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Abstract

Many machine learning tasks that involve predicting an output response can be
solved by training a weighted regression model. Unfortunately, the predictive
power of this type of models may severely deteriorate under low sample sizes or
under covariate perturbations. Reweighting the training samples has aroused as
an effective mitigation strategy to these problems. In this paper, we propose a
novel and coherent scheme for kernel-reweighted regression by reparametrizing the
sample weights using a doubly non-negative matrix. When the weighting matrix is
confined in an uncertainty set using either the log-determinant divergence or the
Bures-Wasserstein distance, we show that the adversarially reweighted estimate
can be solved efficiently using first-order methods. Numerical experiments show
that our reweighting strategy delivers promising results on numerous datasets.

1 Introduction

We are interested in learning a parameter S that has a competitive predictive performance on a
response variable Y. Given N training samples (Z;, 7;, 7)Y, in which (Z;, 7;) are the contexts that
possess explanatory power on ¥;, learning the parameter 3 can be posed as a weighted regression
problem of the form

N
min > w(@)B,Ei, Ti). (1)
=1

In problem (1), w is a weighting function that indicates the contribution of the sample-specific loss
to the objective. By aligning the covariate (Z;,Z;) appropriately to the weighting term w(Z;) and
the loss term 4(3, Z;, J; ), the generic formulation of problem (1) can be adapted to many popular
learning and estimation tasks in machine learning. For example, problem (1) encapsulates the family
of kernel smoothers, including the Nadaraya-Watson estimator [16, 22, 39].

Example 1.1 (Nadaraya-Watson (NW) estimator for conditional expectation). Given the samples
(Zi,9:) |, we are interested in estimating the conditional expectation of Y given Z = z, for some

covariate zy € Z. The NW estimator is the optimizer of problem (1) with £(8,y) = ||8 — y||§ and
the weighting function w is given through a kernel K via w(z;) = K (29, 2;). The NW estimate of
E[Y|Z = 2] admits a closed form expression

N PN
Baw = Zi=1 K (2o, Zz)yz
S K(20,2%:)
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The NW estimator utilizes a locally constant function to estimate the conditional expectation
E[Y|Z = z]. Locally linear regression [3, 32] extends the NW estimator to reduce the noise
produced by the linear component of a target function [27, §3.2].

Example 1.2 (Locally linear regression (LLR)). For univariate output and z = x, the LLR minimizes
the kernel-weighted loss with £([B1, Ba), z,y) = (B1 + Ba z—1y)?. The LLR estimate of E[Y |Z = z)]
admits a closed form expression

~ ~ 12 N\ T 1
ﬁLLRz((ZTWZ) ZTWY) |:ZO:|’

withY = [G1,..., 7] T € R", W = diag (K (20,%1),.. ., K(20,%,)) € R™" and
]. (/Z\l — ZQ)—r
Z=|1
1 (/Z\n — Z())—r
Intuitively, the NW and LLR estimators are special instances of the larger family of local polyno-
mial estimators with order zero and one, respectively. Problem (1) is also the building block for
local learning algorithms [6], density ratio estimation [5, pp.152], risk minimization with covariate

shift [17, §4], domain adaptation [36], geographically weighted regression [7], local interpretable
explanations [31], to name a few.

In all of the aforementioned applications, a prevailing trait is that the weight w is given through a
kernel. To avoid any confusion in the terminologies, it is instructive to revisit and distinguish the
relevant definitions of kernels. The first family is the non-negative kernels, which are popularly
employed in nonparametric statistics [37].

Definition 1.3 (Non-negative kernel). A function K : Z x Z — R is non-negative if K(z,2') > 0
forany 2,72 € Z.

In addition, there also exists a family of positive definite kernels, which forms the backbone of kernel
machine learning [4, 33].

Definition 1.4 (Positive definite kernel). A symmetric function K : Z X Z — R is positive definite
if for any n € N and any choices of (z;)?_, € Z and (a;)?_, € R, we have

n n

ZZaiajK(zi,Zj) > 0. (2

i=1 j=1

Moreover, K is strictly positive definite if we have in addition that for mutually distinct (z;)7_, € Z,
the equality in (2) implies o1 = ...= a, = 0.

