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Abstract.

Sociohydrology as a community research program has rapidly expanded and been effective in
exposing the hydrological community to concepts, ideas, and approaches from many other
scientific disciplines, and social sciences in particular. Yet it still has much to explore in terms of
how to capture human agency and how to combine different methods and disciplinary views
from both the hydrological and social sciences to develop knowledge. The inherent complexity
of human water relations is due to interactions not only across spatial and temporal scales but
also across different human organizational levels. This warrants a seamless use of approaches
that conceptualize it along the scales of space and time as well as the human organizational
scale. This latter dimension might be useful to explaining why a sociohydrological phenomenon
occurs in one context but not in others. Multiple disciplinary views and methods are likely to be
needed to develop a fuller understanding of coupled human-water systems. Based on a subset
of the papers published in the Hydrological Sciences Journal Virtual Special Issue Advancing
Sociohydrology over 2019-2021, this paper provides details on how the understanding of
coupled human-water systems can be strengthened by capturing the multi-level nature of
human decision-making and by structuring an interdisciplinary multi-method approach.

Keywords: Sociohydrology, multi-method, multi-level, scale, human-water relations,
organizational complexity
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1. Introduction

As the extent of human activity on earth and the water environments accelerates, it is becoming
increasingly important to recognize society and water systems as truly interdependent systems
and the subtle interactions that shape outcomes (Sivapalan 2015). In coupled human-water
systems, multiple water and social processes with different characteristic (temporal and spatial)
scales can be relevant, and these processes are often connected in ways that are not obvious
(Blair and Buytaert 2016). Local or short-term processes in physical and social domains can be
linked to global or long-term processes through a mesh of interconnections. Making sense out
of such complexity is already a difficult task, but the challenge multiplies when we begin to
consider the fact that humans exhibit agency in decision-making (Pande and Sivapalan 2017).
That is, humans are capable of making freewill actions and have the potential to act differently
in seemingly similar situations because their decisions can be sensitive to contextual factors,
such as underlying sociocultural and biophysical conditions (Ostrom 1998; Bandura 2001). In
particular, human agency often involves multiple or nested levels of decision-making that
influence what actions are taken by which actors, e.g., an infrastructure manager’s decisions on
local water infrastructure is not free from the influences of decisions made by local- and federal-
level governments and household-level behavioral traits (Yu et al. 2020). This multi-level nature
of human decision-making, therefore, should be of significance to understanding why one water
resources-related problem occurs in context but not in another. Hydrology alone is not sufficient
to tackle this type of understanding. Multiple disciplinary views and methods from both the
natural and social sciences are needed to achieve a fuller understanding of such complex
human-water systems (Tress et al. 2005).

Sociohydrology is an interdisciplinary science of coupled human-water systems that is well
suited to take on the challenge outlined above. Sociohydrology aims to understand the
relationships between how human agents process external stimuli and make decisions and how
such decisions affect the water environment and society (Konar et al. 2019). One of the main
achievements of sociohydrology as a research program has been exposing the hydrological
community to concepts, ideas, and approaches from other scientific disciplines, and social
science in particular. But the field of sociohydrology still has much to explore in terms of
capturing the multi-level nature of human agency and how to use an interdisciplinary approach
(i.e., combining methods from two dissimilar fields such as hydrology and political science) to
develop knowledge. This view is echoed by the invited paper series “Debates-Perspectives on
Sociohydrology,” which was organized by Water Resources Research in 2015 to provide a
scientific forum on sociohydrology (Gober and Wheater 2015; Sivapalan 2015; Di Baldassarre
et al. 2015; Loucks 2015; Troy et al. 2015). The invited authors commented on a conceptual
model of human-flood interaction proposed by Di Baldassarre et al. (2015) that simulated the
observed pattern of the levee effect, the observation that heavy reliance on flood protection
structures and the resulting non-occurrence of frequent flooding is often associated with a rise in
long-term vulnerability. Human agency in this work is simplified or “lumped” to a single level: the
level of society. Depending on the degree of societal memory of floods, the model society
adjusts its decisions on investments to flood protection structures and on floodplain settlement.
The invited papers offered useful ideas about human agency representation and methodological
approaches regarding the levee effect. Loucks (2015) highlighted that human system response
to change in water systems can be surprising and is difficult to predict because human
decisions are sensitive to contexts. Gober and Wheater (2015) emphasized that, because of the
lumped nature of the model’s social variables, its representation of social processes is over-
simplified. They also suggested additional approaches and theories that can be incorporated to
strengthen the model. In a similar vein, Troy et al. (2015) underscored the difficulty with
validating sociohydrology models, especially the human system part.
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Emerging from the foregoing discussion is a gap in the field: although using lumped social
variables and coupling them to physical processes make systems modeling and analysis
tractable, they pose challenges to capturing human agency and explaining why some
phenomenon occurs in one context and not in another context. Also, because of the heavy
reliance on model-based simulations and the inherent complexity of human-water systems,
there are difficulties to validating hypotheses (Troy ef al. 2015). This poses two key themes for
further reflection to the sociohydrology community. (1) How can human-water interactions with
multiple levels of decision making and human agency be represented and studied? (2) How can
an interdisciplinary multi-method approach be used to better understand such human-water
systems? Note that an interdisciplinary multi-method approach here refers to attempts that
integrate methods used in two or more disparate disciplines (e.g., combine methods for
representing natural system dynamics, experimentally testing human behavior, and for
extracting thematic topics from human conversations, as illustrated by Janssen et al. 2010 and
Yu et al. 2016) as opposed to those that integrate multiple methods used in the same field or
closely related fields (e.g., apply time-domain reflectometry and gravimetric methods to
determine soil moisture).

