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Abstract
To better understand catastrophic forgetting, we study fitting an overparameterized linear model
to a sequence of tasks with different input distributions. We analyze how much the model forgets
the true labels of earlier tasks after training on subsequent tasks, obtaining exact expressions and
bounds. We establish connections between continual learning in the linear setting and two other
research areas – alternating projections and the Kaczmarz method. In specific settings, we highlight
differences between forgetting and convergence to the offline solution as studied in those areas. In
particular, when T tasks in d dimensions are presented cyclically for k iterations, we prove an upper
bound of T 2 min{1/

√
k, d/k} on the forgetting. This stands in contrast to the convergence to the

offline solution, which can be arbitrarily slow according to existing alternating projection results.
We further show that the T 2 factor can be lifted when tasks are presented in a random ordering.

1. Introduction

Continual learning or lifelong learning is a machine learning setting where data from different tasks
are presented sequentially to the learner. The goal is to adapt the model to new tasks while preserv-
ing its performance on previously-learned tasks [53, 62, 70]. A key challenge in continual learning
is the catastrophic forgetting phenomenon [21, 39, 56, 57], wherein adaptation of models to fit to
new tasks often (unsurprisingly) leads to degradation in performance on previous tasks.

Despite recent advances in theoretical understanding of continual learning [4, 6, 14, 32, 34],
catastrophic forgetting is not fully understood even in simple models. Consider sequentially learn-
ing from a stream of tasks. One should ask: what are the best and worst-case sequences of tasks?
How does the similarity between tasks affect catastrophic forgetting? What can be said analyti-
cally about the benefits to revisiting (i.e., replaying) tasks? When does forgetting truly becomes
“catastrophic”, so that it is impossible to learn all tasks sequentially?

In this work, we aim to theoretically characterize the worst-case catastrophic forgetting in over-
parameterized linear regression models.1 To this end, we sequentially fit a linear model to tasks
observed in some ordering. We analyze the forgetting convergence of linear regressors obtained by
GD/SGD which is trained to convergence on data from the current task.

1. We believe it is necessary to do so before moving to more complex models. Moreover, any linear regression result
can be applied to complex models (e.g., deep networks) in the neural kernel regime (NTK), as in [6, 14].
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We explain how in this linear setting, continual learning repeatedly projects previous solutions
onto the solution spaces of newer tasks. Interestingly, we show that, under a realizability assump-
tion, these projections contract the distance to the minimum norm offline solution that solves all
tasks. We analyze this contraction and the resulting convergence.

A setting similar to ours has been extensively studied in the alternating projections literature.
There, a vector is iteratively projected onto closed subspaces (or convex sets in general), in order
to find a solution in their intersection. For instance, Kayalar and Weinert [30] studied Halperin’s
cyclic setting [25] and analyzed the convergence of

∥∥(P 2P 1)
n−P 1∩ 2

∥∥2, where P 1, P 2, and
P 1∩ 2 are orthogonal projections onto subspaces H1, H2, and H1∩H2 (respectively). In contrast,
our goal is to analyze the projection residuals (i.e., the forgetting). That is, we mainly focus on∥∥(I − P 1)(P 2P 1)

n
∥∥2, rather than on the convergence to H1∩H2 (i.e., an offline solution). Due

to this difference, we are able to derive uniform data-independent upper bounds on forgetting, even
when convergence to the offline solution is arbitrarily slow and “traditional” bounds become trivial.

Moreover, our fitting procedure can also be seen as a Kaczmarz method [29], where one solves
a linear equation system Ax= b by iteratively solving subsets (i.e., tasks) of it. Here also, typical
bounds involve data-dependent properties like the spectrum of A, which are trivial in the worst case.

Our Contributions. We thoroughly analyze catastrophic forgetting in linear regression optimized
by the plain memoryless (S)GD algorithm (i.e., without actively trying to mitigate forgetting), and:

• Identify cases where there is no forgetting.

• Show that without any restrictions, one can construct task sequences where forgetting is maximal
and essentially catastrophic.

• Connect catastrophic forgetting to a large body of research on alternating projections and the
Kaczmarz method. Then, we use this perspective to investigate the worst-case forgetting when
T tasks in d dimensions are seen repeatedly for k iterations, under two different orderings:

– Cyclic task orderings. For T ≥3, we uniformly upper bound the forgetting by T 2
√
k

and T 2d
k ,

and lower bound it by T 2

k . To the best of our knowledge, our analysis uncovers novel bounds
for residuals in the cyclic block Kaczmarz setting [15] as well.

– Random task orderings. We upper bound the expected forgetting by d
k , independently of T .

• Analyze the effect of similarity, or angles, between two consecutive tasks on the forgetting. We
find that after seeing these tasks once — intermediate angles are most prone to forgetting, but
after repeating the tasks — small angles (i.e., nearly-aligned tasks) cause the highest forgetting.

2. Problem setting

Motivating example. Before we formalize our problem, we give a motivating example to keep
in mind. Suppose we are interested to learn a predictor for pedestrian detection in an autonomous
car. This detector is required to operate well in T geographically distant environments (e.g., dif-
ferent countries), or “tasks”. To train the detector, we need to drive the car around, but can do this
only in one environment at a time. We do this until the detector has good performance in that en-
vironment. Then we ship the car to another environment, drive it there to train the detector, and so
on (potentially revisiting past environments). Notably, while the overall problem remains constant
(pedestrian detection), each time we need to solve it for a potentially different landscape (e.g., city,
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forest, desert), which can radically change the input distribution. The question we aim to answer is:
when would the detector be able to work well in all the environments it visited during training, even
though it only observed them sequentially?

General setting. We consider fitting a linear model f(x) = w⊤x, parameterized by w ∈ Rd,
on a sequence of tasks originating from an arbitrary set of T regression problems

{(
Xm,ym

)}T
m=1

.
During k iterations, tasks are seen according to a task ordering τ : N+→ [T ]. That is, the learner
is presented with a sequence

(
Xτ(1),yτ(1)

)
,
(
Xτ(2),yτ(2)

)
, . . . ,

(
Xτ(k),yτ(k)

)
. Starting from

w0 = 0d, the model is fitted sequentially, yielding a sequence of iterates w1, ...,wk. At each it-
eration t we obtain wt by fitting the current task

(
Xτ(t),yτ(t)

)
, without access to other tasks.

Tasks. Each task m = 1, 2, . . . , T corresponds to a regression problem
(
Xm,ym

)
, i.e., to a data

matrix Xm ∈ Rnm×d with nm samples in d dimensions and a vector ym∈Rnm of the correspond-
ing labels. We focus on the overparametrized regime, where every task

(
Xm,ym

)
is rank deficient,

i.e., rm ≜ rank (Xm) < d, thus admitting infinitely-many linear models that perfectly fit the data.

Notation. Denote by A+ the Moore–Penrose inverse of A. Denote by Pm the orthogonal projec-
tion onto the null space of a matrix Xm, i.e., Pm = I−X+

mXm. Denote the ℓ2 norm of a vector by
∥v∥, and the spectral norm of a matrix by ∥A∥. Denote the d-dimensional closed Euclidean ball as
Bd ≜

{
v ∈ Rd

∣∣ ∥v∥ ≤ 1
}

. To avoid ambiguity, we explicitly exclude zero from the set of natural
numbers and use N+≜N\{0}. Finally, denote the natural numbers from 1 to T by [T ]≜{1, . . . , T}.

2.1. Task collections

A task collection is an (unordered) set of T tasks, i.e., S =
{(

Xm,ym

)}T
m=1

. Throughout the
paper, we focus on task collections from the set:

ST ≜
{{(

Xm,ym

)}T
m=1

∣∣∣ ∀m : ∥Xm∥ ≤ 1︸ ︷︷ ︸
Assumption 1

, ∃w ∈ Bd : ym=Xmw, ∀m ∈ [T ]︸ ︷︷ ︸
Assumption 2

}
.

That is, we make the two following assumptions on the task collections.

Assumption 1 (Bounded data) Singular values of all data matrices are bounded (w.l.o.g., by 1).

Assumption 2 (Realizability) Tasks are jointly realizable by a linear predictor with a bounded
norm (w.l.o.g., bounded by 1).

Assumption 1 is merely a technical assumption on the data scale, simplifying our presentation.
Assumption 2 on joint realizability of tasks is essential to our derivations, especially for Eq. (5).
We note that this is a reasonable assumption in a highly overparameterized models like wide neural
networks in the NTK regime, or in noiseless settings with an underlying linear model.

2.2. Forgetting and catastrophic forgetting

We fit the linear model sequentially on tasks τ(1), . . . , τ(k). Starting from the solution to its pre-
ceding task, each task is fitted without access to previous tasks. The goal in continual learning is to
not forget what we learned on previous tasks. For example, in the motivating example given in the
beginning of the section, we want the pedestrian detector to still be able to work well in previous
environments after we train it in a new environment.
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Formally, like in a recent work [14], we measure the forgetting of w on the task presented at
iteration t by the squared loss Lt (w)≜

∥∥Xτ(t)w−yτ(t)

∥∥2, and define the forgetting as follows.

Definition 3 (Forgetting) Let S =
{(
Xm,ym

)}T
m=1

∈ST be a task collection fitted according to
an ordering τ: N+→ [T ]. The forgetting at iteration k is the average loss of already seen tasks, i.e.,

Fτ,S (k) =
1

k

∑k

t=1
Lt (wk) =

1

k

∑k

t=1

∥∥∥Xτ(t)wk − yτ(t)

∥∥∥2 .
In words, we say that the model “forgets” the labels of a task seen at iteration t after fitting k tasks, if
wk does not perfectly predict yτ(t) from Xτ(t), i.e., Lt(wk) > 0. We note in passing that forgetting
should not be confused with regret since they can exhibit different behaviors (see Section 7).

In the following, we capture the worst possible convergence behavior under a given ordering.

Definition 4 (Worst-case forgetting) The worst-case forgetting of a task ordering τ after k itera-
tions is the maximal forgetting at iteration k on any task collection in ST , i.e., supS∈ST

Fτ,S (k).

For specific task orderings, we are able to bound this worst-case forgetting by non-trivial uniform
(data-independent) bounds that converge to 0 with the number of iterations k. When the worst-case
forgetting does not converge to 0, we say that forgetting is catastrophic. More formally,

Definition 5 (Catastrophic forgetting of a task ordering) Given an ordering τ over T tasks, the
forgetting is not catastrophic if limk→∞(supS∈ST

Fτ,S(k)) = 0.

In this paper we focus on the quantities Fτ,S(k) and supS∈ST
Fτ,S(k), aiming to answer the follow-

ing questions: under what conditions on τ and S there is no forgetting, i.e., Fτ,S (k) = 0? What
can we say about supS∈ST

Fτ,S(k) for general task orderings? Can forgetting be catastrophic when
fitting a finite number of tasks in a cyclic or random ordering?