Positive definite kernels are a powerful tool to model geographical interactions [7], to characterize the
covariance structure in Gaussian processes [29, §4], and to construct non-linear kernel methods [33].
Interestingly, the two above-mentioned families of kernels have a significant overlap. Examples of
kernels that are both non-negative and strictly positive definite include the Gaussian kernel with
bandwidth i > 0 defined for any z, 2’ € Z as

K(z,2) = exp(— ||z = #|3 /h?),
the Laplacian kernel, the Cauchy kernel, the Matérn kernel, the rational quadratic kernel, etc.

It is well-known that the non-parametric statistical estimator obtained by solving (1) is sensitive to
the corruptions of the training data [9, 21, 28]. Similar phenomenon is also observed in machine
learning where the solution of the risk minimization problem (1) is not guaranteed to be robust or
generalizable [1, 2, 12, 14, 19, 23, 41, 42, 43]. The quality of the solution to (1) also deteriorates
if the training sample size N is small. Reweighting, obtained by modifying w(Z;), is arising as an
attractive resolution to improve robustness and enhance the out-of-sample performance in the test
data [30, 34, 40]. At the same time, reweighting schemes have shown to produce many favorable
effects: reweighting can increase fairness [15, 20, 38], and can also effectively handle covariate shift
[10, 17, 44].



While reweighting has been successfully applied to the empirical risk minimization regime in which
the weights are uniformly 1/N, reweighting the samples when the weighting function w is tied to
a kernel is not a trivial task. In fact, the kernel captures inherently the relative positions of the
relevant covariates z, and any reweighting scheme should also reflect these relationship in a global
viewpoint. Another difficulty also arises due to the lack of convexity or concavity, which prohibits
the modifications of the kernel parameters. For example, the mapping h — exp(— ||z — 2 Hg /h?)
for the Gaussian kernel is neither convex nor concave if z # z’. Thus, it is highly challenging to
optimize over h in the bandwidth parameter space. Alternatively, modifying the covariates (Z;)Y_,
will also result in reweighting effects. Nevertheless, optimizing over the covariates is intractable for
sophisticated kernels such as the Matérn kernel.

Contributions. This paper relies fundamentally on an observation that the Gram matrix of a non-
negative, (strictly) positive definite kernel is a non-negative, positive (semi)definite (also known as
doubly non-negative) matrix. It is thus natural to modify the weights by modifying the corresponding
matrix parametrization in an appropriate manner. Our contributions in this paper are two-fold:

e We propose a novel scheme for reweighting using a reparametrization of the sample weights
as a doubly non-negative matrix. The estimate is characterized as the solution to a min-max
optimization problem, in which the admissible values of the weights are obtained through a
projection of an uncertainty set from the matrix space.

e We report in-depth analysis on two reweighting approaches based on the construction of the
matrix uncertainty set with the log-determinant divergence and the Bures-Wasserstein distance.
Exploiting strong duality, we show that the worst-case loss function and its gradient can be
efficiently evaluated by solving the univariate dual problems. Consequently, the adversarially
reweighted estimate can be found efficiently using first-order methods.

Organization of the paper. Section 2 introduces our generic framework of reweighting using doubly
non-negative matrices. Sections 3 and 4 study two distinctive ways to customize our reweighting
framework using the log-determinant divergence and the Bures-Wasserstein distance. Section 5
empirically illustrates that our reweighting strategy delivers promising results in the conditional
expe(zztation task based on numerous real life datasets. We have released code for these proposed
tools~.

Notations. The identity matrix is denoted by I. For any A € RP*P, Tr [A} denotes the trace of A,
A > 0 means that all entries of A are nonnegative. Let S” denote the vector space of p-by-p real and
symmetric matrices. The set of positive (semi-)definite matrices is denoted by Sﬁ . (respectively, Sﬁ).

For any A, B € RP*?, we use (A, B) = Tr [AT B] to denote the Frobenius inner product between
A and B, and ||v||2 to denote the Euclidean norm of v € R?.

