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Abstract

Events in the world may be caused by other,

unobserved events. We consider sequences of

events in continuous time. Given a probability

model of complete sequences, we propose parti-

cle smoothing—a form of sequential importance

sampling—to impute the missing events in an

incomplete sequence. We develop a trainable

family of proposal distributions based on a type

of bidirectional continuous-time LSTM. Bidirec-

tionality lets the proposals condition on future

observations, not just on the past as in particle

filtering. Our method can sample an ensemble

of possible complete sequences (particles), from

which we form a single consensus prediction that

has low Bayes risk under our chosen loss metric.

We experiment in multiple synthetic and real do-

mains, using different missingness mechanisms,

and modeling the complete sequences in each do-

main with a neural Hawkes process (Mei & Eis-

ner, 2017). On held-out incomplete sequences,

our method is effective at inferring the ground-

truth unobserved events, with particle smoothing

consistently improving upon particle filtering.

1. Introduction

Event streams of discrete events in continuous time are

often partially observed. We would like to impute the

missing events z. Suppose we know the prior distribu-

tion pmodel of complete event streams, as well as the “miss-

ingness mechanism” pmiss(z | complete stream), which

stochastically determines which of the events will not be

observed. One can then use use Bayes’ Theorem, as spelled

out in equation (1) below, to define the posterior distribu-

tion p(z | x) given just the observed events x.1

Why is this important? The ability to impute z is useful

in many applied domains, for example:
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• Medical records. Some patients record detailed symp-

toms, self-administered medications, diet, and sleep.

Imputing these events for other patients would pro-

duce an augmented medical record that could improve

diagnosis, prognosis, treatment, and counseling.

Similar remarks apply to users of life-tracking apps

(e.g., MyFitnessPal) who forget to log some of their

daily activities (e.g., meals, sleep and exercise).

• Competitive games. In poker or StarCraft, a player

lacks full information about what her opponents have

acquired (cards) or done (build mines and train sol-

diers). Accurately imputing hidden actions from

“what I did” and “what I observed others doing” can

help the player make good decisions. Similar remarks

apply to practical scenarios (e.g., military) where mul-

tiple actors compete and/or cooperate.

• User interface interactions. Cognitive events are usu-

ally unobserved. For example, users of an online

news provider (e.g., Bloomberg Terminal) may have

read and remembered a displayed headline whether or

not they clicked on it. Such events are expensive to

observe (e.g., via gaze tracking or asking the user).

Imputing them given the observed events (e.g., other

clicks) would facilitate personalization.

• Other partially observed event streams arise in online

shopping, social media, etc.

Why is it challenging? It is computationally difficult

to reason about the posterior distribution p(z | x). Even

for a simple pmodel like a Hawkes process (Hawkes, 1971),

Markov chain Monte Carlo (MCMC) methods are needed,

and these methods obtain an efficient transition kernel only

by exploiting special properties of the process (Shelton

et al., 2018). Unfortunately, such properties no longer hold

for the more flexible neural models that we will use in this

paper (Du et al., 2016; Mei & Eisner, 2017).

What is our contribution? We are, to the best of our

knowledge, the first to develop general sequential Monte

Carlo (SMC) methods to approximate the posterior dis-

tribution over incompletely observed draws from a neural

point process. We begin by sketching the approach.

2019 by the author(s).
1Bayes’ Theorem can be applied even if pmiss is a missing-

not-at-random (MNAR) mechanism, as is common in this setting.
MNAR is only tricky if we know neither pmodel nor pmiss.
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Figure 1. Stochastically imputing a taxi’s pick-up events ( ) given its observed drop-off events ( ). At this stage, we are trying to

determine the next event after the at time t1—either an unobserved event at t1,1 ∈ (t1, t2) or the next observed event at t2.
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(a1) Both intensities are low (i.e., passen-
gers are scarce at this time of day), so no
event happens to be proposed in (t1, t2).
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(a2) Specifically, the next proposed event
( ) would be somewhere after t2, without
bothering to determine its time precisely.
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(a3) Thus, the next event is @t2; we feed
it into the LSTM, preempting , which is
discarded (line 37 of Algorithm 1).

(a) Particle filtering (section 3.1). We show part of the process of drawing one particle. Above left, the neural Hawkes process’s
LSTM has already read the proposed and observed events at times ≤ t1. Its resulting state determines the model intensities and

of the two event types and , from which the sampler (Algorithm 1 in Appendix C) determines that there is no unobserved event
in (t1, t2). Above right, we continue to extend the particle by feeding @t2 into the LSTM and proposing subsequent events based on
the new intensities after t2. But because was low at t2, the @t2 was unexpected, and that results in downweighting the particle
(line 45 of Algorithm 1). Downweighting recognizes belatedly that proposing no event in (t1, t2) has committed us to a particle that
will be improbable under the posterior, because its complete sequence includes consecutive drop-offs ( @t1, @t2) far apart in time.
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(b1) Since a drop-off at t2 strongly sug-
gests a pick-up before t2, considering the
future increases the intensity of pick-up on
(t1, t2) from to (while decreasing
that of drop-off from to ).

t1 t2 t3

x

z

0 t
(b2) Consequently, the next proposed event
is more likely to be a pick-up in (t1, t2)
than it was in Figure 1a. If we stochasti-
cally generate such an event @t1,1, it is
fed into the original LSTM.
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(b3) The updated state determines the
new model intensities and , and
also combines with to determine the new
proposal intensities and , which
are used to sample the next event.

(b) Particle smoothing (section 3.2) samples from a better-informed proposal distribution: a second LSTM (Appendix D) reads the
future observations from right to left, and its state is used together with to determine the proposal intensities and .

Mei & Eisner (2017) give an algorithm to sample a com-

plete sequence from a neural Hawkes process. Each event

in turn is sampled given the complete history of previous

events. However, this algorithm only samples from the

prior over complete sequences. We first adapt it into a

particle filtering algorithm that samples from the posterior

given all the observed events. The basic idea (Figure 1a) is

to draw the events in sequence as before, but now we force

any observed events to be “drawn” at the appropriate times.

That is, we add the observed events to the sequence as they

happen (and they duly affect the distribution of subsequent

events). There is an associated cost: if we are forced to

draw an observed event that is improbable given its past

history, we must downweight the resulting complete se-

quence accordingly, because evidently the particular past

history that we sampled was inconsistent with the observed

event, and hence cannot be part of a high-likelihood com-

plete sequence. Using this method, we sample many se-

quences (or particles) of different relative weights. This

method applies to any temporal point process.2 Linderman

et al. (2017) apply it to the classical Hawkes process.

Alas, this approach is computationally inefficient. Sam-

pling a complete sequence that is actually probable under

the posterior requires great luck, as the proposal distribu-

tion must have the good fortune to draw only events that

happen to be consistent with future observations. Such

lucky particles would appropriately get a high weight rel-

ative to other particles. The problem is that we will rarely

get such particles at all (unless we sample very many).

To get a more accurate picture of the posterior, this paper

draws each event from a smarter distribution that is condi-

tioned on the future observations (rather than drawing the

event in ignorance of the future and then downweighting

the particle if the future does not turn out as hoped).

2As long as the number of events is finite with probability 1,
and it is tractable to compute the log-likelihood of a complete
sequence and to estimate the log-likelihoods of its prefixes.
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This idea is called particle smoothing (Doucet & Jo-

hansen, 2009). How does it work in our setting? The

neural Hawkes process defines the distribution of the next

event using the state of a continuous-time LSTM that has

read the past history from left to right. When sampling

a proposed event, we now use a modified distribution (Fig-

ure 1b) that also considers the state of a second continuous-

time LSTM that has read the future observations from right

to left. As this modified distribution is still imperfect—

merely a proposal distribution—we still have to reweight

our particles to match the actual posterior under the model.

But this reweighting is not as drastic as for particle filtering,

because the new proposal distribution was constructed and

trained to resemble the actual posterior. Our proposal dis-

tribution could also be used with other point process mod-

els by replacing the left-to-right LSTM state with other in-

formative statistics of the past history.

What other contributions? We introduce an appropri-

ate evaluation loss metric for event stream reconstruction,

and then design a consensus decoder that outputs a single

low-risk prediction of the missing events by combining the

sampled particles (instead of picking one of them).

2. Preliminaries3

2.1. Partially Observed Event Streams

We consider a missing-data setting (Little & Rubin, 1987).

We are given a fixed time interval [0, T ) over which events

can be observed. An event of type k ∈ {1, 2, . . . ,K}
at time t ∈ [0, T ) is denoted by an ordered pair written

mnemonically as k@t. Each possible outcome in our prob-

ability distributions is a complete event sequence in which

each event is designated as either “observed” or “missing.”

We observe only the observed events, denoted by x =
{k1@t1, k2@t2, . . . , kI@tI}, where 0 = t0 < t1 < t2 <
. . . < tI < tI+1 = T . We are given the observation inter-

val [0, T ) in the form of two boundary events k0@t0 and

kI+1@tI+1 at its endpoints, where k0=0 and kI+1=K+1.

Let ki,0@ti,0 be an alternative notation for the observed

event ki@ti. Following this observed event (for any 0 ≤
i ≤ I), there are Ji ≥ 0 unobserved events z =
{ki,1@ti,1, ki,2@ti,2, . . . , ki,Ji

@ti,Ji
}, where ti,0 < ti,1 <

. . . < ti,Ji
< ti+1. We must guess this unobserved se-

quence including its length Ji. Let ⊔ denote disjoint union.

Our hypothesized complete event sequence x ⊔ z is thus

{ki,j@ti,j : 0 ≤ i ≤ I + 1, 0 ≤ j ≤ Ji}, where ti,j in-

creases strictly with the pair 〈i, j〉 in lexicographic order.4

3Our conventions regarding capitalization, boldface, etc. are
inherited from the notation of Mei & Eisner (2017, section 2).

4In general we should allow ti,j to increase non-strictly with
〈i, j〉. But equality happens to have probability 0 under the neural
Hawkes model. So it is convenient to exclude it here, simplifying
notation by allowing x, z,H(t) to be sets, not sequences.

In this paper, we will attempt to guess all of z jointly by

sampling it from the posterior distribution

p(Z = z | X = x)

∝ pmodel(Y = x ⊔ z) · pmiss(Z = z | Y = x ⊔ z)

of a process that first generates the complete sequence

x ⊔ z from a complete data model pmodel (given [0, T )),
and then determines which events to censor with the possi-

bly stochastic missingness mechanism pmiss. The random

variables X , Z , and Y refer respectively to the sets of ob-

served events, missing events, and all events over [0, T ).
Thus Y = X ⊔ Z . Under the distributions we will con-

sider, |Y | is almost surely finite. Notice that z denotes the

set of missing events in Y and Z = z denotes the fact that

they are missing. That said, we will abbreviate our notation

above in the standard way:

p(z | x) ∝ pmodel(x ⊔ z) · pmiss(z | x ⊔ z) (1)

Note that x ⊔ z is simply an undifferentiated sequence of

k@t pairs; the subscripts 〈i, j〉 are in effect assigned by

pmiss, which partitions x ⊔ z into x and z. To explain a se-

quence of 50 observed events, one hypothesis is that pmodel

generated 73 events and then pmiss selected 23 of them to

be missing (as z), leaving the 50 observed events (as x).

In many missing data settings, the second factor of equa-

tion (1) can be ignored because (for the given x) it is known

to be a constant function of z. Then the missing data are

said to be missing at random (MAR). For event streams,

however, the second factor is generally not constant in z

but varies with the number of missing events |z|. Thus, our

unobserved events are normally missing not at random

(MNAR). See discussion in section 5.1 and Appendix A.

2.2. Choice of pmodel

We need a multivariate point process model pmodel(x ⊔ z).
We choose the neural Hawkes process (Mei & Eisner,

2017), which has proven flexible and effective at modeling

many real-world event streams.