2.3. Fitting procedure

Our ultimate goal is to minimize the forgetting (Definition 3). To this end, in this paper we analyze
the following fitting procedure of tasks, corresponding to the simplest continual learning setting.
At each iteration t = 1, .., k, we start from the previous iterate wt−1 and run (stochastic) gradient
descent to convergence so as to minimize the squared loss on the current task,
i.e., Lt (w) =

∥∥Xτ(t)w − yτ(t)

∥∥2, obtaining the new iterate wt.
Since we work in the overparameterized regime, where rt < d for all t, each wt perfectly fits

its corresponding task τ(t), i.e., Xτ(t)wt = yτ(t). In addition, for each task, (S)GD at convergence
returns the unique solution which implicitly minimizes the ℓ2 distance to the initialization [22, 80],
hence we can express wt as the unique solution to the following optimization problem:

wt = argmin
w

∥w −wt−1∥ , s.t. Xτ(t)w = yτ(t) . (1)

Our iterative update rule. The solution to the above optimization problem is given by

wt = wt−1 +X+
τ(t)(yτ(t) −Xτ(t)wt−1) . (2)

When Xτ(t) contains one sample only (i.e., its rank is 1), our update rule is equivalent to those of
the Kaczmarz method [29] and the NLMS algorithm [26, 67]. Moreover, it can be seen as an SGD
update on the forgetting from Definition 3, i.e., wt = wt−1+

1
∥xτ(t)∥2

(
yτ(t)− x⊤

τ(t)wt−1

)
xτ(t).

Given tasks with many samples (rank greater than 1), our rule is equivalent to that of the block
Kaczmarz method [15]. We discuss these connections in Section 7.
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Minimum norm offline solution. Under the realizability assumption 2 there might be infinitely-
many offline solutions that perfectly fit all tasks. To facilitate our discussion, we focus on the
minimum ℓ2-norm offline solution w⋆ (often referred to as the offline solution for brevity), i.e.,

w⋆ ≜ argminw∈Rd
1
2 ∥w∥2 , s.t. Xmw = ym, ∀m ∈ [T ] . (3)

Task solution spaces. Finally, from Eq. (1) we see that at the end of the t-th iteration, the iterate
wt must lie in the solution space of task τ(t), which is an affine subspace defined as follows

Wτ(t) ≜
{
w
∣∣Xτ(t)w = yτ(t)

}
= w⋆ + null(Xτ(t)) . (4)

3. Forgetting dynamics

To analyze forgetting, we emphasize the projective nature of learning. We rewrite the update rule
from Eq. (2) by employing the realizability Assumption 2 and plugging in Xmw⋆ = ym into that
equation. Then, we subtract w⋆ from both sides, and reveal an equivalent affine update rule, i.e.,

wt −w⋆ =
(
I −X+

τ(t)Xτ(t)

)
wt−1 +X+

τ(t)Xτ(t)w
⋆ −w⋆ ≜ P τ(t)

(
wt−1 −w⋆

)
, (5)

where we remind that Pm ≜ I −X+
mXm is the projection operator on the solution space Wm.

Geometric interpretation. Using properties of pseudo-inverses and operator norms we get that
∀m∈ [T ] :

∥∥Xmu
∥∥2 =

∥∥XmX+
mXmu

∥∥2 ≤
∥∥Xm

∥∥2∥∥X+
mXmu

∥∥2 =
∥∥Xm

∥∥2∥∥(I − Pm

)
u
∥∥2.

Then, we recall that
∥∥Xm

∥∥≤ 1 (Assumption 1), and reveal that the forgetting can be seen as the
mean of the squared residuals from projecting

(
wk−w⋆

)
onto previously-seen solution spaces.

That is,

Fτ,S (k) =
1

k

∑k

t=1

∥∥Xτ(t)

(
wk −w⋆

)∥∥2 ≤ 1

k

∑k

t=1

∥∥(I − P τ(t)

)(
wk −w⋆

)∥∥2 . (6)

Figure 1: Projection illustration.
According to Eq. (5), (wk−1−w⋆) is given by projecting
(wk−2−w⋆) onto the solution space of the (k − 1)th task, i.e.,
Wτ(k−1), which in this figure is a rank-1 affine subspace in R2.
In turn, (wk−1−w⋆) is projected onto Wτ(k) to obtain (wk−w⋆),
and so on. Overall, the solution is continually getting closer to w⋆.
Moreover, the forgetting (magenta) is the mean of the squared resid-
uals from projecting (wk − w⋆) onto previously seen solution
spaces, as can be seen from Eq. (6).

𝒲𝜏 𝑘−1

𝒲𝜏 𝑘−2

𝒲𝜏 𝑘𝒘𝑘 −𝒘
⋆

𝑷𝜏 𝑘

𝒘⋆

Learning as contracting. Recursively, the affine update rule from Eq. (5) provides a closed-form
expression for the distance between the iterate and the offline solution (recall w0 = 0):

wt −w⋆ = P τ(t) · · ·P τ(1)

(
��w0 −w⋆

)
. (7)

Since orthogonal projections are non-expansive operators, it also follows that

∀t∈ [T ] : ∥wt −w⋆∥ ≤ ∥wt−1 −w⋆∥ ≤ · · · ≤ ∥��w0 −w⋆∥ = ∥w⋆∥ ,

hinting at a possible convergence towards the offline solution, as depicted in Figure 1.
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Combining Eq. (6) and (7), we express the average forgetting (Definition 3) of an ordering τ
over a task collection S = {(Xm,ym)}Tm=1 as follows,

Fτ,S (k) =
1

k

k∑
t=1

∥∥Xτ(t)P τ(k) · · ·P τ(1)w
⋆
∥∥2 ≤ 1

k

k∑
t=1

∥∥(I−P τ(t)

)
P τ(k) · · ·P τ(1)w

⋆
∥∥2 . (8)

Worst-case formulation. So far, ∥XmX+
mXmu∥2 ≤ ∥X+

mXmu∥2 is the only inequality we
used (at Eq. (6), relying on Assumption 1). Importantly, this inequality saturates when all non-zero
singular values of Xm,∀m∈ [T ] are 1. Consequentially, the worst-case forgetting in Definition 4
can be simply expressed in terms of T projection matrices P 1, . . . ,P T ∈ Rd×d, as

sup
S∈ST

Fτ,S(k) = sup
P 1,...,P T

1

k

∑k

t=1

∥∥(I − P τ(t)

)
P τ(k)· · ·P τ(1)

∥∥2 , (9)

where we also used Assumption 2 that ∥w⋆∥ ≤ 1.
Throughout this paper, we mainly analyze Eq. (8) and (9) from different perspectives. Multiply-

ing from the left by
{
I − P τ(t)

}k
t=1

is what distinguishes our quantity of interest — the forgetting
— from quantities studied in the area of alternating projections.

Principal angles between two tasks. Finally, we briefly present principal angles, which affect
forgetting dynamics, as discussed throughout this paper. Much of the research on alternating pro-
jections has focused on establishing notions of angles between subspaces [11, 51]. Principal an-
gles, also known as canonical angles, are a popular choice for angles between two linear subspaces
[5, 9], having many applications in numerical analysis (e.g., in the generalized eigenvalue problem
[19]). These angles geometrically describe a pair of subspaces, by recursively taking the smallest
angle between any two vectors in these subspaces that are orthogonal to previously chosen vec-
tors. We elaborate on the definition and the role of these angles in App A.3. There, we visualize
these angles and explain that the non-zero principal angles between the row spaces of two tasks, i.e.,
range(X⊤

1 ), range(X
⊤
2 ), are identical to those between the corresponding solution spaces W1,W2.

The rest of our paper. We study forgetting under different task orderings. In Section 4 we con-
sider arbitrary orderings and show when there is provably no forgetting, and when forgetting is
arbitrarily high, i.e., catastrophic. We analyze cyclic and random orderings in Sections 5 and 6. For
both these orderings, we derive convergence guarantees and prove forgetting cannot be catastrophic.

4. Arbitrary task orderings

Identity ordering. In this section we consider arbitrary sequences of tasks, i.e., we do not impose
any specific ordering. To this end, we take k=T and an identity ordering τ s.t. τ(t)= t, ∀t∈N+.
To simplify notation, in this section only, we suppress τ and use Xτ(m)=Xm interchangeably.

4.1. No forgetting cases

Consider learning two tasks sequentially:
(
X1,y1

)
and then

(
X2,y2

)
. Right after learning the

second task, we have L2(w2) = ∥X2w2−y2∥2 = 0. Thus, the forgetting from Eq. (8) becomes
Fτ,S(2) =

1
2 ∥X1P 2P 1w

⋆∥2. We now derive sufficient and necessary conditions for no forgetting.
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Theorem 6 (No forgetting in two-task collections) Let S=
{(

X1,y1

)
,
(
X2,y2

)}
∈ST=2 be a

task collection with 2 tasks, fitted under an identity ordering τ , i.e.,
(
X1,y1

)
and then

(
X2,y2

)
.

Then the following conditions are equivalent:

1. For any labeling y1,y2 (or equivalently, any minimum norm solution w⋆), after fitting the sec-
ond task, the model does not “forget” the first one. That is, Fτ,S(2) = 0.

2. It holds that X1P 2P 1 = 0n1×d.

3. Each principal angle between the tasks, i.e., range(X⊤
1 ) and range(X⊤

2 ), is either 0 or π/2.

The proof is given in App. B.1. The exact definition of angles between tasks is given in App. A.3.
For instance, the above conditions hold when range(X⊤

1 ) ⊆ range(X⊤
2 ) (or vice-versa), i.e.,

there is no forgetting when tasks have maximum overlap in the row span of inputs. The third condi-
tion aligns with the empirical observation in Ramasesh et al. [56], wherein catastrophic forgetting in
overparameterized neural networks is small when the tasks are either very similar or very distinct.
On the other hand, this seemingly contradicts the conclusions in Doan et al. [14] that similar tasks
are potentially bad for forgetting. However, their conclusions are based on a loose upper bound
on the forgetting. In Section 5.1, we carefully analyze the forgetting dynamics of two tasks seen
repeatedly in cycles and show that increasingly-similar tasks can be worse for forgetting, but only
after multiple cycles. We elaborate on these connections in App B.1.3.

4.2. Maximal forgetting cases: can Fτ,S(k) → 1 ?

Now, we present an adversarial task collection that yields arbitrarily high forgetting: at the end of
learning, the learner almost completely “forgets” previously-seen tasks. We use this opportunity to
build further intuition on two factors causing high forgetting.

Our construction is intuitively based on the geometric interpretation from Eq. (6) and Figure 1,
that the forgetting is the mean of the squared residuals from projecting (wk−w⋆) onto the solution
spaces of previously-seen tasks, i.e., Fτ,S (k)≤ 1

k

∑k
t=1

∥∥(I−P τ(t)

)(
wk−w⋆

)∥∥2.

Figure 2: Illustrating the adversarial construction. For the
discussed residuals to be large, our construction ensures that:

1. The iterates are kept afar from the w⋆.
Since Fτ,S (k) ≤ ∥wk−w⋆∥2 ≤ ∥wt − w⋆∥2,∀t ≤ k, it
is important to maintain a large ∥wt−w⋆∥ in all iterations.
We achieve this by using similar consecutive tasks.

2. Most solution spaces are orthogonal to the last one.
For the averaged residuals to be large, the last

(
wk−w⋆

)
should be orthogonal to as many previous solution spaces
as possible. For this, we “huddle” most of the tasks near
the first one, almost orthogonally to the last.

𝒘𝑘 −𝒘
⋆

𝒘
1
−
𝒘
⋆

𝒘⋆

few 

close tasks

Theorem 7 (Forgetting can be arbitrarily bad) When using the identity ordering (i.e., τ(t)= t),
thus seeing each task once, the worst-case forgetting after k iterations is arbitrarily bad, i.e.,

1− sup
S∈ST=k

Fτ,S(k) ≤ O (1/
√
k) .