Contributing to further reflection on these two themes is the goal of this commentary paper. In
approaching this aim, we focus on the papers accepted or published as part of the Hydrological
Sciences Journal Virtual Special Issue Advancing Sociohydrology. We probed the special issue
papers to examine recent trends with respect to these two key themes. Although still few in
number, we observe more serious attempts to capture multiple levels of social systems and to
combine methods from both the hydrological and social sciences to develop a multifaceted
understanding of human-water systems. This special issue accepted submission of papers
concerning an interdisciplinary approach to sociohydrology over 2019-2020. These papers,
therefore, provide a glimpse into the latest developments regarding our interest.

This commentary proceeds as follows. In Section 2, we discuss human organization as an
independent scale of analysis for studying sociohydrological phenomena, different
organizational levels that social units can occupy, and the implications for capturing the multi-
level nature of human agency. We then go over how recently published papers in the Virtual
Special Issue dealt with this aspect. In Section 3, we describe key aspects that can be used to
guide an interdisciplinary multi-method approach to sociohydrology research. This is followed by
a discussion of trends observed in the special issue papers regarding the use of interdisciplinary
methods. Lastly, we provide a synthesis and a way forward regarding how to achieve
methodological and disciplinary cross-fertilization for theory development in sociohydrology.

2. Capturing Human Agency: Space, Time, and Human Organization

Sociohydrological phenomena often involve physical and social processes that play out across
multiple scales and levels in ways that are not obvious. In this section, we discuss why one
should not only consider these processes at different spatial and time scales but also another
scale related to human agency to better understand such phenomena. Also, as we shall show in
Section 3, it is important to know what scales and levels are relevant for the focal variables and
theories because they can influence the choice of methods for interdisciplinary research.

Following Gibson et al. (2000) and Cash et al. (2006), we use the term “scale” to mean the
spatial, temporal, or any other analytical dimension that can be used to study a phenomenon
and the term “level” to mean the units of analysis at different gradient of specificity on a scale
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(e.g., monthly and decadal levels in the time dimension). Figure 1 illustrates some of the scales
and levels relevant for understanding human-water interactions. However, in contrast to the
spatial and temporal scales (which are well-known and widely explored), a characteristic scale
of human social systems—namely, the spectrum of human organizational complexity (the
rightmost vertical line in Figure 1)—is often ignored or abstracted away in most studies of
coupled human-water systems (Pande and Ertsen 2014). Just like time and space, the
spectrum of organizational complexity is an analytical dimension that can be used to study a
phenomenon. Varying levels of human organizations—from small social groups (e.qg.,
households, neighborhood associations, etc.) to local water utilities and government and federal
agencies and government—represent different units of analysis within the human organizational
scale. Although there is a strong correlation between the spatial and human organizational
scales, they are not identical. For example, the spatial extents of the European Union and
Antarctica are large and comparable, but the latter is much smaller in terms of social complexity.
In fact, certain sub-fields of research in the social sciences, such as polycentric governance
(Ostrom 2010) and cultural multi-level selection (Waring et al. 2015), consider the human
organizational scale to be so important that their focus of analysis is centered around how
interactions within and around different levels of social systems shape policy outcomes and
cultural change.

Figure 1. Schematic illustration of different scales and levels that are relevant for understanding
human-water interactions.

It is crucial to realize that human decisions on water can occur at different levels within the
nested structure of human social systems and that these level-dependent decisions can be
interlinked to shape human agency, e.g., household-level water conservation decisions can
affect and be affected by the decisions made at the levels of local and federal governments and
water utilities. Consider, for example, the phenomenon of the levee effect (White 1942; Montz
and Tobin 2008; Di Baldassarre et al. 2013), which has been the subject of multiple
sociohydrology studies (Figure 2). This phenomenon involves multiple levels and scales in the
relevant physical and social processes, including different levels of human organizations.
Inclusion or exclusion of this nature may make a difference in explaining why the levee effect
occurs in one setting and not in others. Here we cast the three scales introduced in Figure 1
(spatial, time, and human organizational) onto four variables: flood vulnerability of social units
along the spatial scale, flood vulnerability of social units along the time scale, human agency
and flood memory along the human organizational scale, and assets or capacity for response
along the spatial scale (Figure 2). Suppose that frequent flooding negatively affects a local city
and people, e.g., the system’s vulnerability is manifested at the levels of local landscape and
seasonal or inter-annual timing (arrows 1 and 2 in Figure 2). How would the city and its society



214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242

243
244
245
246
247
248

respond to this short-term, localized vulnerability? Perhaps one should consider that the
preferred decision and flood memory of social units can vary at different human organizational
levels. Competitive or cooperative interactions across different levels of social groups can
influence outcomes (arrows 3A). One possibility is that the community and its local government
organize actions to further raise the levees. But a federal agency and neighboring communities
might oppose that decision because of the transference of the risk elsewhere. Interventions and
power dynamics across these multiple levels of human decision-making can ultimately shape
which trajectory is followed by the affected community—technological society (arrow 3B) vs.
green society (arrow 3C).

