that generates the
experience is fixed. Next, we design a meta-algorithm that performs exploration while additionally
ensuring that the Q-learning update rule is fed with data from a stationary controller.

3.2 S3Q-learning

In this section, we introduce the Stabilized, Second-Order, Streaming Q-learning algorithm, or S3Q-

learning for short. The algorithm takes as input a stationary controller policy π that generates
a stream of states, actions, rewards and transitions. Target networks are used to stabilize the
value function updates, which are performed via a second-order update rule for improved statistical
efficiency. This is a streaming algorithm, meaning that each sample is immediately processed and
then discarded.

Learning mechanics: The S3Q-learning algorithm is detailed in Algorithm 1. The algorithm
proceeds over a sequence of epochs, denoted by e in the algorithm. Each epoch is handled by the
outermost “while” loop. Within each epoch, the algorithm sequentially updates the target networks5

Q̂tar
h at each level ℓ proceeding backward from ℓ = H to ℓ = 1. This order of updates ensures that

the next-timestep (ℓ+1) target network is always up to date to compute the bootstrapped Q values
needed at level ℓ to compute the temporal difference (TD) error (see Line 12 and Eq. (9)). When
the update has completed in every level ℓ ∈ [H], the target networks are stored in the predictor Q̂⋆,
which is the one that the algorithm considers to be the “best” estimate of Q⋆. At this point, a new
epoch begins.

Let us now describe the update rule in Lines 12 and 13. At each timestep h the algorithm
observes a tuple of state, action, reward and transition (sh, ah, rh, sh+1) and uses them to update
θ̂h. To be clear, θ̂h is associated to a network different from the target network Q̂tar

h for that

5In this work we refer to the next-timestep linear approximator as to ‘target network’ for consistency with some
of the Q-learning literature. However, notice that our ‘networks’ are linear.

8

timestep. To perform the update, the algorithm first computes the temporal difference error

TDh
def
= rh +max

a′
Q̂tar

h+1(sh+1, a
′)− 〈φh(sh, ah)), θ̂h〉 (9)

in Line 12 and then updates the network parameter θ̂h using a second order update rule (in place
of Eq. (7)) together with the empirical covariance Σ−1

h , see Line 13. Such update rule effectively
minimizes the least-squares criterion (8), as it coincides with the Sherman-Morrison rank one update.

The stopping condition in line 8 can be any arbitrary stopping time; without it, the algorithm
will simply keep running indefinitely.

Algorithm 1 S3Q-learning

1: Input: Controller π, (optional) stopping condition, (optional) bonus function b
2: Q̂tar

ℓ (·, ·) = 0, ∀ℓ ∈ [H + 1]; e = 0 ⊲ Initialize target network and epoch counter
3: while True do
4: e = e+ 1 ⊲ New epoch begins
5: for level ℓ = H,H − 1, . . . , 2, 1 do
6: θ̂ℓ = 0; Σℓ = λRegI; ⊲ Initialize network and covariance
7: for nℓ = 1, . . . , 2e do
8: if Stopping Condition then return Q̂⋆

9: s1 ∼ ρ ⊲ Get start state
10: for timestep h = 1, 2, . . . ,H do

11: Play ah = πh(sh) and get (rh, sh+1); φh
def
= φh(sh, ah) ⊲ Play and advance

12: TDh = rh +maxa′ Q̂
tar
h+1(sh+1, a

′)− 〈φh, θ̂h〉, ⊲ Compute TD error

13: θ̂h ← θ̂h +
Σ−1

h
φh TDh

1+‖φh‖2
Σ−1
h

; Σ−1
h ← Σ−1

h −
Σ−1

h
φhφ

⊤
h Σ−1

h

1+‖φh‖2
Σ−1
h

⊲ Update network and

covariance
14: end for
15: end for
16: θ̂tarℓ = minθ∈B ‖θ − θ̂ℓ‖2Σℓ

⊲ Project parameter

17: Q̂tar
ℓ (·, ·)← 〈φℓ(·, ·), θ̂tarℓ 〉 or Q̂tar

ℓ (·, ·)← min{1, 〈φℓ(·, ·), θ̂tarℓ 〉+ bℓ(·, ·)} ⊲ Update target
network

18: end for
19: Q̂⋆ ← Q̂tar ⊲ Save best approximator
20: end while

3.3 S4Q-learning

When the stream of data is generated by a controller that is converging to an optimal one—a
necessary condition to obtain low regret—the experience it generates is no longer stationary. We
will now introduce a simple device, the policy replay mechanism, that allows the controller to evolve
with time while ensuring that there is no distribution shift during the Q-learning updates. It leads
to an algorithm that converges to an optimal controller under some assumptions. This is achieved
by sequentially invoking S3Q-learning using stationary controllers that are increasingly more
optimal; the resulting algorithm is called Sequentially Stabilized Second-order Streaming Q-learning,
or S4Q-learning for short, and is detailed in Algorithm 2.

9

Policy replay for experience replay: The policy replay mechanism generates new experience

using past policies. The past policies are stored in the policy replay memory Π
def
= {(πi, ni)}pi=1,

which contains a set of policies πi associated to a number of samples ni. The policy replay mechanism
extracts a stationary mixture policy from Π, defined as the controller that plays each policy πi with
probability proportional to ni for the full episode. Such mixture policy is taken as stationary
controller to invoke S3Q-learning, along with a suitable exploration bonus to produce optimistic
Q-values that guide the exploration. The stopping condition to be used in Line 8 in Algorithm 1 is
the number of trajectories cHmtot for an appropriate constant c, see line Line 6 in Algorithm 2.

The policy replay mechanism is similar in purpose to experience replay where the experience
{(si, ai, ri, s′i)} generated so far is stored and used to retrain the network. However, unlike experience
replay, the policy replay memory does not store the full dataset and instead just contains a ‘recipe’
for generating a statistically similar dataset by re-playing past policies. In this way, the memory
complexity does not grow with the number of iterations beyond a mild logarithmic term, making
our algorithm truly streaming. And while the policy replay mechanism requires additional samples,
the regret remains well controlled because the policies in Π are progressively more and more near-
optimal: in the limit, the policies in the policy replay memory generate samples with vanishing
regret.

Having described the policy replay mechanism, we can now illustrate how S4Q-learning con-
ducts exploration using such device.

Learning mechanics: The S4Q-learning algorithm proceeds in phases which are indexed by p
inside the algorithm. At the beginning of each phase, the algorithm invokes the S3Q-learning

subroutine with a controller πControl that is a mixture policy among those in the current policy replay
memory Π, as described in the prior paragraph. The S3Q-learning procedure then returns an
optimistic action-value function estimate Q from which the greedy (optimistic) policy π is extracted
in Line 7 of Algorithm 2.

The S4Q-learning algorithm then proceeds to collect trajectories from the greedy policy π
until “sufficient progress” is made. In order to measure the progress, the agent maintains the
accumulator T and updates it in Line 13. Once T is larger than a certain value (see Line 16), the
procedure has made sufficient progress on the current data, so that Q network should be updated
with fresh data. The triggering condition in Line 16 is essentially equivalent to checking that the
determinant of the cumulative covariance has doubled with respect to that of the prior epoch (cf.
a similar condition for linear bandits [AYPS11]). When the determinant doubles, the agent has
acquired sufficient information and a new policy may be computed. An important difference here
is that the determinant should refer to the expected cumulative covariance, which is unknown, and
such determinant ratio must thus be estimated from data; our accumulator T performs such task.

In order to update the Q network, S4Q-learning constructs a new bonus function and adds the
current greedy policy π to the policy replay memory (together with the number of trajectories that
should be generated from such policy). A new phase can now begin with a call to S3Q-learning

using a newly constructed, more optimal controller and smaller bonus function.

4 Main results

We now turn to the statement of our main results, along with discussion of some of their conse-
quences. We begin in Section 4.1 by describing the form of the bonus function used in our algorithms,

10

Algorithm 2 S4Q-learning

1: Input: Bonus function b, update trigger TTrig = Θ(log pK
δ)

2: Πh = ∅; ∀h ∈ [H] ⊲ Initialize policy replay memory
3: for phase p = 1, 2, . . . do
4: mtot =

∑p−1
j=1 mj for (πj ,mj) ∈ Π ⊲ Get total # trajectories to simulate

5: πControl
def
= at the start of the episode play πj with probability mj/mtot, ∀j ∈ [p− 1] ⊲

Define controller
6: (Q,Σref)←S3Q-learning(πControl, cHmtot, b), c ∈ R ⊲ Get optimistic Q values
7: πh(·) = argmaxaQh(·, a), ∀h ∈ [H] ⊲ Extract greedy policy
8: Σ = Σref , m = 0, Th = 0, ∀h ∈ [H] ⊲ Initialize # trajectories and trigger value
9: repeat

10: s1 ∼ ρ ⊲ Get start state
11: for h = 1, 2, . . . ,H do
12: Play a = πh(s); m = m+ 1 ⊲ Play and increment counter
13: Th ← Th + ‖φh(s, a)‖2

(Σref
h)−1

; Σh ← Σh + φh(s, a)φh(s, a)
⊤ ⊲ Increment accumulator

and covariance
14: Get next state s+; s← s+ ⊲ Advance
15: end for
16: until ∃h ∈ [H] such that Th ≥ TTrig

17: Π← Π ∪ {(π,m)}; bh(·, ·) = αh‖φ(·, ·)‖Σ−1
h

⊲ Update policy replay memory and bonus

18: end for

along with the effective dimension that appears in our bounds. Section 4.2 is devoted to our main
result—namely, a performance guarantee for the S4Q-learning algorithm. In Section 4.3, we
elaborate upon the guarantees for the S3Q-learning algorithm that underlie our main result.

4.1 Bonus function and effective dimension

We first describe the bonus function involved in the algorithm, along with a notion of effective
dimension that arises in the analysis.

Bonus function: The bonus function used in phase p of the updates takes the form

bh(·, ·)
def
= αh‖φh(·, ·)‖Σ−1

h
, where αh

def
= c

{√
d log

(dpn(1:p)

δ

)
+
√

λReg

}
. (10)

a Here c > 0 is a universal constant; we use n(1:p) =
∑p

i=1 n
(i) to denote the samples used in phases

1 through p; and Σh is a cumulative covariance matrix that is constructed by the algorithm.
The empirically estimated cumulative covariance Σ is constructed as follows. Let πControl denote

the controller used to call S3Q-learning in phase p − 1, and let π denote the greedy policy used

11

by S4Q-learning in the same phase. The cumulative covariance takes the form

Σh =

mtot∑

i=1

φihφ
⊤
ih + λRegI

︸ ︷︷ ︸
S3Q-learning

covariance
returned in phase p − 1

+

mp∑

j=1

φjhφ
⊤
jh

︸ ︷︷ ︸
S4Q-learning

covariance
added in phase p− 1

, where φih ∼ πControl, φjh ∼ π. (11)

Note that Σh is formed by the sum of of the cumulative covariance matrix returned by S3Q-

learning along with additional terms computed by S4Q-learning between Line 9 to Line 16 in
phase p− 1.

Notice that the empirical covariance Σh is estimated de novo within each phase p, and due to
statistical fluctuations, it does not grow monotonically across phases. Nonetheless, the covariance
and the bonus are two devices to measure the progress of the algorithm.

Information gain and effective dimension: We now define the effective dimension d̃h at time
step h. It is a scalar quantity that governs the complexity of the exploration problem, defined as

d̃h = max
π

log
(
det
(
I + n

λReg
Eφh∼π[φhφ

⊤
h]
))

. (12)

We note that this notion has been exploited in past work [SKKS09, YW20, AHKS20, DKL+21].
The information gain can be much smaller than the dimensionality d of the feature vectors φ —
that is, we can have d̃h ≪ dh. This scaling holds, for instance, when the feature moment matrix
Eφh∼π[φhφ

⊤
h] is mostly concentrated along few directions; see Lemma 11 in Appendix C.2 for details.

4.2 Guarantees for S4Q-learning

We are now ready to present our main result, namely a bound on the regret incurred by all the
policies that generate rollouts, including those played by the S3Q-learning subroutine when it is
called by S4Q-learning. We assume that the bonus function is defined according to Eq. (10) with
an appropriately chosen universal constant.