2 A Reweighting Framework with Doubly Non-negative Matrices

We delineate in this section our reweighting framework using doubly non-negative matrices. This
framework relies on the following observation: we can reparametrize the weights in (1) into a matrix

) and the loss terms in (1) into a matrix V'(3), and the solution to the estimation problem (1) can be
equivalently characterized as the minimizer of the problem

mﬁin (Q,V(B)). 3)

Notice that there may exist multiple equivalent reparametrizations of the form (3). However, in this
paper, we focus on one specific parametrization where €2 is the nominal matrix of weights
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with the elements being given by the weighting function w as ﬁOi = ﬁio =w(z;) fori=1,...,N,
and the matrix-valued mapping V : 3+ V(3) € SN+ satisfies

0 B, 21, 51) -+ LB, ZN,YN)
6(673;\1)271) 0 0

A simple calculation reveals that the objective function of (3) is equivalent to that of (1) up to a
positive constant factor of 2. As a consequence, their solutions coincide.

Problem (3) is an overparametrized reformulation of the weighted risk minimization problem (1).
Indeed, the objective function of problem (3) involves an inner product of two symmetric matrices,
while problem (1) can be potentially reformulated using an inner product of two vectors. While
lifting the problem to the matrix space is not necessarily the most efficient approach, it endows us
with more flexibility to perturb the weights in a coherent manner. This flexibility comes from the
following two observations: (i) there may exist multiple matrices that can be used as the nominal

matrix €2, and one can potentially choose € to improve the quality of the estimator, (ii) the geometry
of the space of positive (semi)definite matrices is richer than the space of vectors.

To proceed, we need to make the following assumption.

Assumption 2.1 (Regularity conditions). The following assumptions hold throughout the paper.
(i) The function { is nonnegative, and £( -, x,y) is convex, continuously differentiable for any (x,y).
(ii) The nominal weighting matrix Qis symmetric positive definite and nonnegative.

In this paper, we propose to find an estimate 5* that solves the following adversarially reweighted
estimation problem
min  max_ (Q,V(B)) 4)
by, (@)

~

for some set U, ,(£2) of feasible weighting matrices. The estimate 5* thus minimizes the worst-case

~

loss uniformly over all possible perturbations of the weight 2 € U, ,(£2). In particular, we explore

~

the construction of the uncertainty set i, ,(£2) that is motivated by the Gram matrix obtained via
some non-negative and positive definite kernels. In this way, the weighting matrix can capture more
information on the pair-wise relation among training data. Hence, it is reasonable to consider the set

~

Uy, ,(2) of the form

Up (@) 2 {Q ST 1020, 0(2,0) <p}. 5)

~

By definition, any €2 € U, ,(£2) is a symmetric, positive semidefinite matrix and all elements of
are nonnegative. A matrix with these properties is called doubly nonnegative. From a high level

perspective, the set U, p(ﬁ) is defined as a ball of radius p centered at the nominal matrix Q and
this ball is prescribed by a pre-determined measure of dissimilarity . Throughout this paper, we

~

prescribe the uncertainty set U, ,(€2) using some divergence ¢ on the space of symmetric, positive
semidefinite matrices S} ™.

Definition 2.2 (Divergence). Forany N € N, @ is a divergence on the symmetric positive semidefinite
matrix space S 1 if it is: (i) non-negative: p(Q,Q2) > 0 for all Q1, Q€ SN, and (ii)
indiscernable: if ©(Q1,0) = 0 then Q1 = Qo.

If we denote the adversarially reweighted loss function associated with U, p(ﬁ) by

Fsa,p(ﬂ) £ Qeglax(ﬁ) <Qv V(ﬂ)>a

then $* can be equivalently rewritten as

B* = argmﬁin Fap,p(ﬂ)~ (6)



A direct consequence is that the function F, , is convex in 3 as long as the loss function £ satisfies the
convex property of Assumption 2.1(i). Hence, the estimate 8* can be found efficiently using convex
optimization provided that the function F, , and its gradient can be efficiently evaluated. Moreover,

because ¢ is a divergence, L{%o(ﬁ) = {ﬁ} Hence by setting p = 0, we will recover the nominal
estimate that solves (1). In Section 3 and 4, we will subsequently specify two possible choices of
 that lead to the desired efficiency in computing F,, , as well as its gradient. Further discussion
on Assumption 2.1 is relegated to the appendix. We close this section by discussing the robustness
effects of our weighting scheme (4) on the conditional expectation estimation problem.