Whether an event happens at time t ∈ [0, T ) depends on

the history H(t)
def
= {k′@t′ ∈ x ⊔ z : t′ < t}—the set

of all observed and unobserved events before t. Given

this history, the neural Hawkes process defines an inten-

sity λk(t | H(t)) ∈ R≥0, which may be thought of as the

instantaneous rate at time t of events of type k:

λk(t | H(t)) = fk(v
⊤
k h(t)) (2)

Here fk is a softplus function with k-specific scaling

parameter. The vector h(t) ∈ (−1, 1)D summarizes

(H(t), t). It is the hidden state at time t of a continuous-

time LSTM that previously read the events inH(t) as they

happened. The state of such an LSTM evolves endoge-

nously as it waits between events, so the state h(t) reflects
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not only the sequence of past events but also their timing,

including the gap between the last event inH(t) and t.

As Mei & Eisner (2017) explain, the probability of an event

of type k in the interval [t, t+dt), divided by dt, approaches

(2) as dt→ 0+. Thus, λk is similar to the intensity function

of an inhomogeneous Poisson process. Yet it is not a fixed

parameter: the λk function for times ≥ t is affected by the

previously sampled eventsH(t). See Appendix B.1.

3. Particle Methods

It is often intractable to sample exactly from p(z | x),
because x and z can be interleaved with each other. As

an alternative, we can use normalized importance sam-

pling, drawing many z values from a proposal distribu-

tion q(z | x) and weighting them in proportion to
p(z|x)
q(z|x) .

Figure 1 shows the key ideas in terms of an example. Full

details are spelled out in Algorithm 1 in Appendix C.

Algorithm 1 is a Sequential Monte Carlo (SMC) ap-

proach (Moral, 1997; Liu & Chen, 1998; Doucet et al.,

2000; Doucet & Johansen, 2009). It returns an ensemble of

weighted particles ZM = {(zm, wm)}Mm=1. Each particle

zm is sampled from the proposal distribution q(z | x),
which is defined to support sampling via a sequential pro-

cedure that draws one unobserved event at a time. The cor-

responding wm are importance weights, which are defined

as follows (and built up factor-by-factor in Algorithm 1):

wm ∝
pmodel(x ⊔ zm) pmiss(zm | x ⊔ zm)

q(zm | x)
≥ 0 (3)

where the normalizing constant is chosen to make
∑M

m=1 wm = 1. Equations (1) and (3) imply that we would

have wm = 1/M if we could set q(z | x) equal to p(z | x),
so that the particles were IID samples from the desired pos-

terior distribution. In practice, q will not equal p, but will be

easier than p to sample from. To correct for the mismatch,

the importance weights wm are higher for particles that q
proposes less often than p would have proposed them.

The distribution implicitly formed by the ensemble, p̂(z),
approaches p(z | x) as M → ∞ (Doucet & Johansen,

2009). Thus, for large M , the ensemble may be used to

estimate the expectation of any function f(z), via

Ep(z|x)[f(z)] ≈ Ep̂[f(z)] =
∑M

m=1 wmf(zm) (4)

f(z) may be a function that summarizes properties of the

complete stream x ⊔ z on [0, T ), or predicts future events

on [T,∞) using the sufficient statisticH(T ) = x ⊔ z.

In the subsections below, we will describe two specific

proposal distributions q that are appropriate for the neural

Hawkes process, as we sketched in section 1. These distri-

butions define intensity functions λq over time intervals.

The trickiest part of Algorithm 1 (at line 31) is to sample

the next unobserved event from the proposal distribution

q. Here we use the thinning algorithm (Lewis & Shedler,

1979; Liniger, 2009; Mei & Eisner, 2017). Briefly, this is a

rejection sampling algorithm whose own proposal distribu-

tion uses a constant intensity λ∗, making it a homogeneous

Poisson process (which is easy to sample from). A event

proposed by the Poisson process at time t is accepted with

probability λq(t)/λ∗ ≤ 1. If it is rejected, we move on to

the next event proposed by the Poisson process, continu-

ing until we either accept such an unobserved event or are

preempted by the arrival of the next observed event.

After each step, one may optionally resample a new set of

particles from {zm}
M
m=1 (the RESAMPLE procedure in Al-

gorithm 1). This trick tends to discard low-weight particles

and clone high-weight particles, so that the algorithm can

explore multiple continuations of the high-weight particles.

3.1. Particle Filtering

We already have a neural Hawkes process pmodel that was

trained on complete data. This model uses a neural net to

define an intensity function λp
k(t | H(t)) for any history

H(t) of events before t and each event type k.

The simplest proposal distribution uses this intensity func-

tion to draw the unobserved events. More precisely, for

each i = 0, 1, . . . , I , for each j = 0, 1, 2, . . ., let the next

event ki,j+1@ti,j+1 be the first event generated by any of

the K intensity functions λk(t | H(t)) over the interval

t ∈ (ti,j , ti+1), where H(t) consists of all observed and

unobserved events up through ki,j@ti,j . If no event is gen-

erated on this interval, then the next event is ki+1@ti+1.

This is implemented by Algorithm 1 with smooth = false.

3.2. Particle Smoothing

As motivated in section 1, we would rather draw each un-

observed event according to λk(t | H(t),F(t)) where the

future F(t)
def
= {ki@ti : t < ti ≤ T} consists of all ob-

served events that happen after t. Note the asymmetry with

H(t), which includes observed but also unobserved events.

We use a right-to-left continuous-time LSTM to summa-

rize the future F(t) for any time t into another hidden state

vector h̄(t) ∈ (−1, 1)D
′

. Then we parameterize the pro-

posal intensity using an extended variant of equation (2):

λq
k(t | H(t),F(t)) = fk(v

⊤
k (h(t) +Bh̄(t))) (5)

This extra machinery is used by Algorithm 1 when

smooth = true. Intuitively, the left-to-right h(t), as ex-

plained in Mei & Eisner (2017), reads the historyH(t) and

computes sufficient statistics for predicting events at times

≥ t given H(t). But we wish to predict these events given

H(t) and F(t). Equation (5) approximates this Bayesian

update using the right-to-left h̄(t), which is trained to carry
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back relevant information about future observations F(t).

This is a kind of neuralized forward-backward algorithm.

Lin & Eisner (2018) treat the discrete-time analogue, ex-

plaining why a neural forward pmodel no longer admits

tractable exact proposals as does a hidden Markov model

(Rabiner, 1989) or linear dynamical system (Rauch et al.,

1965). Like them, we fall back on training an approxi-

mate proposal distribution. Regardless of pmodel, particle

smoothing is to particle filtering as Kalman smoothing is to

Kalman filtering (Kalman, 1960; Kalman & Bucy, 1961).

Our right-to-left LSTM has the same architecture as the

left-to-right LSTM used in our pmodel (section 2.2), but a

separate parameter vector. For any time t ∈ [0, T ), it ar-

rives at h̄(t) by reading only the observed events {ki@ti :
t < ti ≤ T}, i.e., F(t), in reverse chronological or-

der. Formulas are given in Appendix D. This architecture

seemed promising for reading an incomplete sequence of

events from right to left, as Mei & Eisner (2017, section

6.3) had already found that this architecture is predictive

when used to read incomplete sequences from left to right.

3.2.1. TRAINING THE PROPOSAL DISTRIBUTION

The particle smoothing proposer q can be trained to

approximate p(z | x) by minimizing a Kullback-Leibler

(KL) divergence. Its left-to-right LSTM is fixed at pmodel,

so its trainable parameters φ are just the parameters of

the right-to-left LSTM together with the matrix B from

equation (5). Though p(z | x) is unknown, the gradient of

inclusive KL divergence between q(z | x) and p(z | x) is

∇φKL(p || q) = E
z∼p(z|x)[−∇φ log q(z | x)] (6)

and the gradient of exclusive KL divergence is:

∇φKL(q || p) = Ez∼q[∇φ

(
1
2 (log q(z | x)− b)

2
)

] (7a)

b = log pmodel(x ⊔ z) + log pmiss(z | x ⊔ z) (7b)

where log pmodel(x ⊔ z) is given in Appendix B.1,

log q(z | x) is given in Appendix C.1, and pmiss(z | x ⊔ z)
is assumed to be known to us for any given pair of x and z.

Minimizing inclusive KL divergence aims at high recall—

q(z | x) is adjusted to assign high probabilities to all of the

good hypotheses (according to p(z | x)). Conversely, min-

imizing exclusive KL divergence aims at high precision—

q(z | x) is adjusted to assign low probabilities to poor re-

constructions, so that they will not be proposed. We seek

to minimize the linearly combined divergence

Div = β KL(p‖q) + (1− β)KL(q‖p) with β ∈ [0, 1] (8)

and training is early-stopped when the divergence stops de-

creasing on the held-out development set.

But how do we measure these divergences between q(z | x)
and p(z | x)? Of course, we actually want the expected

divergence when the observed sequence x ∼ the true dis-

tribution. Thus, we sample x by starting with a fully ob-

served sequence from our training examples and then sam-

pling a partition x, z from the known missingness mecha-

nism pmiss.
5 The inclusive expectation in (6) uses this x and

z. For the exclusive expectation in (7), we keep this x but

sample a new z from our proposal distribution q(· | x).

Notice that minimizing exclusive divergence here is essen-

tially the REINFORCE algorithm (Williams, 1992), which

is known to have large variance. In practice, when tuning

our hyperparameters (Appendix G.2), β = 1 in (8) gave

the best results. That is—perhaps unsurprisingly—our ex-

periments effectively avoided REINFORCE altogether and

placed all the weight on the inclusive KL, which has no

variance issue. More training details including a bias and

variance discussion can be found in Appendix G.2.

Appendix H discusses situations where training on incom-

plete data by EM is possible.

4. A Loss Function and Decoding Method

It is often useful to find a single hypothesis ẑ that mini-

mizes the Bayes risk, i.e., the expected loss with respect to

the unknown ground truth z
∗. This procedure is called min-

imum Bayes risk (MBR) decoding and can be approxi-

mated with our ensemble of weighted particles:

ẑ = argmin
z∈Z

∑

z
∗∈Z p(z∗ | x)L(z, z∗) (9a)

≈ argmin
z∈Z

∑M
m=1 wmL(z, zm) (9b)

where L(z, z∗) is the loss of z with respect to z
∗. This pro-

cedure for combining the particles into a single prediction

is sometimes called consensus decoding. We now propose

a specific loss function L and an approximate decoder.

4.1. Optimal Transport Distance

The loss of z is defined as the minimum cost of editing z

into the ground truth z
∗. To accomplish this edit, we must

identify the best alignment—a one-to-one partial matching

a—of the events in the two sequences. We require any two

aligned events to have the same type k. We define a as a

collection of alignment edges (t, t∗) where t and t∗ are the

times of the aligned events in z and z
∗ respectively. An

alignment edge between a predicted event at time t (in z)

and a true event at time t∗ (in z
∗) incurs a cost of |t− t∗| to

move the former to the correct time. Each unaligned event

in z incurs a deletion cost of Cdelete, and each unaligned

event in z
∗ incurs an insertion cost of Cinsert. Now

L(z, z∗) = min
a∈A(z,z∗)

D(z, z∗,a) (10)

5To get more data for training q, we could sample more parti-
tions of the fully observed sequence. In this paper, we only sample
one partition. Note that the fully observed sequence is a real ob-
servation from the true complete data distribution (not the model).
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where A(z, z∗) is the set of all possible alignments be-

tween z and z
∗, and D(z, z∗,a) is the total cost given

the alignment a. Notice that if |z| 6= |z∗|, any alignment

leaves some events unaligned; also, rather than align two

faraway events, it is cheaper to leave them unaligned if

Cdelete + Cinsert < |t − t∗|. Algorithm 2 in Appendix E

uses dynamic programming to compute the loss (10) and its

corresponding alignment a, similar to edit distance (Lev-

enshtein, 1965) or dynamic time warping (Sakoe & Chiba,

1971; Listgarten et al., 2005). In practice we symmetrize

the loss by specifying equal costs Cinsert = Cdelete = C.

4.2. Consensus Decoding

Since aligned events must have the same type, consensus

decoding (9b) decomposes into separately choosing a set

ẑ
(k)

of type-k events for each k = 1, 2, . . . ,K, based on

the particles’ sets z
(k)
m of type-k events. Thus, we simplify

the presentation by omitting (k) throughout this section.

The loss function L defined in section 4.1 warrants:

Theorem 1. Given {zm}
M
m=1, if we define z⊔ =

⊔M
m=1 zm, then ∃ẑ ⊆ z⊔ such that
∑M

m=1 wmL(ẑ, zm) = minz∈Z

∑M
m=1 wmL(z, zm)

That is to say, there exists one subsequence of z⊔ that

achieves the minimum Bayes risk.