The exact construction details and the proof are given in App B.2.
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By now, we understand that under arbitrary task orderings, there exist task sequences where the
learner almost completely forgets previously-learned expertise and forgetting is indeed catastrophic.
In the sections to follow, we show that cyclic and random orderings do not suffer from this flaw.

5. Cyclic task orderings

We again consider collections of T tasks
{(

Xm,ym

)}T
m=1

, but now we study the forgetting when
tasks are presented in a cyclic ordering τ , i.e., τ (t) =

(
(t− 1)mod T

)
+ 1, ∀t ∈ N+.

For example, suppose we want to train a pedestrian detector continuously during different times of
the day (morning, noon, evening, and night), so that the task order forms a fixed cycle.
Such cyclic settings also arise in search engines, e-commerce, and social networks, where tasks
(i.e., distributions) are largely influenced by events that recur either weekly (e.g., weekdays vs.
weekends), monthly (e.g., paydays), annually (e.g., holidays), and so on.

Under cyclic orderings, the forgetting from Eq. (8) after n cycles, reduces to

Fτ,S(k = nT ) =
1

T

T∑
m=1

∥∥Xm

(
P T ···P 1

)n
w⋆
∥∥2 ≤ 1

T

T∑
m=1

∥∥(I−Pm)
(
P T ···P 1

)n∥∥2. (10)

5.1. Warm up: Exact forgetting analysis with T = 2 tasks

Exploiting the connection we made to the field of alternating projections, we first analyze the con-
vergence to the minimum norm offline solution in terms of the Friedrichs angle [18] between the
tasks, i.e., their minimal non-zero principal angle θF ≜mini:θi ̸=0 θi > 0 (as explained in App A.3).

Theorem 8 (Convergence to the minimum norm offline solution) For any task collection of two
distinct tasks fitted in a cyclic ordering τ , the distance from the offline solution after k=2n itera-
tions (n cycles) is tightly upper bounded by

∥∥wk −w⋆
∥∥2 ≤

(
cos2 θF

)k−1 ∥w⋆∥2, where θF is the
Friedrichs angle between the given tasks, as defined above.

Proof Plugging in the cyclic ordering definition into the recursive form of Eq. (7), we obtain∥∥wk−w⋆
∥∥ =

∥∥P τ(k) · · ·P τ(1)w
⋆
∥∥ =

∥∥(P 2P 1)
nw⋆

∥∥.
A known alternating projection result by Kayalar and Weinert [30] (Theorem 2 therein) states

that
∥∥(P 2P 1)

n − P 1∩ 2

∥∥2 = (cos2 θF )k−1, where in our context, P 1∩ 2 projects onto the null
spaces’ intersection, i.e., null(X1) ∩ null(X2). Since the minimum norm solution w⋆ must lie in
range

(
X⊤

1

)
∪ range

(
X⊤

2

)
, then by properties of orthogonal complements we have P 1∩ 2w

⋆ = 0.
Then, we see that ∥wk−w⋆∥2 =

∥∥(P 2P 1

)n
w⋆
∥∥2=∥∥((P 2P 1)

n−P 1∩ 2

)
w⋆
∥∥2, and conclude:

∥wk−w⋆∥2=
∥∥((P 2P 1)

n−P 1∩ 2

)
w⋆
∥∥2≤∥∥(P 2P 1)

n−P 1∩ 2

∥∥2∥∥w⋆
∥∥2 =(cos2 θF )k−1∥∥w⋆

∥∥2 .
Clearly, a carefully chosen w⋆ (induced by y1,y2) can saturate the inequality, making it tight.

Note that the rate of convergence to w⋆ can be arbitrarily slow when the Friedrichs angle θF → 0.
Importantly, this means that there can be no data-independent convergence guarantees to w⋆.
One might think that this implies that the forgetting (i.e., the residuals) is also only trivially bounded,
however a careful analysis shows that this is not the case.
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In contrast to the above Theorem 8, we now show that the forgetting is non-trivially bounded.

Lemma 9 (Angles’ effect on forgetting T = 2) For any task collection S ∈ ST=2 of two tasks,
the forgetting after k = 2n iterations (i.e., n cycles) is tightly upper bounded by

Fτ,S (k) ≤ 1

2
max

i

{(
cos2 θi

)k−1 (
1− cos2 θi

)}
,

where {θi}i ⊆
(
0, π2

]
are the non-zero principal angles between the two tasks in S. Moreover, the

above inequality saturates when all non-zero singular values of the first task (i.e., of X1) are 1s.

In contrast to cos2 θF that bounds the distance to the offline solution (see Theorem 8) and can
be arbitrarily close to 1, the quantities

(
cos2 θi

)k−1 (
1− cos2 θi

)
in Lemma 9 are upper bounded

uniformly for any θi, which allows deriving a data-independent expression for the worst-case for-
getting in the next theorem.

Theorem 10 (Worst-case forgetting when T = 2) For a cyclic ordering τ of two tasks, the worst-
case forgetting after k = 2n iterations (i.e., n cycles), is

sup
S∈ST=2

Fτ,S (k) =
1

2e (k − 1)
− 1

4e (k − 1)2
+O

(
1

k3

)
.

The proofs for both Lemma 9 and Theorem 10 are given in App C.1.

Demonstration. Figure 3 demonstrates our analysis for the worst-case forgetting on T =2 tasks.
We consider a simplistic case where both tasks are of rank d−1, i.e., rank(X1)=rank(X2)=d−1,
thus having solution spaces of rank 1 with a straightforward single angle θ between them.
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(a) Effect of task similarity on forgetting.
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(b) A sharp uniform bound for the forgetting.

Figure 3: Demonstration of forgetting (Lemma 9) and worst-case forgetting (Theorem 10) for T = 2.

Figure 3(a) demonstrates the analytical effect of task angles, i.e., (cos2 θ)k−1(1−cos2 θ) from
Lemma 9. After one cycle (k=2), small and nearly-orthogonal angles induce low forgetting, while
intermediate angles are troublesome. However, as k increases, the angle that maximizes forgetting
goes to zero. Importantly, we find that the effect of task similarity depends on the number of cycles!

Figure 3(b) demonstrates the worst-case analysis of Theorem 10. As tasks become more similar,
i.e., θ decreases, the initial forgetting is smaller, yet convergence is slower since the contraction is
small at each iteration. Conversely, larger angles lead to larger initial forgetting but also to faster
convergence due to a more significant contraction.

Our findings after seeing each task once (i.e., k=2) resemble findings from Lee et al. [34] that
intermediate task similarity causes the most forgetting (however, their setup and notion of similarity
are different). Like we mentioned in Section 4.1, our analysis contradicts a corollary from Doan
et al. [14] implying a higher risk of forgetting when two tasks are more aligned. This discrepancy
stems from an upper bound in [14] being looser than the tight bounds we derive (see App B.1.3).

9
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5.2. Main Result: Worst-case forgetting with T ≥ 3 tasks

For the general cyclic case, we provide two upper bounds – a dimension-dependent bound, and more
importantly, a dimension-independent one. Both follow a power-law w.r.t. the iteration number k.

Theorem 11 (Worst-case forgetting when T ≥ 3) For any number of tasks T ≥ 3 under a cyclic
ordering τ , the worst-case forgetting after k = nT ≥ T 2 iterations (i.e., n ≥ T cycles), is

T 2

24ek
≤ sup

S∈ST≥3:
∀m: rank(Xm)≤rmax

Fτ,S(k) ≤ min

{
T 2

√
k
,

T 2 (d− rmax)

2k

}
.

Moreover, if the cyclic operator
(
P T · · ·P 1

)
from Eq. (10) is symmetric (e.g., in a back-and-

forth setting where tasks m and (T−m+1) are identical ∀m∈ [T ]), then the worst-case forgetting
is sharply supS∈ST≥3

Fτ,S(k) = Θ (T 2/k).

Proof sketch for the upper bound. We briefly portray our proof for the above result (given
fully in App C.2). For brevity, denote the cyclic operator as M ≜ P T · · ·P 1. Our proof re-
volves around the maximal decrease at the nth cycle, i.e., ∆n(u) ≜

∥∥Mnu
∥∥2 −

∥∥Mn+1u
∥∥2.

We start by showing that the worst-case forgetting on the first task (see Eq. (10)) is upper bounded
by the maximal decrease. That is,

∀u∈Cd :
∥∥(I−P 1)M

nu
∥∥2 (*)

=
∥∥Mnu

∥∥2− ∥∥P 1M
nu
∥∥2 (**)

≤
∥∥Mnu

∥∥2− ∥∥Mn+1u
∥∥2=∆n(u),

where (*) stems from the idempotence of P 1, and (**) is true since projections are non-expansive
operators, meaning

∥∥P 1M
nu
∥∥2 ≥ ∥∥P T · · ·P 1M

nu
∥∥2 ≜ ∥∥Mn+1u

∥∥2.

More generally, we show that
∥∥(I − Pm)Mnu

∥∥2≤m∆n(u), yielding the overall bound:

1
T

∑T

m=1

∥∥(I − Pm)Mn
∥∥2 ≤ T−1

2 · max
u:∥u∥2=1

∆n(u) .

Then, we prove that maxu:∥u∥2=1∆n(u) ≤ 2
∥∥Mn−Mn+1

∥∥ ≤ 2
√

T/n, using telescoping

sums on elements of
{∥∥(M t−M t+1

)
v
∥∥2}n

t=1
. Finally, we prove maxu:∥u∥2=1∆n(u) ≤ d−rmax

n

by using telescoping sums on the traces of matrices
{
(M t)⊤M t − (M t+1)⊤M t+1

}n
t=1

. ■

6. Random task orderings

So far, we saw in Section 4 that arbitrary task orderings provide no convergence guarantees and
might forget catastrophically. In Section 5 we saw that cyclic orderings do not suffer from catas-
trophic forgetting, since their forgetting converges to zero like a power law. We now analyze random
task ordering, and show that they also have uniform (data-independent) convergence guarantees.

We consider a random task ordering τ that matches a uniform probability to any task at any
iteration, i.e., ∀m∈ [T ] ,∀t∈N+: Pr [ τ(t) = m ]=1/T . Below, we adjust the forgetting definitions
in 3 and 4 to the random setting by defining the expected forgetting.

Definition 12 (Expected forgetting of a task collection) After k iterations, the expected forget-
ting on a specific task collection S ∈ ST is defined as

F̄τ,S (k) ≜ E
τ
[Fτ,S (k)] = E

τ

[
1
k

∑k

t=1

∥∥∥Xτ(t)wk − yτ(t)

∥∥∥2 ] .
10
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Our main result in this section is a uniform bound on the expected forgetting under the uniform
random task ordering. The proof is given in App D.

Theorem 13 (Worst-case expected forgetting) Under the uniform i.i.d. task ordering τ , the worst-
case expected forgetting after k iterations is

sup
S∈ST :

1
T
∑T

m=1 rank(Xm)=ravg

F̄τ,S (k) ≤ 9 (d− ravg)

k
.

Demonstration. The following Figure 4 demonstrates the worst-case forgetting under cyclic task
orderings (Theorem 11) and the worse-case expected forgetting under random orderings (Theo-
rem 13). We consider a specific 2-d task collection S consisting of T = 128 rank-one tasks.
The collection is “adversarial” in the sense that its forgetting meets the cyclic setting’s lower bound
of Theorem 11 (dashed orange).