Remark 2.3 (Connection to distributionally robust optimization). Consider the conditional expec-
tation estimation setting, in which E[Y'|Z = zy] is the solution of the minimum mean square error
estimation problem

E[Y|Z = 2] = argmﬁin E[(B - Y)*Z = 2.

In this setting, our reweighting scheme (4) coincides with the following distributionally robust
optimization problem
min max ]EQY\Z:zO [(ﬁ - Y)2]7
B Qyviz—:g€BPBy|z=2,)

with the nominal conditional distribution defined as I@’y|Z:20 (dy) Zivzl K (20, 2:)04,(dy). The
ambiguity set B(]f”y| Z—2,) I8 a set of conditional probability measures of Y'|Z = z, constructed
specifically as

10 e uw,p(ﬂ) so that Qo; = Q0 = w(éz) Vi }

BBr1z-20) = {QY'Z‘“ Qv zen(dy) x SN w(2)5.(dy)

Remark 2.3 reveals that our reweighting scheme recovers a specific robustification with distributional
ambiguity. This robustification relies on using a kernel density estimate to construct the nominal

~

conditional distribution, and the weights of the samples are induced by U, ,(€2). Hence, our scheme
is applicable for the emerging stream of robustifying conditional decisions, see [11, 18, 25, 26].

Remark 2.4 (Choice of the nominal matrix). The performance of the estimate may depend on the
specific choice of the nominal matrix Q. However; in this paper, we do not study this dependence in
details. When the weights w(Zz;) are given by a kernel, it is advised to choose Q as the Gram matrix.

3 Adversarial Reweighting Scheme using the Log-Determinant Divergence

We here study the adversarially reweighting scheme when the ¢ is the log-determinant divergence.

Definition 3.1 (Log-determinant divergence). For any positive integer p € N, the log-determinant
divergence from () € Sf__,_ to s € Sﬁ_+ amounts to

D(Q, Q) £ Tr [21Q5"] — log det(2:95 ") — p.

The divergence D is the special instance of the log-determinant a-divergence with o = 1 [8]. Being
a divergence, D is non-negative and it vanishes to zero if and only if 2; = . It is important
to notice that the divergence D is only well-defined when both 2; and Q- are positive definite.
Moreover, D is non-symmetric and D(21,Qs) # D(Qs, ;) in general. The divergence D is also
tightly connected to the Kullback-Leibler divergence between two Gaussian distributions, and that
D(Q1, Q) =KL(N(0,Q4) | V(0,£2)), where N (0, ) is a normal distribution with mean 0 and
covariance matrix 2.

Suppose that Q is invertible. Define the uncertainty set
Up,(Q) = {Qesit >0, D(©Q,Q) <p}.

For any positive definite matrix €2, the function D( -, ) is convex, thus the set L{D,p(ﬁ) is also
convex. For this section, we examine the following optimal value function

Fp,(8) = max (Q,V(8)), (7)
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which corresponds to the worst-case reweighted loss using the divergence ID. The maximization
problem (7) constitutes a nonlinear, convex semidefinite program. Leveraging a strong duality
argument, the next theorem asserts that the complexity of evaluating Fp ,(f3) is equivalent to the
complexity of solving a univariate convex optimization problem.

Theorem 3.2 (Primal representation). For any Qe Sf_tl and p € (0,400), the function Fp ,
is convex. Moreover, for any 3 such that V(3) # 0, let v* be the unique solution of the convex
univariate optimization problem

inf 'yp—'ylogdet(l—v_lﬁ%V(ﬁ)ﬁ

~1 1
AI-QZV(B)QZ

then Fp, ,(8) = (%, V(B)), where @* = Q3 [ — (v*)"1Q3V(5)Q3] 10
metric matrix * is unique and doubly nonnegative.