If the path of green society is chosen, the assets and capacity for flood response would be more
decentralized and distributed at the patch level. If the path of technology society is followed, the
city’s assets and capacity for flood response become more centralized and capital-intensive at
the regional or watershed level in space. The resulting stability and the absence of flooding over
a long time horizon lead to a gradual decay of societal flood memory and coping capacity.
Population density and economic activities increase in the floodplain, possibly attracting
manufacturing industries whose goods and services serve areas beyond the city. The end result
is an increase in the vulnerability to a rarer flood event in the long-run (arrow 4). It also spatially
expands vulnerability because most cities are tele-connected through global market systems
(arrow 5). Furthermore, it is crucial to note that outcomes of such multi-level dynamics can be
sensitive to underlying biophysical or social contexts because of human agency. Abstracting
these nuances into a single construct may oversimplify important social processes that shape
future social responses. To get at this complexity, one should not only consider these processes
at different spatial and time scales but also the multi-level nature of social systems and human
agency.

Figure 2. Schematic illustration of human-flood interactions across scales and levels leading to
the levee effect with multiple levels of human agency. Here we cast the three scales introduced
in Figure 1 (spatial, time, and human organization) onto four variables: flood vulnerability of
social units along the spatial scale, flood vulnerability of social units along the time scale, human
agency and flood memory along the human organizational scale, and assets or capacity for
response along the spatial scale.
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However, the lack of consideration of the human organizational scale has been a key
shortcoming of many sociohydrology studies. Below, we probe how the studies in the current
special issue have dealt with or improved upon in this regard.

Multi-Level Analysis in Disaster Risk Management

Several papers in the special issue considered two or more levels of a scale with respect to
phenomena and processes being studied. Vicario et al. (2021) developed a flood evacuation
model that includes the linkages between the hazard, the built environment, the population, and
the civil protection members. Their model captures multiple levels of the social system and
interactions across these levels. For example, an emergency agency and its staff communicate
to the individuals that they are not allowed to cross the rivers when flooding occurs; individuals
react when seeing a flood close to them and change their direction on the roads. Evacuees also
may follow other groups of people that are evacuating ahead of them. Vanelli and Kobiyama
(2021) argued that sociohydrology should incorporate disaster risk management. They also
observed that although river basin is an appropriate level of analysis for many hydrological
studies, it is not necessarily ideal for sociohydrological studies. The researcher must be
cognizant of the feedback dynamics spiraling up and down scales, or what the authors referred
to as the “glocal’ scale, to overcome the global-local dichotomy. With the focus on the
bidirectional feedback between water systems and society, sociohydrology has much to
contribute to disaster risk reduction.

Multi-Level Analysis in Water Policy and Planning

A critical element in the chain of human-water interactions is public policy-making and planning,
whereby society formulates its attempts for a coordinated response to observed hydrological
phenomena. Kim et al. (2021), Luan et al. (2022), Oneda and Barros (2021) and Philip (2021)
look at this role of planning and policy-making. Kim et al. (2021) review the historic trajectories
in policy-making over time, observing how water quality and pollution management policies
evolved in the past decades, comparing experiences between the State of Oregon, USA, with
those in South Korea. In doing so, they observe for instance how the early success with point-
source pollution control triggered the policies to evolve into attempts to address the more
“wicked” problem of non-point source management and, eventually, also beyond conventional
pollutants. In their analysis, they pay attention to the multi-level nature of water quality policies,
between federal, state and local agencies in the USA, and through a more centralized political
system for water quality management in South Korea. Luan et al. (2022) investigate if
bidirectional feedbacks can be anticipated in planning, including the societal acceptance and
implementation of policy interventions aimed at the water system. This also involves the
question of multi-level governance, with national or regional plans and their expected uptake by
local level actors. The core focus of the study, though, is on four local communities within one of
the provinces in the Viethamese Mekong Delta. Even at this more local level, results show the
differences across districts, and their implications for provincial level planning.

Philip (2021) centers a very specific policy indicator in her research, the SDG11.3.1 ratio of land
consumption rate to population growth rate, and its implications for stormwater management for
projected climate change in the city of Hamilton, Canada. The observed values and trends in
this indicator are then linked to present land use planning tools and future developments. This
provides an interesting example of how a global policy effort and indicators such as the SDGs,
combined with relevant national, state and provincial level actions and policies, transpire at local
city levels to track and inform water management efforts and their effectiveness. Oneda and
Barros (2021) analyze and compare stormwater management master plans in developed and
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developing cities, for two cities in Brazil and one city in Portugal. In terms of the interactions, the
focus is mostly on analyzing the social system response to water system dynamics and
challenges. The urban level analysis is contextualized within the larger hydrological systems
and the higher (national) level legislation and planning systems, but the focus is clearly on the
city as the main level of analysis.