Figure 4: Demonstrating the bounds from Thm 11 and 13.
The solid orange curve shows the actual forgetting of the
cyclic deterministic ordering (the oscillations are formed, nat-
urally, by the task cycles). The purple solid curve shows the
expected forgetting of the random ordering (averaged over 5
seeds). The purple band indicates one standard deviation (over
the 5 seeds). Also plotted are the corresponding upper bounds
of both settings (dotted).
Notice how a random ordering behaves better than a cyclic
one, both practically and analytically.
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Remark 14 (Last iterate SGD results) In the special case of rank-one tasks, the iterative update
rule in Eq. (2) reduces to a single SGD step with a ∥xτ(t)∥−2 step size, and the above bound
becomes O(d/k). A very recent work [71] derived a dimension-independent bound of O(ln k/k) for
the last iterate of SGD with a constant step size in a similar rank-1 setting. Although our step size
is different, we believe our bound’s dependence on the dimension (Theorem 13) can probably be
lifted.

Remark 15 (Average iterate analysis) We note that all our results become much tighter when
working with the average iterate wk ≜

1
k

∑k
t=1wt instead of the last one wk. Then, it is easier to

prove tighter bounds, i.e., O(T 2/k) for cyclic orderings and O(1/k) for random ones. App E provides
a proof sketch.

7. Related Work

Many practical methods have been proposed over the last decade to address catastrophic forgetting
in continual learning. Clearly we cannot cover all methods here, but refer the reader to recent
surveys (e.g., [53, 55]) and to App F. In a nutshell, algorithmic approaches to continual learning
can be roughly divided into three: Memory-based replay approaches (e.g., [59, 66]); Regularization
approaches (e.g., [7, 31, 35, 36, 79]); and Parameter isolation approaches (e.g., [1, 38, 76]).

11
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Theoretical results for catastrophic forgetting. We briefly discuss few related theoretical works.
Doan et al. [14] analyzed forgetting in linear regression (or, more generally, in the NTK regime).
Their derivations largely depend on a matrix that captures principal angles between tasks, very much
like we do, but they focus on the smallest angle, i.e., the Dixmier angle [13]. They conclude that
increased task similarity leads to more forgetting. In contrast, our T =2 analysis reveals the precise
role of task similarity at different training stages (see Figure 3). Their work [14] and others [6, 16]
also analyzed the OGD algorithm, deriving generalization guarantees and improved variants.

Lee et al. [34] considered a teacher-student two-layer setup with 2 tasks, each having its own
last layer. They analyzed a different notion of task similarity (i.e., teacher similarity) and studied
how it affects forgetting in student models. They found that intermediate (teacher-)similarity leads
to the greatest forgetting. In our linear setup, we find that when two consecutive tasks are shown
once (i.e., in a single cycle), intermediate principal angles cause higher forgetting (see Figure 3(a)).
Asanuma et al. [4] considered a linear regression setting, as we do, yet only for 2 tasks having a
different teacher. They assumed specific axis-aligned input distributions, and studied forgetting in
the infinite-dimension limit, taking into account both the input-space and weight-space similarities.
Under a “shared” teacher, their results imply zero forgetting due to their assumptions on inputs.

Alternating projections (AP). Throughout our paper, we lay out connections between continual
learning and the AP literature (see survey by [20]). Our cyclic setting (Section 5) is a special case of
cyclic AP (Halperin [25], Von Neumann [72]). Studies from this field often bound the convergence
to the subspace intersection either asymptotically or using notions of generalized angles between
subspaces (e.g., [12, 30, 51]). Most results in this area are uninformative at the worst case.

Kaczmarz method. Our fitting procedure (described in Section 2.3 and 3) shares a great resem-
blance with Kaczmarz methods for solving a system Ax=b. The “basic” method [29] corresponds
to tasks of rank r=1, while the block variant [15] corresponds to tasks having r≥2. Traditionally,
these methods used a deterministic cyclic ordering, like we do in Section 5. There is also a ran-
domized variant [44, 68, 75], related to our random task ordering in Section 6, which often achieves
faster convergence both empirically and theoretically [69]. Studies of these methods often analyze
convergence to a feasible set using the spectrum of A (e.g., its condition number; see [24, 46, 52]).

Our convergence analysis is inherently different. Most convergence results from the AP and
Kaczmarz research areas concentrate on bounding the convergence to the subspace intersection.
These results are valuable for the continual setting, e.g., they help us bound ∥wk −w⋆∥ in The-
orem 8, which clearly upper bounds the forgetting. However, most convergence results in these
areas depend on the task specifics, precluding any informative worst-case analysis. In contrast, we
analyze the convergence of the forgetting (i.e., projection residuals), allowing us to derive uniform
worst-case guarantees. In Section 5.1, we demonstrate these differences by comparing the two quan-
tities. Finally, we believe our bounds are novel and can provide a new perspective in these areas,
especially in the cyclic block Kaczmarz setting [15, 45], i.e., that worst-case last-iterate analyses
become feasible when examining the residual convergence instead of the distance from w⋆.

Normalized Least-Mean-Square (NLMS). The NLMS algorithm is a popular choice for adap-
tive filtering. In its basic form, it fits one random sample at each iteration using update rules identical
to those of our stochastic setting and the randomized Kaczmarz method. There are known conver-
gence guarantees for the single-sample algorithm [67] and its multiple-samples counterpart, the
APA [61], but these are proven only under limiting assumptions on the input signals.

12
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Other optimization methods. It is interesting to note that when fitting T tasks in a cyclic or
random ordering, our update rule in Eq. (2) is equivalent to dual block coordinate descent on the
dual of Eq. (3), i.e., argminα∈RN

(
1
2

∥∥X⊤
1:Tα

∥∥2 − y⊤
1:Tα

)
, where X1:T ∈RN×d and y1:T ∈RN

(for N=
∑T

m=1 nm) are the concatenation of the data matrices and label vectors from all tasks. The
primal variable w and the dual one α are related through w=X⊤

1:Tα. Shalev-Shwartz and Zhang
[64] analyzed the stochastic dual coordinate ascent method for minimizing a regularized loss, and
proved convergence rates for the primal suboptimality. However, when the regularization parameter
vanishes, as in our case, their bounds tend to infinity. Others [69] analyzed the convergence of
coordinate descent on quadratic functions like the dual above, and derived data-dependent bounds.

The stochastic proximal point algorithm (SPPA) [8, 54, 60] follows an update rule (for a step
size η) of wt=argminw

(
1
2(Xτ(t)w−yτ(t))

2 + 1
2η ∥w−wt−1∥2

)
, equivalent when η→∞ to our

rule in Eq. (1). As far as we know, no uniform convergence-rates were previously proved for SPPA.
Minimizing forgetting over T tasks can also be seen as a finite sum minimization problem

[47, 74]. Many algorithms have been proposed for this problem, some of which achieve better
convergence rates than ours using additional memory (e.g., for storing gradients [3, 28]). We derive
forgetting convergence rates for the fitting procedure in Eq. (1) that is equivalent to running (S)GD
to convergence for each presented task, which is a natural choice for continual learning settings.

Forgetting vs. regret. Our Definition 3 of the forgetting should not be confused with the notion of
regret, mainly studied in the context of online learning (e.g., [65]). Specifically, using our notations,
the average regret after k iteration is 1

k

∑k
t=1∥Xτ(t)wt−1 − yτ(t)∥2. Comparing the two quantities,

we note that forgetting quantifies degradation on previous tasks, while regret captures the ability
to predict future tasks. To illustrate the differences, consider a finite sequence of orthogonal tasks.
In this case, the forgetting is 0 (as discussed in Section 4.1), but the regret is large. Conversely,
given a task sequence like in Figure 2, when k → ∞ the regret vanishes while forgetting goes to 1
(see Theorem 7). Nevertheless, in the cyclic and random settings, both quantities will go to 0 when
k → ∞ since we converge to an offline solution. However, their rates of convergence may differ.

8. Conclusion

Catastrophic forgetting is not yet fully understood theoretically. Therefore, one must first study it
in the simplest model exhibiting this phenomenon — linear regression. In this setting, we provide
sharp uniform worst-case bounds. Most of our analysis does not depend on task specifics, but only
on the number of tasks T , the number of iterations k, and the task ordering. On the one hand, we
prove that for an arbitrary ordering, forgetting can be catastrophic. On the other hand, for cyclic
orderings, we prove forgetting cannot be catastrophic and that even in the worst-case it vanishes at
most as T 2

√
k

or T 2d
k . Lastly, we prove worst-case bounds for random orderings, independent of T .

Our bounds complement existing Kaczmarz and alternating projection bounds, which focus on
convergence to a feasible set. Unlike ours, their bounds strictly depend on task specifics (e.g.,
principal angles or condition numbers) and become trivial in worst-case analysis.

There are many intriguing directions for future research. These include extending our results
to the non-realizable case, analyzing forgetting in classification tasks, and deriving optimal pre-
sentation task orderings. Lastly, one can try to extend our results to more complex models (e.g.,
deep models) and other training algorithms. We hope a thorough theoretical understanding of catas-
trophic forgetting, will facilitate the development of new practical methods to alleviate it.
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Appendix A. Preliminary notations and lemmas

A.1. Additional notations for the appendices

We start by adding several notations to those we defined in Section 2.

1. Like in the main text, ∥·∥ denotes either the Euclidean ℓ2-norm of a vector or the spectral norm
of a matrix.

2. We denote the conjugate transpose (i.e., Hermitian transpose) of complex vectors by v∗.

3. We use the singular value decomposition of real matrices, i.e.,

X = UΣV ⊤ ∈ RN×d,

where U ∈ RN×N , V ∈ Rd×d are two orthonormal matrices and Σ ∈ RN×d has the same rank
and dimensions as X . We assume w.l.o.g. that σ1 ≥ σ2 ≥ · · · ≥ σrankX ≥ 0 = . . . = 0︸ ︷︷ ︸

(d−rankX) times

.

In addition, we often decompose V into V =
[

V r︸ ︷︷ ︸
d×rankX

∣∣ V ⊥︸ ︷︷ ︸
d×(d−rankX)

]
to distinguish between

the columns of V that span the range of X from the ones that span its orthogonal complement.

A.2. Useful general properties

Following are several useful inequalities and properties that will facilitate our proofs. We only work
with real matrices, so we often use the transpose and the Hermitian transpose interchangeably.

Lemma 16 For any x1, . . . ,xT ∈Cd, it holds that ∥x1+. . .+xT ∥2 ≤ T
(
∥x1∥2 + · · ·+ ∥xT ∥2

)
.

Proof Notice that

0 ≤ ∥xi − xj∥2 = ∥xi∥2 − 2Re (x∗
ixj) + ∥xj∥2 ⇐⇒ 2Re (x∗

ixj) ≤ ∥xi∥2 + ∥xj∥2 .

Now, we see use the Cauchy-Schwarz inequality and show

∥x1 + · · ·+ xT ∥2 =
T∑
i=1

∥xi∥2 +
∑
i>j

2Re (x∗
ixj) ≤

T∑
i=1

∥xi∥2 +
∑
i>j

(
∥xi∥2 + ∥xj∥2

)

[each appears T times] = T

T∑
i=1

∥xi∥2 = T
(
∥x1∥2 + · · ·+ ∥xT ∥2

)
.
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Property 1 (Spectral norm properties) Let A ∈ Rm×n and B ∈ Rn×p. Then, the spectral norm
holds the following properties:

1. Definition. ∥A∥ = ∥A∥2 ≜ maxv∈Rn\{0}
∥Av∥2
∥v∥2

= max v∈Rn:
∥v∥2=1

∥Av∥2 = σ1 (A) ;

2. Invariance to transposition. ∥A∥ = ∥A⊤∥ ;

3. Triangle inequality. ∥A+B∥ ≤ ∥A∥+ ∥B∥ ;

4. Squared norm of matrix sum. ∥A1 + · · ·+AT ∥2 ≤ T
∑T

i=1 ∥Ai∥2 ;

5. Multiplicative norm inequality. ∥AB∥ ≤ ∥A∥ ∥B∥ ;

6. Invariance to rotations. Let V 1 ∈ Rm′×m and V 2 ∈ Rn′×n be matrices with orthonormal
columns (n′ ≥ n,m′ ≥ m). Then, ∥V 1A∥ = ∥A∥ = ∥AV ⊤

2 ∥ = ∥V 1AV ⊤
2 ∥ .