SIS

), 3)

N

. Moreover, the sym-

Notice that the condition V() # 0 is not restrictive: if V' (8) = 0, then Assumption 2.1(i) implies
that the incumbent solution 3 incurs zero loss with (5, Z;, ;) = 0 for all i. In this case, 3 is optimal
and reweighting will produce no effect whatsoever. Intuitively, the infimum problem (8) is the dual
counterpart of the supremum problem (7). The objective function of (8) is convex in the dual variable
v, and thus problem (8) can be efficiently solved using a gradient descent algorithm.
The gradient of Fp , is also easy to compute, as asserted in the following lemma.
Lemma 3.3 (Gradient of Fyp ). The function Fy , is continuously differentiable at 3 with

N

VﬁF]D,p(B) =2 Z QalVﬁg(ﬂ, ZEZ'? @\2)7
i=1

where Q) is defined as in Theorem 3.2 using the parametrization

Q§O Q§1 - Q§N
O = Q.lo Q.n ’ QIN )
vao Q?\n T Q’]k\rN

The proof of Lemma 3.3 exploits Danskin’s theorem and the fact that 2* is unique in Theorem 3.2.
Minimizing Fp , is now achievable by applying state-of-the-art first-order methods.

Sketch of Proof of Theorem 3.2. The difficulty in deriving the dual formulation (8) lies in the
non-negativity constraint > 0. In fact, this constraint imposes (N + 1)(N + 2)/2 individual
component-wise constraints, and as such, simply dualizing problem (7) using a Lagrangian multiplier
will entail a large number of auxiliary variables. To overcome this difficulty, we consider the relaxed

set V]Dyp(ﬁ) 2 {0 esitt: D(€,Q) < p}. By definition, we have Z/IDP(Q) C VDP(Q), and

Vb, p@) omits the nonnegativity requirement {2 > 0. The set Vp ,(£2) is also more amenable to
optimization thanks to the following proposition.

Proposition 3.4 (Properties of Vp, p(ﬁ)). Forany Q) € SN and p > 0, the set Vp, p(ﬁ) is convex
and compact. Moreover, the support function of Vp_,(Q) satisfies

Nl=

O

Nl

s (T)% sup  Tr [OT] = inf yp—ylogdet(I — Q
VD,p(Q) QEV]D,p(ﬁ) ~>0

/)

7@71>T

for any symmetric matrix T € SN*1,

Moreover, we need the following lemma which asserts some useful properties of the matrix V'(3).
Lemma 3.5 (Properties of V(8)). For any (3, the matrix V([3) is symmetric, nonnegative, and it has

only two non-zero eigenvalues of value i\/Zf\Ll 0B, %, 1i)2
The proof of Theorem 3.2 proceeds by first constructing a tight upper bound for Fp () as

1~ ~
Fp,(8)< max_ (QV(B)= _inf yp—ylogdet(I-=QzV(8)Q%),  (10)
QEVD,,(Q) Q-1-V(B) Y



~ ~

where the inequality in (10) follows from the fact that Up ,(2) € Vp ,(€2), and the equality follows
from Proposition 3.4. Notice that V() has one nonnegative eigenvalue by virtue of Lemma 3.5
and thus the constraint v ~! = V() already implies the condition v > 0. Next, we argue that the
optimizer 2* of problem (10) can be constructed from the optimizer v* of the infimum problem via

O = Q31— (v) 12V (8)Q22] Q3.
The last step involves proving that 0* is a nonnegative matrix, and hence Q* € Up, p(ﬁ). As a
consequence, the inequality (10) holds as an equality, which leads to the postulated result. The proof
is relegated to the Appendix.

4 Adversarial Reweighting Scheme using the Bures-Wasserstein Type
Divergence

In this section, we explore the construction of the set of possible weighting matrices using the
Bures-Wasserstein distance on the space of positive semidefinite matrices.

Definition 4.1 (Bures-Wasserstein divergence). For any positive integer p € N, the Bures-Wasserstein
divergence between Q1 € SY_and Qg € SY_ amounts to

W(Q, 0) £ Tr [0+ 05 — 2(250:05) 7).