Theorem 1 (Performance Bound of S4Q-learning). Consider an MDP that is ν-misspecified
w.r.t. Bellman closure (cf. Definition 2). Then for any number of episodes, there exists an event
EK that holds with probability at least 1− δ, and under this event, we have the following guarantees:

(a) The average regret of S4Q-learning is upper bounded as

AveReg(K) ≤ cL

{
H√
K

[
(H∑

h=1

d̃h
)
×
(H∑

h=1

(
dh + 1

)
d̃h
)
]1/2

+ ν

}
where L

def
= log

(dptotK
δ

)
.

(13)

(b) The memory complexity is bounded as O(Ld2H∑h d̃h) = O(Ld3H2) while the per-step com-
putational complexity is O(|A|d2).

12

See Appendix B for the proof of this claim.

In absence of model misspecification (ν = 0) and the special case dh = d̃h for all h, the worst-case
regret bound becomes Õ

(
H2
√
d3K

)
. Here Õ includes constant and logarithmic factors.

Some comments: When the value function is rescaled to be in [0,H] instead of the unit interval
[0, 1], the regret bound of S4Q-learning becomes Õ(H3

√
d3K), which is larger by only a factor

of H relative to the state-of-the-art Õ(H2
√
d3K) bound available for computationally tractable

algorithms [JYWJ20].
This slightly sub-optimal sample complexity is counter-balanced by a number of advantages of

S4Q-learning. One major benefit is the low memory footprint, which depends only on K via a
logarithmic factor. To the best of our knowledge, all previous methods that apply in this setting
need to store the full experience, leading to a memory requirement scaling at least linearly in the
number of episodes K. For problems with a large number of interactions, this linear scaling can be
prohibitive.

Additionally if the horizon is not very large, the S4Q-learning bound might be substantially
tighter than the guarantees in Jin et al. [JYWJ20], since it primarily scales with the effective
dimension d̃. To the best of our knowledge, our result gives the first adaptive and tractable algorithm
for this setting with regret bounds depending on the effective dimension d̃. In contrast, existing
algorithms with regret bounds in terms of the effective dimension need to know its value to inherit
an improved regret bound [AHKS20, YW20]; in this sense, they are non-adaptive guarantees.

Finally, our approximation error guarantees are new for value-based exploration algorithms
and close some of the gaps with respect to policy gradient methods. The approximation error
of S4Q-learning scales with the worst-case off-policy expected prediction error. To the best of
our knowledge, temporal difference methods that perform exploration have only been analyzed
with ℓ∞-approximation guarantees. Instead, in policy gradient algorithms [AHKS20, ZCA21], the
approximation error is measured in expectation with respect to an arbitrary comparator. Our
approximation error depends on the worst-case (with respect to the policies) approximation error,
but the error is still measured in expectation, and furthermore, the expectation is inside the absolute
value.

4.3 Guarantees for S3Q-learning

When a stationary controller is available, the S3Q-learning algorithm can be used to maintain
a running estimate of the optimal action value function Q⋆ with a low memory footprint. This
guarantee is of independent interest: the basic protocol illustrated in Algorithm 1 serves as a building
block for sophisticated algorithms, with the S4Q-learning procedure analyzed in this paper being
one example. Of course, in the controlled setting the quality of the value function estimate will
also depend on how exploratory the controller policy is; some notation will be introduced shortly
to quantify this.

Let us define the expected cumulative covariance matrix after n samples from the (controller)
policy π as

Σh(n) = n
{

Eφh∼π

[
φhφ

⊤
h

]
+ λRegI

}
, (14)

where λReg > 0 is a fixed positive regularization parameter. Given a stationary controller π and
a bonus function b, the S3Q-learning algorithm returns a sequence of estimated Q-functions

13

Q̂⋆ = (Q̂⋆
1, . . . , Q̂

⋆
H) ∈ Q(lin). In this section, we state some bounds on the value function error

Q̂⋆ − Q⋆ when the bonus function b = 0 and the violation of Assumption 1 (Bellman closure) is
measured according to Definition 1. (We consider the extension to the setting b ≥ 0 in Appendix C).

Our analysis involves the Bellman error associated with Q̂⋆, defined for each h ∈ [H] and (s, a)
as the discrepancy of Q̂⋆ in satisfying the Bellman equations with Q̂⋆

h+1 as the next state value
function:

Eh(s, a)
def
= Q̂⋆

h(s, a)−
(
ThQ̂⋆

h+1

)
(s, a). (15)

Our analysis shows how this Bellman error can be bounded in terms of an uncertainty function and
an approximation error. For a given integer sample size n > 1 and user-defined error probability
δ ∈ (0, 1), define the scalar quantity

αh(n, δ) = c

{√
d log

(
dneH

δ

)
+
√

λReg

}
, (16)

where c > 0 is a universal constant, whose specific value can be determined via the proof.
Suppose that the algorithm terminates after etot epochs, and let K be the total number of

trajectories. For a given tolerance probability δmaster ∈ (0, 1), we define the uncertainty function

Uh(s, a)
def
= αh(n

∗, δ∗)‖φh(s, a)‖(Σh(n∗))
−1 where n∗ def

= K
4H , and δ∗

def
= δmaster

2He2totd
. (17a)

We define the comparator error

∆π
h(s, a)

def
= (ThQ̂tar

h+1)(s, a)−
〈
φh(s, a), θ

π,Q̂tar
h+1,h

〉
. (17b)

In order to state the theorem, let Eπ denote the expectation over the trajectories (S1, A1, . . . , SH , AH)
induced by following π after sampling from the starting distribution ρ.

Theorem 2 (Performance bound for S3Q-learning). Consider an MDP that is ν-misspecified
w.r.t. Bellman closure (cf. Definition 1). If the S3Q-learning algorithm is run with the un-
certainty function (17a), then for any episode K, with probability at least 1 − δmaster, it returns a
solution Q̂⋆ such that:

(a) Its Bellman error function Eh
def
= Q̂⋆

h −
(
ThQ̂⋆

h+1

)
satisfies the pointwise bound

∣∣∣∣Eh(s, a) + ∆π
h(s, a)

∣∣∣∣ ≤ Uh(s, a) for each (s, a). (18a)

(b) For each h ∈ [H], the greedy policy πh(s)
def
= argmaxa Q̂

⋆
h(s, a) satisfies the bounds

−Eπ⋆

H∑

h=1

Uh(Sτ , Ah)− ν ≤ ES∼ρ(V̂
⋆
1 − V ⋆

1)(S) ≤ Eπ

H∑

h=1

Uh(Sτ , Aτ) + ν. (18b)

Furthermore, the memory complexity of the algorithm is bounded as O(d2H) and the per-step com-
putational complexity is bounded as O(d2 + |A|d).

See Appendix A for the proof of this claim.

14

5 Discussion

In this paper, we have introduced several modifications to the basic Q-learning protocol so as to
derive an exploratory procedure that operates with linear function approximation, and is equipped
with performance guarantees while remaining computation and memory-efficient. It is natural to
ask to what extent these modifications—the second-order update rule, the use of target networks
and policy replay—are needed in order to obtain such guarantees.

On the second-order rule: Of the three ingredients, the second-order update rule only serves to
improve the statistical efficiency. When the target network and sampling distribution are fixed, using
first-order update rule in Eq. (7) would be essentially equivalen to a stochastic gradient update; such
updates would minimizes the loss function (8) with a rate 1/

√
n instead of the 1/n enabled by our

second-order updates. It should be observed that the higher cost and memory of the second-order
rule are not a problem when conducting exploration, because the main computational bottleneck
is the calculation of the bonus function, while the main memory requirement is due to the policy
replay memory.

Nonetheless, if one is interested purely in the optimization setting, where neither the replay
memory nor the exploration bonuses are needed, some techniques from variance reduction can be
used in conjunction with a first-order update rule [FGKS15, LMWJ20, Wai19b, MKW+22] to lower
the computational and space complexity while retaining high sample efficiency. We leave this as an
interesting direction for future work.

On the use of target networks: The use of target networks considerably simplifies the analysis
of the algorithm by establishing a connection with linear regression with a fixed target. There is no
real downside with adopting target networks, and whether they could be removed is left as future
work.

On the policy replay mechanism: A truly critical ingredient in this work is the policy replay
mechanism, which ensures that the Q-learning updates are performed on data generated by a
stationary controller and with the most recent bonus and value function estimate. Without the
replay mechanism, the network weights would be updated with a changing target—recall that the
target networks need to be updated periodically—and under a non-stationary distribution. The
main issue is that the target networks contain both statistical errors and bias due to the exploration
bonus which decay with time. In this case, the high errors present in the target networks in early
phases would hurt the algorithm in later phases. Discounting early updates by an appropriate
learning rate to favor later updates may seem like a solution, but this can lead to “catastrophic
forgetting” of past experience because the learning distribution is non-stationary. When using
linear function approximation, a concrete consequence is that the algorithm can forget what it has
learned along the directions it played in the early phases.

Exploration algorithms inspired by Least Square Value Iteration (LSVI) avoid these issues,
because they update the weights of the network by computing the full least-squares solution using
the most recent, and thus most accurate, target function. In this way, the next state value function
is as accurate as possible over the full domain, and is perturbed everywhere by the most recent (and
smallest) exploration bonus, one that truly reflects the current model uncertainty.

Likewise, experience replay would alleviate these issues by re-training the network using the most
recent target network. Unfortunately, doing so seems to require a replay buffer of size proportional
to all the experience collected so far, making Q-learning no longer a truly streaming algorithm. The

15

policy replay memory is a simple solution to such issues, one that preserves the streaming nature
of Q-learning.

Future directions: Our work focused exclusively on linear approximations of Q-functions, but
some of the underlying ideas are more generally applicable. One interesting direction is to extend
our analysis to models with low Eluder dimension [WSY20, KSWY21], and to see whether the regret
bound can be improved. Second, our definition of approximation error is very permissive, in that it
only measures the expected prediction error. It would be interesting to understand whether or not
there exist exploration algorithms based on least-square value iteration (without “policy replay”)
that inherit similar guarantees. Finally, this work establishes a partial form of instance-dependence,
in that the results depend on the effective dimension. In the simpler tabular setting, the instance
dependence of Q-learning has been studied through the lens of local minimax theory [KXWJ21,
XKWJ22] to obtain completely sharp instance-dependent guarantees. It would be interesting to
develop similarly sharp analyses in this more general setting with function approximation.

Acknowledgment

This work was partially supported by National Science Foundation FODSI grant 2023505, DOD
ONR Office of Naval Research N00014-21-1-2842, National Science Foundation DMS grant 2015454,
and National Science Foundation CCF grant 1955450. Part of this work was completed while Andrea
Zanette was visiting the program Learning and Games at the Simons Institute for the Theory of
Computing. The authors are very grateful to the reviewers, as well as to the meta-reviewer, for
identifying clarity issues present in an earlier draft.

References

[ACJ+21] Naman Agarwal, Syomantak Chaudhuri, Prateek Jain, Dheeraj Nagaraj, and Praneeth Netra-
palli. Online target q-learning with reverse experience replay: Efficiently finding the optimal
policy for linear mdps. arXiv preprint arXiv:2110.08440, 2021.

[AHKS20] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

[AJS+20] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin F Yang. Model-based rein-
forcement learning with value-targeted regression. arXiv preprint arXiv:2006.01107, 2020.

[AKKS20] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural
complexity and representation learning of low rank mdps. arXiv preprint arXiv:2006.10814,
2020.

[AMP21] Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in
markov decision processes. In International Conference on Machine Learning, pages 7459–7468.
PMLR, 2021.

[AYPS11] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear stochas-
tic bandits. In Advances in Neural Information Processing Systems (NIPS), 2011.

[Bai95] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
International Conference on Machine Learning (ICML). 1995.

16

[BLL+11] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop and
Conference Proceedings, 2011.

[BRS18] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pages 1691–1692.
PMLR, 2018.

[BT96] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

[CMS20] Diogo Carvalho, Francisco S Melo, and Pedro Santos. A new convergent variant of q-learning
with linear function approximation. Advances in Neural Information Processing Systems,
33:19412–19421, 2020.

[CYLW19] Qi Cai, Zhuoran Yang, Jason Lee, and Zhaoran Wang. Neural temporal-difference learning
converges to global optima. 2019.

[DKL+21] Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl. arXiv
preprint arXiv:2103.10897, 2021.