Garcia and Islam (2021) developed a water supply planning model that links the evolution of
demand to water availability and water stress through the concept of water salience. In this
model, water supply and associated infrastructure is at the regional/county level while demand
management is at the city level. The case study is Las Vegas Valley Water District, the water
distributor. Haeffner et al. (2021) argued that sociohydrology should incorporate a
representation justice focus that includes an understanding of how power and politics shape the
interaction between humans and water in coupled systems and the composition of the water
sector. They analyze interactions between employees and local water agencies over individual
careers in the U.S.

Multi-Level Analysis of Agricultural Human-Water Systems

Khalifa et al. (2020) adopted an integrated approach that uses multiple sources of data to
analyze the sorghum productivity gap, its temporal and spatial variation and the
sociohydrological determinants affecting the sorghum yield in the scheme. The key findings
provide useful insights into potential pathways for sustainable irrigation in the Gezira Scheme
and other irrigation schemes that are facing similar challenges. This study crossed several
levels: water users at individual (small-holder farmers), group/community, or a lumped variable
at a population level ranging from community/city to region, water management at the scheme
scale, and irrigation system in large irrigated schemes.

Ross and Chang (2021) developed a System Dynamics Model (SDM) of a watershed-
dependent sociohydrological system to improve resilience and adaptive capacity to climate
hazards. The SDM developed for the Hood River Basin (USA) comprised an upper-climate
section which includes snowmelt, a middle-section which includes glacial meltwater and
precipitation runoff and a lower-level section which includes irrigation withdrawals and
streamflow. The SDM suggests that climate change leads to a decline in available irrigation
water in the late summer. A cross-level perspective was included by assessing collaborative
water management strategies among irrigators to respond to climate change's influence on
streamflow.

Ghoreishi et al. (2021) developed an agricultural water demand model that included linkages
between individual farmers, socio-economic factors, and agricultural water demand. Their model
captured multiple levels of a social system, and interactions across the levels. For example, a
farmer’s decision about irrigation method, changing crops, and irrigation area was affected by
other farmers’ decisions and government subsidies; the individual decision also influenced
neighbors’ decisions through a social network. Carr et al. (2021) developed a sociohydrological
model that included linkages between the capacity of local organization, land use, agricultural
practices, and water quality. The model involved cross-level interactions between farmers and
local level water committees. For example, farmers could change their land use and
management practices depending on the support given by the local water committees and the
regulation from the local Water Police.

Laurita et al. (2021) investigated conflictual water allocation between water users (farmers and
local communities), which resulted in ecosystem services trade-off between productive services
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(agriculture) and provision and cultural services (biodiversity conservation, tourism, urban water
supply). Interactions involved local farmers and communities directly and the Confederacion
Hidrografica del Duero as a regulator. Farmers' satisfaction was linked to their ability to extract
water for irrigation, and local communities' well-being was linked to the well-being of the river
from which water is diverted and used for irrigation.

Multi-Scale Analysis

A smaller set of studies in the special issue explicitly considered two or more scales in their
analyses. Hossain and Mertig (2020) examine how cross-national relationships, and global
position, structure internal, or domestic water footprints in 174 countries from 1996-2005. Cross-
scale interactions are implicitly investigated through the assessment of world-system position on
water consumption levels. They find that more developed, advanced countries are able to
exploit water resources across the world through virtual water trade. Less-developed, or
underdeveloped countries are thus disproportionately bearing the social and ecological
consequences of global water stress, as the global water crisis is externalized from developed
to less-developed countries. Tamburino et al. (2020) develop an agent-based model that
simulates a smallholder farming system. The model is calibrated for the Lower Mississippi River
Basin and considers corn grown through the growing season April-June. They are able to
understand the co-evolving relationship between climate, water, and human attitudes over
varying time scales. Crop yield, net economic gain, and groundwater table depth evolve over
time depending on changing climate conditions and farmers’ attitudes.

3. Achieving an Interdisciplinary Multi-method Research

Sociohydrology research endeavors depend on the use of diverse perspectives and methods
from both the physical and social sciences (Di Baldassarre et al. 2021). In an ideal world,
researchers can teach themselves multiple relevant methods and theories and apply them as
deemed necessary. In reality, however, gaining specialization in any given research methods or
theories is time consuming and requires significant investments (Poteete et al. 2010). This
challenge is even greater when a serious cross-fertilization is attempted across dissimilar
domains of science, i.e., hydrologists attempting to use the tools and concepts used by social
scientists and vice versa. This means that a more probable path to sociohydrology research is
bringing in people with different toolkits and theoretical backgrounds to work together. Herein
lies the value of an interdisciplinary multi-method approach: it can help hydrological and social
scientists to be savvy about the language and basics of each other's methods. It can help them
to be more aware of a variety of forms that a multi-method approach can take, strengths and
limits of such forms, and the degree to which different methods in the natural and social
sciences are actually complementary. The need for interdisciplinary methods is also highlighted
by several papers of the special issue (Ross and Chang 2020; Bertassello et al. 2021; Hayashi
et al. 2021; Thaler 2021; Wine 2020).