For any positive semidefinite matrices 2, and (2o, the value W ({21, Q2) is equal to the square of the
type-2 Wasserstein distance between two Gaussian distributions A/(0, Q1) and N(0,Q5) [13]. As a
consequence, W is a divergence: it is non-negative and indiscernable. However, W is not a proper
distance because it may violate the triangle inequality. Compared to the divergence DD studied in
Section 3, the divergence W has several advantages as it is symmetric and is well-defined for all
positive semidefinite matrices. This divergence has also been of interest in quantum information,
statistics, and the theory of optimal transport.

Given the nominal weighting matrix (Al, we define the set of possible weighting matrices using the
Bures-Wasserstein divergence W as
U ,(Q) £ {2 esiT >0 W(Q,0) <p}.

Correspondingly, the worst-case loss function is

Fy,(8) = max_ (Q,V(8)). (1n

Qelhw,,(Q)
Theorem 4.2 (Primal representation). For any Q e SY* and p € (0,+00), the function Fy ,
is convex. Moreover, for any 3 such that V(B) # 0, let v* be the unique solution of the convex

univariate optimization problem

it (o =T [0]) + 921 = V(B) D), (12)

then Fyy ,(8) = (Q*,V(B)), where 0* = (v*)?[v*] — V(B)]_lﬁh*l — V(B)]~L. Moreover; the
symmetric matrix * is unique and doubly nonnegative.

Thanks to the uniqueness of {2* and Danskin’s theorem, the gradient of Fyy , is now a by-product of
Theorem 4.2.
Lemma 4.3 (Gradient of Fy ). The function Fyy , is continuously differentiable at B with

N

i=1
where Y is defined as in Theorem 4.2 using the similar parametrization (9).
A first-order minimization algorithm can be used to find the robust estimate with respect to the

loss function Fyy ,. Notice that problem (12) is one-dimensional, and either a bisection search or a
gradient descent subroutine can be employed to solve (12) efficiently.



Sketch of Proof of Theorem 4.2. The proof of Theorem 4.2 follows a similar line of argument as
the proof of Theorem 3.2. Consider the relaxed set Vy,,(Q2) = {Q € Sﬁ“ : W(Q,Q) < p}. By

definition, Vyy, p(ﬁ) omits the nonnegativity requirement {2 > 0 and thus Uyy, p(ﬁ) C Vw,»(€2). The
advantage of considering Vy ,(€2) arises from the fact that the support function of the set Vyy ,(£2)
admits a simple form [24, Proposition A.4].

Proposition 4.4 (Properties of wa(ﬁ)). Forany ) € SNt and p > 0, the set Vy, p(ﬁ) is convex

~

and compact. Moreover, the support function of Vw () satisfies

bop@ @) & sup Tr[QT] = inf (=T [Q]) +9%(21 = T)7, Q).
V., () yI=T

The upper bound for Fyy ,() can be constructed as

Fw,(8)< max_ (QV(B) = inf ~y(p—Tr[Q)+*{(vI-V(B)"L,Q), (13)
QEVwW,,(Q) YI-V(B)

where the inequality in (13) follows from the fact that Uy, p(ﬁ) C Vw, p(ﬁ), and the equality follows
from Proposition 4.4. In the second step, we argue that the optimizer (2* of problem (13) can be
constructed from the optimizer v* of the infimum problem via

O = ()T -VE) TN T - V()

The last step involves proving that 2* is a nonnegative matrix by exploiting Lemma 3.5, and hence

~

O € Up ,(2). Thus, inequality (13) is tight, leading to the desired result.

5 Numerical Experiments on Real Data

We evaluate our adversarial reweighting schemes on the conditional expectation estimation task.
To this end, we use the proposed reweighted scheme on the NW estimator of Example 1.1. The
robustification using the log-determinant divergence and the Bures-Wasserstein divergence are
denoted by NW-LogDet and NW-BuresW, respectively. We compare our NW robust estimates against
four popular baselines for estimating the conditional expectation: (i) the standard NW estimate in
Example 1.1 with Gaussian kernel, (ii) the LLR estimate in Example 1.2 with Gaussian kernel?, (iii)
the intercepted (31 of LLR estimate (i.e., only the first dimension of 1), denoted as LLR-I, and
(iv) the NW-Metric [27] which utilizes the Mahalanobis distance in the Gaussian kernel.