[DWW21] Y. Duan, M. J. Wainwright, and M. Wang. Optimal value estimation using kernel-based tem-
poral difference methods. Technical report, Princeton University, September 2021.

[EDMB03] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for q-learning. Journal of
machine learning Research, 5(1), 2003.

[FGKS15] Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Competing with the empirical risk
minimizer in a single pass. In Conference on learning theory, pages 728–763. PMLR, 2015.

[FKSLX21] Dylan J. Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline rein-
forcement learning: Fundamental barriers for value function approximation, 2021.

[FWXY20] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep
q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

[Gor95] Geoffrey J Gordon. Stable function approximation in dynamic programming. In International
Conference on Machine Learning (ICML), pages 261–268. 1995.

[GVL12] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU Press, 2012.

[HZG21] Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning
with linear function approximation. In International Conference on Machine Learning, pages
4171–4180. PMLR, 2021.

[JAZBJ18] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

[JJS94] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural computation, 6(6):1185–1201, 1994.

17

[JKA+17] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In Doina Precup and
Yee Whye Teh, editors, International Conference on Machine Learning (ICML), volume 70 of
Proceedings of Machine Learning Research, pages 1704–1713, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of
rl problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00815, 2021.

[JYWJ20] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, 2020.

[KAL16] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with
rich observations. In Advances in Neural Information Processing Systems (NIPS), pages 1840–
1848, 2016.

[KS99] Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect
algorithms. Advances in neural information processing systems, pages 996–1002, 1999.

[KSWY21] Dingwen Kong, Ruslan Salakhutdinov, Ruosong Wang, and Lin F. Yang. Online sub-sampling
for reinforcement learning with general function approximation, 2021.

[KXWJ21] K. Khamaru, E. Xia, M. J. Wainwright, and M. I. Jordan. Instance-optimality in optimal value
estimation: Adaptivity via variance-reduced Q-learning. Technical report, UC Berkeley, June
2021. Arxiv technical report 2106.14352.

[LCC+21] Gen Li, Changxiao Cai, Yuxin Chen, Yuantao Gu, Yuting Wei, and Yuejie Chi. Is q-learning
minimax optimal? a tight sample complexity analysis. arXiv preprint arXiv:2102.06548, 2021.

[Lin92] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[LLG+20] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-
sample analysis of proximal gradient td algorithms. arXiv preprint arXiv:2006.14364, 2020.

[LMWJ20] Chris Junchi Li, Wenlong Mou, Martin J Wainwright, and Michael I Jordan. Root-
sgd: Sharp nonasymptotics and asymptotic efficiency in a single algorithm. arXiv preprint
arXiv:2008.12690, 2020.

[LS18] Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation:
How far does constant step-size and iterate averaging go? In International Conference on
Artificial Intelligence and Statistics, pages 1347–1355. PMLR, 2018.

[LS22] Shuang Liu and Hao Su. Provably efficient kernelized q-learning. arXiv preprint
arXiv:2204.10349, 2022.

[LXY22] Ziniu Li, Tian Xu, and Yang Yu. A note on target q-learning for solving finite mdps with a
generative oracle. arXiv preprint arXiv:2203.11489, 2022.

[MCK+21] Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank mdps. arXiv preprint arXiv:2102.07035,
2021.

[Meh17] Nishant Mehta. Fast rates with high probability in exp-concave statistical learning. In Artificial
Intelligence and Statistics, pages 1085–1093. PMLR, 2017.

18

[MJTS20] Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of rein-
forcement learning using linearly combined model ensembles. In International Conference on
Artificial Intelligence and Statistics, pages 2010–2020. PMLR, 2020.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[MKW+22] W. Mou, K. Khamaru, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. Optimal variance-
reduced stochastic approximation in Banach spaces. Technical report, UC Berkeley, January
2022.

[MM09] Prashant Mehta and Sean Meyn. Q-learning and pontryagin’s minimum principle. In Proceed-
ings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 3598–3605. IEEE, 2009.

[MMR08] Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforcement learning
with function approximation. In International Conference on Machine Learning (ICML), 2008.

[MP09] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance
penalization. In Conference on Learning Theory (COLT), 2009.

[MS08] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(May):815–857, 2008.

[PP02] Theodore J Perkins and Mark D Pendrith. On the existence of fixed points for q-learning and
sarsa in partially observable domains. In ICML, pages 490–497, 2002.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

[Rie05] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural re-
inforcement learning method. In European conference on machine learning, pages 317–328.
Springer, 2005.

[S+98] Csaba Szepesvári et al. The asymptotic convergence-rate of q-learning. Advances in neural
information processing systems, pages 1064–1070, 1998.

[SB78] Steven E Shreve and Dimitri P Bertsekas. Alternative theoretical frameworks for finite horizon
discrete-time stochastic optimal control. SIAM Journal on control and optimization, 16(6):953–
978, 1978.

[SJ19] Max Simchowitz and Kevin Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. arXiv preprint arXiv:1905.03814, 2019.

[SJK+18] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
reinforcement learning in contextual decision processes. arXiv preprint arXiv:1811.08540, 2018.

[SKKS09] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

19

[SLW+22] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. arXiv preprint arXiv:2202.13890,
2022.

[SMSC21] Pedro P Santos, Francisco S Melo, Alberto Sardinha, and Diogo S Carvalho. Understanding
the impact of data distribution on q-learning with function approximation. arXiv preprint
arXiv:2111.11758, 2021.

[TPL21] Andrea Tirinzoni, Matteo Pirotta, and Alessandro Lazaric. A fully problem-dependent regret
lower bound for finite-horizon mdps. arXiv preprint arXiv:2106.13013, 2021.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015.

[Tsi94] John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning,
16(3):185–202, 1994.

[TVR97] John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in Neural Information Processing Systems (NIPS), 1997.

[Wai19a] Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ∞-
bounds for q-learning. arXiv preprint arXiv:1905.06265, 2019.

[Wai19b] Martin J Wainwright. Variance-reduced q-learning is minimax optimal. arXiv preprint
arXiv:1906.04697, 2019.

[WAS20] Gellert Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in
mdps with linearly-realizable optimal action-value functions. arXiv preprint arXiv:2010.01374,
2020.

[Wat89] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[WCS+21] Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, and Kevin Jamieson. First-
order regret in reinforcement learning with linear function approximation: A robust estimation
approach, 2021.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[WFK20] Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline
rl with linear function approximation? arXiv preprint arXiv:2010.11895, 2020.

[WSG21] Gellért Weisz, Csaba Szepesvári, and András György. Tensorplan and the few actions lower
bound for planning in mdps under linear realizability of optimal value functions. arXiv preprint
arXiv:2110.02195, 2021.

[WSJ21] Andrew Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
dependent pac reinforcement learning. arXiv preprint arXiv:2108.02717, 2021.

[WSY20] Ruosong Wang, Ruslan Salakhutdinov, and Lin F. Yang. Provably efficient reinforcement learn-
ing with general value function approximation, 2020.

[WWDK19] Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforce-
ment learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136,
2019.

20

[WWK21] Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An exponential lower bound for linearly-
realizable mdps with constant suboptimality gap. arXiv preprint arXiv:2103.12690, 2021.

[XCJ+21] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926, 2021.

[XKWJ22] E. Xia, K. Khamaru, M. J. Wainwright, and M. I. Jordan. Instance-dependent confidence and
early stopping in reinforcement learning. Technical report, UC Berkeley, January 2022.

[XMD21] Haike Xu, Tengyu Ma, and Simon S Du. Fine-grained gap-dependent bounds for tabular mdps
via adaptive multi-step bootstrap. arXiv preprint arXiv:2102.04692, 2021.

[XZZ21] Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. arXiv preprint arXiv:2107.09003, 2021.

[YLCF22] Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous
q-learning. arXiv preprint arXiv:2203.07368, 2022.

[YW20] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning (ICML), 2020.

[YW21] Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. arXiv preprint arXiv:2110.08695, 2021.

[YYD21] Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In International
Conference on Artificial Intelligence and Statistics, pages 1576–1584. PMLR, 2021.

[Zan20] Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl. arXiv preprint arXiv:2012.08005, 2020.

[ZB19] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforce-
ment learning without domain knowledge using value function bounds. In International Con-
ference on Machine Learning (ICML), 2019.

[ZBJ19] Andrea Zanette, Emma Brunskill, and Mykel J. Kochenderfer. Almost horizon-free structure-
aware best policy identification with a generative model. In Advances in Neural Information
Processing Systems, 2019.

[ZBPL20] Andrea Zanette, David Brandfonbrener, Matteo Pirotta, and Alessandro Lazaric. Frequentist
regret bounds for randomized least-squares value iteration. In AISTATS, 2020.

[ZCA21] Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic policy optimiza-
tion and exploration with linear function approximation. arXiv preprint arXiv:2103.12923,
2021.

[ZLKB20] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine
Learning (ICML), 2020.

[ZWB21] Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic
methods for offline reinforcement learning. arXiv preprint arXiv:2108.08812, 2021.

[ZZJ20] Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learn-
ingvia reference-advantage decomposition. Advances in Neural Information Processing Systems,
33, 2020.

21

Contents

1 Introduction 1
1.1 Our contributions . 2
1.2 Relation to past work . 3

2 Background and problem formulation 4
2.1 Finite-horizon Markov decision proceses . 4
2.2 Structural conditions . 5

2.2.1 Linear function approximations . 5
2.2.2 Bellman conditions . 6

3 Algorithms 7
3.1 Some intuition . 7
3.2 S3Q-learning . 8
3.3 S4Q-learning . 9

4 Main results 10
4.1 Bonus function and effective dimension . 11
4.2 Guarantees for S4Q-learning . 12
4.3 Guarantees for S3Q-learning . 13

5 Discussion 15

A Proofs for the S3Q-learning algorithm 23
A.1 Main argument . 24
A.2 Proof of Lemma 1 (Equivalence with Least-Squares) 25
A.3 Proof of Lemma 2 (Number of Samples) . 27
A.4 Proof of Lemma 3 (Least Square Error Bounds) . 27
A.5 Proof of Lemma 4 . 29

B Proof of Theorem 1 30
B.1 Main argument . 30
B.2 Proof of Lemma 5 . 34
B.3 Proof of Lemma 6 (Bonus Bound) . 35
B.4 Proof of Lemma 7 . 35
B.5 Proof of Lemma 8 . 36
B.6 Proof of Lemma 9 (Number of Phases) . 37

C Auxiliary results 38
C.1 Information Gain . 38
C.2 Bounds on the information gain . 39
C.3 Proportional estimates under the triggering condition 40
C.4 Non-Isotropic Proportional Estimates of the Empirical Covariance 41
C.5 Concentration of Log Determinants . 43
C.6 Constrained Loss Lemmas . 44

22

A Proofs for the S3Q-learning algorithm

This section is devoted to proving the bounds on S3Q-learning stated in Theorem 2. At the same
time, we also establish a related result, to be stated momentarily as Theorem 3. The proofs of both
results share a very similar structure, following the same argument except for the way in which
the violation of Assumption 1 or Assumption 2 is measured. More precisely, Theorem 2 measures
misspecification according to ν, which is zero when Assumption 1 holds and the bonus is zero. On
the other hand, Theorem 3 measures misspecification using ν defined according to Definition 2.
This quantity is zero under the low-rank assumption (Assumption 2). Thus, both theorems can be
proved within a common framework, with the only difference being the way in which ν is defined.

Let us now state the second result to be proved in this section.

Theorem 3. Consider an MDP that is ν-misspecified w.r.t. the low rank assumption according to
Definition 2; assume b ≥ 0 pointwise. With the uncertainty function (17a), for any episode K, the
S3Q-learning algorithm returns a solution Q̂⋆ with Bellman error E such that with probability at
least 1− δmaster:

(a) The Bellman error function satisfies the pointwise bound

min{0,−Uh + bh}(s, a) ≤
(
Eh +∆π

h

)
(s, a) ≤

(
Uh + bh

)
(s, a). (19)

(b) For each h ∈ [H], the greedy policy πh(s)
def
= argmaxa Q̂

⋆
h(s, a) satisfies the bound

ES∼ρ(V̂
⋆
1 − V ⋆

1)(S) ≤ ES∼ρ(V̂
⋆
1 − V π

1)(S) ≤ Eπ

H∑

h=1

(Uh + bh)(Sτ , Aτ) + ν. (20)

Proof : For each epoch, the argument can be broken into four steps.