The proof is given in Appendix F: it shows that if ẑ mini-

mizes the Bayes risk but is not a subsequence of z⊔, then

we can modify it to either improve its Bayes risk (a con-

tradiction) or keep the same Bayes risk while making it a

subsequence of z⊔ as desired.

Now we have reduced this decoding problem to a combi-

natorial optimization problem:

ẑ = argmin
z⊆z⊔

∑M
m=1 wmL(z, zm) (11)

which is probably NP-hard, by analogy with the Steiner

string problem (Gusfield, 1997).

Our heuristic (Algorithm 3 of Appendix F) seeks to itera-

tively improve ẑ by (1) using Algorithm 2 to find the opti-

mal alignment am of ẑ with each zm, and then (2) repeating

the following sequence of 3 phases until ẑ does not change.

Each phase tries to update ẑ to decrease the weighted dis-

tance
∑M

m=1 wmD(ẑ, zm,am) which by Theorem 1 is an

upper bound of the Bayes risk
∑M

m=1 wmL(ẑ, zm):6

Move Phase For each event in ẑ, move its time to the

weighted median (using weights wm) of the times of

all ≤ M events that am aligns it to (if any), while

keeping the alignment edges. This selects the new

time that minimizes
∑M

m=1 wmD(ẑ, zm,am).

6Note these phases compute D(ẑ, zm,am) but not L(ẑ, zm),
so they need not call the dynamic programming algorithm.

Delete Phase For each event in ẑ, delete it (together

with any related edges in each am) if this decreases
∑M

m=1 wmD(ẑ, zm,am).
Insert Phase If we inserted t into ẑ, we would also

modify each am to align t to the closest un-

aligned event in zm (if any) provided that this de-

creased D(ẑ, zm,am). Let ∆(t) be the resulting

reduction in
∑M

m=1 wmD(ẑ, zm,am). Let t∗ =
argmaxt∈z⊔,t/∈ẑ

∆(t). While ∆(t∗) > 0, insert t∗.

The move or delete phase can consider events in any order,

or in parallel; this does not change the result.

5. Experiments

We compare our particle smoothing method with the strong

particle filtering baseline—our neural version of Linder-

man et al. (2017)’s Hawkes process particle filter—on mul-

tiple real-world and synthetic datasets. See Appendix G

for training details (e.g., hyperparameter selection). Py-

Torch code can be found at https://github.com/

HMEIatJHU/neural-hawkes-particle-smoothing.

5.1. Missing-Data Mechanisms

We experiment with missingness mechanisms of the form

pmiss(z | x ⊔ z) =
∏

ki@ti∈z

ρki

∏

ki@ti∈x

(1− ρki
) (12)

meaning that each event in the complete stream x ⊔ z is

independently censored with probability ρk that only de-

pends on its event type k.7 We consider both deterministic

and stochastic missingness mechanisms. For the determin-

istic experiments, we set ρk for each k to be either 0 or 1,

so that some event types are always observed while others

are always missing. Then pmiss(z | x ⊔ z) = 1 if z consists

of precisely the events in x ⊔ z that ought to go missing,

and 0 otherwise. For our stochastic experiments, we simply

set ρk = ρ regardless of the event type k and experiment

with ρ = 0.1, 0.3, 0.5, 0.7, 0.9. Then equation (12) can be

written as pmiss(z | x ⊔ z) = (1 − ρ)|x|ρ|z|, whose value

decreases exponentially in the number of missing events

|z|. As this depends on z, the stochastic setting is definitely

MNAR (not MCAR as one might have imagined).

5.2. Datasets

The datasets that we use in this paper range from short se-

quences with mean length 15 to long ones with mean length

> 300. For each of the datasets, we possess fully observed

data that we use to train the model and the proposal dis-

tribution.8 For each dev and test example, we censored

7Appendix H discusses how ρ could be imputed when com-
plete and incomplete data are both available.

8The focus of this paper is on inference (imputation) under a
given model, so training the model is simply a preparatory step.
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out some events from the fully observed sequence, so we

present the x part as input to the proposal distribution but

we also know the z part for evaluation purposes. Fully

replicable details of the dataset preparation can be found

in Appendix G, including how event types are defined and

which event types are missing in the deterministic settings.

Synthetic Datasets We first checked that we could suc-

cessfully impute unobserved events that are generated from

known distributions. That is, when the generating distribu-

tion actually is a neural Hawkes process, could our method

outperform particle filtering in practice? Is the performance

consistent over multiple datasets drawn from different pro-

cesses? To investigate this, we synthesized 10 datasets,

each of which was drawn from a different neural Hawkes

process with randomly sampled parameters.

Elevator System Dataset (Crites & Barto, 1996). A

multi-floor building is often equipped with multiple ele-

vator cars that follow cooperative strategies to transport

passengers between floors (Lewis, 1991; Bao et al., 1994;

Crites & Barto, 1996). In this dataset, the events are which

elevator car stops at which floor. The deterministic case of

this domain is representative of many real-world coopera-

tive (or competitive) scenarios—observing the activities of

some players and imputing those of the others.

New York City Taxi Dataset (Whong, 2014). Each

medallion taxi in New York City has a sequence of time-

stamped pick-up and drop-off events, where different loca-

tions have different event types. Figure 1 shows how we

impute the pick-up events given the drop-off events (the

deterministic missingness case).

5.3. Data Fitting Results

First, as an internal check, we measure how probable each

ground truth reference z∗ is under the proposal distribution

constructed by each method, i.e., log q(z∗ | x). As shown

in Figure 2, the improvement from particle smoothing is

remarkably robust across 12 datasets, improving nearly ev-

ery sequence in each dataset. The plots for the determinis-

tic missingness mechanisms are so boringly similar that we

only show them in Appendix G.6 (Figure 4).

5.4. Decoding Results

For each x, we now make a prediction by sampling an en-

semble of M = 50 particles (section 3)9 and constructing

their consensus sequence ẑ (section 4.2). We use multino-

mial resampling since otherwise the effective sample size

However, inference could be used to help train on incomplete data
via the EM algorithm, provided that the missingness mechanism
is known; see Appendix H for discussion.

9Increasing M would increase both effective sample size
(ESS) and runtime.

(a) Synthetic Data (b) Elevator System (c) NYC Taxi

Figure 2. Scatterplots of neural Hawkes particle smoothing (y-

axis) vs. particle filtering (x-axis) with a stochastic missingness

mechanism (ρ = 0.5). Each point represents a single test se-

quence, and compares the values of log q(z∗ | x) / |z∗|. Larger

values mean that the proposal distribution is better at proposing

the ground truth z
∗. Each dataset’s scatterplot is converted to a

cloud using kernel density estimation, with the centroid denoted

by a black dot. A double-arrowed line indicates the improvement

of particle smoothing over filtering. For the synthetic datasets,

we draw ten clouds on the same figure and show the line for the

dataset where smoothing improves the most. As we can see, the

density is always well concentrated above y = x. That is, this

is not merely an average improvement: nearly every ground truth

z
∗ gets higher proposal probability! Particle smoothing performs

well even on datasets where particle filtering performs badly.

is very low (only 1–2 on some datasets).10 We evaluate ẑ

by its optimal transport distance (section 4.1) to the ground

truth z
∗. Note that ∀a, we can decompose D(ẑ, z∗,a) as

C · ( |ẑ|+ |z∗| − 2|a|
︸ ︷︷ ︸

total insertions+deletions

) +
∑

(t,t∗)∈a
|t− t∗|

︸ ︷︷ ︸

total distance moved

(13)

Letting a be the alignment that minimizes D(ẑ, z∗,a), the

former term measures how well ẑ predicts which events

happened, and the latter measures how well ẑ predicts when

those events happened. Different choices of C yield dif-

ferent ẑ with different trade-offs between these two terms.

Intuitively, when C ≈ 0, the decoder is free to insert

and delete event tokens; as C increases, ẑ will tend to in-

sert/delete fewer event tokens and move more of them.

Figure 3 plots the performance of particle smoothing ( )

vs. particle filtering ( ) for the stochastic missingness

mechanisms, showing the two terms above as the x and

y coordinates. The very similar plots for the deterministic

missingness mechanisms are in Appendix G.6 (Figure 5).11

5.5. Sensitivity to Missingness Mechanism

For the stochastic missingness mechanisms, we also did

experiments with different values of missing rate ρ =
0.1, 0.3, 0.7, 0.9. Our particle smoothing method consis-

tently outperforms the filtering baseline in all the experi-

ments (Figure 6 in Appendix G.7), similar to Figure 3.

10Any multinomial resampling step drives the ESS metric to
M . This cannot guarantee better samples in general, but resam-
pling did improve our decoding performance on all datasets.

11We show the 2 real datasets only. The figures for the 10 syn-
thetic datasets are boringly similar to these.
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(a) Elevator System (b) NYC Taxi

Figure 3. Optimal transport distance of particle smoothing ( )

vs. particle filtering ( ) on test data with a stochastic miss-

ingness mechanism (ρ = 0.5). In each figure, the x-axis is

the total number of deletions and insertions in the test dataset,∑N

n=1(|ẑn| + |z∗n| − 2|an|), and the y-axis is the total move-

ment cost,
∑N

n=1

∑
(t,t∗)∈an

|t − t∗|. Both axes are normalized

by the true total number of missing events
∑N

n=1 |z
∗
n|, so the

x-axis shows a fraction and the y-axis shows an average time dif-

ference. On each dataset, we show one per C. According to

equation (13), (C, 1), denoted by , turns out to be the gradi-

ent of
∑N

n=1 D(ẑn, z
∗
n,an) at this . The shows the actual

improvement obtained by switching to particle smoothing (which

is, indeed, an improvement because it has positive dot product

with the gradient ). The Pareto frontier (convex hull) of the

symbols dominates the Pareto frontier of the symbols—lying

everywhere to its left—which means that our particle smoothing

method outperforms the filtering baseline.

5.6. Runtime

The theoretical runtime complexity is O(MI) where M is

the number of particles and I is the number of observed

events. In practice, we generate the particles in parallel,

leading to acceptable speeds of 300-400 milliseconds per

event for the final method. More details about the wall-

clock runtime can be found in Appendix G.8.

6. Discussion and Related Work

To our knowledge, this is the first time a bidirectional re-

current neural network has been extended to predict events

in continuous time. Bidirectional architectures have proven

effective at predicting linguistic words and their properties

given their left and right contexts (Graves et al., 2013; Bah-

danau et al., 2015; Peters et al., 2018; Devlin et al., 2018):

in particular, Lin & Eisner (2018) recently applied them to

particle smoothing for discrete-time sequence tagging.

Previous work that infers unobserved events in continu-

ous time exploits special properties of simpler models, in-

cluding Markov jump processes (Rao & Teh, 2012; 2013),

continuous-time Bayesian networks (Fan et al., 2010) and

Hawkes processes (Shelton et al., 2018). Such properties

no longer hold for our more expressive neural model, ne-

cessitating our approximate inference method.

Metropolis-Hastings would be an alternative to our particle

smoothing method. The transition kernel could propose a

single-event change to z (insert, delete, or move). Unfor-

tunately, this would be quite slow for a neural model like

ours, because any proposed change early in the sequence

would affect the LSTM state and hence the probability of

all subsequent events. Thus, a single move takes O(|x⊔z|)
time to evaluate. Furthermore, the Markov chain may mix

slowly because a move that changes only one event may of-

ten lead to an incoherent sequence that will be rejected. The

point of our particle smoothing is essentially to avoid such

rejection by proposing a coherent sequence of events, left

to right but considering future x events, from an approxi-

mation q(z | x) to the true posterior. (One might build a

better Metropolis-Hastings algorithm by designing a tran-

sition kernel that makes use of our current proposal distri-

bution, e.g., via particle Gibbs (Chopin & Singh, 2015).)