Datasets. We use 8 real-world datasets: (i) abalone (Abalone), (ii) bank-32fh (Bank), (iii) cpu (CPU),
(iv) kin40k (KIN), (v) elevators (Elevators), (vi) pol (POL), (vii) pumadyn32nm (PUMA), and (viii)
slice (Slice) from the Delve datasets, the UCI datasets, the KEEL datasets and datasets in Noh et
al. [27]. Due to space limitation, we report results on the first 4 datasets and relegate the remaining
results to the Appendix. Datasets characteristics can also be found in the supplementary material.

Setup. For each dataset, we randomly split 1200 samples for training, 50 samples for val-
idation to choose the bandwith i of the Gaussian kernel, and 800 samples for test. More
specially, we choose the squared bandwidth h? for the Gaussian kernel from a predefined set
{10721 2 x 107214 5 x 10-21}. For a tractable estimation, we follow the approach in Brunds-
don et al. [7] and Silverman [35] to restrict the relevant samples to N nearest neighbors of
each test sample z; with N € {10, 20,30,50}. The range of the radius p has 4 different values
p€{0.01,0.1, 1, 10}. Finally, the prediction error is measured by the root mean square error (RMSE),

ie., RMSE = \/nt_l it (s — Bi)?, where n, is the test sample size (i.e., n, =800) and B; is the
conditional expectation estimate at the test sample z;. We repeat the above procedure 10 times to
obtain the average RMSE. All our experiments are run on commodity hardware.

Ideal case: no sample perturbation. We first study how different estimators perform when there is
no perturbation in the training data. In this experiment, we set the nearest neighbor size to N =50,
and our reweighted estimators are obtained with the uncertainty size of p=0.1.

*We omit results of LLR in Figures 1 and 2 for a better visualization. See the Appendix for detailed results.
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Figure 1: Average RMSE for ideal case with no perturbation.

Figure 1 shows the average RMSE across the datasets. The NW-Metric estimator outperforms the
standard NW, which agrees with the empirical observation in Noh et al. [27]. More importantly, we
observe that our adversarial reweighting schemes perform competitively against the baselines on
several datasets.

When training samples are perturbed. We next evaluate the estimation performances when 7 €
{0.2N,0.4N,0.6N,0.8N, N} nearest samples from the N training neighbors of each test sample
are perturbed. We specifically generate perturbations only in the response dimension by shifting
y+— Ky, where k is sampled uniformly from [1.8,2.2]. We set N =50 and p=0.1 as the experiment
for the ideal case (no sample perturbation).
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Figure 2: RMSE for varying perturbation levels 7. Results are averaged over 10 independent
replications, each contains 800 test samples.

Figure 2 shows the average RMSE for with varying perturbation level 7. The performance of all
baseline approaches severely deteriorate, while both NW-LogDet and NW-BuresW can alleviate the
effect of data perturbation. Our adversarial reweighting schemes consistently outperform all baselines
in all datasets for the perturbed training data, across all 5 perturbations 7.

We then evaluate the effects of the uncertainty size p and the nearest neighbor size N on NW-LogDet

and NW-BuresW.
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Figure 3: Average RMSE as a function of the ambiguity size p. Errors at p = 0 indicate the
performance of the vanilla NW estimator.

Effects of the uncertainty size p. In this experiment, we set the nearest neighbor size to N = 50,
the perturbation 7 = . Figure 3 illustrates the effects of the uncertainty size p for the adversarial
reweighting schemes. Errors at p = 0 indicate the performance of the vanilla NW estimator. We
observe that the adversarial reweighting schemes perform well at some certain p and when that
p is increased more, the performances decrease. The uncertainty size p plays an important role
for the adversarial reweighting schemes in applications. Tuning p may consequently improve the
performances of the adversarial reweighting schemes.