See Chapter 5.2 in Meyer [40] for the proofs and for more such properties. The squared norm
inequality follows immediately from Lemma 16 and the definition of the spectral norm.

Property 2 (Orthogonal projection properties) Let P be a real orthogonal-projection linear-
operator that projects onto a linear subspace H ⊆ Rd. Let v ∈ Rd be an arbitrary vector. Then, P
holds the following properties:

1. Geometric definition. ∥v − Pv∥ = infx∈H ∥v − x∥ ;

2. Symmetry. P = P⊤ ;

3. Idempotence. P 2 = P ;

4. I − P is also a projection operator, projecting onto the subspace orthogonal to H .

Consequentially, (I − P )P = 0 ;

5. Using the above, we get ∥(I − P )v∥2 = v∗ (I − P )2 v = v∗ (I − P )v = ∥v∥2 − ∥Pv∥2 ;

6. Contraction. ∥Pv∥ ≤ ∥v∥, holding in equality if and only if Pv = v ;

7. Singular values. All the singular values of P are in {0, 1}, implying that ∥P ∥=1 ⇐⇒ P ̸=0.

See Zarantonello [77] for the proofs and for more properties.

The next corollary stems directly from the properties above (see Chapter 5.13 in Meyer [40]).

Corollary 17 (Projection onto solution spaces) Let Xm be the matrix of task m. Then, the pro-
jection onto its solution space, or equivalently onto its null space, is given by: Pm=I−X+

mXm=

V m

(
I−Σ+

mΣm

)
V ⊤

m=V ⊥
mV ⊥⊤

m .
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A.3. Principal angles between two tasks

We continue our discussion from Section 3 and present principal angles more thoroughly for com-
pleteness. We mostly follow the definitions in [5, 9, 40].

Definition 18 (Principal angles between two tasks) Let X1 ∈ Rn1×d,X2 ∈ Rn2×d be two data
matrices, corresponding to two given tasks. Let rmin = min(rank(X1), rank(X2)) be their min-
imal rank. The principal angles θ1, . . . , θrmin ∈ [0, π/2] between the two tasks, i.e., the angles
between the row spaces of X1,X2, are recursively defined by

ui,vi=argmax |u∗
ivi|

s.t. ui ∈ range(X⊤
1 ), vi ∈ range(X⊤

2 ), ∥ui∥ = ∥vi∥ = 1,

∀j∈ [i− 1] : ui⊥uj , vi⊥vj

θi =arccos |u∗
ivi| .

Notice that according to our definition, the principal angles hold π/2 ≥ θrmin ≥ · · · ≥ θ1 ≥ 0 .
Important for our analysis is the fact that unlike the principal vectors {ui,vi}i, the principal angles
between two subspaces are uniquely defined [9]. Two fundamental principal angles in the field of
alternating projections are the minimal principal angle, i.e., the Dixmier angle [13]; and the minimal
non-zero principal angle, i.e., the Friedrichs angle [18].

Figure 5: Principal angles between subspaces.
Since the two hyperplanes share an intersecting direc-
tion, u1,v1 are chosen inside this intersection, meaning
that θ1=arccos |u∗

1v1|=arccos(1)=0. In this case, θ1
is the Dixmier angle. From the remaining directions
that are orthogonal to u1,v1, the recursive definition
chooses two unit vectors u2,v2, forming a non-zero an-
gle θ2=arccos |u∗

2v2|. In this case, θ2 is the Friedrichs
angle.

𝒖1

𝒗2

𝜃2

𝒗1

𝒖2

Claim 19 (Principal angles between ”equivalent” subspaces) Let
(
X1,y1

)
,
(
X2,y2

)
be two

tasks. Then, the sets of non-zero principal angles between the following pairs of subspaces, are
all the same:

1. The data row-spaces, i.e., range(X⊤
1 ) and range(X⊤

2 ) ;

2. The null spaces, i.e., null(X1) and null(X2) ;

3. The affine solution spaces, i.e., W1 = w⋆ + null(X1) and W2 = w⋆ + null(X1) .

Proof The equivalence between (1) and (2) is proven by Theorem 2.7 of Knyazev and Argentati
[33] (stating that the non-zero principal angles between two subspaces are essentially the same as
those between their orthogonal complements). Moreover, since the solution spaces W1,W2 are
merely affine subspaces of the null spaces themselves, they induce the exact same principal angles.

It is possible however that these pairs of subspaces do have a different amount of zero principal
angles between them, but this generally does not interfere with our analyses in the appendices.
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We now use principal angles to prove a lemma that will facilitate our proofs for Sections 4 and 5.

Lemma 20 Let X1,X2 be two data matrices of two tasks and let the corresponding orthogonal
projections onto their null spaces be P 1 = I −X+

1 X1, P 2 = I −X+
2 X2. Then, for any n ∈ N+

we have that

∥(I − P 1) (P 2P 1)
n∥2 = max

i

{(
cos2 θi

)2n−1
(1− cos2 θi)

}
,

where {θi}i ⊆
(
0, π2

]
are the non-zero principal angles between the two tasks in S, i.e., between

range(X⊤
1 ) and range(X⊤

2 ) or equivalently between null(X1) and null(X2) or between the affine
solution spaces W1 and W2.

Proof We use the SVD notation defined in Appendix A.1 and denote by V ⊥
1 , V

⊥
2 the matrices

whose orthonormal columns span null(X1), null(X2) respectively. Thus, we can express the pro-
jections as P 1 = V ⊥

1 V
⊥⊤
1 and P 2 = V ⊥

2 V
⊥⊤
2 .

Now, we show that

∥(I − P 1) (P 2P 1)
n∥2 =

∥∥∥(I − P 1)
(
V ⊥

2 V
⊥⊤
2 V ⊥

1 V
⊥⊤
1

)n∥∥∥2
=

∥∥∥∥(I − P 1)V
⊥
2 V

⊥⊤
2 V ⊥

1

(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)n−1
V ⊥⊤

1

∥∥∥∥2[
spectral norm

properties

]
=

∥∥∥∥(I − P 1)V
⊥
2 V

⊥⊤
2 V ⊥

1

(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)n−1
∥∥∥∥2 .

We now notice that the idempotence of P 1 = V ⊥
1 V

⊥⊤
1 and P 2 = V ⊥

2 V
⊥⊤
2 implies

V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 (I − P 1)

⊤ (I − P 1)V
⊥
2 V

⊥⊤
2 V ⊥

1 = V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 (I − P 1)V

⊥
2 V

⊥⊤
2 V ⊥

1

= V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1 − V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1 V
⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1

= V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1 −
(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)2
.

Since for the spectral norm of any real matrix A it holds that ∥A∥2 =
∥∥A⊤A

∥∥, we get that∥∥∥∥(I − P 1)V
⊥
2 V

⊥⊤
2 V ⊥

1

(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)n−1
∥∥∥∥2

=

∥∥∥∥(V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1

)n−1
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 (I − P 1)

2 V ⊥
2 V

⊥⊤
2 V ⊥

1

(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)n−1
∥∥∥∥

=

∥∥∥∥(V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1

)2n−1
−
(
V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1

)2n∥∥∥∥ .
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Denote the spectral decomposition of the Gram matrix V ⊥⊤
1 V ⊥

2 V
⊥⊤
2 V ⊥

1 ⪰ 0 as QΛQ⊤,
with its (non-negative) eigenvalues ordered in a non-ascending order on the diagonal of Λ and Q
being some orthonormal matrix. The upper bound thus becomes∥∥∥(QΛQ⊤)2n−1 −

(
QΛQ⊤)2n∥∥∥ =

∥∥Λ2n−1 −Λ2n
∥∥ .

= max
i

λ2n−1
i (1− λi) = max

i

{(
cos2 θi

)2n−1
(1− cos2 θi)

}
,

where {θi}i ⊆
[
0, π2

]
are all the principal angles (zeros included) between null(X1) and null(X2).

The last equality stems from a known analysis result (Theorem 2.1 in Risteski and Trencevski
[58]) relating the principal angles between null(X1) and null(X2) to the eigenvalues of the Gram
matrix we defined, i.e., V ⊥⊤

1 V ⊥
2 V

⊥⊤
2 V ⊥

1 = QΛQ⊤. More formally, the result states that ∀i,
λi = cos2 θi. See also Chapter 5.15 in Meyer [40] for more detailed explanations on this relation.

We conclude this proof by using Claim 19 showing that the non-zero principal angles between
null(X1) and null(X2) are essentially the same as those between their orthogonal complements,
i.e., range(X⊤

1 ) and range(X⊤
2 ).
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A.3.1. AUXILIARY LEMMAS ON FORGETTING

We first state an auxiliary lemma for deriving lower bounds on the forgetting of tasks of rank d−1.

Lemma 21 (Lower bound on forgetting in the r = d− 1 case) Let S ∈ ST be a task collection
with T data matrices of rank r = d− 1. Let v1, . . . ,vT be the normalized vectors spanning the T
rank-one solution spaces W1, . . . ,WT . Let θτ(i,j) ∈ [0, π/2] be the angle between vτ(i) and vτ(j),

∀i, j ∈ [k], meaning that cos2 θτ(i,j) =
(
v⊤
τ(i)vτ(j)

)2. Finally, let w⋆ be the minimum norm offline
solution of S. Then, the forgetting on S after k iterations is lower bounded by

Fτ,S(k) ≥ min
m∈[T ]

{
σ2
min(Xm)

}(
v⊤
τ(1)w

⋆
)2 1

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k−1∑
j=1

(
1− cos2 θτ(j,k)

)
,

where σ2
min(Xm) is the smallest squared non-zero singular value of Xm.

Proof [Proof for Lemma 21] We start from Eq. (8) and perform similar derivations to the ones that
lead us to Eq. (9). We have,

Fτ,S (k) =
1

k

k∑
t=1

∥∥Xτ(t)P τ(k) · · ·P τ(1)w
⋆
∥∥2

[pseudo-inverse] =
1

k

k∑
t=1

∥∥Xτ(t)

(
X+

τ(t)Xτ(t)

)
P τ(k) · · ·P τ(1)w

⋆
∥∥2

[ spectral
norm

properties

]
≥ 1

k

k∑
t=1

σ2
min(Xτ(t))

∥∥(X+
τ(t)Xτ(t)

)
P τ(k) · · ·P τ(1)w

⋆
∥∥2

≥ min
m∈[T ]

{
σ2
min(Xm)

}1
k

k∑
t=1

∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(1)w

⋆
∥∥2

[r=d−1] = min
m∈[T ]

{
σ2
min(Xm)

}1
k

k−1∑
t=1

∥∥∥(I − vτ(t)v
⊤
τ(t)

)
vτ(k)v

⊤
τ(k) · · ·vτ(1)v

⊤
τ(1)w

⋆
∥∥∥2 ,

where we used the rank-1 SVD of the data matrices, i.e., Xm = vmv⊤
m.