We also introduced an optimal transport distance between

event sequences, which is a valid metric. It essentially re-

gards each event sequence as a 0-1 function over times, and

applies a variant of Wasserstein distance (Villani, 2008)

or Earth Mover’s distance (Kantorovitch, 1958; Levina &

Bickel, 2001). Such variants are under active investigation

(Benamou, 2003; Chizat et al., 2015; Frogner et al., 2015;

Chizat et al., 2018). Our version allows event insertion and

deletion during alignment, where these operations can only

apply to an entire event—we cannot align half of an event

and delete the other half. Due to these constraints, dynamic

programming rather than a linear programming relaxation

is needed to find the optimal transport. Xiao et al. (2017)

also proposed an optimal transport distance between event

sequences that allows event insertion and deletion; how-

ever, their insertion and deletion costs turn out to depend

on the timing of the events in (we feel) a peculiar way.

We also gave a method to find a single “consensus” re-

construction with small average distance to our particles.

This problem is related to Steiner string (Gusfield, 1997),

which is usually reduced to multiple sequence alignment

(MSA) (Mount, 2004) and heuristically solved by progres-

sive alignment construction using a guide tree (Feng &

Doolittle, 1987; Larkin et al., 2007; Notredame et al., 2000)

and iterative realignment of the initial sequences with ad-

dition of new sequences to the growing MSA (Hirosawa

et al., 1995; Gotoh, 1996). These methods might also be

tried in our setting. For us, however, the ith event of type

k is not simply a character in a finite alphabet such as

{A,C,G,T} but a time that falls in the infinite set [0, T ).
The substitution cost between two events of type k is then

their time difference.

On multiple synthetic and real-world datasets, our method

turns out to be effective at inferring the ground truth se-

quence of unobserved events. The improvement of particle

smoothing upon particle filtering is substantial and consis-

tent, showing the benefit of training a proposal distribution.
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Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. Un-

balanced optimal transport: Geometry and Kantorovich

formulation. arXiv preprint arXiv:1508.05216, 2015.
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Appendices

A. Little & Rubin (1987)’s Missing-Data

Taxonomy

Little & Rubin (1987)’s classical taxonomy of MNAR,

MAR, and MCAR mechanisms12 was meant for graphical

models. A graphical model has a fixed set of random vari-

ables. The missingness mechanisms envisioned by Little

& Rubin (1987) simply decide which of those variables are

suppressed in a joint observation. For them, an observed

sample always reveals which variables were observed, and

thus it reveals how many variables are missing.

In contrast, our incomplete event stream is most simply de-

scribed as a single random variable Y that is partly miss-

ing. If we tried to describe it using |x⊔z| random variables

with values like k@t, then the observed sample x would

not reveal the number of missing variables |z| nor the total

number of variables |x⊔ z|. There would not be a fixed set

of random variables.

To formulate our model in Little & Rubin’s terms, we

would need a fixed set of uncountably many random vari-

ables Kt where t ranges over the set of times. Kt = k if

there is an event of type k at time t, and otherwise Kt = 0.

For some finite set of times t, we observe a specific value

Kt > 0, corresponding to some observed event. For all

other times t, the value of Kt is missing, meaning that we

do not know whether or not there is any event at time t,
let alone the type of such an event. A crucial point is that

0 values are never observed in our setting, because we are

never told that an event did not happen at time t. In con-

trast, a value > 0 (corresponding to an event) may be ei-

ther observed or unobserved. Thus, the probability that Kt

is missing depends on whether Kt > 0, meaning that this

setting is MNAR.

We preferred to present our model (section 2.1) in terms

of the finite sequences that are generated or read by our

LSTMs. This simplified the notation later in the paper. But

it does not cure the MNAR property: see section 5.1.

Again, our presentation does not allow a Little & Rubin

(1987) style formulation in terms of a finite fixed set of ran-

dom variables, some of which have missing values. That

formulation would work if we knew the total number of

events I , and were simply missing the value ki and/or ti
for some indices i. But in our setting, the number of events

12Missing not at random (MNAR) makes no assumptions
about the missingness mechanism. Missing at random (MAR) is
a modeling assumption: determining from data whether the MAR
property holds is “almost impossible” (Mohan & Pearl, 2018).
Missing completely at random (MCAR) is a simple special case
of MAR.

is itself missing: after each observed event i, we are miss-

ing Ji events where Ji is itself unknown. In other words,

we need to impute even the number of variables in the com-

plete sequence x ⊔ z, not just their values.

Our definition of MAR in section 2.1 is the correct general-

ization of Little & Rubin (1987)’s definition: namely, it is

the case in which the second factor of equation (1) can be

ignored. The ability to ignore that factor is precisely why

anyone cares about the MAR case. This was mentioned at

equation (1), and is discussed in conjunction with the EM

algorithm in Appendix H.

Since missing-event settings tend to violate this desirable

MAR property, all our experiments address MNAR prob-

lems. As Little & Rubin (1987) explained, the more general

case of MNAR data cannot be treated without additional

knowledge. The difficulty is that identifying pmodel jointly

with pmiss becomes impossible. If you observe few 50-year-

olds on your survey, you cannot know (beyond your prior)

whether that’s because there are few 50-year-olds, or be-

cause 50-year-olds are very likely to omit their age.

Fortunately, we do have additional knowledge in our set-

ting. Joint identification of pmodel and pmiss is unnecessary

if either (1) one has separate knowledge of the missingness

distribution pmiss, or (2) one has separate knowledge of the

complete-data distribution pmodel. In fact, both (1) and (2)

hold in the MNAR experiments of this paper (sections 5.1–

5.2). But in general, if we know at least one of the distribu-

tions, then we can still infer the other (Appendix H).

A.1. Obtaining Complete Data

Readers might wonder why (2) above would hold in a

missing-data situation. In practice, where would we ob-

tain a dataset of complete event streams (as in section 5.2)

for supervised training of pmodel(x ⊔ z)?

In some event stream scenarios, a training dataset of com-

plete event streams can be collected at extra expense. This

is the hope in the medical and user-interface scenarios in

section 1. For our imputation method to work on partially

observed streams x ⊔ z, their complete streams should be

distributed like the ones in the training dataset.

Other scenarios could be described as having eventually

complete streams. Complete information about each event

stream eventually arrives, at no extra expense, and that

event stream can then be used for training. For example,

in the competitive game scenario in section 1), perhaps

including wars and political campaigns, each game’s true

complete history is revealed after the game is over and the

need for secrecy has passed. While a game is underway,

however, some events are still missing, and imputing them

is valuable. Both (1) and (2) hold in these settings.
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An interesting subclass of eventual completeness arises in

monitoring settings such as epidemiology, journalism, and

sensor networks. These often have reporting delays, so

that one observes each event only some time after it hap-

pens. Yet one must make decisions at time t < T based on

the events that have been observed so far. This may involve

imputing the past and predicting the future. The missing-

ness mechanism for these reporting delays says that more

recent events (soon before the current time t) are more

likely to be missing. The probability that such an event

would be missing depends on the specific distribution of

delays, which can be learned with supervision once all the

data have arrved.

We point out that in all these cases, the “complete” streams

x⊔ z that are used to train pmodel do not actually have to be

causally complete. It may be that in the real world, there

are additional latent events w that cause the events in x⊔ z
or mediate their interactions. Mei & Eisner (2017, section

6.3) found that the neural Hawkes process was expressive

enough in practice to ignore this causal structure and sim-

ply use x ⊔ z streams to directly train a neural Hawkes

process model pmodel(x ⊔ z) of the marginal distribution

of x ⊔ z, without explicitly considering w in the model or

attempting to sum over w values. The assumption here is

the usual assumption that x ⊔ z will have the same distri-

bution in training and test data, and thus w will be missing

in both, with the same missingness mechanism in both. By

contrast, z is missing only in test data. It is not possible

to impute w because it was not modeled explicitly, nor ob-

served even in training data. However, it remains possible

to impute z in test data based on its distribution in training

data.

B. Complete Data Model Details

Our complete data model, such as a neural Hawkes pro-

cess, gives the probability pmodel(x ⊔ z) that x ⊔ z will be

the complete set of events on a given interval [0, T ). this

probability can always be written in the factored form

( I∏

i=0

Ji∏

j=0

p(ki,j@ti,j | H(ti,j))
)

· p(@≥T | H(T )) (14)

where p(k@t | H(t)) denotes the probability density that

the first event followingH(t) (which is the set of events oc-

curring strictly before t) will be k@t, and p(@ ≥ t′ | H(t))
denotes the probability that this event will fall at some time

≥ t′.

Thus, the final factor of (14) is the probability that there are

no more events on [0, T ) following the last event of x ⊔ z.

The initial factor p(k0@t0 | H(t0)) is defined to be 1, since

the boundary event k0@t0 is given (see section 2.1).

B.1. Neural Hawkes Process Details

In this section we elaborate slightly on section 2.2. Again,

λk(t | H(t)) is defined by equation (2) in terms of the

hidden state of a continuous-time left-to-right LSTM. We

spell out the continuous-time LSTM equations here; more

details about them may be found in Mei & Eisner (2017).

h(t) = oi ⊙ (2σ(2c(t))− 1) for t ∈ (ti−1, ti] (15)

where the interval (ti−1, ti] has consecutive observations

ki−1@ti−1 and ki@ti as endpoints. At ti, the continuous-

time LSTM reads ki@ti and updates the current (decayed)

hidden cells c(t) to new initial values ci+1, based on

the current (decayed) hidden state h(ti), as follows:13

ii+1 ← σ (Wiki +Uih(ti) + di) (16a)

f i+1 ← σ (Wfki +Ufh(ti) + df) (16b)

zi+1 ← 2σ (Wzki +Uzh(ti) + dz)− 1 (16c)

oi+1 ← σ (Woki +Uoh(ti) + do) (16d)

ci+1 ← f i+1 ⊙ c(ti) + ii+1 ⊙ zi+1 (17a)

ci+1 ← f i+1 ⊙ ci + ii+1 ⊙ zi+1 (17b)

δi+1 ← f (Wdki +Udh(ti) + dd) (17c)

The vector ki ∈ {0, 1}
K is the ith input: a one-hot encod-

ing of the new event ki, with non-zero value only at the

entry indexed by ki. Then, c(t) for t ∈ (ti−1, ti] is given

by (18), which continues to control h(t) except that i has

now increased by 1).

c(t)
def
= ci+1 +

(
ci+1 − ci+1

)
exp (−δi+1 (t− ti)) (18)

On the interval (ti, ti+1], c(t) follows an exponential curve

that begins at ci+1 (in the sense that limt→t+
i
c(t) = ci+1)

and decays, as time t increases, toward ci+1 (which it

would approach as t→∞, if extrapolated).

The intensity λk(t | H(t)) ∈ R≥0 may be thought of as

the instantaneous rate of events of type k at time t. More

precisely, as dt → 0+, the expected number of events of

type k occurring in the interval [t, t + dt), divided by dt,
approaches λk(t | H(t)). If no event of any type occurs in

this interval (which becomes almost sure as dt→ 0+), one

may still occur in the next interval [t + dt, t + 2dt), and

so on. The intensity functions λk(t | H(t)) are continuous

on intervals during which no event occurs (note that H(t)
is constant on such intervals). They jointly determine a

distribution over the time of the next event after H(t), as

used in every factor of equation (14). As it turns out (Mei

13The upright-font subscripts i, f , z and o are not variables, but
constant labels that distinguish different W, U and d tensors.
The f and i in equation (17b) are defined analogously to f and i

but with different weights.
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& Eisner, 2017), log pmodel(Y = x ⊔ z) becomes

∑

ℓ

log λkℓ
(tℓ | H(tℓ))−

∫ T

t=0

K∑

k=1

λk(t | H(t))dt (19)

where the first sum ranges over all events kℓ@tℓ in x ⊔ z.

We can therefore train the parameters θ of the λk func-

tions by maximizing log-likelihood on training data. The

first term of equation (19) can be differentiated by back-

propagation. Mei & Eisner (2017) explain how simple

Monte Carlo integration (see also our Appendix C.3) gives

an unbiased estimate of the second term of equation (19),

and how the random terms in the Monte Carlo estimate can

similarly be differentiated to give a stochastic gradient.

C. Sequential Monte Carlo Details

Our main algorithm is presented as Algorithm 1. It covers

both particle filtering and particle smoothing, with optional

multinomial resampling.

In this section, we provide some additional details and

notes on the design and operation of the pseudocode.