However, it is not obvious to many how to structure an interdisciplinary multi-method approach
for an effective sociohydrological research. The challenge lies not in attempting a laundry list of
different methods, but in how to judiciously combine different methods in such a way that the
methods are compatible with focal variables and theories and that the results and insights from
one method help to inform and revisit those from other methods (e.g., Poteete et al. 2010).
Although there is no straightforward answer, we suggest that there are two key aspects
important to guiding one’s thinking on how to organize an interdisciplinary research.
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The first aspect is knowing what scales and levels are relevant for the focal variables and
theories under consideration. This is because the scales and levels involved with the focal
variables and theories can influence which methods are more fitting than others. For example, if
an analyst is interested in developing a system-level understanding using theories like
dynamical systems theory and complex adaptive systems thinking, methods such as system
dynamics and agent-based modeling are more appropriate than others (Enteshari et al. 2020;
Pouladi et al. 2020; Aghaie et al. 2021). GIS, remote sensing, and archival analyses are
necessary for analysis that cover larger spatial and time scales (Lopez-Alvarez et al. 2020; Gaur
et al. 2021; Dau and Adeloye, 2021).

Regarding human agency, hypotheses about human decision-making at the level of individuals
and small groups can benefit from standard data collection methods (e.g., survey, interviews,
etc.), high-resolution behavioral studies (e.g., behavioral experiments) as well as innovative
human-driven observational data analytics supported by artificial intelligence, digital
technologies and online communities (e.g., social network data mining, remote sensing and
image processing). These methods can behavioral-level insights on human decisions and
preferences. Hypotheses about human agency at larger organizational scales require analytical
methods such as big data analysis, case studies, and comparative analysis. The increased
interest and extent of citizen science and participatory approaches are demonstrating the
scientific value of community engagement enlarging the quantity and diversity of observation’s
spatial and temporal scale (Etheridge et al. 2020; Torso et al. 2020; De Filippo et al. 2021;
Souza et al. 2021).

The second aspect is knowing that the starting point of many sociohydrology research
endeavors is identifying a sociohydrological phenomenon and potential explanatory hypotheses
and that it is almost impossible to do true real experiments with coupled human-water systems
to establish causal inference (i.e., experimentally testing whether a factor X causes a
phenomenon Y). Because of this nature, we think there is a recurring methodological pattern in
interdisciplinary approaches to studying sociohydrology (Figure 3). It begins with the
identification of an emergent phenomenon with rich details and associated key hypotheses
based on a case study or comparative analysis of multiple case studies (link 1 in Figure 3) (e.g.
Fornés et al. 2021). These case studies are, of course, based on and informed by various data
(link 2) collected from diverse methods (e.g., Palop-Donat et al. 2020; Medeiros and Sivapalan
2020; Frota et al. 2021; Nardi et al. 2021; Souza et al. 2021).

Case Studies & Phenomena &
Comparative Analyses Hypotheses

Controlled
Experiments

Computational
Experiments

Figure 3. A methodological pattern in interdisciplinary approaches to studying sociohydrology
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The identified hypotheses and potential explanatory hypotheses are then tested using either
computational experiments or controlled experiments (links 3 and 6). Because it is difficult to do
true experiments with real coupled human-water systems, computational and controlled
experiments that capture the essential features of real systems are fitting methodological
choices. System dynamics and agent-based models are often constructed for computational
experiments (e.g. Ridolfi et al. 2019; Viola et al. 2021; Lyu et al. 2020; Homayounfar and
Muneepeerakul 2021). These model systems are simulated to see if the qualitative behavior of
the model systems is consistent with the observed phenomena. If the target pattern is
replicated, then the proposed hypotheses are possible explanations of the observed
phenomena until they are falsified (Pande and Sivapalan 2017).Various social and
environmental data can be also used to calibrate and validate (link 4) these models. The results
and insights obtained from such models can be also used to revisit the case studies (link 5).
Meanwhile, controlled experiments that capture the essence of a focal sociohydrological
phenomenon can be conducted to test the identified hypotheses (link 6). For example, physical
hydrologic experiments can be used for hypotheses related physical water process. If the
hypotheses concern human behavior and social dynamics, controlled behavioral experiments
and survey experiments can be conducted using human subjects to test hypotheses on how
individuals make decisions under different conditions (e.g. McKee et al. 2020). The added
benefit of such experimental studies is that the resulting data can also be used to revisit the
initial case studies (link 7) and empirically ground or calibrate (link 8) the assumptions used in
the systems models.

The methods and their linkages discussed above show the phenomena-driven nature of
sociohydrology research and how the scales and levels involved with the focal variables and
theories can shape methodological design. Below, we organize the special issue papers in
terms of diverse methodological combinations.