Now, we denote ∀i, j :
∣∣∣v⊤

τ(i)vτ(j)

∣∣∣ = θi,j and get (notice the signs do not matter in the norm),

= min
m∈[T ]

{
σ2
min(Xm)

}1
k

k−1∑
t=1

∥∥∥∥(I − vτ(t)v
⊤
τ(t)

)(k−1∏
i=1

cos θτ(i,i+1)

)
v
τ(k)
⊥ v

τ(1)⊤

⊥ w⋆

∥∥∥∥2

= min
m∈[T ]

{
σ2
min(Xm)

}(v⊤
τ(1)w

⋆)2

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k−1∑
j=1

∥∥∥(I−v
τ(j)
⊥ v

τ(j)⊤

⊥

)
v
τ(k)
⊥

∥∥∥2
[idempotence] = min

m∈[T ]

{
σ2
min(Xm)

}(v⊤
τ(1)w

⋆)2

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k−1∑
j=1

v
τ(k)⊤

⊥

(
I−v

τ(j)
⊥ v

τ(j)⊤

⊥

)
v
τ(k)
⊥

= min
m∈[T ]

{
σ2
min(Xm)

}(v⊤
τ(1)w

⋆)2

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k−1∑
j=1

(
1−cos2 θτ(j,k)

)
.
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Appendix B. Supplementary material: Arbitrary task orderings (Section 4)

B.1. No forgetting cases (Section 4.1)

Consider learning two tasks sequentially:
(
X1,y1

)
and then

(
X2,y2

)
. Right after learning the

second task, we have L2(w2) = ∥y2−X2w2∥2 = 0. Thus, the forgetting from Eq. (8) becomes
Fτ,S(2) =

1
2 ∥X1P 2P 1w

⋆∥2. We now derive sufficient and necessary conditions for no forgetting.

Recall Theorem 6. Let S=
{(

X1,y1

)
,
(
X2,y2

)}
∈ST=2 be a task collection with 2 tasks, fitted

under an identity ordering τ , i.e.,
(
X1,y1

)
and then

(
X2,y2

)
. Then the following conditions are

equivalent:

1. For any labeling y1,y2 (or equivalently, any minimum norm solution w⋆), after fitting the sec-
ond task, the model does not “forget” the first one. That is, Fτ,S(2) = 0.

2. It holds that X1P 2P 1 = 0n1×d.

3. Each principal angle between the tasks, i.e., range(X⊤
1 ) and range(X⊤

2 ), is either 0 or π/2.

B.1.1. EXAMPLE: SUFFICIENT CONDITIONS FOR NO FORGETTING

Before we prove the theorem above, we exemplify some of its implications by showing clear and
simple sufficient conditions for holding the conditions of the theorem.

(a) range
(
X⊤

2

)
⊆ range

(
X⊤

1

)
; or range

(
X⊤

2

)
⊇ range

(
X⊤

1

)
; or

(b) range
(
X⊤

2

)
⊆ null

(
X1

)
; or range

(
X⊤

2

)
⊇ null

(
X1

)
.

These conditions can help understand that maximal task (=sample) similarity or dissimilarity can
help prevent forgetting in the linear setting.

B.1.2. PROVING THE THEOREM

Proof Like we explain in Section 4.1, the forgetting after learning the second task is equal to
Fτ,S(2) = L1(w2) =

1
2 ∥X1P 2P 1w

⋆∥2. We notice that P 1 = I−X+
1 X1 and P 2 = I−X+

2 X2,
meaning that the labels y1,y2 do not have any effect on the matrix X1P 2P 1. However, these labels
do effect the minimum norm solution w⋆.

Here, we briefly discuss the relation between w⋆ and y1,y2, so as to facilitate our proof below.

Relating the minimum norm solution and the labelings. Recall the constraints between the
offline solution and the labels, i.e., X1w

⋆ = y1 and X2w
⋆ = y2. Also recall that under Assump-

tion 2, we have that w⋆ ∈ Bd. Note that a minimum norm solution must lie in the row span of both
data matrices, i.e., w⋆ ∈ range(X⊤

1 ) ∪ range(X⊤
2 ), since any contributions from the nullspaces

will not affect its predictions X1w
⋆ and X2w

⋆ but will increase its norm.
Moreover, notice that the y1,y2 can yield any minimum norm solution that is inside range(X⊤

1 ),
since we could just choose an arbitrary vector w⋆ ∈ range(X⊤

1 ) and set y2 = X2w
⋆ (we do not

have restrictions on the labelings).
We are now ready to complete our proof.
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Condition (1) ⇐⇒ Condition (2). Clearly, since Fτ,S(2)=
1
2 ∥X1P 2P 1w

⋆∥2, we have that

X1P 2P 1 = 0︸ ︷︷ ︸
(2)

=⇒ ∀y1,y2,w
⋆ : Fτ,S(2) =

1
2 ∥X1P 2P 1w

⋆∥2 = 0︸ ︷︷ ︸
(1)

.

Since P 1 is a symmetric operator projecting onto the row span of X1, we have that range(P 1)=
range(P⊤

1 )=range(X⊤
1 ). It is readily seen that(

∀w⋆∈ range(X⊤
1 ) : ∥X1P 2P 1w

⋆∥=0
)

⇐⇒ X1P 2P 1 = 0 .

We explicitly denote the minimum norm solution that two labelings y1,y2 induce as w⋆(y1,y2).
As explained, y1,y2 can yield any minimum solution inside range(X⊤

1 ). Assume ∀y1,y2 :
∥X1P 2P 1w

⋆(y1,y2)∥ = 0. Then, it follows that ∀w⋆ ∈ range(X⊤
1 ) : ∥X1P 2P 1w

⋆∥ = 0.
In this case we proved that it follows that X1P 2P 1 = 0.

Overall we showed:(
∀y1,y2∈ range(X⊤

1 ) : ∥X1P 2P 1w
⋆∥=0

)
︸ ︷︷ ︸

(1)

=⇒ X1P 2P 1 = 0︸ ︷︷ ︸
(2)

,

thus completing the proof for (1) ⇐⇒ (2).

Condition (2) ⇐⇒ Condition (3). First, we notice that

∥X1P 2P 1∥ = 0 ⇐⇒ ∥(I − P 1)P 2P 1∥ = 0

since simple norm properties give us:

∥(I − P 1)P 2P 1∥ =
∥∥∥V 1Σ

+
1 Σ1V

⊤
1 P 2P 1

∥∥∥ =
∥∥∥Σ+

1 Σ1V
⊤
1 P 2P 1

∥∥∥
≤
∥∥Σ+

1

∥∥︸ ︷︷ ︸
>0

∥∥∥Σ1V
⊤
1 P 2P 1

∥∥∥ ∝
∥∥∥Σ1V

⊤
1 P 2P 1

∥∥∥ =
∥∥∥U1Σ1V

⊤
1 P 2P 1

∥∥∥ = ∥X1P 2P 1∥ ,

and

∥X1P 2P 1∥ =
∥∥∥U1Σ1V

⊤
1 P 2P 1

∥∥∥ =
∥∥∥Σ1V

⊤
1 P 2P 1

∥∥∥ =
∥∥∥Σ1

(
Σ+

1 Σ1

)
V ⊤

1 P 2P 1

∥∥∥
≤ ∥Σ1∥︸ ︷︷ ︸

>0

∥∥∥Σ+
1 Σ1V

⊤
1 P 2P 1

∥∥∥
∝
∥∥∥Σ+

1 Σ1V
⊤
1 P 2P 1

∥∥∥ =
∥∥∥V 1Σ

+
1 Σ1V

⊤
1 P 2P 1

∥∥∥ = ∥(I − P 1)P 2P 1∥ .

Then, we use Lemma 20 and get that

∥(I − P 1)P 2P 1∥ = max
i

{(
cos2 θi

)
(1− cos2 θi)

}
=

1

4
max

i

{
sin2(2θi)

}
,

where {θi}i ⊆
(
0, π2

]
are the non-zero principal angles between the two tasks, i.e., between

range(X⊤
1 ) and range(X⊤

2 ). Finally, it is now clear that

∥X1P 2P 1∥ = 0 ⇐⇒ ∥(I − P 1)P 2P 1∥ =
1

4
max

i

{
sin2(2θi)

}
= 0 ⇐⇒ ∀i : θi ∈

{
0,

π

2

}
.
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B.1.3. COMPARISON TO DOAN ET AL. [14]

Doan et al. [14] also studied forgetting in a linear setting where a series of tasks are learned sequen-
tially by SGD on squared loss with ridge penalty. In the special case where only T = 2 tasks are
given and no regularization is used (i.e., λ = 0), their expression for forgetting in Theorem 1 [14] is
equivalent to our derivation in Eq. (8) up to scaling by 1

2 . However, their subsequent upper bound
stated in Corollary 1 is a looser characterization of forgetting, which can be paraphrased in terms of
our notation and framework as follows (for convenience, we attach their notations beneath the last
equation):

Fτ,S(2) =
1

2
∥X1P 2P 1(w0 −w⋆)∥2 = 1

2

∥∥X1 ·X+
1 X1P 2P 1(w0 −w⋆)

∥∥2
=

1

2
∥X1(I − P 1)P 2P 1(w0−w⋆)∥2

(∗)
=

1

2
∥X1(I − P 1)(I − P 2)P

(1)
⊥ (w0−w⋆)∥2

≤ 1

2
∥X1∥2

∥∥(I − P 1)(I − P 2)︸ ︷︷ ︸
Θ1→2

∥∥2∥∥P 1(w0 −w⋆)︸ ︷︷ ︸
=M2ỹ2

∥∥2,
(11)

where (*) follows from plugging in P 2 = P 2 − I + I and (I − P 1)P 1 = 0.
Based on the above upper bound, the authors informally argue that higher similarity of the

principal components between the source task and target task leads to higher risk of forgetting. In
contrast, the sufficient condition (a) in our Appendix B.1.1 shows that there is no forgetting when
tasks have maximum overlap in the row spans of their inputs.

Concretely, consider the following two tasks that hold the sufficient conditions of Theorem 6
presented in Appendix B.1.1:(

X(1) = [1, 0, 0, 0], y(1) =
1√
2
[1]

)
,

(
X(2) =

[
1 0 0 0
0 1 0 0

]
, y(2) =

1√
2

[
1
1

])
.

Note that w⋆ = 1√
2
[1, 1, 0, 0]⊤ is a unit norm linear predictor that realizes both tasks. In this case,

there is clearly no forgetting as the first task is also part of second task, i.e., Fτ,S(2) = 0. However,
we can verify that ∥X1∥∥P (1)P (2)∥ = 1 and ∥P 1(w0 − w⋆)∥ = 1/

√
2, thus the upper bound

in Eq. (11) evaluates to Fτ,S(2) ≤ 1/4. This demonstrates the weakness of the upper bound in
Corollary 1 of [14].