Step 1: First, we show that for any level ℓ ∈ [H], the second-order update rule (13) produces the same
iterates as least-squares regression would.

Step 2: Second, we show for any level ℓ ∈ [H], learned predictor Q̂⋆ uses at least ∼ 1
H of the total

data.

Step 3: Third, we bound the least-square prediction error under either Assumption 1 or Assumption 2.
This analysis controls the error made by the algorithm at each level ℓ ∈ [H] during the epoch
under consideration.

Step 4: The final step is to compute how the least-square errors propagate and accumulate through
timesteps, thereby leading to the final performance bound in terms of the learned action value
function Q̂⋆.

Notation: Let us summarize here some notation for convenient reference. We say that the al-
gorithm has completed learning at level ℓ in epoch e if nℓ = 2e, i.e., when the loop over nℓ has
terminated. We indicate with ne = 2e the number of samples allocated in the epoch e.

23

Let {(si, ai, ri, s′i)}ne

i=1 be the samples acquired at level ℓ in epoch e. For a parameter vector θ
and a next-state action-value function Q′, define the (ℓ, e)-empirical loss as

L̂ℓe(θ || Q′)
def
=

ne∑

i=1

[〈
φℓ(si, ai), θ

〉
− ri −max

a′
Q′(s′i, a

′)
]2

+ λReg‖θ‖22, (21)

where λReg > 0 is a given regularization parameter. With a minor overload of notation, Recalling
the class of linear functions Q(lin) from equation (4a), we define

Qmin = argmin
Q∈Q(lin)

L̂ℓe(Q || Q′) (22)

if Qmin can be written as Qmin : (s, a) 7→
〈
φ(s, a), θmin

〉
, where θmin = argmin‖θ‖2≤1 L̂ℓe(θ || Q′).

A.1 Main argument

We now proceed to the core of the argument. When the algorithm terminates at the evaluation
episode K, it returns the predictor Q̂⋆. For the rest of the proof, we let etot be the epoch in which
Q̂⋆ was last updated upon termination of the algorithm. Moreover, our proof makes use of three
auxiliary lemmas, which we begin by stating.

Lemma 1 (Equivalence with Least-Squares). Upon completion of level ℓ within epoch e, the S3Q-

learning algorithm returns a parameter vector θ̂tarℓe such that

θ̂tarℓe = arg min
‖θ‖2≤1

{
L̂ℓe(θ || Q̂tar

ℓ+1,e)
}
. (23)

See Appendix A.2 for the proof of this claim.

We emphasize that the target network Q̂tar
ℓ+1,e remains fixed throughout a given epoch. The lemma

establishes that the second-order update rule produces the same solution as a batch least-square
regression would.

Our next step is to lower bound the number of samples used to solve the regression problem:

Lemma 2 (Number of Samples). Upon termination in episode K, the algorithm returns a parameter
sequence θ̂⋆ = {θ̂⋆ℓ}Hℓ=1 such that

θ̂⋆ℓ = argmin
‖θ‖2≤1

L̂ℓ,etot(θ || Q̂⋆
ℓ+1) for each ℓ ∈ [H] (24)

and moreover, the level ℓ regression problem uses at least nℓ ≥ K
4H of the form {(si, ai, ri, s′i)}n

ℓ

i=1.

The above lemma states that nearly all the data collected are used. The proof can be found
in Appendix A.3.

Given this equivalence to least-squares regression and the lower bound on the sample size, we
can now leverage standard analysis of linear regression so as to bound the prediction error. Recall
our definition of the error function

Eℓe(s, a)
def
= Q̂tar

ℓe (s, a)−
(
TℓQ̂tar

ℓ+1,e

)
(s, a). (25)

24

Lemma 3 (Least Square Error Bounds). The S3Q-learning procedure returns a predictor Q̂⋆
ℓ

whose error Eℓ is sandwiched as

min
{
0, (−Uℓ(s, a) + bℓ(s, a))

}
−∆π

ℓ (s, a)
(a)

≤ Eℓ(s, a)
(b)

≤ Uℓ(s, a) + bℓ(s, a)−∆π
ℓ (s, a) (26)

with probability at least 1− δ.

See Appendix A.4 for the proof of this claim.

Lemma 3 allows us to quantify the empirical Bellman backup error and uses Assumption 1
(Bellman closure) or Assumption 2 (Low-Rank) depending on the setting (i.e., optimization vs
exploration). In the zero-bonus setting (b = 0), the error term can be bounded symmetrically by
the uncertainty function (see Eq. (26)), which is always positive. The min function on the left hand
side arises due to “clipping” the Q̂tar

ℓ values, so that adding a bigger bonus bℓ does not necessarily

make Q̂tar
ℓ (and its error function) more positive.

Our next step to establishing the bounds (18b) is to analyze how errors propagate. We begin
with the rightmost inequality in equation (18b). Since Q⋆ is the optimal Q-function, we have the
pointwise inequality

(Q̂⋆ −Q⋆)(s, a) ≤ (Q̂⋆ −Qπ)(s, a) for all (s, a) pairs,

valid for any policy π; in particular, this bound holds for the greedy policy π with respect to Q̂⋆.
Moreover, for this greedy policy, we have

Q̂⋆
h = Eh +

(
ThQ̂⋆

h+1

)
= Eh +

(
T π
h Q̂⋆

h+1

)
, for all h ∈ [H].

Since Qπ satisfies the Bellman evaluation equations Qπ
h =

(
T π
h Qπ

h+1

)
for each h ∈ [H], the claim

now follows, as Q̂⋆
h can be thought of as the action value function of π on an MDP with dynamics

specified by T π, and reward function consisting of a portion from T π, along with an additional
reward equal to E.

The proof of the left inequality in equation (18b) is similar. In particular, we observe that

Q̂⋆
h = Eh +

(
ThQ̂⋆

h+1

)
≥ Eh +

(
T π⋆

h Q̂⋆
h+1

)
, for all h ∈ [H].

Expanding the definition of error function along the trajectories identified by π⋆ concludes the proof
of the claim.

A.2 Proof of Lemma 1 (Equivalence with Least-Squares)

Fix an epoch e and let the current level be ℓ. By construction, the target network for the next state
value function Q̂tar

ℓ+1,e has already been updated in that epoch. We observe that S3Q-learning is

updating θ̂h in a way equivalent to Algorithm 3 with ak = φh and bk = rh + maxa′ Q̂
tar
h+1(sh+1, a

′)
and B = {x | ‖x‖2 ≤ 1}.

25

Algorithm 3 Streaming Least Squares

1: Σ1 = λRegId×d

2: x′′0 = 0
3: for k = 1, 2, . . . do
4: Receive (ak, bk)

5: x′′k = x′′k−1 +
Σ−1

k
ak(bk−a⊤

k
x′′
k−1)

1+a⊤
k
Σ−1

k
ak

6: Σ
−1

k+1 = Σ
−1

k −
Σ

−1

k aka
⊤
k Σ

−1

k

1+a⊤
k
Σ

−1

k ak
7: end for
8: return argmin‖x‖2≤1 ‖x− x′′K‖2ΣK+1

Thus, in order to prove Lemma 1, it suffices to show that Algorithm 3 finds the empirical risk
minimizer. In particular, we claim that given any sequence of tuples (a1, b1), . . . , (ak, bk), then upon
termination, Algorithm 3 returns the constrained minimizer

arg min
‖x‖2≤1

{ K∑

k=1

(
x⊤ak − bk

)2
+ λReg‖x‖22

}
. (27)

In order to prove this claim, we introduce some helpful notation. With the initialization

A0
def
=
√

λRegId×d and B0
def
= 0, define the recursions

Ak
def
=

[
Ak−1

a⊤k

]
, Bk

def
=

[
Bk−1

bk

]
(28)

The associated solution to the normal equations is given by x′k
def
= (A⊤

k Ak)
−1A⊤

k Bk. With these
definition, we then have the equivalences

x′k
(i)
= argmin

x
‖Akx−Bk‖22

(ii)
=

k∑

i=1

(
x⊤ai − bi

)2
+ λReg‖x‖22, (29)

where step (i) follows by definition; and step (ii) follows from how the dataset (A0, b0) was con-
structed, in particular including the pair {(

√
λRege1, 0), . . . , (

√
λReged, 0)} prior to the k samples

{(ai, bi)}ki=1.
Now we proceed by induction on the index k. For the base case k = 0, observe that x′0 = x′′0

and A⊤
0 A0 = λRegI by the given initialization. Turning to the induction step, let us suppose that

the equalities

x′k−1 = x′′k−1, and A⊤
k−1Ak−1 = Σk (30)

hold for a certain k ≥ 1. We can write the next iterate x′k as

x′k = (A⊤
k Ak)

−1A⊤
k Bk =

(
A⊤

k−1Ak−1 + aka
⊤
k

)−1 [
A⊤

k−1 ak
] [Bk−1

bk

]

(iii)
=

[(
A⊤

k−1Ak−1

)−1
−
(
A⊤

k−1Ak−1

)−1
aka

⊤
k

(
A⊤

k−1Ak−1

)−1

1 + a⊤k
(
A⊤

k−1Ak−1

)−1
ak

](
A⊤

k−1Bk−1 + akbk

)
,

26

where step (iii) follows from the Sherman Morrison rank-one matrix inversion formula (e.g., [GVL12]).
Recalling that

x′k−1 =
(
A⊤

k−1Ak−1

)−1
A⊤

k−1Bk−1,

we find that

x′k = x′k−1 +
(
A⊤

k−1Ak−1

)−1
akbk −

(
A⊤

k−1Ak−1

)−1
aka

⊤
k

(
A⊤

k−1Ak−1

)−1

1 + a⊤k
(
A⊤

k−1Ak−1

)−1
ak

(
A⊤

k−1Bk−1 + akbk

)

= x′k−1 +

(
A⊤

k−1Ak−1

)−1
akbk −

(
A⊤

k−1Ak−1

)−1
aka

⊤
k

x′
k−1︷ ︸︸ ︷(

A⊤
k−1Ak−1

)−1
A⊤

k−1Bk−1

1 + a⊤k
(
A⊤

k−1Ak−1

)−1
ak

= x′k−1 +

(
A⊤

k−1Ak−1

)−1
ak
(
bk − a⊤k x

′
k−1

)

1 + a⊤k
(
A⊤

k−1Ak−1

)−1
ak

.

Since x′k−1 = x′′k−1 by the induction hypothesis, it follows that x′k = x′′k as the above display matches
Line 5 of Algorithm 3. Applying the Sherman-Morrison rank one update, we find that

(Σk+1)
−1 = (A⊤

k Ak)
−1. (31)

Thus, we have established that the equalities (30) hold for every k. The proof is concluded upon
noticing that x′′k is the unconstrained solution to the loss in (27), and the projection step in the
final line of the algorithm is thus equivalent to solving (27) with the constraint x ∈ B.

A.3 Proof of Lemma 2 (Number of Samples)

In every epoch the algorithm updates the target networks in the order Q̂tar
H,e, . . . , Q̂

tar
1,e . Since the

algorithm returns Q̂⋆
ℓ = Q̂tar

ℓ,etot
for each ℓ ∈ [H], the statement (24) follows by construction of the

algorithm and Lemma 1.
It remains to lower bound the number of samples involved in the computation of Q̂⋆

ℓ . By
construction, every epoch e uses exactly 2eH trajectories. Let m denote the number of trajectories
in the current (unfinished) epoch etot + 1 when we evaluate the algorithm (at the stopping time in
the episode K). We must have

K = H
(
21 + 22 + · · ·+ 2etot +m

)
≤ H

(
2etot+1 + 2etot+1

)
= 4H2etot. (32)

Since the algorithm in epoch etot has sampled H2etot trajectories, using the above relation we deduce
that it must have used H2etot ≥ K

4 total episodes, meaning at least nℓ ≥ K
4H in every level to solve

the regression problem (24), as stated.

A.4 Proof of Lemma 3 (Least Square Error Bounds)

Let {(si, ai, ri, s′i)}ne

i=1 be the sequence of ne states, actions, rewards, successor states acquired while
learning level ℓ in epoch e. We drop the epoch index e = etot as this is fixed through the proof.

27

Within an epoch, S3Q-learning updates the target networks in the order Q̂tar
H , Q̂tar

H−1, . . . , Q̂
tar
2 , Q̂tar

1 .