C.1. Explicit Formula for the Proposal Distribution

The proposal distribution q(z | x) factors as follows, and

the pseudocode uses this factorization to construct z by

sampling its individual events from left to right:

I∏

i=0

( Ji∏

j=1

(
q(ki,j@ti,j | H(ti,j),F(ti,j))

)
(20)

· q(@≥ ti+1 | H(ti+1),F(ti,Ji
))
)

Here the notation for q(· | ·) is the same as that for p(· | ·) in

Appendix B. However, the q(· | ·) terms are proposal prob-

abilities that condition on different evidence—not only the

set H(t) of all events (observed and unobserved) at times

< t, but also the set F(t) of events at times > t.14 All

of the proposal probabilities q(· | ·) are determined by the

intensity functions in (5).

We can sample z from q(z | x) in chronological order:

for each 0 ≤ i ≤ I in turn, draw a sequence of Ji un-

observed events that follow the observed event ki@ti. The

probabilities of these Ji events are the inner factors in equa-

tion (20). This sequence ends (thereby determining Ji) if

the next proposed event would have fallen after ti+1 and

thus is preempted by the observed event ki+1@ti+1. The

probability of so ending the sequence corresponds to the

q(@≥ ti+1 | · · · ) factor in equation (20).

14In particular, the second q factor above is the probability that
the event at time ti,Ji

is the last one before ti+1, given knowledge
of all past events up through and including the one at ti,Ji

, and all
future observed events starting with the one at ti+1.

Equation (20) resembles equation (14), but it conditions

each proposed unobserved event not only on the history but

also on the future. Section 3.2.1 tries to train q(z | x) to

approximate the target distribution p(z | x), by making

q(· | H,F) ≈ p(· | H,F). In other words, at each step,

q should draw the next proposed event approximately from

the posterior of the model p, even though we have no closed

form computation for that posterior.

Just as equation (14) yields the formula (19) for log pmodel

when we use a neural Hawkes process model, equation (20)

yields the following formula for log q(z | x) when we use

the proposal intensities from (5):
∑

ℓ

log λq
kℓ
(tℓ | H(tℓ),F(tℓ))

−

∫ T

t=0

K∑

k=1

λq
k(t | H(t),F(t)) dt (21)

where the first sum ranges over all events kℓ@tℓ in z only.

C.2. Managing LSTM State Information

The push and pop operations shown in the pseudocode

must be implemented so that they also have the effect of

updating LSTM configurations.

Our pmodel uses a left-to-right LSTM to construct its state

after reading all events so far from left to right (section 2.2).

Since each particle posits a different event sequence, we

maintain a separate LSTM configuration for each particle

m = 1, 2, . . . ,M . If smooth = true, our q additionally

uses a right-to-left LSTM whose state has read all future

observed events from right to left (section 3.2). We main-

tain the configuration of this LSTM as well.

Specifically, in Algorithm 1, when we push an event to the

stack Hm (lines 5 and 46), we update the configuration of

particle m’s left-to-right LSTM (including gates, cell mem-

ories and states).

If smooth = true, then when we push an event to the stack

F (line 8), we update the configuration of the right-to-left

LSTM. Moreover, before updating that configuration, we

push it onto an parallel stack, so that we can revert the up-

date when we later pop the event from F (line 36).

These LSTM configurations provide the h(t) and h̄(t) vec-

tors for the computation of intensities λp
k(t) and λq

k(t)
in equations (2) and (5). These intensities are needed in

lines 43 and 45 of the algorithm.

C.3. Integral Computation

Mei & Eisner (2017, section B.2) construct a Monte Carlo

estimator of the
∫ T

0
integral in equation (19), by evaluating

∑

k λk(t | H(t)) · T at a random t ∼ Unif(0, 1). While

even one such sample would provide an unbiased estimate,
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Algorithm 1 Sequential Monte Carlo — Neural Hawkes Particle Filtering/Smoothing

Input: observed sequence x = k0@t0, . . . , kI+1@tI+1 with t0 = 0, tI+1 = T ;

model p; missingness mechanism pmiss; proposal distribution q; number of particles M ;

boolean flags smooth and resample

Output: collection {(z1, w1), . . . , (zM , wM )} of weighted particles

1: procedure SEQUENTIALMONTECARLO(x, p, pmiss, q,M, smooth, resample)

2: for m = 1 to M : ⊲ initialize the M weighted particles (zm, wm)

3: zm ← empty seq; wm ← 1
4: ⊲ history Hm will be a stack of the past events, namely k0@t0 followed by the prefix of x ⊔ zm generated so far

5: Hm ← empty stack; push k0@t0 ontoHm ⊲ boundary event 0 (not generated by pmodel)

6: F ← empty stack ⊲ F is a stack of the future observed events, with the next event on top

7: for i = I downto 0 : ⊲ initialize F ; later, as we reach each event, we’ll pop it from F and push it onto Hm (∀m)

8: push ki+1@ti+1 onto F

9: for i = 0 to I : ⊲ propose unobserved events on interval (ti, ti+1), then observe next event ki+1@ti+1

10: for m = 1 to M :

11: DRAWSEGMENT(i,m) ⊲ destructively extend zm, wm,Hm with events on (ti, ti+1]

12: if resample & LOWESS() : RESAMPLE() ⊲ optional multinomial resampling replaces all weighted particles

13: return {(zm, wm/
∑M

m=1 wm)}Mm=1 ⊲ M particles with weights normalized as in equation (3)

14: procedure LOWESS ⊲ check if effective sample size is low

15: ESS← (
∑M

m=1 wm)2/
∑M

m=1(wm)2

16: if ESS < M/2 : return true

17: return false

18: procedure RESAMPLE ⊲ has access to global variables

19: for m = 1 to M : ⊲ often draws multiple copies of good (high-weight) particles, 0 copies of bad ones

20: draw m̃ ∈ {1, . . . ,M} where probability of choosing any m̃ is proportional to wm̃; then set z̃m ← zm̃

21: for m = 1 to M :

22: zm ← z̃m; wm ← 1 ⊲ update particles and their weights

23: procedure DRAWSEGMENT(i,m) ⊲ has access to global variables

24: ⊲ algorithm input p gives info to define intensity function λp

k(t)
def
= λk(t | Hm)

25: ⊲ algorithm input q gives info to define intensity function λq

k(t)
def
= λk(t | Hm,F), or simply λq

k(t) = λp

k(t) if smooth = false

26: ⊲ these functions consult the state of a left-to-right LSTM that’s read Hm and possibly a right-to-left LSTM that’s read F

27: ⊲ we also define the total intensity functions λp(t)
def
=

∑K

k=1 λ
p

k(t) and λq(t)
def
=

∑K

k=1 λ
q

k(t)

28: i′ ← i; j ← 0; t← ti ⊲ ti can be found as the time of the top element of Hm (currently an observed event)

29: repeat ⊲ each iteration adds a new event to Hm with index 〈i′, j〉 = 〈i, 1〉, . . . , 〈i, Ji〉, 〈i+ 1, 0〉

30: j ← j + 1
31: repeat ⊲ thinning algorithm (see Mei & Eisner, 2017)

32: find any λ∗ ≥ sup {λq(t′) : t′ ∈ (t, ti+1]} ⊲ e.g., old λ∗ still works if i unchanged; see Appendix C.4

33: draw ∆ ∼ Exp(λ∗), u ∼ Unif(0, 1)
34: t += ∆ ⊲ time of next proposed event (before thinning)

35: if t > ti+1 : ⊲ ti+1 can be found as the time of the top element of F (always an observed event)

36: k@t← pop F ; i′ ← i+ 1; j ← 0; ⊲ preempt proposed event by ki+1@ti+1 (popped from future into present)

37: break

38: until uλ∗ ≤ λq(t) ⊲ thinning: accept proposed time t only with prob
λq(t)
λ∗ ≤ 1

39: ⊲ we’ve now chosen next event time ti′,j to be t; let tprev denote the time of the top element of Hm

40: if i′ = i : ⊲ it’s a missing event

41: draw k ∈ {1, . . . ,K} where probability of k is proportional to λq
k(t) ⊲ choose event type for the proposed time

42: append k@t to zm ⊲ add our proposed event ki′,j@ti′,j

43: wm ← wm / (exp (−
∫ t

t′=tprev
λq(t′) dt′) · λq

k(t)) ⊲ new factor within q in denominator of (3); see Appendix C.3

44: if i′ ≤ I : ⊲ skip final boundary event I + 1 (not generated by pmodel)

45: wm ← wm · (exp (−
∫ t

t′=tprev
λp(t′) dt′) · λp

k(t)) ⊲ new factor within pmodel in numerator of (3); see Appendix C.3

46: push k@t ontoHm ⊲ event 〈i, j〉 just generated now becomes part of the past

47: wm ← wm · pmiss((k@t ∈ Z ) = (i′ = i) | Hm) ⊲ new factor within pmiss in numerator of (3): missing or obs

48: until i′ = i+ 1
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they draw N = O(I) such samples, where I is the number

of events, and average over these samples. This reduces

the variance of the estimator, which decreases as O(1/N).
Notice that because they sample the N time points uni-

formly on [0, T ), longer intervals between observed events

will tend to contain more points, which is appropriate.

Mei & Eisner (2017) (Appendix C.2) found that rather few

samples could be used to estimate the integral. Indeed, even

sampling at only I time points gave a standard deviation of

log-likelihood—for the whole sequence—that was on the

order of 0.1% of absolute (Mei, p.c.).

Our particle methods in the present paper involve compar-

ing probabilities. For each observed sequence x, we use

(3) to reweight the M particles according to their probabil-

ity under the model divided by their probability under the

proposal distribution. This means contrasting two proba-

bilities for each particle (the p and q probabilities). It also

means comparing the resulting probability ratios across all

M particles, resulting in the normalized weights of equa-

tion (3).

For each of the M particles, the pmodel factor in equation (3)

is obtained by exponentiating equation (19), while the q
factor is obtained by exponentiating equation (21). This

means that each of these 2M factors contains the exp of

an integral. To make all of these integral estimates more

comparable and thus reduce the variance in the importance

weights wm (equation (3)), we evaluate all 2M integrals at

the same set of N time points (see Appendix G.8). This

practice ensures a “paired comparison” among particles:

wm and wm′ differ only because they have different in-

tensities at the sampled points, and not also because they

sample at different points.

In Algorithm 1, these integral estimates are accumulated

gradually at lines 43 and 45. The idea is that particle

zm partitions [0, T ) into the intervals between successive

events of x⊔ zm. Thus, the (estimated) integral over [0, T )
can be expressed by summing the (estimated) integrals over

these intervals. The estimate over an interval uses only the

small subset of the N time points that fall into the interval.

When we exponentiate the integrals to convert from log-

probabilities into probabilities, this sum turns into a prod-

uct, as shown at lines 43 and 45.

This gradual accumulation method gives the same result as

if we had computed each integral “all at once” before ex-

ponentiating. However, it is useful to begin weighting the

particles before they are complete. After each event ki@ti
(for 0 ≤ i ≤ I + 1), the partial particles up through this

event already have partial weights wm. It is these partial

weights that are used by the RESAMPLE procedure (when

resample = true).

In all experiments in this paper, we first sampled I + 1

points uniformly on [0, T ), for an average of only 1 time

point per interval. In addition, for each interval (ti, ti+1),
we sampled 1 point uniformly on that interval if it did not

yet contain any points. Thus, N ∈ [I + 1, 2I + 1].

Sampling at more points might be wise in settings where

there are many missing events per interval (e.g., large ρ
in section 5.1). This is especially true when resample =
true. Resampling allows us to try multiple extensions of a

high-weight particle; at the next resampling step, we prefer

to keep the extensions that fared best. The danger is that

if only a few sampling points happen to fall between re-

sampling steps, then we may make a poor (high-variance)

estimate of which extensions fared best.

For our setting, however, we found only negligible changes

in the results by increasing to 5 time points per interval

(i.e., sampling 5I+5 points at the first step). Our evaluation

metric (the minimum of (13) over all alignments a) became

slightly better for some values of C and slightly worse for

others, but never by more than 2% relative. This is about

the same variance that we get across different runs (with

different random seeds) that have 1 time point per interval.