This gap can also be seen from a principal angle perspective. Their so-called overlap matrix,
i.e., Θ1→2, is a diagonal matrix holding the singular values of V ⊥⊤

2 V ⊥
1 . As they explain in Corol-

lary 1 and we explain in the proof of Lemma 20, these singular values are actually connected to
the principal angles between X1 and X2. Thus, when they use the spectral norm

∥∥Θ1→2
∥∥ which

equals 1, they are actually using only the largest singular values, i.e., the smallest principal angle
which is called the Dimixer angle [13]. In the above example, this angle, which is the only principal
angle, is zero (thus holding our conditions from Theorem 6). In contrast, our analysis in Lemma 9
uses all principal angles, revealing more delicate effects of task similarity on forgetting dynamics.
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B.2. Maximal forgetting cases (Section 4.2)

Recall Theorem 7. When using the identity ordering (i.e., τ(t) = t), thus seeing each task once,
the worst-case forgetting after k iterations is arbitrarily bad, i.e.,

1− sup
S∈ST=k

Fτ,S(k) ≤ O (1/
√
k) .

Recall Figure 2. Sequence of tasks where Fτ,S(k) → 1. Each black arrow rep-
resents a solution space of a rank 1 task in R2. There are k1 tasks between [0, θ]
and k2 tasks between [θ, π/2]. The green diamond shows the overall contraction
after fitting all tasks. The red arrows show projections back onto the solution
spaces. The mean squared length of these arrows is the forgetting.

𝒘𝑘−𝒘
⋆

𝒘
1
−
𝒘
⋆

𝒘⋆

𝑘2 tasks

𝒲𝑘

𝒲𝑘1

𝒲1

𝜃

𝒲𝑘1+1

Proof sketch. We show that for any ϵ > 0 there exists a task collection S of T = k = O(1/ϵ2)
tasks, such that under the identity ordering τ , the forgetting is Fτ,S(k) > 1− ϵ.

We construct a task sequence as follows (illustrated in the figure in 2 dimensions):

1. For some small angle θ ∼
√
ϵ we define k1 ∼ 1/ϵ2 tasks uniformly in [0, θ] ;

2. We add another k2 ∼ 1/ϵ tasks uniformly in (θ, π/2] .

With this construction we show that on the one hand there is almost no contraction, but on the other
hand there is a large forgetting especially on the first k1 tasks, since they are almost orthogonal to
the last task and the projection is large.

We note in passing a related phenomenon in quantum physics, known as the quantum Zeno effect
[23], where the state of a quantum system, described by a vector, can be manipulated by applying
infinitesimally-spaced measurements, which act on it as orthogonal projections.

The full proof of Theorem 7 is given below.
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Proof [Proof of Theorem 7]
We show that for any ϵ ∈ (0, 1) there exists a task collection S of k = O

(
1/ϵ2

)
tasks such that

under the identity ordering, Fτ,S (k) > 1 − ϵ. From Lemma 21 we know that for any choice of a
task collection S of rank d− 1,

Fτ,S (k)≥ 1

k

(
k−1∏
m=1

cos2 θτ(m,m+1)

)
k−1∑
m=1

(
1−cos2 θτ(m,k)

)
=

1

k

(
k−1∏
m=1

cos2 θm,m+1

)
k−1∑
m=1

sin2 θm,k.

(12)

We construct a sequence with T = k = 72/ϵ2 + 1 tasks as following: let θ = θ (ϵ) ∈
(
0, π2

)
and

assume we have k1 = k1 (ϵ) tasks uniformly in [0, θ] and k2 = k2 (ϵ) tasks uniformly in
(
θ, π2

]
.

Note that we require k1 + k2 = k.
Then from Eq. (12) we have

Fτ,S (k) ≥ 1

k1 + k2
cos2(k1−1)

(
θ

k1 − 1

)
cos2k2

( π
2 − θ

k2

)(k1−1∑
i=1

sin2 θi,k︸︷︷︸
≥π/2−θ

+

k−1∑
i=k1

sin2 θi,k︸ ︷︷ ︸
≥0

)

≥ 1

k1 + k2
cos2k1−2

(
θ

k1 − 1

)
cos2k2

(
π − 2θ

2k2

) k1−1∑
i=1

sin2
(π
2
− θ
)

=
1

k1 + k2
cos2k1−2

(
θ

k1 − 1

)
cos2k2

(
π − 2θ

2k2

)(
(k1 − 1) sin2

(π
2
− θ
))

= cos2k1−2

(
θ

k1 − 1

)
︸ ︷︷ ︸

≜F1

· cos2k2
(
π − 2θ

2k2

)
︸ ︷︷ ︸

≜F2

· k1 − 1

k1 + k2
cos2 θ︸ ︷︷ ︸

≜F3

.

We show that for any ϵ ∈ (0, 1) we can choose k1, k2, θ such that

Fτ,S (k) ≥ F1 (k1, θ) · F2 (k2, θ) · F3 (k1, k2, θ) > 1− ϵ .

Specifically, let k1 = 72−12ϵ
ϵ2

+ 1, k2 =
12
ϵ , θ =

√
ϵ
6 .

Then, we use the inequality cosx ≥ 1− x2/2, and get

F1(k1, θ)=cos2(k1−1)

(
θ

k1 − 1

)
≥ cos2(k1−1)

(
1

k1 − 1

)
≥
(
1− 1

2(k1 − 1)2

)2k1−2

≥1− 1

k1 − 1
= 1− ϵ2

72− 12ϵ
≥ 1− ϵ

3

F2(k2, θ)=cos2k2
(
π − 2θ

2k2

)
≥cos2k2

(
2

k2

)
≥
(
1− 2

k22

)2k2

≥1− 4

k2
= 1− ϵ

3

F3(k1, k2, θ)=
k1 − 1

k1 + k2
cos2 θ ≥

72−12ϵ
ϵ2

72−12ϵ
ϵ2

+ 12
ϵ + 1

(
1− ϵ

6

)
=
72− 12ϵ

72 + ϵ2

(
1− ϵ

6

)
≥ 1− ϵ

3
.

Therefore, we get that Fτ,S (k) ≥ F1 (k1, θ) · F2 (k2, θ) · F3 (k1, k2, θ) ≥
(
1− ϵ

3

)3 ≥ 1− ϵ .
Finally note that k = k1 + k2 = 72/ϵ2 + 1, which concludes the proof.
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Appendix C. Supplementary material: Cyclic task orderings (Section 5)

C.1. Forgetting with T = 2 tasks (Section 5.1)

Recall Lemma 9. For any task collection S ∈ ST=2 of two tasks, the forgetting after k = 2n
iterations (i.e., n cycles) is tightly upper bounded by

Fτ,S (k) ≤ 1

2
max

i

{(
cos2 θi

)k−1 (
1− cos2 θi

)}
,

where {θi}i ⊆
(
0, π2

]
are the non-zero principal angles between the two tasks in S. Moreover, the

above inequality saturates when all non-zero singular values of the first task (i.e., of X1) are 1s.

Proof [Proof for Lemma 9] We notice that at the end of each cycle we perfectly fit the second task,
thus having forgetting only on the first one. In the cyclic case, from Eq. (10) we have

Fτ,S (k) ≤ 1

2
∥(I − P 1) (P 2P 1)

n∥2 .

We now apply Lemma 20 (recall that k = 2n) and conclude that:

Fτ,S (k) ≤ 1

2
∥(I − P 1) (P 2P 1)

n∥2 = 1

2
max

i

{(
cos2 θi

)k−1
(1− cos2 θi)

}
,

where {θi}i ⊆
(
0, π2

]
are the non-zero principal angles between the two tasks. Finally, we show

that when all non-zero singular values of X1 are 1s it holds that Σ1 = Σ+
1 Σ1 and we get

Fτ,S(k) =
1

2

∑T

m=1

∥∥Xm

(
P 2P 1

)n
w⋆
∥∥2 = 1

2

(∥∥X1

(
P 2P 1

)n
w⋆
∥∥2 + ∥∥X2

(
P 2P 1

)n
w⋆
∥∥2︸ ︷︷ ︸

=0

)

=
1

2

∥∥U1Σ1V
⊤
1

(
P 2P 1

)n
w⋆
∥∥2

[Prop. 1] =
1

2

∥∥Σ1V
⊤
1

(
P 2P 1

)n
w⋆
∥∥2 = 1

2

∥∥Σ+
1 Σ1V

⊤
1

(
P 2P 1

)n
w⋆
∥∥2

=
1

2

∥∥(I − P 1)
(
P 2P 1

)n
w⋆
∥∥2 ,

proving the inequality saturates in this case.
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Recall Theorem 10. For a cyclic ordering τ of 2 tasks, the worst-case forgetting after k = 2n ≥ 2
iterations (i.e., n ≥ 1 cycles), is

sup
S∈ST=2

Fτ,S (k) =
1

2e (k − 1)
− 1

4e (k − 1)2
+O

(
1

k3

)
.

Proof Following our previous lemma, the key to deriving the worst-case bound is to find the maxi-
mum of

1

2

(
cos2 θ

)x (
1− cos2 θ

)
, ∀x ∈ N ∪ {0} .

For x = 0, the expression above is maximized by θ = 0 and equals 1/2. Generally, one could show
that for any integer x ∈ N+, the angle that maximizes the expression holds sin2 θ = 1

x+1 . Plugging
that solution into the expression, we get:

1

2
max
θ∈[0,π]

(
cos2 θ

)x (
1− cos2 θ

)
=

1

2

(
1− 1

x+ 1

)x 1

x+ 1
=

1

2ex
− 1

4ex2
+O

(
1

x3

)
.

Using Lemma 9, we conclude that

sup
S∈ST=2

Fτ,S (k) =
1

2e (k − 1)
− 1

4e (k − 1)2
+O

(
1

k3

)
.
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C.2. Forgetting with T ≥ 3 tasks (Section 5.2)

Recall Theorem 11. For any number of tasks T ≥ 3 under a cyclic ordering τ , the worst-case
forgetting after k = nT ≥ T 2 iterations (i.e., n ≥ T cycles), is

T 2

24ek
≤ sup

S∈ST≥3:
∀m: rank(Xm)≤rmax

Fτ,S(k) ≤ min

{
T 2

√
k
,

T 2 (d− rmax)

2k

}
.

Moreover, if the cyclic operator
(
P T · · ·P 1

)
from Eq. (10) is symmetric (e.g., in a back-and-

forth setting where tasks m and (T−m+ 1) are identical ∀m∈ [T ]), then the worst-case forgetting
is sharply supS∈ST≥3

Fτ,S(k) = Θ (T 2/k).

C.2.1. PROVING THE UPPER BOUND

We prove the upper bound using the two following lemmas. The proofs of the lemmas are given on
the following pages.

Generally, the proofs revolve around the quantity ∥Mnu∥22 −
∥∥Mn+1u

∥∥2
2
, that we bound both

with and without using the dimension of the tasks.

Lemma 22 (Dimension-independent upper bounds) Let P 1, . . . ,P T ∈ Rd×d be T orthogonal
projection operators forming a cyclic operator M = P T · · ·P 1 ∈ Rd×d. Then:

(Lemma 22a) For any v ∈ Cd, m ∈ [T − 1], it holds that

∥(I − Pm)v∥22 ≤ m
(
∥v∥22 − ∥Mv∥22

)
;

(Lemma 22b) For any v ∈ Cd, m ∈ [T − 1], it holds that ∥(I−M)v∥22 ≤ T
(
∥v∥22 − ∥Mv∥22

)
;

(Lemma 22c) For any vector u ∈ Cd holding ∥u∥ ≤ 1, after n ≥ 1 cycles, it holds that

∥Mnu∥22 −
∥∥Mn+1u

∥∥2
2
≤ 2

∥∥Mn −Mn+1
∥∥ ;

(Lemma 22d) The forgetting on task m ∈ [T − 1] after n ≥ 1 cycles is upper bounded by

∥(I − Pm)Mn∥2 ≤ 2m
∥∥Mn −Mn+1

∥∥ ;

(Lemma 22e) For any number of cycles n ≥ 1, it holds that
∥∥Mn−1 −Mn

∥∥ ≤
√

T/n ;

Moreover, when M is symmetric, we have
∥∥Mn−1 −Mn

∥∥ ≤ 1/e(n−1) .