Multiple-Source Approaches

Kim et al. (2021) use a semi-structured narrative approach to describe policy development
pathways. They distinguish three main historic stages that are described in terms of key policy
features (legal aspects, government agencies, resources, civic actors). Information for this
analysis was obtained from document analysis, both policy documents, laws and journal
articles, complemented with data on specific variables for the water systems in online databases
and provided by the utilities in Oregon and South Korea. Philip (2021) combines data from
different sources, including satellite images, to calculate the SDG 11.3.1 indicator values for
three different time periods. These land-used and geographical analysis methods then are
linked, in an interpretative manner, with more hydrological methods to develop Intensity-
Duration Frequency (IDF) curves for stormwater management. This combination shows that,
although the land use to population growth ratios develops in desired directions, the trends in
IDF curves do signal a need for future action in the city, to effectively use land use planning to
confront climate change challenges.

Sarband et al. (2021) used multiple methods of compromise programming, fuzzy methods and
distributed indicators to evaluate localized impacts of water allocation scenarios in Aras basin,
Iran. Their use of distributed instead of lumped indicators enabled better determination of
regional priorities and spatial tradeoffs of water allocation scenarios. Veloso et al. (2021) used
the Carampangue River basin in Chile as an instrumental case study to investigate the interplay
between preparedness and psycho-social attributes of communities exposed to river floods.
They combined multiple research methods and integrated a hydrological analysis of floods with
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the results from a survey, social cartography, semi-structured non-participant observation, and
semi-structured interviews.

Case Studies, Interviews, Surveys, and Spatial and Statistical Modeling

Mondino et al. (2020) applied multiple methods in the study: case study, comparative analysis,
statistical analysis, and longitudinal survey/analysis. Case studies are used to motivate the
study and questionnaire survey. It also comparatively analyzed the two case communities.
Longitudinal surveys and statistical analysis are done to understand over-time changes in the
risk perception of people in the two communities. In their case study analysis of the Dhidhessa
River Basin, Teweldebrihan et al. (2020) conducted a household survey in three study villages
(n=120), key informant interviews and a focus group discussion. Secondary data (official
statistics, including census data and population data) complement the analysis. The focal level
is set on the study villages in the basin. In addition, the authors take a government resettlement
programme as a main driver for migration into account.

Khalifa et al. (2020) used the combined methods including case study, field survey, remote
sensing, GIS, statistical modeling and statistical analysis. Case study was used to analyze an
agriculture scheme. Field survey was used to understand socio-economic status and field
practices of small-holder farmers that contribute to crop yield gap. Remote sensing was used to
analyze spatial and temporal variation of productivity gap. The spatial and temporal variations of
variables such as productivity level, precipitation and soil properties were analyzed using GIS.
Statistical modeling was used to understand the relationship between crop productivity and
farmer's field practices and farmer's socio-economic status as well as the relationship between
crop productivity and physical variables such as water availability and soil properties.

Participatory Approaches

Torso et al. (2020) have applied Participatory Action Research (PAR) and Indigenous Research
Methodologies (IRM) in their studies of hydrosocial systems in Idaho, US affected by mining.
They apply the concept of hydrosocial territories as developed by Boelens et al. (2016), to frame
the impacts of mining, the politics surrounding it and describe the judicial complexities of the
community-university partnerships that were developed in the study. In a reflective paper on
how these methods were implemented, Torso et al. (2020) concluded that both PAR and IRM
led to a more inclusive and equitable research process whereby sharing data in a reciprocal
relationship between the researchers and the community members was prioritized. This led to a
better contextual understanding of power dimensions and appreciation of relational knowledge
paradigms, as well as promotion of community capacity building.

Etheridge et al. (2020) employed public participation in two coastal communities affected by
sea-level rise, hurricanes and flooding in North Carolina. Both were community level social
systems and lake watershed/island water systems. In the first study area, the participatory
mapping at a public meeting was used to define the watershed boundary and determine pump
locations. In the second study area, citizen scientists collected data on groundwater levels and
surface water levels over a period of three months. In addition, a cost comparison between
citizen science data collection and non-involvement of the community was calculated.

Case Studies and Agent-Based Modeling

Ghoreishi et al. (2021) combined an agent-based human submodel and a lumped water
submodel. The human submodel simulated the adaptation of new irrigation systems, crop
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patterns, and area to be irrigated based on interactions and coevolution between farmers’
decisions. The water submodel calculated agricultural water demand using the FAO Penman-
Monteith method. Multiple methods were used to represent and highlight the stochastic (agent-
based modeling) and deterministic (lumped hydrological modeling) nature of social and
hydrological systems, and could, in turn, capture the heterogeneity of farmers’ decision-making
in their communities, as well as demonstrate its impact on agricultural water use.

Vicario et al. (2021) combined GIS, hydraulic modeling, agent-based modeling, behavioral
theories and expert judgement. In the GIS, hydraulic modeling, and part of the agent-based
model, local-level water-related variables are modeled. In another part of the agent-based
model, individual-level variables are represented. Multiple methods are used because it was
required to get precise flood maps (hydraulic model) that were after combined with social
components to test flood evacuation strategies (agent-based modeling). Michaelis et al. (2020)
developed and implemented an agent-based model of human-flood interactions. They focused
on the dynamic role of individual and governmental decision making on flood-risk management.
A case study of the Po River (ltaly) is used to illustrate potentials and limitations of the model.