Thus, we report only the results of the faster scheme. We

caution that other settings might be more sensitive to this

hyperparameter settings. Thus, it might be wise to elimi-

nate the hyperparameter altogether by estimating the inte-

grals at lines 43 and 45 with a more sophisticated Monte

Carlo integration method, such as the adaptive partitioning

method of Baran et al. (2008), which can bound the additive

error of the estimate with high probability. This approach

no longer provides a “paired comparison” across particles,

nor does it need one.

C.4. Choice of λ∗

How do we construct the upper bound λ∗ (line 32 of Al-

gorithm 1)? For particle filtering, we follow the recipe in

Appendix B.3 of Mei & Eisner (2017): we can express

λ∗ = fk(maxt g1(t)+ . . .+maxt gn(t)) where each sum-

mand vkdhd(t) = vkd · oid · (2σ(2cd(t)) − 1) is upper-

bounded by maxc∈{cid,cid}
vkd · oid · (2σ(2c) − 1). Note

that the coefficients vkd may be either positive or negative.

For particle smoothing, we simply have more summands

inside fk so λ∗ = fk(maxt g1(t) + . . . + maxt gn(t) +
maxt ḡ1(t)+ . . .+maxt ḡn̄(t)) where each extra summand

ukdh̄d(t) = ukd · ōid · (2σ(2c̄d(t)) − 1) is upper-bounded

by maxc∈{c̄id,c̄id}
ukd · ōid · (2σ(2c) − 1) and each ukd is

the dth element of vector v
⊤
k B (equation (5)). Note that

the ōid, c̄id, c̄id of newly added summands ḡ are actually

from the right-to-left LSTM while those of g are from the

left-to-right LSTM.
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C.5. Missing Data Factors in p

Recall that the joint model (1) includes a factor pmiss(z |
x ⊔ z), which appears in the numerator of the unnormal-

ized importance weight (3). Regardless of the form of this

factor, it could be multiplied into the particle’s weight w̃m

at the end of sampling (line 13 of Algorithm 1).

However, for some pmiss distributions, there is a better way.

Algorithm 1 assumes that the missingness of each event

k@t depends only on that event and preceding events,15 so

that pmiss(z | x ⊔ z) factors as
∏

ℓ∈indices(z)

pmiss(kℓ@tℓ ∈ Z | {kℓ′@tℓ′ : ℓ
′ ≤ ℓ}) (22)

·
∏

ℓ∈indices(x)

pmiss(kℓ@tℓ 6∈ Z | {kℓ′@tℓ′ : ℓ
′ ≤ ℓ})

Algorithm 1 can thus incrementally incorporate the subfac-

tors of equation (22), and does so at line 47 of Algorithm 1.

For example, with the missingness mechanism in our ex-

periments, equation (12), the pmiss factor in line 47 is ρk if

the event is unobserved (that is, i′ = i) or 1 − ρk if it is

observed.

These subfactors are therefore taken into account as the

particles are constructed, and thus play a role in resam-

pling.

C.6. Optional Missing Data Factors in q

We can optionally improve the particle filtering proposal

intensities to incorporate the pmiss factor discussed in Ap-

pendix C.5 (in which case that factor will be multiplied

into the denominator of (3) and not just the numerator).

This makes q(z | x) better match p(z | x): it means we

will rarely posit an unobserved event that would rarely have

gone missing.

Specifically, if a completed-data event k@t would have

probability ρk(t | H(t)) of going missing given the pre-

ceding events H(t), it is wise to define λq
k(t | H(t)) =

λp
k(t | H(t)) · ρk(t | H(t)).

We do include this extra ρk factor when defining λq
k for our

experiments (section 5); that is, we modify the definition

of λq
k at line 25. The factor is particularly simple in our

experiments, where ρk is constant for each k.

Was this factor really necessary in the case of particle

smoothing? One might say no: particle smoothing al-

ready tries to ensure through training that the proposal

distribution will incorporate pmiss. That is because sec-

tion 3.2.1 aims to train λq
k(t | H(t),F(t)) so that the re-

sulting q(z | x) ≈ p(z | x), and the posterior distribution

15This assumption could trivially be relaxed to allow it to also
depend on the missingness of the preceding events, and/or on the
future observed events F(t).

p(z | x) does condition on the missingness of z.

Still, if the ρk factor is known, why not include it explicitly

in the proposal distribution, instead of having to train the

BiLSTM to mimic it? Thus, in effect, we have modified

the right-hand side of equation (5) to include a factor of ρk.

This yields a more expressive and better-factored family of

proposal distributions: missingness is now handled by the

known ρk factor and the BiLSTM does not have to explain

it. Additionally, our proposal distribution becomes more

conservative about proposing missing events, because hav-

ing a lot of missing events is a posteriori improbable. In

other words, pmiss as given in equation (12) falls off with

the number of missing events |z|.

Modifying equation (5) in this way is particularly useful in

the special case ρk = 0 (i.e., event type k is never missing

and should not be proposed). There, it enforces the hard

constraint that λq
k = 0 (something that the BiLSTM by it-

self could not achieve); and since this constraint is enforced

regardless of the BiLSTM parameters, the events of type k
appropriately become irrelevant to the training of the BiL-

STM, which can focus on predicting other event types.

C.7. Events with Equal Times

In contrast to the notation in the main paper, our pseu-

docode is written in terms of sequence of events, rather

than sets of events. As a result, it can handle the gener-

alization noted in footnote 4, where a 0 delay is allowed

between an event and the preceding event in the complete

sequence. If this occurs, it means that multiple events have

fallen at the same time—yet they still have a well-defined

order in which they are generated and read by the LSTM.

An unobserved event may have a 0 delay, if line 33 pro-

poses ∆ = 0 and the proposal is accepted. The neural

Hawkes model can in principle make such a proposal, but it

has zero probability. However, it might have positive prob-

ability under a slightly different model.

An observed event may also have a 0 delay, if t = ti+1 at

line 35 and the proposal is accepted.16 In this way, it is pos-

sible for the proposal distribution to propose any number of

unobserved events at time ti+1 and immediately before the

actual observed event ki+1@ti+1. However, once the pro-

posal distribution happens to propose ∆ > 0, the actual

observed event ki+1@ti+1 will preempt the proposal, end-

ing this sequence of Ji unobserved events.

16It may seem improbable to propose t = ti+1 exactly, but if
ti = ti+1, then proposing an unobserved event between these two
observed events is just a case of proposing with 0 delay, as in the
previous paragraph.
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D. Right-to-Left Continuous-Time LSTM

Here we give details of the right-to-left LSTM from sec-

tion 3.2. Note that this set of formulas is nearly the same

as that of Appendix B.1—after all, it is a continuous-time

LSTM that has the same architecture as the one in the neu-

ral Hawkes process. The difference is that it reads only the

observed events, and does so from right to left. The two

LSTMs do not share parameters.

The hidden state h̄(t) is continually obtained from the

memory cells c(t) as the cells decay (in reversed time):

h̄(t) = oi ⊙ (2σ(2c̄(t))− 1) for t ∈ [ti−1, ti) (23)

where the interval [ti−1, ti) has consecutive observations

ki−1@ti−1 and ki@ti as endpoints. At ti, the continuous-

time LSTM reads ki@ti and updates the current (decayed)

hidden cells c̄(t) to new initial values c̄i−1, based

on the current (decayed) hidden state h̄(ti), as follows:

īi−1 ← σ
(
Wiki +Uih̄(ti) + di

)
(24a)

f̄ i−1 ← σ
(
Wfki +Uf h̄(ti) + df

)
(24b)

z̄i−1 ← 2σ
(
Wzki +Uzh̄(ti) + dz

)
− 1 (24c)

ōi−1 ← σ
(
Woki +Uoh̄(ti) + do

)
(24d)

c̄i−1 ← f̄ i−1 ⊙ c̄(ti) + īi−1 ⊙ z̄i−1 (25a)

c̄i−1 ← f̄ i−1 ⊙ c̄i + īi−1 ⊙ z̄i−1 (25b)

δ̄i−1 ← f
(
Wdki +Udh̄(ti) + dd

)
(25c)

The vector ki ∈ {0, 1}
K is the ith input: a one-hot encod-

ing of the new event ki, with non-zero value only at the

entry indexed by ki. Then, c̄(t) for t ∈ [ti−1, ti) is given

by (26), which continues to control h̄(t) except that i has

now decreased by 1.

c̄(t)
def
= c̄i−1 +

(
c̄i−1 − c̄i−1

)
exp

(
−δ̄i−1 (ti − t)

)
(26)

On the interval [ti−1, ti), c̄(t) follows an exponential curve

that begins at c̄i−1 (in the sense that limt→t−
i
c̄(t) = c̄i−1)

and decays, as time t decreases, toward c̄i−1.

E. Optimal Transport Distance Details

Pseudocode is presented in Algorithm 2 for finding optimal

transport distance and the corresponding alignment. In the

remainder of this section, we prove that optimal transport

distance is a valid metric.

It is trivial that OTD is non-negative, since movement, dele-

tion and insertion costs are all positive.

It is also trivial to prove that the following statement is true:

L(z1, z2) = 0⇔ z1 = z2, (27)

where z1 and z2 are two sequences. If z1 is not identi-

cal to z2, the distance of them must be larger than 0 since

we have to do some movement, insertion or deletion to

make them exactly matched, so the right direction of equa-

tion (27) holds. If the distance between z1 and z2 is zero,

which means they are already matched without any opera-

tions, z1 and z2 must be identical, thus the left direction of

equation (27) holds.

OTD is symmetric, that is, L(z1, z2) = L(z2, z1), if we

set Cinsert = Cdelete. Suppose that a is an alignment be-

tween z1 and z2. It’s easy to see that the only differ-

ence between D(z1, z2,a) and D(z2, z1,a)
17 is that the

insertion and deletion operations are exchanged. For ex-

ample, if we delete a token ti ∈ z1 when calculating

D(z1, z2,a), we should insert a token at ti to z2 when cal-

culating D(z2, z1,a). If we set Cinsert = Cdelete, we have

D(z1, z2,a) = D(z2, z1,a), ∀a ∈ A(z1, z2). (28)

Therefore, we could obtain

L(z1, z2) = min
a
∗∈A(z1,z2)

D(z1, z2,a
∗)

= min
a
∗∈A(z1,z2)

D(z2, z1,a
∗) = L(z2, z1)

Finally let’s prove that OTD satisfies triangle inequality,

that is:

L(z1, z2) + L(z2, z3) ≥ L(z1, z3), (30)

where z1, z2 and z3 are three sequences. This property

could be proved intuitively. Suppose that the operations

on z1 with minimal costs to make z1 matched to z2 are

denoted by o1, o2, . . . , on1
, and those on z2 to make z2

matched to z3 are denoted by o′1, o
′
2, . . . , o

′
n2

. oi could be

a deletion, insertion or movement on a token. To make z1

matched to z3, one possible way, which is not necessar-

ily the optimal, is to do o1, o2, . . . , on1
, o′1, o

′
2, . . . , o

′
n2

on

z1. Since the total cost is the accumulation of the cost of

each operation, and the operations on z1 above to make z1

matched to z3 might not be optimal, the triangle inequality

equation (30) holds.

F. Approximate MBR Details

Our approximate consensus decoding algorithm is given as

Algorithm 3. In the remainder of this section, we prove

Theorem 1 from section 4.2, namely:

Theorem 1. Given {zm}
M
m=1, if we define z⊔ =

⊔M
m=1 zm, then ∃ẑ ⊆ z⊔ such that

∑M
m=1 wmL(ẑ, zm) = minz∈Z

∑M
m=1 wmL(z, zm)

That is to say, there exists one subsequence of z⊔ that

achieves the minimum Bayes risk.