Effects of the nearest neighbor size V. In this experiment, we set the uncertainty size to p= 0.1.

Figure 4 shows the effects of the nearest neigh-
bor size N for the adversarial reweighting o NW-LogDet o
schemes under varying perturbation 7 in the OSJ OGJ
KIN dataset. We observe that the performances
of the adversarial reweighting schemes with
N € {20, 30} perform better than those with
N € {10,50}. Note that when N is increased,
the computational cost is also increased (see o8t 050

Equation (1) and Figure 6). Similar to the cases ol el
of the uncertainty size p, tuning N may also
help to improve performances of the adversarial
reweighting schemes.

NW-BuresW

Average RMSE

[EN=10 N=20 {N=30 iN=50|

Figure 4: Effects of the nearest neighbor size V.

Under varying shifting w.r.t. x. In this ex-
periment, we set the nearest neighbor size to

N = 50. Figure 5 illustrates the performances & 7
of NW-LogDet under varying shifting w.r.t. xin 5

the KIN dataset. For the left plots of the Figures & _ |
5, we set the uncertainty size to p= 0.1 when ~ {

0.7}

& l
<] 0.64 - 0.65

varying the perturbation 7. We observe that the ° ’
adversarial reweighting schemes provide differ-
ent degrees of mitigation for the perturbation
under varying shifting w.r.t. «. For the right
plots of the Figures 5, we set the perturbation to
7= 0.2N when varying the uncertainty size p.

0.58
0.2N 0.4N 0.6N 0.8N 1.0N 0.01 0.1 1 10
T

p
€ [2.8,3.2]

[FreN3,17 1rec8,22] 1kcl2327]

Figure 5: Effects of perturbation intensity « for
NW-LogDet estimate. Left plot: different pertur-
bation 7, right plot: different uncertainty size p.

We observe that the reweighting schemes under

varying shifting w.r.t. x have the same behaviors as in Figure 3 when we consider the effects of the
uncertainty size p (i.e., when £ € [1.8,2.2]). Similar results for NW-BuresW are reported in the
supplementary material.

NW-LogDet NW-BuresW

10’

10’
10° ’
3 10°

10 20 30 50 10 20 30 50

Time consumption. In Figure 6, we illus-
trate the time consumption for the adversar-
ial reweighting schemes under varying neigh-
bor size N and uncertainty size p in the KIN
dataset. The adversarial reweighting schemes
averagely take about 10 seconds for their estima-
tion. When N and/or p increases, the computa-
tion of the adversarial reweighting schemes take
longer. This is intuitive because the dimension . . .

of t%le weight matrix €2 scales quadratically in Figure 6: Effects of  on computational time.
the neighbor size V. Bigger uncertainty size p implies a larger feasible set U, p(ﬁ), which leads to
longer computing time to evaluate F,, , and its gradient.

%

Time consumption (s)

N
[Fp=0.01 7 p=01 T p=1 1p=10

Concluding Remarks. We introduce two novel schemes for sample reweighting using matrix
reparametrization. These two invariants are particularly attractive when the original weights are given
through kernel functions. Note that the adversarial reweighting with Bures-Wasserstein distance W
can be generalized to cases where the nominal weighting matrix Qis singular, unlike the reweighting
with the log-determinant divergence D.

Remark 5.1 (Invariant under permutation). Our results hold under any simultaneous row and column
permutation of the nominal weighting matrix Q and the mapping V (B). To see this, let P be any
(N + 1)-dimensional permutation matrix, and let Qp £ PQP and Vp(8) £ PV (B)P. Then
(Q,Vp(B)) = (PQ"P,Vp(B)) = (Q%, V(B)),

max_
QeUy,p(2p)

where Q2 is calculated as in Theorem 3.2 for ¢ = D, and as in Theorem 4.2 for ¢ = W. The proof
relies on the fact that PT P = PP" = I, that both D and W are permutation invariant (in the
sense that (1, Qa) = ©(PQy P, PQ2a P)), and that the inner product is also permutation invariant.
Similar results hold for the gradient information, and hence the optimal solution of (8 is preserved

under row and column permutations of Q and V(B).
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