Thus, when the algorithm updates Q̂tar
ℓ , it must use Q̂tar

ℓ+1, which has already been updated in that

epoch, to compute the backup in Line 12. Notice that the next-timestep target Q̂tar
ℓ+1 stays fixed

while learning at level ℓ. Observe that regardless of the choice of bonus (so in either the optimization
or exploration setting), we have ‖Q̂tar

ℓ+1‖∞ ≤ 1 by construction.

We introduce the shorthand ∆π
i

def
=
(
TℓQ̂tar

ℓ+1

)
(si, ai)− 〈φℓ(si, ai), θ

π,Q̂tar
ℓ+1,ℓ〉 for the comparator

error evaluated at (si, ai). With this shorthand, we can write

ri +max
a′

Q̂tar
ℓ+1(s

′
i, a

′) =
(
TℓQ̂tar

ℓ+1

)
(si, ai) + ηi = 〈φℓ(si, ai), θ

π,Q̂tar
ℓ+1,ℓ〉+∆π

i + ηi, (33)

where ηi
def
= ri +maxa′ Q̂

tar
ℓ+1(s

′
i, a

′)−
(
TℓQ̂tar

ℓ+1

)
(si, ai) is the Bellman noise. Note that conditioned

on (si, ai), the random variable on the left hand side is bounded in [−1,+1].
Now, to conclude we use the following high-probability error bound on a perturbed least-squares

estimator. Given a joint distribution µ over pairs (X,Y), define the constrained least-squares
estimate

θ⋆
def
= min

‖θ‖2≤1
E(X,Y)

(〈
X, θ

〉
− Y

)2
. (34a)

Given n i.i.d. samples (xi, yi) ∼ µ, we define the empirical version of this estimator

θ̂
def
= min

‖θ‖2≤1

1

n

n∑

i=1

(〈
xi, θ

〉
− yi

)2
. (34b)

The following result bounds the difference between the empirical and population estimates:

Lemma 4 (Convergence to Population Minimizer). The empirical estimate (34b) satisfies the bound

‖θ̂ − θ⋆‖(
nEµxx⊤+λI

) ≤ c
{√

d log
dn

δ
+
√
λ
}

(35)

with probability at least 1− δ.

See Appendix A.5 for the proof of this claim.

After redefining δ and collecting probabilities, Cauchy-Schwartz now ensures with probability
1− δ that

∣∣〈φℓ(s, a), θ̂
tar
ℓ − θπ,θ̂

tar
ℓ+1,ℓ

〉∣∣ ≤ ‖φℓ(s, a)‖(Σℓ(n⋆))
−1‖θ̂tarℓ − θπ,θ̂

tar
ℓ+1,ℓ‖Σℓ(n⋆) ≤ α(n⋆, δ⋆)‖φℓ(s, a)‖(Σℓ(n⋆))

−1

︸ ︷︷ ︸
≡Uℓ(s,a)

,

(36)

where we have used the definition (17a) for the uncertainty parameter with the number of samples
given by Lemma 2 (Number of Samples) together with a union bound over the horizon and the
random epoch at evaluation time.

We now use the bound (36) to prove the two inequalities in equation (26).

28

Proof of inequality (26)(b): We begin with the upper bound. Due to the clipping step, we are
guaranteed to have the upper bound Q̂tar

ℓ (s, a) ≤
〈
φℓ(s, a), θ̂

tar
ℓ

〉
+ bℓ(s, a), and hence

Q̂tar
ℓ (s, a)−

〈
φℓ(s, a), θ

π,θ̂tarℓ+1,ℓ
〉
=
〈
φℓ(s, a), θ̂

tar
ℓ − θπ,θ̂

tar
ℓ+1,ℓ

〉
+ bℓ(s, a)

(i)

≤ Uℓ(s, a) + bℓ(s, a),

where step (i) follows from our earlier inequality (36). Thus, we have established the bound (26)(b)
once we recall the definition of transfer error ∆π

ℓ .

Proof of the lower bound (26)(a): We now turn to the lower bound. By construction, we have
‖Q̂tar

ℓ ‖∞ ≤ 1, so that we can write

Q̂tar
ℓ (s, a) = min

{
1,
〈
φℓ(s, a), θ̂

tar
ℓ

〉
+ bℓ(s, a)

}
.

Consequently, by adding and subtracting the term
〈
φℓ(s, a), θ

π,θ̂tar
ℓ+1,ℓ

〉
, we have

Q̂tar
ℓ (s, a) = min

{
1,
〈
φℓ(s, a), θ̂

tar
ℓ − θπ,θ̂

tar
ℓ+1,ℓ

〉
+ bℓ(s, a) +

〈
φℓ(s, a), θ

π,θ̂tarℓ+1,ℓ
〉}

(i)

≥ min
{
1,−Uℓ(s, a) + bℓ(s, a) +

〈
φℓ(s, a), θ

π,θ̂tarℓ+1,ℓ
〉}

(ii)

≥ min
{
0,−Uℓ(s, a) + bℓ(s, a)

}
+
〈
φℓ(s, a), θ

π,θ̂tarℓ+1,ℓ
〉
.

where step (i) uses our earlier bound (36), and step (ii) follows since
〈
φℓ(s, a), θ

π,θ̂tarℓ+1,ℓ
〉
≤ 1. In

this way, we have shown that

Q̂tar
ℓ (s, a)− (TℓQ̂tar

ℓ+1)(s, a) ≥ min
{
0,−Uℓ(s, a) + bℓ(s, a)

}
−∆π

ℓ (s, a),

as claimed in equation (26)(a).

A.5 Proof of Lemma 4

Our proof makes use of known bounds on the excess risk in a linear regression problem. In particular,
consider a regression problem based on covariate vectors φ ∈ R

d and responses y ∈ R that satisfy
the bounds ‖φ‖2 ≤ 1 and |y| ≤ ymax.

With the shorthand z = (φ, y), define the least-squares loss Lw(z) = 1
2(y −

〈
φ, w

〉
)2. For some

distribution P over R
d × R, define the constrained population and empirical minimizers

w⋆ def
= arg min

‖w‖2≤B
EZ∼PLw(Z), and ŵ

def
= arg min

‖w‖2≤B

1

n

n∑

i=1

Lw(Zi)

where {Zi}ni=1 are drawn i.i.d. according to P.
We claim that the excess risk associated with the constrained least-squares estimate ŵ can be

bounded as

EZ∼P[Lŵ(Z)− Lw⋆(Z)] ≤ 1

n

{
32(B + ymax)

2 ×
[
d log

(
32Bn(B + ymax)

)
+ log

(
1
δ′
)]

+ 1
}
, (37)

with probability at least 1−δ′. This bound follows as a consequence of a result due to Mehta [Meh17].
In particular, the maximum value the loss can take is L2

max = (B+ ymax)
2. Applying Theorem 1 in

the paper [Meh17] to the least-squares objective, which is 1/(4L2
max)-exp-concave, yields the claim.

To conclude, the proof of Lemma 4 follows by combining the bound with Lemma 16 (Excess Risk with Regularization

29

B Proof of Theorem 1

This section is devoted to the proof of the performance bound on S4Q-learning stated in The-
orem 1. At a high level, the proof consists of three steps. First, we decompose the regret into a
sum of partial regrets incurred in each phase. Second, we show that the exploration bonus correctly
quantify the uncertainty; this allows the algorithm to ensure optimism. Finally, we use an elliptic
potential argument and a bound on the number of phases to conclude the proof.

Notation: Letting p be the current phase, we use Q(p) and V (p) (respectively) to denote the Q-
action-value and value functions returned by S3Q-learning, (cf. Line 6) and θ(p) to denote the
associated parameter of its linear representation. We let π(p) be the policy extracted in Line 7 of
S4Q-learning after termination of S3Q-learning. Let n(p) be the (random) number of times
that the policy is executed in phase p between Line 9 and Line 16 of S4Q-learning (Algorithm 2).
Denote with ptot the total number of phases, including the one that is still in progress at the
evaluation episode K. We let b(p) denote the bonus (17) created at the end of phase p−1 in Line 17

of Algorithm 2; the bonus will be actively used in phase p. We use the shorthand ∆
(p)
h with the

same meaning as Eq. (17b) where the policy π is the one used in phase p within S3Q-learning.

B.1 Main argument

We begin by decomposing the regret of S4Q-learning into the sums of partial regrets generated
in each phase p = 1, . . . , ptot. The partial regret Regret(p) in phase p corresponds to the regret
incurred by playing all policies in that phase. Policy rollouts that generate regret are performed
in one of two places: (i) in the call to S3Q-learning (see Line 6 of S4Q-learning), or; (ii) by
S4Q-learning between Line 9 and Line 16. We can write

Regret(p) def
=

∑

π played in
the call to

S3Q-learning
in phase p

ES1∼ρ (V
⋆
1 − V π

1) (S1) +
∑

π played in
the main loop of
S4Q-learning

in phase p

ES1∼ρ (V
⋆
1 − V π

1) (S1). (38)

The following lemma leverages the mechanics of the algorithm to upper bounds the total regret
up to episode K by expressing it as a sum of the regrets generated only by the main loop of
S4Q-learning (so excluding the call to S3Q-learning). What makes this possible is that S3Q-

learning only plays the policies from the policy replay memory Π(p), which have already been
played by the controller (S4Q-learning). Summing over the phases and accounting for possible
statistical deviations (due to sampling from the policy mixture) yields the following claim:

Lemma 5 (Phased Regret). With probability at least 1−δ, uniformly over all K, we have the upper

bound Regret(K)
def
=
∑ptot

p=1 Regret(p) ≤ T1 + T2, where

T1
def
= H

{ ptot∑

p=1

p−1∑

j=1

n(j) × ES∼ρ

[
V ⋆
1 (S)− V π(j)

1 (S)
]}

+H log
(ptot

δ

)
and (39a)

T2
def
=

ptot∑

p=1

n(p) × ES∼ρ

[
V ⋆
1 (S)− V π(p)

1 (S)
]
. (39b)

30

See Appendix B.2 for the proof of this claim.

Note that T1 corresponds to the regret associated with S3Q-learning, whereas T2 is associated
with S4Q-learning. To be clear, the regret to S4Q-learning excludes the regret of the policies
that are rolled out within the S3Q-learning subroutine. Now notice that for some constant c ∈ R

we can write the total number of episodes as

K = cH

ptot∑

p=1

p−1∑

j=1

n(j)

︸ ︷︷ ︸
Total trajectories by

S3Q-learning

+

ptot∑

p=1

n(p)

︸ ︷︷ ︸
Total trajectories by

S4Q-learning

.

Applying the Cauchy–Schwarz inequality yields the bound Regret(K) ≤ T3 ×
√
T4, where

T3
def
=

√√√√cH

ptot∑

p=1

p−1∑

j=1

n(j),

ptot∑

p=1

n(p), and

T4
def
= cH

ptot∑

p=1

p−1∑

j=1

n(j)
[
ES∼ρ

(
V ⋆
1 − V π(j)

1

)
(S)
]2

+

ptot∑

p=1

n(p)
[
ES∼ρ

(
V ⋆
1 − V π(p)

1

)
(S)
]2
.

Thus, a standard
√
K regret bound can be obtained as soon as the term T4 is bounded. The next

step is then to transform T4 into an estimation problem through optimism.
Recall from equation (10). that we introduce optimism via an exploration bonus of the form

b
(p)
h (s, a)

def
= α

(p)
h ‖φh(s, a)‖(Σ(p)

h
)−1 (40)

for all state-action pairs. This bonus is created in Line 17, and passed to S3Q-learning. The
uncertainty parameter α(p) to be used in phase p is defined in Eq. (10). To be clear, the covariance
matrix used to construct the bonus is the one in the current phase Σ(p). In order to proceed, we
must relate the bonus to the uncertainty function. Let us define the reference covariance

Σ
(p)
h

def
=

p−1∑

j=1

n(j)
Eφh∼π(j) [φhφ

⊤
h] + λRegI.

We also recall our earlier definition (16) of the uncertainty parameter

α
(p)
h = c

{√
d log

(dpn(1:p)

δ

)
+
√

λReg

}
. (41)

On our way to prove optimism, the next proposition highlights the relation between the bonus
and the uncertainty function.

Lemma 6 (Bonus Bound). Set λReg = Θ(log dpn(1:p)

δ). There exists a large enough c ∈ R in Eq. (41)
such that with probability at least 1− δ jointly for all episodes K we have the pointwise bound

U
(p)
h ≤ b

(p)
h ≤ coU

(p)
h (42)

for some constant co ∈ R.