17We abuse the notation a, which we think could represent both
the movement from z1 to z2 and from z2 to z1.
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Algorithm 2 A Dynamic Programming Algorithm to Find Optimal Transport Distance

Input: proposal ẑ; reference z
∗

Output: optimal transport distance d; alignment a

1: procedure OTD(ẑ, z∗)

2: d← 0; a← empty collection {}
3: for k ← 1 to K :

4: d(k),a(k) ← ALIGN(ẑ(k), z∗(k))
5: d← d+ d(k); a← a ∪ a

(k)

6: return d,a

7: procedure ALIGN(ẑ
(k), z∗(k))

8: Î ← |ẑ(k)|; I∗ ← |z∗(k)| ⊲ ẑ
(k) = t̂1, . . . , t̂Î and z

∗(k) = t∗1, . . . , t
∗

I∗

9: D← zero matrix with (Î + 1) rows and (I∗ + 1) columns

10: P← empty matrix with Î rows and I∗ columns ⊲ back pointers

11: for î← 1 to Î : ⊲ transport reference of length 0 to proposal of length î

12: Dî,0 ← Dî−1,0 + Cdelete ⊲ delete t̂î (and prefixes are matched)

13: for i∗ ← 1 to I∗ : ⊲ transport preference of length i∗ to proposal of length 0

14: D0,i∗ ← D0,i∗ + Cinsert ⊲ insert t̂i∗ = t∗i∗ to decode (and their prefixes are matched)

15: for î← 1 to Î : ⊲ proposal prefix of length î

16: for i∗ ← 1 to I∗ : ⊲ to match reference of length i∗

17: Ddelete ← Dî−1,i∗ + Cdelete ⊲ if the event token at t̂î is deleted from ẑ
(k)

18: Dinsert ← Dî,i∗−1 + Cinsert ⊲ if an event token at t∗i∗ is inserted to ẑ
(k)

19: Dmove ← Dî−1,i∗−1 + |t̂̂i − t∗i∗ | ⊲ if the event at t∗i∗ of z∗
(k)

is aligned to event at t̂î of ẑ(k)

20: Dî,i∗ ← min{Dinsert, Ddelete, Dmove} ⊲ choose the edit that yields the shortest distance

21: Pî,i∗ ← argmine∈{insert,delete,move} De ⊲ e represents the kind of edition

22: î← Î; i∗ ← I∗;a← empty collection{}
23: while î > 0 and i∗ > 0 : ⊲ back trace

24: if Pî,i∗ = delete : ⊲ token t̂î is deleted.

25: î← î− 1

26: if Pî,i∗ = insert : ⊲ a token at t∗i∗ is inserted

27: i∗ ← i∗ − 1

28: if Pî,i∗ = move : ⊲ token t∗i∗ is aligned to t̂î

29: î← î− 1; i∗ ← i∗ − 1
30: a← a ∪ {(t̂̂i, t

∗
i∗)}

31: return DÎ,I∗ ,a

Proof. Here we assume that there is only one type of event.

Since the distances of different types of events are calcu-

lated separately, our conclusion is easy to be extended to

the general case.

Suppose ẑ is an optimal decode, that is,
M∑

m=1

wmL(zm, ẑ) = min
z∈Z

M∑

m=1

wmL(zm, z).

If ẑ ⊆ z⊔, the proof is done. If not, we can choose some

ti /∈ z⊔. Let tl = max{t ∈ z⊔ : t < ti} and tr = min{t ∈
z⊔ : t > ti}. (These sets are nonempty because z⊔ al-

ways contains the endpoints 0 and T .) We will show that

if we move ti around, as long as ti ∈ [tl, tr], the weighted

optimal transport distance, i.e.
∑M

m=1 wmL(zm, ẑ), will

neither increase nor decrease.

Suppose â = argmin
am∈A(zm,ẑ)

∑M
m=1 wmD(zm, ẑ,am).

Let’s use r(t) to indicate the weighted transport distance

of ẑ with fixed alignment if we move ti to t, that is,

r(t)
def
=

M∑

m=1

wmD(zm, ẑ(t), â),

where ẑ(t) is the sequence ẑ with ti moved to t. Because

ẑ(ti) is an optimal decode, and â is the optimal alignment

for ẑ(ti), we should have

r(ti) = min
t

r(t).

Note that the transport distance is comprised of three parts:

deletion, insertion and alignment costs. Since every â is

fixed, if we change t, only the alignment cost that related
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Algorithm 3 Approximate Consensus Decoding

Input: collection of weighted particles ZM = {(zm, wm)}Mm=1

Output: consensus sequence ẑ with low
∑M

m=1 wmL(ẑ, zm)
1: procedure APPROXMBR(ZM )

2: ẑ← empty sequence

3: for k = 1 to K :

4: ẑ
(k) ← DECODEK({(z

(k)
m , wm)}Mm=1); ẑ← ẑ ⊔ ẑ

(k) ⊲ decode for type-k by calling DECODEK

5: return ẑ

6: procedure DECODEK(ZM )

7: ⊲ ZM actually means Z
(k)
M = {(z

(k)
m , wm)}Mm=1 throughout the procedure; zm is constant

8: z← argmax
z∈{zm}M

m=1
wm ⊲ init decode as highest weighted particle and it is global

9: repeat

10: for m = 1 to M : ⊲ Align Phase

11: dm,am ← ALIGN(z, zm) ⊲ call method in Algorithm 2; dm,am are global

12: rmin ←
∑

m wmdm ⊲ track the risk of current z

13: z, {dm,am}
M
m=1 ← MOVE(z, {zm, dm,am}

M
m=1) ⊲ see Algorithm 4

14: z, {dm,am}
M
m=1 ← DELETE(z, {zm, dm,am}

M
m=1) ⊲ see Algorithm 4

15: z, {dm,am}
M
m=1 ← INSERT(z, {zm, dm,am}

M
m=1) ⊲ see Algorithm 4

16: until
∑M

m=1 wmdm = rmin ⊲ risk stops decreasing

17: return z

to token t will affect r(t). This part of r(t) is linear to t,
since we have a constraint t ∈ [tl, tr], which guarantees

that it will not cross any other tokens in z⊔.

Since r(t) is linear to t ∈ [rl, tr] and r(t) gets minimized

at ti ∈ (tl, tr), we conclude that

r(t) = r(ti) = Const, ∀t ∈ [tl, tr].

Since r(t) is the upper bound of the weighted optimal trans-

port distance
∑M

m=1 wmL(zm, ẑ(t)), which also gets the

same minimal value at ti ∈ (tl, tr) as r(t), we could con-

clude that ∀t ∈ [tl, tr]:

M∑

m=1

wmL(zm, ẑ(t)) =

M∑

m=1

wmL(zm, ẑ(ti)) = Const

Therefore we could move token ti to either tl or tr without

increasing the Bayes risk. We could do this movement for

each ti /∈ z⊔ to get a new decode ẑ ⊆ z⊔, which is also an

optimal decode.

G. Experimental Details

In this section, we elaborate on the details of data genera-

tion, processing, and experimental results.

In all of our experiments, the distribution pmodel is trained

on the complete (uncensored) version of the training data.

The system is then asked to complete the incomplete (cen-

sored) version of the test (or dev) data. For particle smooth-

ing, the proposal distribution is trained using both the com-

plete and incomplete versions of the training data, as ex-

plained at the end of section 3.2.1. We used the Adam algo-

rithm with its default settings (Kingma & Ba, 2015). Adam

is a stochastic gradient optimization algorithm that contin-

ually adjusts the learning rate in each dimension based on

adaptive estimates of low-order moments. Each training

example for Adam is a complete event stream x ⊔ z over

some time interval [0, T ). We stop training early when

we detect that log-likelihood has stopped increasing on the

held-out development dataset. We do no other regulariza-

tion.

G.1. Dataset Statistics

Table 1 shows statistics about each dataset that we use in

this paper.

G.2. Training Details

We used single-layer LSTMs (Hochreiter & Schmidhu-

ber, 1997), selected the number D of hidden nodes of the

left-to-right LSTM, and then D′ of the right-to-left one

from a small set {16, 32, 64, 128, 256, 512, 1024} based

on the performance on the dev set of each dataset. The

best-performing (D,D′) pairs are (256, 128) on Synthetic,

(256, 256) on Elevator (256, 256) on NYC Taxi, but we

empirically found that the model performance is robust to

these hyperparameters. For the chosen (D,D′) pair on

each dataset, we selected β based on the performance on

the dev set, and β = 1.0 yields the best performance across

all the datasets we use. For learning, we used Adam with
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Algorithm 4 Subroutines for Approximate Consensus Decoding

1: procedure MOVE(z, {zm, dm,am}
M
m=1) ⊲ Move Phase

2: for t in z :

3: for t′ ∈ {t′ : (t′, t) ∈
⋃M

m=1 am} : ⊲ may replace t with t′ which is aligned to t

4: (∀m)d′m ← dm
5: for (t′′,m) ∈ {(t′′,m) : (t′′, t) ∈ am,m ∈ {1, . . . ,M}} :

6: d′m ← d′m − |t
′′ − t|+ |t′′ − t′|

7: if
∑

m wmd′m <
∑

m wmdm :

8: (∀m)dm ← d′m; t← t′ ⊲ t move to t′ for lower risk

9: return z, {dm,am}
M
m=1

10: procedure DELETE(z, {zm, dm,am}
M
m=1) ⊲ Delete Phase

11: for t in z : ⊲ may delete this event

12: for m = 1 to M : ⊲ update each dm
13: if ∃t′ ∈ zm and (t′, t) ∈ am : ⊲ find the only, if any, t′ ∈ zm that is aligned to t

14: ⊲ if we delete t and its alignment (t′, t), dm decreases by the alignment cost (because we do not need to align it)

15: ⊲ but increases by an insertion cost (because we need to insert an event at t to match zm)

16: d′m ← dm + Cinsert − |t
′ − t|

17: else ⊲ otherwise, this event has been deleted when matching with zm

18: d′m ← dm − Cdelete ⊲ we do not need to pay deletion cost when matching with zm if we do not have this event at t in z

19: if
∑

m wmd′m <
∑

m wmdm :

20: delete t from z; (∀m) delete (t′, t) from am; dm ← d′m
21: return z, {dm,am}

M
m=1

22: procedure INSERT(z, {zm, dm,am}
M
m=1) ⊲ Insert Phase

23: repeat

24: t← None, ∆← −∞
25: for tc ∈

⊔

m zm such that tc /∈ z : ⊲ may insert tc if it is not in z yet

26: for m = 1 to M :

27: z
′
m ← {t

′ : ∀t′′, (t′′, t′) /∈ am and t′ ∈ zm} ⊲ find t′ in zm that is not aligned yet

28: if z′ is not empty and mint′∈z
′

m
|t′ − tc| < Cinsert + Cdelete : ⊲ if there is any that is close enough to tc

29: d′m ← dm − Cinsert +mint′∈z
′

m
|t′ − tc|; a

′
m ← am ∪ {(tc, t

′)} ⊲ align the closest one to tc
30: else

31: d′m ← dm + Cdelete; a′m ← am

32: if
∑

m wmdm −
∑

m wmd′m > ∆ :

33: t← tc; ∆←
∑

m wmdm −
∑

m wmd′m

34: if ∆ > 0 :

35: z← z ⊔ {t}; (∀m)am ← a
′
m; dm ← d′m

36: until ∆ ≤ 0
37: return z, {dm,am}

M
m=1
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DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

SYNTHETIC 4 ≈ 74967 ≈ 7513 ≈ 7507 10 ≈ 15 20
NYCTAXI 10 157916 15826 15808 22 32 38
ELEVATOR 10 313043 31304 31206 235 313 370

Table 1. Statistics of each dataset. We write “≈ N” to indicate that N is the average value over multiple datasets of one kind (synthetic);

the variance is small in each such case.

its default settings (Kingma & Ba, 2015).

Our Monte Carlo integral estimates are in fact unbiased

(Appendix C.3). As a result, our stochastic gradient esti-

mate is also unbiased, as required (assuming that the com-

plete data is distributed according to pmodel). Why? Since

β = 1, our stochastic gradient is simply equation (6). No

particle filtering or smoothing is used to estimate equa-

tion (6), because we train it using complete data, as ex-

plained in the last long paragraph of section 3.2.1. The

only randomness is the integral over [0, T ) (similar to the

one in equation (19)) that is required to estimate the term

log q(z | x) in equation (6): as just noted, this integral esti-

mate is unbiased.

It is true that if β < 1, we would compute the exclusive

KL gradient using particle filtering or smoothing with M
particles, and this would introduce bias in the gradient.