Case Studies, Interviews, and Dynamical Systems Modeling

Buarque et al. (2020) analyzed human-flood interactions in the city of Sao Carlos (Brazil) by
combining observations with system dynamic modeling. Furthermore, Neupane et al. (2021)
explored the potential impact of land-use change on flooding in Columbia (USA) using a
hydrological model. Carr et al. (2021) combined a case study, interviews, literature analysis, and
sociohydrological modeling. The case study and interviews were included to gain a fuller
understanding of water quality and water quality management responses. Bringing together
information from the literature was essential to bridge the gaps in data from the case study.
Sociohydrological modeling was chosen to develop a semi-quantitative "cause and effect
model,” that could show how the system could respond to increases or reductions in support,
resources and capacity. The collection of methods was critical for developing a more complete
understanding of the system being studied.

Laurita et al. (2021) conducted a case study based on stakeholder analysis, hydrological
modeling, and ecosystem services quantification. A stakeholder analysis was performed by
semi-structured interviews and an actor-linkage matrix in order to identify the main actors
involved in the recharge project and to define the dynamics that relate to them. Hydrological
modeling was performed to calculate the local-level water balance, and a service provision
index was used to quantify local ecosystem services. Multiple methods helped analyze a local
water allocation problem by combining social and hydrological inputs, while accounting for
ecosystem services.

4. Synthesis and a Way Forward

This commentary is motivated by two thematic questions that present both a challenge and an
opportunity for the field of sociohydrology. How can one represent and study multiple levels of
human agency and decision-making that often underlie human-water interactions? How can one
do interdisciplinary research that combines multiple different methods from the hydrological and
social sciences? Based on the Hydrological Sciences Journal Virtual Special Issue Advancing
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Sociohydrology, we probed these two themes and generated tentative insights. We highlighted
that, although the spatial and temporal scales are well appreciated by the hydrological sciences
community, not the same can be said about the human organizational scale and how social
processes along this dimension influence outcomes. We argued that the spectrum of human
organizations should be treated as another key analytical dimension and that consideration of
this dimension might hold clues to explaining why a sociohydrological phenomenon occurs in
one context but not in others. We also highlighted that, because of the complexity inherent in
such systems, multiple disciplinary views and methods from the hydrological and social
sciences are likely to be needed to develop understanding. To help guide one’s thinking on how
to organize such interdisciplinary research, we sketched a core structure in the interdisciplinary
approaches to studying sociohydrology.

In addition, we outlined the special issue papers in terms of scales and levels of analyses and
use of multiple methods. Our summary shows that a sizable portion of the special issue papers
employed different concepts and methods from other scientific disciplines, and social sciences
in particular. We also see applications of two or more methods or consideration of cross-level
processes in some studies (although those concerning the human organizational scale are still
rare). This suggests that sociohydrology as a community research program is on the right track
in terms of embracing interdisciplinarity for studying coupled human-water systems. It also
implies that sociohydrology is currently undergoing a long arduous process of building scientific
consensus. As indicated by a science historian Naomi Oreskes (2004), ‘scientific consensus’
about a frontier subject develops over a long-time horizon (e.g., 30-40 years) as many scholars
produce varying results using different ideas, data, and methods. Although confusions can
occur initially, a consensus may emerge over time as data become better and findings become
more concordant. The breadth and variation in the ideas and methods used in the special issue
papers can be viewed as natural manifestations of this long process of building a consensus.

Research Research Research

Program 1 Program 2 Program 1

Method A, Method B, Methad A, Method B,

Theory X Theory Y Research Theory X Theory Y
Program 3

Method C, Method C,
Theory Z Theory Z

Figure 4. Two ways of methodological and disciplinary cross-fertilization for theory
development. In the sequential mode (A), findings from one method or discipline used in a
research program are taken up by subsequent research programs for cross-fertilization. In the
parallel mode (B), a single research program combines multiple methods and disciplinary ideas
in an integrative way from the beginning for cross-fertilization.

As a synthesis and a way forward, we now take a broader perspective to discuss how
disciplinary and methodological cross-fertilization can occur for theory development in
sociohydrology. In the closely related field of social-ecological systems research, benefits and
examples of such cross-fertilization has been demonstrated (Janssen and Anderies 2013).
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Scholars from different disciplines using different methods have all contributed to advancing
knowledge of complex social-ecological systems that might have been unattainable otherwise
(Poteete et al. 2010). In particular, as illustrated by Figure 4, such cross-fertilization generally
occurs in two ways through researches conducted at different levels of analysis in the space,
time, or human organizational scales—sequential and parallel modes (Poteete et al. 2010). We
suggest that these two modes of cross-fertilization are also highly relevant to sociohydrology
and can inform the community research program of sociohydrology on how the works of diverse
groups can collectively lead to theory advancement.