31

The lemma is proved in Appendix B.3, and it allows us to claim that the algorithm is optimistic
(using the left inequality above) but without using a bonus that is too large (right inequality above)
which would create too much regret. We verify such optimistic claim in Appendix B.4. Recall the

definition of transfer error in Eq. (6) and the comparator error in Eq. (17b) where Q̂tar
h+1 = Q

(p)
h+1 is

the network returned by S3Q-learning.

Lemma 7 (Near-Optimism). Suppose that the event in Lemma 6 holds jointly for all episodes K.
Then optimism holds in the following sense:

Q
(p)
h (s, a) ≥ Q⋆

h(s, a)−
H∑

τ=h

E(S′
τ ,A

′
τ)∼π⋆|(s,a)∆

(p)
τ (S′

τ , A
′
τ), ∀(s, a) (43a)

As a consequence, under the same event, we have

ES∼ρV
(p)
1 (S) ≥ ES∼ρV

⋆(S)− ν. (43b)

From the optimism in the procedure, at any phase j, we have the bound

0 ≤ ES∼ρ

(
V ⋆
1 − V π(j)

1

)
(S) ≤ ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(S) + ν,

and hence

T4 . T4a + T4b +


cH

ptot∑

p=1

p−1∑

j=1

n(j) +

ptot∑

p=1

n(p)




︸ ︷︷ ︸
=K

ν2

where

T4a
def
= cH

ptot∑

p=1

p−1∑

j=1

n(j)
[
ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(S)
]2
m and T4b

def
=

ptot∑

p=1

n(p)
[
ES∼ρ

(
V

(p)
1 − V π(p)

1

)
(S)
]2
.

In turn bounding T4a and T4b, we find that

T4 . Hptot

p∑

j=1

n(j)
[
ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(s)
]2

+Kν2.

The remainder of the proof is devoted to deriving a high probability bound on the first term of
the above display. Using the error bounds on S3Q-learning from Theorem 3, we can write

T4 . Hptot

p∑

j=1

n(j)
[H∑

h=1

E(Sh,Ah)∼π(j)(U
(j)
h + b

(j)
h −∆

(j)
h)(sh, ah)

]2
+Kν2

. Hptot

p∑

j=1

n(j)
[H∑

h=1

E(Sh,Ah)∼π(j)(U
(j)
h)(sh, ah)

]2
+Kν2.

The second step follows by bringing ν outside the square and by bounding the bonus by using
Lemma 6 (Bonus Bound).

32

Putting together the pieces, we have

T4

(i)

. H2ptot

p∑

j=1

n(j)
H∑

h=1

[
E(Sh,Ah)∼π(j)U

(j)
h (sh, ah)

]2
+Kν2

(ii)

≤ H2ptot

H∑

h=1

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)

[
U
(j)
h (sh, ah)

]2
+Kν2

= H2ptot

H∑

h=1

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)

[
α
(j)
h ‖φh(sh, ah)‖(Σ(j)

h)−1

]2
+Kν2,

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from Jensen’s

inequality. Notice that that we have the ordering α
(1)
h ≤ · · · ≤ α

(p)
h ≤ · · · ≤ α

(ptot)
h , i.e., the sequence

of reference parameter uncertainty must be non-decreasing. Consequently, we find that

T4 . H2ptot

H∑

h=1

(
α
(ptot)
h

)2 p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h)−1

+Kν2. (44)

We now proceed to bound the sum of the quadratic terms, a quantity that arises in linear bandit
analysis. In order to do so, we need to define the triggering value used in Line 16 of Algorithm 2.

Ltrig = Θ
(
log

np

δ

)
(45)

where n ≤ K is the number of times the condition has been checked in phase p. We obtain the
following lemma which is proved in Appendix B.5.

Lemma 8 (Elliptic Potential). Assume λReg = Θ(log dpn(1:p)

δ) ≥ 1. There exists a setting Ltrig as
defined in Eq. (45) such that with probability at least 1− δ we have

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h)−1

≤ 8 (Ltrig + 1) d̃h. (46)

Continuing the bound (44), recalling the definition (41) and applying Cauchy-Schwartz gives us

T4 . H2ptot

(
H∑

h=1

(
α
(ptot)
h

)2
d̃h

)
× 8 (Ltrig + 1) +Kν2

. H2ptot

H∑

h=1

(
dh + log

dptotK

δ

)
d̃h × 8 (Ltrig + 1) +Kν2.

To conclude, it remains to bound the total number ptot of phases; we state the bound here and
prove it in Appendix B.6.

Lemma 9 (Number of Phases). Under the conditions of Lemma 8, the total number of phases up
to episode K is upper bounded as

ptot ≤
H∑

h=1

d̃h

log
(
1 + 1

8Ltrig

) (47)

with probability at least 1− δ.

33

B.2 Proof of Lemma 5

The total regret up to episode K can be expressed as a sum of regret incurred in different phases

Regret(K) =

ptot∑

p=1

Regret(p). (48)

Notice that in every phase p, the S3Q-learning procedure is invoked with the policy replay memory
Π(p) which consists of the mixture policy

∑p−1
j=1 n

(j)π(j) and in addition S4Q-learning plays the

policy π(p) between Line 9 and Line 16 (in Algorithm 2) for exactly n(p) trajectories. Notice that
in this proof the sequence {n(j)}p1 is assumed to be fixed, i.e., non-random.

Outside of the call to S3Q-learning, S4Q-learning induces a regret exactly equal to

S4Q-learning’s Regret(p) = n(p) × ES∼ρ

(
V ⋆
1 − V π(p)

1

)
(s). (49)

In the same phase p, the regret due to the call to S3Q-learning in Line 6 of S4Q-learning

is

S3Q-learning’s Regret(p) ∝ H

p−1∑

j

N
(j)
Q × ES∼ρ

(
V ⋆
1 − V π(j)

1

)
(s) (50)

where N
(j)
Q is the random number of times that policy π(j) is actually played within S3Q-learning

in phase p. Intuitively, N
(j)
Q ≈ n(p) since EN

(j)
Q = n(p). We make this precise by applying a Bernstein

inequality for martingales (cf. Thm. 1 from the paper [BLL+11]).

Let 0 ≤ Xj
def
= ES′∼ρ(V

⋆
1 − V π(j)

1)(s′) ≤ 1 be the random regret in step j of S3Q-learning;

here the randomness comes from the random index j of the policy mixture. Let ntot =
∑p−1

j=1 n
(j);

we can write

ntot∑

t=1

Xt =

p−1∑

j=1

N
(j)
Q × ES′∼ρ

(
V ⋆
1 − V π(j)

1

)
(s′).

By construction, the Xt’s are i.i.d., and E
∑ntot

t=1 Xt =
∑p−1

j=1 n
(j)

ES′∼ρ(V
⋆
1 − V π(j)

1)(S′). Therefore,

upon invoking Theorem 1 from the paper [BLL+11] and recalling that X2
t ≤ Xt, we find that

ntot∑

t=1

Xt ≤
ntot∑

t=1

EXt + 2

√√√√(
ntot∑

t=1

EtXt

)
log(1δ) + 2 log(1δ)

with probability at least 1− δ. Completing the square on the right hand side and applying Cauchy–
Schwarz inequality yields the upper bound 2

∑ntot

t=1 EXt + 3 log
(
1
δ

)
.

Thus, the regret contributed by S3Q-learning in phase p can be upper bounded by the cumu-
lative regret by S4Q-learning (excluding its call to S3Q-learning)—viz.

S3Q-learning’s Regret(p) . H

p−1∑

j

n(j) × ES∼ρ

(
V ⋆
1 − V π(j)

1

)
(s) + 3H log

1

δ
.

Summing together these contributions over all phases, and applying the union bound over all possible
phases yields the claim.

34

B.3 Proof of Lemma 6 (Bonus Bound)

The main part of the proof is to show that the empirical covariance matrices are accurate enough.
S4Q-learning constructs the cumulative covariance used to construct the bonus to be used in
phase p as the sum of two terms: 1) the covariance estimate returned by S3Q-learning in Line 6
of Algorithm 2 and 2) the increment obtained by S4Q-learning between Line 9 and Line 16 of
Algorithm 2 . We can write:

Σ
(p)
h = λRegI +

n(1:p−1)∑

i=1

φihφ
⊤
ih

︸ ︷︷ ︸
S3Q-learning’s Covariance Estimate

+
n(p)∑

j=1

φjhφ
⊤
jh

︸ ︷︷ ︸
S4Q-learning’s increment

. (51)

For simplicity we have denoted with n(1:p−1) =
∑p−1

i=1 n(i); the first summation is over the feature
vectors {φi} sampled by S3Q-learning and the second is over the feature vectors {φj} exam-
ined by S4Q-learning. Notice that there exists a setting λReg = Θ(log d

δ) that allows us to use
Proposition 1 (Concentration of Regularized Covariance) twice and claim with probability at least
1− δ/2

Σ
(p)
h =

λReg

2
I +

n(1:p−1)∑

i=1

φihφ
⊤
ih +

λReg

2
I +

n(p)∑

j=1

φjhφ
⊤
jh

� 2λRegI + 2n(1:p−1)
Eφ∼Π(p−1)φhφ

⊤
h + 2n(p)

Eφ∼π(p)φhφ
⊤
h

= 2λRegI + 2n(1:p)
Eφ∼Π(p)φhφ

⊤
h

= 2Σ
(p)
h .

(We have indicated with φ ∼ π(p) the random feature sampled according to the policy mixture using
the policy replay memory). We conclude that under such event we must have

b
(p)
h (s, a) = α

(p)
h ‖φh(s, a)‖(Σ(p)

h)−1 ≥ α
(p)
h ‖φh(s, a)‖(Σ(p)

h)−1
= U

(p)
h (s, a).

and under the same event

b
(p)
h (·, ·) = α

(p)
h ‖φh(·, ·)‖(Σ(p)

h
)−1 ≤ 2α

(p)
h ‖φh(·, ·)‖(Σ(p)

h)−1
= coU

(p)
h (·, ·). (52)

A union bound over all possible phases and rescaling δ concludes.

B.4 Proof of Lemma 7

When S3Q-learning terminates, Theorem 3 ensures it returns a state-action value function Q̂⋆

such that

Q̂⋆
h(s, a) =

(
TℓQ̂⋆

h+1

)
(s, a) + Eh(s, a), and

min{0,
(
−U(p)

h + b
(p)
h

)
(s, a)} −∆

(p)
h (s, a) ≤ Eh(s, a),

35

where both relations hold uniformly over all state-action pairs (s, a). Conditioned on the event from
Lemma 6, we have

−∆(p)
h (s, a) = min{0,−U(p)

h (s, a) + b
(p)
h (s, a)} −∆

(p)
h (s, a) ≤ Eh(s, a).

which implies that Eh(s, a) ≥ −∆(p)
h (s, a) for all state-action pairs and time steps h.

Using this bound, we now perform backwards induction over the timestep h in order to prove
that

Q̂⋆
h+1(sh+1, ah+1) ≥ Q⋆

h+1(sh+1, ah+1)−
H∑

τ=h+1

E(s′τ ,a
′
τ)∼π⋆|(sh+1,ah+1)∆

(p)
h (s′τ , a

′
τ), ∀(sh+1, ah+1)

(53)

For the base case h = H, all action-value functions are zero, so that the bound (53) certainly holds.
Now assume that the bound (53) holds at timestep h+1, for some h ∈ {1, . . . ,H − 1}; we need

to show that it also holds at timestep h. Fix an arbitrary state-action pair (s, a). From our earlier
lower bound, we have

Q̂⋆
h(s, a) =

(
ThQ̂⋆

h+1

)
(s, a) + Eh(s, a)

≥
(
T π⋆

h Q̂⋆
h+1

)
(s, a) + Eh(s, a)

(i)

≥
(
T π⋆

h Q⋆
h+1

)
(s, a) + Eh(s, a)−

H∑

τ=h+1

E(s′τ ,a
′
τ)∼π⋆|(s,a)∆

(p)
h (s′τ , a

′
τ)

≥
(
ThQ⋆

h+1

)
(s, a)−

H∑

τ=h

E(s′τ ,a
′
τ)∼π⋆|(s,a)∆

(p)
h (s′τ , a

′
τ).