Nonetheless, since the bias vanishes as M → ∞, it would

be possible to restore a theoretical convergence guarantee

by increasing M at an appropriate rate as SGD proceeds

(Spall, 2005, page 107).18

G.3. Details of the Synthetic Datasets

Each of the ten neural Hawkes processes has its param-

eters sampled from Unif[−1.0, 1.0]. Then a set of event

sequences is drawn from each of them via the plain vanilla

thinning algorithm (Mei & Eisner, 2017). For each of the

ten synthetic datasets, we took K = 4 as the number of

event types. To draw each event sequence, we first chose

the sequence length I (number of event tokens) uniformly

from {11, 12, . . . , 20} and then used the thinning algorithm

to sample the first I events over the interval [0,∞). For

subsequent training or testing, we treated this sequence (ap-

propriately) as the complete set of events observed on the

interval [0, T ) where T = tI , the time of the last generated

event.

We generate 5000, 500 and 500 sequences for each train-

18SGD methods succeed, both theoretically and practically,
with even high-variance estimates of the batch gradient (e.g.,
where each stochastic estimate is derived from a single randomly
chosen training example). Thus, one should be fine with a noisy
sampling-based gradient as long as it is unbiased.

ing, dev, and test set respectively. For the missingness

mechanism: in the deterministic settings, we censor all

events of type 3 and 4—in other words, we set ρ1 = ρ2 = 0
and ρ3 = ρ4 = 1; in the stochastic settings, we set

ρk = 0.5 for all k.

G.4. Elevator System Dataset Details

We examined our method in a simulated 5-floor building

with 2 elevator cars. During a typical afternoon down-peak

rush hour (when passengers go from floor-2,3,4,5 down to

the lobby), elevator cars travel to each floor and pick up

passengers that have (stochastically) arrived there accord-

ing to a traffic profile (Bao et al., 1994). Each car will also

avoid floors that already are or will soon be taken care of

by the other. Having observed when and where car-1 has

stopped (to pick up or drop off passengers) over this hour,

we are interested in when and where car-2 has stopped dur-

ing the same time period. In this dataset, each event type is

a tuple of (car number, floor number) so there are K = 10
in total in this simulated 5-floor building with 2 elevator

cars.

Passenger arrivals at each floor are assumed to follow a in-

homogeneous Poisson process, with arrival rates that vary

during the course of the day. The simulations we use fol-

lows a human-recorded traffic profile (Bao et al., 1994)

which dictates arrival rates for every 5-minute interval dur-

ing a typical afternoon down-peak rush hour. Table 2

shows the mean number of passengers (who are going to

the lobby) arriving at floor-2,3,4,5 during each 5-minute

interval.

We simulated the elevator behavior following a naive base-

line strategy documented in Crites & Barto (1996).19 In

details, each car has a small set of primitive actions. If

it is stopped at a floor, it must either “move up” or “move

down”. If it is in motion between floors, it must either “stop

at the next floor” or “continue past the next floor”. Due to

passenger expectations, there are two constraints on these

actions: a car cannot pass a floor if a passenger wants to

get off there and cannot turn until it has serviced all the

19We rebuilt the system in Python following the original For-
tran code of Crites & Barto (1996).
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car buttons in its current direction. Three additional ac-

tion constraints were made in an attempt to build in some

primitive prior knowledge: 1) a car cannot stop at a floor

unless someone wants to get on or off there; 2) it cannot

stop to pick up passengers at a floor if another car is al-

ready stopped there; 3) given a choice between moving up

and down, it should prefer moving up (since the down-peak

traffic tends to push the cars toward the bottom of the build-

ing). Because of this last constraint, the only real choices

left to each car are the stop and continue actions, and the

baseline strategy always chooses to continue. The actions

of the elevator cars are executed asynchronously since they

may take different amounts of time to complete.

We repeated the (one-hour) simulation 700 times to collect

the event sequences, each of which has around 300 time-

stamped records of which car stops at which floor. We ran-

domly sampled disjoint train, dev and test sets with 500,

100 and 100 sequences respectively.

For the missingness mechanism: in the deterministic set-

tings, we set ρk = 0 for k = 1, . . . , 5 and ρk = 1 for

k = 6, . . . , 10 (meaning that the events (of arriving at floor

1, 2, . . . , 5) of car 1 are all observed, but those of car 2 are

not); in the stochastic settings, we set ρk = 0.5 for all k.

G.5. New York City Taxi Dataset Details

The New York City Taxi dataset (section 5.2) includes

189,550 taxi pick-up and drop-off records in the city of

New York in 2013. Each record has its medallion ID, driver

license and time stamp. Each combination of medallion

ID and driver license naturally forms a sequence of time-

stamped pick-up and drop-off events. Following the pro-

cessing recipe of previous work (Du et al., 2016), we con-

struct shorter sequences by breaking each long sequence

wherever the temporal gap between a drop-off event and its

following pick-up event is larger than six hours. Then the

left boundary of this gap is treated as the EOS of the se-

quence before it, while the right boundary is set as the BOS

of the following sequence.

We randomly sampled a month from 2013 and then ran-

domly sampled disjoint train, dev and test sets with 5000,

500 and 500 sequences respectively from that month.

In this dataset, each event type is a tuple of (location, ac-

tion). The location is one of the 5 boroughs {Manhattan,

Brooklyn, Queens, The Bronx, Staten Island}. The ac-

tion can be either pick-up or drop-off. Thus, there are

K = 5× 2 = 10 event types in total.

For the missingness mechanism: in the deterministic set-

tings, we set ρk = 0 for k = 1, . . . , 5 and ρk = 1 for

k = 6, . . . , 10 (which means that all drop-off events but no

pick-up events are observed); in the stochastic settings, we

set ρk = 0.5 for all k.

(a) Synthetic (b) Elevator System (c) NYC Taxi

Figure 4. Scatterplots with a deterministic missingness mecha-

nism. Again, the method works, with very similar qualitative be-

havior to Figure 2.
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Figure 5. Optimal transport distance results with a deterministic

missingness mechanism. Again, the method works, with very

similar qualitative behavior to Figure 3.

G.6. Experiments with Deterministic Missingness

Mechanisms

We show our experimental results for the deterministic

missingness mechanisms in Figures 4 and 5.

G.7. Sensitivity Experiment Details

Figure 6 displays the optimal transport distance with var-

ious values of ρ: our particle smoothing method consis-

tently outperforms the filtering baseline.

G.8. Wall-Clock Runtime Details

A given run of particle smoothing begins by drawing O(I)
time points from Unif([0, T )), where I is the number of

observed events. All particles are evaluated using integrals

that are estimated by evaluating the function at these time

points (Appendix C.3).

The theoretical runtime complexity is O(MI) because

drawing a particle requires O(I) time—the outer loop over

time steps (line 9 of Algorithm 1)—and we draw M parti-

cles in total—the inner loop over particles (line 10 in Al-

gorithm 1). Our GPU implementation (which we will re-

lease) parallelizes the inner loop over particles. We sample

50 particles in parallel in these experiments, but we have

tested with 1000 particles in parallel as well. So this is not

a real problem with a GPU.

We reported experiments that we performed to demon-
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START TIME (MIN) 00 05 10 15 20 25 30 35 40 45 50 55
MEAN # PASSENGER 1 2 4 4 18 12 8 7 18 5 3 2

Table 2. The Down-Peak Traffic Profile
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Figure 6. Optimal transport distance results with varying miss-

ingness rate ρ. Rows (top-down) are results with ρ =
0.1, 0.3, 0.5, 0.7, 0.9. As we can see, our particle smoothing con-

sistently outperforms the filtering baseline with different ρ, al-

though no clear trend with increasing ρ is found on either dataset.

strate the practicality. On average, drawing an ensemble of

50 particles takes 5 seconds per example on the synthetic

datasets (average length 15 events), 12 seconds per exam-

ple on the NYC Taxi dataset (average length 32 events) and

100 seconds per example on the Elevator System dataset

(average length 313 events)—that is, 300-400 milliseconds

per event. Such speeds are acceptable in many incomplete

data applications, compared to the cost of collecting com-

plete data—all the applications in section 1 involve real-

time decision making at a human timescale.

H. Monte Carlo EM

We normally assume (section 3.2.1) that some complete se-

quences are available for training the neural Hawkes pro-

cess models. If incomplete sequences are also available,

our particle smoothing method can be used to (approxi-

mately) impute the missing events, which yields additional

complete sequences for training. Indeed, if we are will-

ing to make a MAR assumption (Little & Rubin, 1987),

then we can do imputation without modeling the missing-

ness mechanism. Training on such imputed sequences is

an instance of Monte Carlo expectation-maximization

(MCEM) (Dempster et al., 1977; Wei & Tanner, 1990;

McLachlan & Krishnan, 2007), with particle smoothing as

the Monte Carlo E-step, and makes it possible to train with

incomplete data only.

In the more general MNAR scenario, we can extend the E-

step to consider the not-at-random missingness mechanism

(see equation (3) below), but then we need both complete

and incomplete sequences at training time in order to fit the

parameters of the missingness mechanism (unless these pa-

rameters are already known) jointly with those of the neural

Hawkes process. Although training with incomplete data is

out of the scope of our experiments, we describe the meth-

ods here and provide MCEM pseudocode.

In this case, we would like to know the (marginal) proba-

bility of the observed data x under the target distribution

p:

p(x) =
∑

z

pmodel(x ⊔ z)pmiss(z | x ⊔ z) (31)

If we propose z from q(z | x), then it can be rewritten as:

p(x) =
∑

z

pmodel(x ⊔ z)pmiss(z | x ⊔ z)
q(z | x)

q(z | x)
(32a)

= E
z∼q(z|x)[

pmodel(x ⊔ z)pmiss(z | x ⊔ z)

q(z | x)
] (32b)

Given a finite number M of proposed particles {zm}
M
m=1,

this expectation can be estimated with empirical average:

p(x) =
1

M

M∑

m=1

pmodel(x ⊔ zm)pmiss(zm | x ⊔ zm)

q(zm | x)
(33)
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and it is obvious that

log p(x) ≥
1

M

M∑

m=1

(bm − log q(zm | x)) (34a)

bm = log pmodel(x ⊔ zm) + log pmiss(zm | x ⊔ zm)
(34b)

where the right-hand-side (RHS) term of equation (34a) is

the Evidence Lower Bound (ELBO) that we would max-

imize in order to maximize the log-likelihood.

The MCEM algorithm is composed of two steps:

E(xpectation)-step We train the proposal distribution

q(z | x) using the method in section 3.2.1 and then

sample M weighted particles from q(z | x) by calling

Algorithm 1.

M(aximization)-step We train the neural Hawkes pro-

cess pmodel(x ⊔ z) by maximizing the ELBO (equa-

tion (34a)).

Note that in the MAR case, pmiss(z | x ⊔ z) is constant of

z so the it can be omitted from the formulation (and thus

the algorithms). Also note that, for particle filtering, the

proposal distribution q(z | x) is only part of pmodel(x ⊔ z)
so we do not need to train q(z | x) at the E-step.

Maximum-likelihood estimation remains sensible in the

MNAR case provided that we know one of the distributions

pmodel or pmiss, in which case we can use EM to estimate the

other distribution.

(1) If pmiss is known and fixed, as in our experiments, this

gives a minor variant of ordinary EM. Ordinary EM makes

the MAR assumption that the pmiss factor of equation (1)

can be ignored. However, if we know pmiss, we can incor-

porate it rather than ignoring it; then it need not satisfy the

MAR assumption.

(2) Conversely, if pmodel is known and fixed because we es-

timated it from a sufficient quantity of complete data, then

we can use incomplete data to learn the MNAR missing-

ness distribution pmiss. This setting would even lets us learn

contextual missingness mechanisms in which the proba-

bility that an event is censored depends not only on the

event itself, but also on the surrounding events and whether

they are censored. For example, one could try to fit pmiss

with an LSTM model or a BiLSTM-CRF model (Huang

et al., 2015) that performs structured joint prediction of the

missingness of all events in the sequence. Extending that

method to use continuous-time LSTMs would allow it to

take timing into account.

The E step of Monte Carlo EM uses the current guesses of

pmodel and/or pmiss to sample from the posterior distribution

p(z | x) of the missing values. That posterior is uncontro-

versially defined by the simple Bayesian formula (1). No-

tice that even if pmodel and pmiss were both unknown, we

could still run MCEM to locally maximize the likelihood

p(x), but unfortunately the parameters would be uniden-

tifiable in this case. Thus, there would be many missing-

data models with the same likelihood, as explained in Ap-

pendix A, and they would make different predictions of z.