In the sequential mode of cross-fertilization, findings from one method or discipline are revisited
from another methodological or disciplinary perspective for new clues and synthetic ideas
(Figure 4A). This connection usually occurs across two or more independent research programs
over time. The rationale is that, while findings from one method can be difficult to explain or
treated as anomalies given the theory of the time, they can be confirmed using another method
or better explained by applying different research views at a later time. A fitting example of the
sequential mode of cross-fertilization in the context of sociohydrology is the body of knowledge
on the levee effect or the safe-development paradox (White 1942; Montz and Tobin 2008). Case
studies and comparative analysis of small-N cases led scholars to posit that the non-occurrence
of flood events through structural measures is often associated with amplified long-term
vulnerability to flooding in the long run (Burton and Cutter 2008; Ludy and Kondolf 2012;
Bohensky and Leitch 2014; Di Baldassarre et al. 2015). The key contribution of these local level
studies is identifying that this observation may not be an anomaly but, rather, a recurring
system-level pattern. Subsequently, their insights motivated early sociohydrology studies that
constructed and analyzed system-level models at higher levels of spatial and time scales to
uncover underlying mechanisms responsible for the phenomenon (Di Baldassarre et al. 2013;
Viglione et al. 2014). A key model construct employed in these studies to represent human
agency and to connect human and water system is a single societal-level memory of floods. The
resulting system-level insights catalyzed further modeling studies that infused different
disciplinary perspectives and modeling approaches, including a replicator equation capturing
informal social norms and collective action around shared public infrastructure (Yu et al. 2017)
and agent-based models that capture the aspects of institutional arrangements and government
roles (Abebe et al. 2019; Haer et al. 2020). Meanwhile, place-based and historical studies
emerged to place the concept of social memory and the levee effect on a firmer theoretical
foundation (Leong 2018; Fanta et al. 2019; Mondino et al. 2020). These studies conducted
longitudinal surveys, historical document analysis, or interviews and content analysis to
generate empirical insights. New emerging methods are also used to develop insights at higher
levels of the spatial or time scales that were unattainable using conventional methods. For
example, one study analyzed satellite nighttime images to examine the relationship between
human proximity to rivers and the occurrence of flood events (Mard et al. 2018). As can be
seen, findings from one method or discipline regarding the levee effect phenomenon were
sequentially taken up by other studies that used different methods or disciplinary views to
further the knowledge on the phenomenon.

In the parallel mode of cross-fertilization, a single research program is planned from the
beginning to combine complementary methods and to bring together scholars with different
disciplinary and methodological backgrounds (Figure 4B). The advantage of this parallel
approach is that methodological and disciplinary cross-fertilization opportunities can be thought
out from the early research design stages and controlled throughout the project. Perhaps an
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example of this mode of cross-fertilization is a National Science Foundation-sponsored research
project (award number: 1913665) that two of the authors of this commentary participate in. This
project aims to understand how actors across all levels of decision-making in a complex
watershed system, from reservoir operators to flood plain residents, make decisions in response
to increasing hydrological extremes and quicker shifts between wet and dry periods. lts focus is
on understanding how such multiple levels of decision-making may lead to cognitive biases or
systematic errors in judgment in terms of water supply and flood control decisions. Due to the
interdisciplinary nature of the research, this project incorporated multiple methods and
disciplinary views from both the social and hydrological sciences and brought together
hydrologists, political scientists, and systems scientists under a single research program. It is
designed to combine a top-down hydrological model and a generic stylized model of reservoir
operation to systemically investigate the feedback system of public infrastructure providers,
resource users, and the dynamics of water scarcity in a stylized catchment. In parallel, theories
and approaches of political economic analysis are applied to understand how governing rules
and informal norms shape the decision-making of actors situated at multiple levels of decision-
making in a complex watershed system. Following a political economic analysis framework
(Ostrom 2011; Siddiki et al. 2019), water resources-related policy and planning documents of a
study area are analyzed, in conjunction with interviews with stakeholders, to extract knowledge
on how water infrastructure and various social actors situated at different levels of social
systems are interlinked via management rules or protocols of action (e.g., Olivier 2019).

Finally, a caveat should be mentioned that a multi-method approach is not a panacea for
studying all coupled human-water systems in all cases. Combining multiple methods does not
warrant methodologically better research, and the practical challenges associated with the
approach can be substantial and should not be underestimated. There can be a number of
challenges (Poteete et al. 2010). For example, it can be infeasible to combine certain methods
because relevant data may be simply unavailable. Even if data become available, it can still be
difficult to apply an interdisciplinary multi-method approach because considerable effort is
needed upfront to build competency in using and combining different methods. Thus, a more
probable path is bringing in people with different toolkits and theoretical backgrounds to work
together. Also, certain methods can be incompatible because of significant differences in
sample data or underlying assumptions. Care is needed when matching methods for
complementarity. For example, ethnographic studies or qualitative fieldwork and social media-
based big data analysis can be incompatible because there may be a little overlap in their study
sample populations (e.g., rural indigenous people may not actively use social media). Despite
the practical challenges above, our view is that an interdisciplinary multi-method approach is
almost a necessity if we are to achieve theory advancement in the study of human-water
systems. We can attain a more multi-faced understanding by combining multiple disciplinary
perspectives and methods from both the natural and social sciences. Hydrologists need to be
an essential part of this convergence.
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