Here step (i) follows from the induction hypothesis. Thus, we have shown that the bound (53) holds
at timestep h, which completes our proof via induction.

B.5 Proof of Lemma 8

We now prove the elliptic potential bound stated in Lemma 8. Let φ
(j)
ih be the i experienced feature

vector at level h that S4Q-learning uses to check the triggering condition in Line 16 during phase
j. Since λReg ≥ 1 we have ‖φ‖

(Σ
(j)
h

)−1 ≤ 1, ∀‖φ‖2 ≤ 1. Thus, when the triggering condition holds,

the condition itself is not violated by much:

Ltrig ≤
n(j)∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1
≤

n(j)−1∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1

︸ ︷︷ ︸
≤Ltrig

+ ‖φ(j)

n(j)h
‖2
(Σ

(j)
h

)−1

︸ ︷︷ ︸
≤1

≤ Ltrig + 1. (54)

Using Lemma 12 (Proportional Estimates) and Proposition 1 (Concentration of Regularized Covariance),
we find that with probability at least 1− δ

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h)−1

≤ 4n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h

)−1

≤ 8

n(j)∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1
≤ 8 (Ltrig + 1) .

36

Now recall that

Σ
(j+1)
h = Σ

(j)
h + n(j)

E(Sh,Ah)∼π(j)φh(sh, ah)φh(sh, ah)
⊤.

Since (Ltrig + 1) ≥ e − 1, we can invoke Lemma 11 (Information gain bounds) so as to ensure
that

n(j)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(j)

)−1
≤ 8 (Ltrig + 1) log

det
(
Σ
(j+1)
h

)

det
(
Σ
(j)
h

) .

Summing over the phases and cancelling terms in the telescopic sum yields

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h)−1

≤ 8 (Ltrig + 1) log
det
(
Σ
(p+1)
h

)

det
(
Σ
(1)
h

)

≤ 8 (Ltrig + 1) d̃h.

A union bound over all possible phases concludes.

B.6 Proof of Lemma 9 (Number of Phases)

For invertible matrices A and B, note that A � B implies that A−1 � B−1, and moreover, we
have the equivalence A � B ⇐⇒ x⊤Ax ≤ x⊤Bx for all x ∈ R

d. We now combine Lemma 12 with
Proposition 1 so as to argue that Algorithm 2 makes sufficient progress. In particular, consider each
time that Line 16 of Algorithm 2 triggers a new phase at level h. Then with probability at least
1− δ, we must have

n(p)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(p)
h)−1

≥ 1

4
n(p)

E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2
(Σ

(p)
h)−1

≥ 1

8

n(p)∑

i=1

‖φ(p)
ih ‖2(Σ(p)

h)−1

≥ 1

8
Ltrig.

When this bound holds and the the triggering condition is satisfied at level h in phase p, then the
information ratio must increase by a constant fraction: more precisely, Lemma 11 guarantees that

det(Σ
(p+1)
h)

det Σ
(p)
h

=
det
(
Σ
(p)
h + n(p)

E(Sh,Ah)∼π(p)φh(sh, ah)φh(sh, ah)
⊤
)

detΣ
(p)
h

≥ 1 + n(p)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(p)
h)−1

≥ 1 +
1

8
LTrigger(δphase).

By induction, in phase p we must have (notice that we are ignoring the additional contribution that
arises when level h is not the one that triggers a new phase)

detΣ
(p+1)
h

detΣ
(1)
h

≥
(
1 +

1

8
Ltrig

)s
(p)
h

(55)

37

where s
(p)
h is the number of switches up to phase p that were triggered at level h. Taking log gives

s
(p)
h ≤

log
det Σ

(p+1)
h

det Σ
(1)
h

log
(
1 + 1

3Ltrig

) . (56)

Recalling the total number of switches across levels equals the total number of phases, i.e.,
∑H

h=1 s
(p)
h =

ptot, together with the relevant union bound over phases concludes.

C Auxiliary results

In this appendix, we collect together various auxiliary results that we use in our main argument,
along with their proofs.

C.1 Information Gain

Lemma 10 (Upper Bound on Information Gain).

log

(
detΣ

(ptot+1)
h

detΣ
(1)
h

)
≤ d̃h ≤ d log

K

dλReg
. (57)

We must now bound the determinant of Σ
(ptot)
h to compute the maximum number of phases; we

proceed in a way similar to Lemma 10 of [AYPS11], the only difference being that the increments

are not rank one. Let α1, . . . , αd be the eigenvalues of Σ
(ptot)
h . We must have

det
(
Σ
(ptot)
h

)
=
∏

i

αi ≤
(∑

i αi

d

)d

=

(
TrΣ

(ptot)
h

d

)d

. (58)

We can upper bound the trace as follows:

Tr
(
Σ
(ptot)
h

)
=

ptot∑

p=1

Tr
(
n(p)M

(p)
h

)
=

ptot∑

p=1

n(p)Tr
(
E(Sh,Ah)∼π(p)φh(sh, ah)φh(sh, ah)

⊤
)

=

ptot∑

p=1

n(p)
E(Sh,Ah)∼π(p) Tr

(
φh(sh, ah)φh(sh, ah)

⊤
)

≤
ptot∑

p=1

n(p)

≤ K.

Combining with the prior displays and recalling that Σ
(0)
h = λRegI yields the claim.

38

C.2 Bounds on the information gain

Lemma 11 (Information gain bounds). For any random vector φ ∈ R
d, scalar α > 0 and positive

definite matrix Σ, we have the upper bound

log
det(Σ + αE[φφ⊤])

det Σ
≤ αE‖φ‖2Σ−1 . (59a)

Moreover, we have the lower bounds

log
det(Σ + αE[φφ⊤])

det(Σ)
≥ log

(
1 + αE‖φ‖2Σ−1

) (i)

≥ α

L
E‖φ‖2Σ−1 , (59b)

where (i) holds whenever αE‖φ‖2Σ−1 ≤ L for some L ≥ e− 1,

Proof. We first begin with equivalent expression for the determinant ratio. Letting λj(M) denote
the jth-ordered eigenvalue of a matrix M , we have

det(Σ + αEφφ⊤)
detΣ

= det(I + αΣ− 1
2E[φφ⊤]Σ− 1

2) =
d∏

j=1

λj

(
I + αΣ− 1

2 Eφφ⊤Σ− 1
2

)

=

d∏

j=1

(
1 + αλj

(
Σ− 1

2Eφφ⊤Σ− 1
2

))
. (60)

Proof of the upper bound (59a): Taking logarithms in equation (60) and using the elementary
bound log(1 + t) ≤ t, valid for t ≥ 0, we have

log
(det(Σ + αEφφ⊤)

detΣ

)
=

d∑

j=1

log
(
1 + αλj

(
Σ− 1

2 Eφφ⊤Σ− 1
2

))
≤

d∑

j=1

{
αλj

(
Σ− 1

2 Eφφ⊤Σ− 1
2
)}

(i)
= αTr

(
Σ− 1

2 Eφφ⊤Σ− 1
2

)

(ii)
= αE‖φ‖2Σ−1 ,

where step (i) follows since the trace is equal to the sum of the eigenvalues, and step (ii) follows
from cyclic properties of the trace operator, and some algebra.

Proof of the lower bound (59b): In order to prove the lower bound, we again begin with

equation (60). Notice that the eigenvalues are all non-negative since the matrix Σ− 1
2 E[φφ⊤]Σ− 1

2 is
positive semidefinite. Thus, we can ignore the higher-order terms in the product so as to obtain the
lower bound

det(Σ + αEφφ⊤)
det Σ

≥ 1 + α

d∑

j=1

λj

(
Σ− 1

2Eφφ⊤Σ− 1
2

)
= 1 + αE‖φ‖2Σ−1 , (61a)

where the final equality follows by the same sequence of calculations as in step (ii) above.
In order to complete the proof, observe that f(x) = log(1 + x) is a concave function. Thus, for

any a ≥ e− 1 and x ∈ [0, a], we can set λ = x
a ∈ [0, 1], and write

log(1 + x) = f(x) = f
(
λa+ (1− λ)0

) (iii)

≥ λf(a) + (1− λ)f(0) = λf(a)
(iv)

≥ λ = x
a , (61b)

39

where step (iii) follows from Jensen’s inequality; and step (iv) is valid for any a ≥ e− 1.
Finally, taking logarithms in inequality (61a) and applying the lower bound (61b) yields

log
det(Σ + αEφφ⊤)

det Σ
≥ log

(
1 + αE‖φ‖2Σ−1

)
≥ α

L
E‖φ‖2Σ−1 ,

as claimed.

C.3 Proportional estimates under the triggering condition

Suppose that the triggering condition holds, so that we have the lower bound

n∑

i=1

Zi ≥ 32ϕ√
n

(
δ

2n2

)
+ 8ϕn

(
δ

2n2

)
def
= LTrigger(δ). (62)

The following lemma shows that under this condition, the sample average Ŝn
def
= 1

n

∑n
i=1 Zi is close

to the expectation E[Z].

Lemma 12 (Proportional Estimates). Under the triggering condition (62), for any δ ∈ (0, 1), we
have the sandwich result

1
2 Ŝn ≤ E[Z] ≤ 3

2 Ŝn with prob. at least 1− δ. (63)

In order to prove this claim, we first show that for any fixed n at which the triggering conditioning
holds, the sandwich bound (63) holds with probability at least 1− δ′, where δ′ = δ

2n2 . We can then
take a union bound over all n = 1, 2, . . . to conclude that for any n, sandwich bound (63) holds with
probability at least 1−∑∞

n=1
δ

2n2 ≥ 1− δ, as required.
Thus, for the remainder of the proof, we study the problem for a fixed sample size n. Our proof

is based two auxiliary results. First, for i.i.d. random variables {Zi}ni=1 taking values in [0, 1], the

sample average Ŝn satisfies the following empirical Bernstein bound: for any δ ∈ (0, 1),

P

[
∣∣Ŝn − E[Z]

∣∣ ≤
√

ϕ√
n(δ)V̂arZ

n + ϕn(δ)
n−1

]
≥ 1− δ (64)

where ϕ√
n (δ) = 2 log(4δ); ϕn (δ) =

7
3 log(

4
δ), and

V̂arZ =
1

n(n− 1)

∑

1≤i<j≤n

(Zi − Zj)
2

is the empirical variance. This claim is a consequence of two applications of the empirical Bernstein
bound from the paper [MP09], as applied to the random variables Z and then 1−Z, followed by a
union bound to obtain the two-sided claim give here.

Next, we observe that the sample variance can be upper bounded as

V̂arZ
def
=

1

n− 1

(
n∑

i=1

Z2
i −

n∑

i=1

Zi

)
≤ 1

n− 1

n∑

i=1

Z2
i ≤

1

n− 1

n∑

i=1

Zi ≤ n
n−1 ≤ 2, (65)

using the fact that each Zi ∈ [0, 1].

40

Now combining the empirical Bernstein bound (64) with the variance bound (65), we find that

∣∣Ŝn − E[Z]
∣∣ ≤ 1

n

{√
2Ŝnϕ√

n (δ
′) + 2ϕn

(
δ′
) }

with prob. at least 1− δ′. (66)

The triggering condition (62) ensures that nŜn ≥ 32ϕ√
n (δ

′)+ 8ϕn (δ
′), whence 1

nϕ
√
n (δ) ≤ Ŝn

32 and
1
nϕn (δ) ≤ Ŝn

8 . Putting together the pieces, we find that

|Ŝn − E[Z]| ≤ 1
n

{√
2Ŝnϕ√

n (δ) + 2ϕn (δ)
}
≤

√
(Ŝn)2

16
+

Ŝn

4
=

Ŝn

2

with probability at least 1− δ′. Re-arranging shows that we have the sandwich relation 1
2 Ŝn ≤

E[Z] ≤ 3
2 Ŝn with probability 1− δ′, as claimed.

C.4 Non-Isotropic Proportional Estimates of the Empirical Covariance

An important step in the analysis is ensuring that the empirical covariance matrices computed by
the algorithm are sufficiently close to their (conditional) expectations. In this section, we discuss
how to use matrix Chernoff techniques to establish the requisite bounds.

Let {Zk}nk=1 be a sequence of independent, symmetric and positive definite random matrices of
dimension d. d. Suppose that

0 ≤ λmin(Zk), λmax(Zk) ≤ LZ , for all k = 1, . . . ,K. (67)

The following result provides bounds on the sum W =
∑K

k=1 Zk.

Proposition 1 (Concentration of Regularized Covariance). Under the above conditions, for any

δ ∈ (0, 1) and λ ≥ 2LZ
log 2d

δ

log 36
35

, we have

1

2
(W + λI) � EW + λI � 3

2
(W + λI) . (68)

with probability at least 1− δ.

Proof. In fact, we establish a somewhat more general claim: namely, for any ǫ > 0 and λ > 0, we
have

P

(1

1 + ǫ
(W + λI) � EW + λI � 1

1− ǫ
(W + λI)

)
≥ 1− 2d

(
1− ǫ2

4

) λ

LZ+ λ
K . (69)

In order to recover the stated claim (68) we fix ǫ = 1
3 . On one hand, if LZ ≤ 1

2
λ
K , then we have the

(deterministic) sandwich relations

0 �W � 1
2λI, and 0 � EW � 1

2λI

so that the bound (68) holds deterministically. On the other hand, if LZ ≥ 1
2

λ
K , then the claim

follows by choosing λ ≥ 2LZ
log(2d

δ
)

log(36
35

)
.

In order to prove the bound (69), we make use of the following matrix Chernoff inequality:

41

Lemma 13 (Matrix Chernoff). Consider the sum Y =
∑K

k=1Xk of a sequence {Xk}k≥1 of inde-
pendent, symmetric PSD matrices whose eigenvalues all lie in the interval [0, L], and suppose that
E[Y] = I. Then we have

(1− ǫ)I � Y � (1 + ǫ)I (70)

with probability at least 1− 2d
(
1− ǫ2

4

) 1
L

for all ǫ ∈ (0, 1).

This claim follows by applying Theorem 5.1.1 from Tropp [Tro15] twice, for the upper and lower
tail respectively, combined with the inequalities

e−ǫ

(1− ǫ)1−ǫ
≤ 1− ǫ2

4
, and

eǫ

(1 + ǫ)1+ǫ
≤ 1− ǫ2

4
, valid for any ǫ ∈ [0, 1),

along with the fact that a ≤ b implies that ax ≤ bx for all strictly positive scalars a, b, x.
Using Lemma 13, we can now prove the bound (69). We define “regularized” versions of Zk and

W via X ′
k

def
= Zk +

λ
K I and Y ′ def=

∑K
k=1X

′
k. By definition, we have

Y ′ =
K∑

k=1

(
Zk +

λ

K
I

)
= W + λI and EY ′ = EW + λI. (71)

Thus, in order to prove the claim, it suffices to establish a high probability bound on the event

E def
=
{
(1− ǫ)Y ′ � EY ′ � (1 + ǫ)Y ′

}
. (72)

Since λmin(EY
′) ≥ λ, the matrix EY ′ is strictly positive definite, and the matrix (EY ′)−

1
2 exists.

We use it to define the new matrices

Xk
def
=
(
EY ′)− 1

2 X ′
k

(
EY ′)− 1

2 , and (73)

Y
def
=

K∑

k=1

Xk =
(
EY ′)− 1

2

(
K∑

k=1

X ′
k

)
(
EY ′)− 1

2 =
(
EY ′)− 1

2
(
Y ′) (

EY ′)− 1
2 .

Note that we have E[Y] = I by construction, so that the matrix Chernoff bound (70) can be applied.
We observe that

λmax(Xk) = ‖Xk‖2 ≤ ‖
(
EY ′)− 1

2 X ′
k

(
EY ′)− 1

2 ‖2 ≤ ‖
(
EY ′)− 1

2 ‖2‖X ′
k‖2‖

(
EY ′)− 1

2 ‖2 ≤
1

λ

(
LZ +

λ

K

)
def
= L.

Applying the bound (70) yields

(1− ǫ)I � Y � (1 + ǫ)I.

with the stated probability. Finally, we can pre- and post-multiply by (EY ′)
1
2 and then use Eq. (73)

so as to obtain

(1− ǫ)EY ′ � (EY ′)
1
2Y (EY ′)

1
2 = Y ′ � (1 + ǫ)EY ′.

Recalling the definition (71) of Y ′, we see that this sandwich is equivalent to the stated claim (68).

42

C.5 Concentration of Log Determinants

In this section, we prove the following claim:

Lemma 14 (Concentration of Log Determinants). Let {xi} be i.i.d. vector random variables from
some distribution such that ‖xi‖2 ≤ 1. If λ & log(dnδ) ≥ 1 and G1 � λI then with probability at
least 1− δ jointly for all n = 1, 2, . . . it holds that

1

4
log

det(G1 + nExx⊤)
detG1

− (8
√
2 + 4) log

8n2

δ
≤ log

det
(
G1 +

∑n
i=1 xix

⊤
i

)

detG1
≤ 8 log

det(G1 + nExx⊤)
detG1

+ 8 log
8n2

δ
.

Let us now prove it. Let Gi = G1 +
∑i−1

j=1 xjx
⊤
j . Using Lemma 11 in [AYPS11] we can write

1

2

n∑

i=1

‖xi‖2G−1
i

≤ log
det
(
G0 +

∑n
i=1 xix

⊤
i

)

detG0
≤

n∑

i=1

‖xi‖2G−1
i

.

Thus, we will now focus on bounding the sums of the quadratic functions. Proposition 1 together
with a double union bound over n ensures that if λ & log(dnδ) then for all n with probability at
least 1− δ/2, we have

n∑

i=1

‖xi‖2G−1
i

=
n∑

i=1

xiG
−1
i xi ≤ 2xi

(
G1 + E

i−1∑

j=1

xjx
⊤
j

)−1
xi

= 2xi

(
G1 + (i− 1)Exx⊤︸ ︷︷ ︸

=EGi

)−1
xi = 2‖xi‖2(EGi)−1 .

Similarly, under the same event specified by Proposition 1, we have

n∑

i=1

‖xi‖2G−1
i

=
n∑

i=1

xiG
−1
i xi ≥

1

2
xi

(
G1 + E

i−1∑

j=1

xjx
⊤
j

)−1
xi

=
1

2
xi

(
G1 + (i− 1)Exx⊤︸ ︷︷ ︸

=EGi

)−1
xi =

1

2
‖xi‖2(EGi)−1 .

Now consider the random variable Xi = ‖xi‖2(EGi)−1 − E‖xi‖2(EGi)−1 . Since EGi � I, we have

EX2
i ≤ E‖xi‖4(EGi)−1 ≤ E‖xi‖2(EGi)−1 ≤ 1.

Applying a Bernstein martingale inequality (cf. Theorem 1 from the paper [BLL+11]) and combining
with the union bound yields

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≤ 2

√√√√
(

n∑

i=1

E‖xi‖2(EGi)−1

)
log(8n

2

δ) + 2 log(8n
2

δ)

with probability at least 1− δ/2.

43

It remains to bound the sum of the predictable expectations under square root. Coupling
Lemma 11 (Information gain bounds) with Lemma 11 (Information gain bounds) under the condi-
tions α = 1, L = 2 > e− 1 we obtain

log
det(EGi + Exix

⊤
i)

detEGi
≤ E‖xi‖2(EGi)−1 ≤ 2 log

det(EGi + Exix
⊤
i)

detEGi
. (74)

Summing over i ∈ [n], recalling EGi+1 = EGi + Exix
⊤
i and cancelling the terms in the telescoping

sum gives

log
detEGn+1

detG1
≤

n∑

i=1

E‖xi‖2(EGi)−1 ≤ 2 log
detEGn+1

detG1
.

We are now ready to show the upper bound. Removing the absolute value, using Eq. (74) to bound
the quadratic sum one obtains with probability 1− δ

n∑

i=1

‖xi‖2G−1
i

≤ 4 log
det(EGn+1)

detG1
+ 4

√
2 log

det(EGn+1)

detG1
log

8n2

δ
+ 4 log

8n2

δ

≤ 8 log
det(EGn+1)

detG1
+ 8 log

8n2

δ
.

The last inequality follows from completing the square and using Cauchy-Schwartz to simplify the
statement.

We show the lower bound on the similar fashion. By lifting the absolute value one obtains with
probability at least 1− δ

n∑

i=1

‖xi‖2G−1
i

≥ 1

2
log

det(EGn+1)

detG1
− 4

√
2 log

det(EGn+1)

detG1
log

8n2

δ
− 4 log

8n2

δ

≥ 1

4
log

det(EGn+1)

detG1
− (8
√
2 + 4) log

8n2

δ
.

C.6 Constrained Loss Lemmas

In this section, let E denote the expectation operator for a pair (X,Y) ∼ µ, where x ∈ R
d and

y ∈ R. Assume that the second moment matrix E[XX⊤] is strictly positive definite. Define the loss

function L(θ) = E(
〈
X, θ

〉
− Y)2, along with the unconstrained minimizer θ⋆

def
= argminθ∈Rd L(θ).

Our first result gives an equivalent expression for the excess loss L(θ)− L(θ⋆).

Lemma 15 (Excess Loss). The excess loss can be written as

L(θ)− L(θ⋆) = ‖θ − θ⋆‖2
E[XX⊤]. (75)

Proof. Since the loss is a strongly convex quadratic function, the minimizer must satisfy the zero-
gradient condition

0 = 1
2∇θL(θ⋆) = E[X(

〈
X, θ

〉
− Y)]

∣∣
θ=θ⋆

=⇒ E[XX⊤]θ⋆ = E[XY]. (76)

44

We now use this relation to establish the claim. We have

L(θ)−L(θ⋆) = E(
〈
X, θ

〉
− Y)2 − E(

〈
X, θ⋆

〉
− Y)2

= E

[
(
〈
X, θ

〉
− Y)− (

〈
X, θ⋆

〉
− Y)

][
(
〈
X, θ

〉
− Y) + (

〈
X, θ⋆

〉
− Y)

]

= E

[
(θ − θ⋆)⊤X

][
X⊤(θ − θ⋆)− Y + 2

〈
X, θ⋆

〉
− Y

]

=
[
(θ − θ⋆)⊤(EXX⊤)(θ − θ⋆)

]
+ 2E

[
(θ − θ⋆)⊤

(
XX⊤θ⋆ −XY

)]

= ‖θ − θ⋆‖2
EXX⊤ + 2(θ − θ⋆)⊤

[
E(XX⊤)θ⋆ − E[XY]

]

︸ ︷︷ ︸
=0 by Eq. (76)

.

Lemma 16 (Excess Risk with Regularization). For a fixed λ > 0, define

L(w) = 1
2E(X,Y)

(〈
X, w

〉
− Y

)2
, and w⋆ ∈ argmin

‖w‖2≤B
L(w).

Then for any scalar M > 0, we have

‖w − w⋆‖2(MEX [XX⊤]+λI) ≤ 2M
(
L(w)− L(w⋆)

)
+ λ‖w − w⋆‖22. (77)

Proof. We adopt the shorthand E for E(X,Y). We can write (two times) the excess risk as

2
[
L(w)− L(w⋆)

]
= E

(〈
X, w

〉
− y
)2 − E

(〈
X, w

〉⋆ − y
)2

= E

[(〈
X, w

〉
− y
)
−
(〈
X, w

〉⋆ − Y
)][〈

X, w
〉
− Y +

〈
X, w

〉⋆ − Y
]

= E

[
X⊤ (w − w⋆)

][〈
X, w

〉
− Y +

〈
X, w

〉⋆ − y
]

= E

[
X⊤ (w − w⋆)

][
X⊤(w − w⋆) +

〈
X, w

〉⋆ − y +
〈
X, w⋆

〉
− Y

]

= (w − w⋆)⊤ E

(
XX⊤

)
(w − w⋆) + 2E

[
x⊤ (w − w⋆)

][〈
X, w⋆

〉
− Y

]
. (78)

The optimality condition for w⋆ reads

E

[(〈
X, w⋆

〉
− Y

)
X⊤
]
(w − w⋆) ≥ 0 for any feasible w.

Applying this inequality to equation (78) yields

2
[
L(w)− L(w⋆)

]
≥ (w − w⋆)⊤ E

(
XX⊤

)
(w − w⋆)

= (w − w⋆)⊤
[
EXX⊤ +

λ

M
I
]
(w − w⋆)− λ

M
‖w − w⋆‖22,

as claimed.

45