Lemma 23 (Rank-dependent upper bound) For any vector u ∈ Cd holding ∥u∥ ≤ 1, and for
any non-expansive operator M ∈ Rd×d, i.e., ∥M∥2 ≤ 1, it holds that

∥Mnu∥22 −
∥∥Mn+1u

∥∥2
2

≤ rank (M)

n
≤ d

n
.
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Proof [Proof for Theorem 11 – upper bound]
First, we remind the reader that the forgetting after n cycles is upper bounded by

1

T

∥∥∥∥∥∥∥
 I − P 1

...
I − P T−1

 (P T · · ·P 1)
n

∥∥∥∥∥∥∥
2

2

≤ 1

T

T−1∑
m=1

∥(I − Pm) (P T · · ·P 1)
n∥22 . (13)

The dimension-independent bound directly follows from (Lemma 22d) and (Lemma 22e):

1

T

T−1∑
m=1

∥(I − Pm) (P T · · ·P 1)
n∥22 ≤

1

T

T−1∑
m=1

2m︸ ︷︷ ︸
=(T−1)

√
T

n
= (T − 1)

√
T

n
≤ T

√
T

n
=

T 2

√
k
.

A symmetric cyclic operator M = (P T · · ·P 1). Consider a symmetric cyclic operator ap-
pearing for instance in back-and-forth settings where ∀m ∈ [T ] we have Wm = WT−m. Then,
(Lemma 22e) gives a tighter bound, which in turn (assuming n ≥ 2) yields an overall bound of

1

T

T−1∑
m=1

∥(I − Pm) (P T · · ·P 1)
n∥22 ≤

T − 1

e(n− 1)
≤ T

n
=

T 2

k
.

Finally, since we prove the theorem’s T 2/24ek lower bound in Appendix C.2.2 using a back-and-
forth task collection, i.e., using a symmetric cyclic operator, we get that in these back-and-forth
settings we have a sharp worst-case behavior of Θ(T 2/k)

Finally, we notice that (Lemma 22a) implies that

∥(I − Pm)Mn∥22 ≜ max
u:∥u∥2=1

∥(I − Pm)Mnu∥22 ≤ m ·max
u:∥u∥2=1

(
∥Mnu∥2 −

∥∥Mn+1u
∥∥2),

and by applying Lemma 23 on M ≜ P T · · ·P 1, we conclude the dimension-dependent bound:

1

T

T−1∑
m=1

∥(I − Pm) (P T · · ·P 1)
n∥22 ≤

1

T

T−1∑
m=1

m︸ ︷︷ ︸
=(T−1)/2

rank (M)

n
≤ T (d− rmax)

2n
=

T 2 (d− rmax)

2k
,

where we used our notation of rmax ≜ maxm∈[T ] rankXm = maxm∈[T ] (d− rankPm) and the
fact that ∀m ∈ [T ] : rank (M) = rank (P T · · ·P 1) ≤ minm∈[T ] rankPm.
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Before we prove the lemmas above, we state an auxiliary claim (and a corollary).

Claim 24 For any m ∈ [T ], it holds that

I = (I − P 1) +
m−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1) + Pm · · ·P 1 .

Proof Recursively, we show that

I − Pm · · ·P 1

= (I − P 1) + (P 1 − P 2P 1) + (P 2P 1 − P 3P 2P 1) + · · ·+ (Pm−1 · · ·P 1 − Pm · · ·P 1)

= (I − P 1) + (I − P 2)P 1 + (I − P 3) (P 2P 1) + · · ·+ (I − Pm) (Pm−1 · · ·P 1)

= (I − P 1) +

m−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1) ,

which proves our claim.

Corollary 25 For any m ∈ [T ], it holds that,

(I − Pm) = (I − Pm) (I − P 1) +
m−1∑
ℓ=1

(I − Pm) (I − P ℓ+1) (P ℓ · · ·P 1) .

Proof We use Claim 24 and get that

(I − Pm) = (I − Pm) I

= (I − Pm)

[
(I − P 1) +

m−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1) + Pm · · ·P 1

]

= (I − Pm)

[
(I − P 1) +

m−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1)

]
+ (I − Pm)Pm︸ ︷︷ ︸

=0, by Prop. 2

Pm−1 · · ·P 1 .
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Proof for Lemma 22 We now prove our dimension-independent upper bounds, step by step, by
proving all the statements of Lemma 22.

Proof [Proof for (Lemma 22a)] For m = 1, one can show that:

∥(I − P 1)v∥22
idempotence

= ∥v∥22 − ∥P 1v∥22

projections
contract
≤ 1 ·

(
∥v∥22 − ∥(P T · · ·P 1)v∥22

)
.

Then, for m = 2, 3, . . . , T − 1, we apply Corollary 25 and obtain

∥(I − Pm)v∥22

[Corollary 25] =

∥∥∥∥∥(I − Pm) (I − P 1)v +
m−1∑
ℓ=1

(I − Pm) (I − P ℓ+1) (P ℓ · · ·P 1)v

∥∥∥∥∥
2

[Lemma 16] ≤ m

(
∥(I − Pm) (I − P 1)v∥2 +

m−1∑
ℓ=1

∥(I − Pm) (I − P ℓ+1) (P ℓ · · ·P 1)v∥2
)

[
projections

contract

]
≤ m

(
∥(I − P 1)v∥2 +

m−1∑
ℓ=1

∥(I − P ℓ+1) (P ℓ · · ·P 1)v∥2
)

[idempotence] = m

(
∥v∥2 − ∥P 1v∥2 +

m−1∑
ℓ=1

(
∥(P ℓ · · ·P 1)v∥2 − ∥(P ℓ+1 · · ·P 1)v∥2

))
[telescoping] = m

(
∥v∥2 − ∥(Pm · · ·P 1)v∥2

)
≤ m

(
∥v∥2 − ∥(P T · · ·P 1)v∥2

)
,

which completes our proof.

Remark. We note in passing that this dependence on m can be further improved. Using similar
techniques, one can also prove that ∥(I − Pm)Mv∥22 ≤

(
T −m

) (
∥v∥2 − ∥Mv∥2

)
. This in

turn can help tighten the upper bound in Theorem 11 by a multiplicative factor of 2, but yields a
slightly less elegant expression.
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Proof [Proof for (Lemma 22b)] Notice that Claim 24 (with m = T ) implies that

I − P T · · ·P 1 = (I − P 1) +
T−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1) .

Then, we prove our lemma:

∥v − P T · · ·P 1v∥2 =

∥∥∥∥∥(I − P 1)v +

T−1∑
ℓ=1

(I − P ℓ+1) (P ℓ · · ·P 1)v

∥∥∥∥∥
2

[Lemma 16] ≤ T

(
∥(I − P 1)v∥2 +

T−1∑
ℓ=1

∥(I − P ℓ+1) (P ℓ · · ·P 1)v∥2
)

[idempotence] = T

(
∥v∥2 − ∥P 1v∥2 +

T−1∑
ℓ=1

(
∥(P ℓ · · ·P 1)v∥2 − ∥(P ℓ+1 · · ·P 1)v∥2

))
[telescoping] = T

(
∥v∥2 − ∥(P T · · ·P 1)v∥2

)
.

Remark. We note in passing that after completing our proof above, we found that a similar
proof was already presented in Netyanun and Solmon [48] while discussing Kakutani’s lemma.
We still brought our proof here for the sake of completeness. Moreover, they showed that for a
non-expansive self-adjoint positive semi-definite operator M , the factor T can be alleviated from
the inequality. That is, ∥v − P T · · ·P 1v∥2 ≤ �T

(
∥v∥2 − ∥(P T · · ·P 1)v∥2

)
. But clearly this

does not suit our general cyclic operators which are not necessarily self-adjoint. Indeed, our proof
for (Lemma 22e) yields a similar conclusion for symmetric cyclic operators.

Proof [Proof for (Lemma 22c)] Let u ∈ Cd. First, we notice that since M is a non-expansive
operator, we have that ∥Mnu∥22 ≥

∥∥Mn+1u
∥∥2
2
. In turn, this means

0 ≤ ∥Mnu∥22 −
∥∥Mn+1u

∥∥2
2
= u∗

(
(Mn)∗Mn −

(
Mn+1

)∗
Mn+1︸ ︷︷ ︸

⪰0 because it is clearly symmetric as well

)
u .

Then, we use the fact that for any positive semi-definite matrix A ⪰ 0, we have that
u∗Au ≤ λ1 (A) = ∥A∥, and get

∥Mnu∥22 −
∥∥Mn+1u

∥∥2
2
≤
∥∥∥(Mn)∗Mn −

(
Mn+1

)∗
Mn+1

∥∥∥
[A∗A−B∗B=B∗(A−B)+(A∗−B∗)A] =

∥∥∥(Mn+1
)∗ (

Mn −Mn+1
)
+
(
(Mn)∗ −

(
Mn+1

)∗)
Mn

∥∥∥
[triangle inequality] ≤

∥∥∥(Mn+1
)∗ (

Mn −Mn+1
)∥∥∥+ ∥∥∥((Mn)∗ −

(
Mn+1

)∗)
Mn

∥∥∥
[contraction] ≤

∥∥(Mn)∗
(
Mn −Mn+1

)∥∥+ ∥∥∥((Mn)∗ −
(
Mn+1

)∗)
Mn

∥∥∥
[ ∥A∗∥=∥A∥ ] = 2

∥∥(Mn)∗
(
Mn −Mn+1

)∥∥
[contraction] ≤ 2

∥∥Mn −Mn+1
∥∥ .
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Proof [Proof for (Lemma 22d)] This lemma is a direct corollary of (Lemma 22a) and (Lemma 22c).
First, we set v = Mnu and apply (Lemma 22a):

∥(I − Pm)Mn∥2 = max
u:∥u∥2=1

∥(I − Pm)Mnu∥2 ≤ m · max
u:∥u∥2=1

(
∥Mnu∥22 −

∥∥Mn+1u
∥∥2
2

)
.

Then, we apply (Lemma 22c) to get:

∥(I − Pm)Mn∥2 ≤ m · max
u:∥u∥2=1

(
∥Mnu∥22 −

∥∥Mn+1u
∥∥2
2

)
≤ 2m

∥∥Mn −Mn+1
∥∥ .

Proof [Proof for (Lemma 22e)] We use (Lemma 22b) to show that

n−1∑
t=0

∥∥(M t −M t+1
)
v
∥∥2 = n−1∑

t=0

∥∥(I −M)M tv
∥∥2 ≤ T

n−1∑
t=0

(∥∥M tv
∥∥2 − ∥∥M t+1v

∥∥2)
[telescoping] = T

(
∥v∥2 − ∥Mnv∥2

)
≤ T ∥v∥2 .

Since
∥∥(M t −M t+1

)
v
∥∥2 =

∥∥M ((
M t−1 −M t

)
v
)∥∥2 and since the cyclic operator M is a

contraction operator, we get that the series
{∥∥(M t −M t+1

)
v
∥∥2}

t
is monotonic non-increasing.

This in turn means that

∀v ∈ Cd :
∥∥(Mn−1 −Mn

)
v
∥∥2 = min

t=0,...,n−1

∥∥(M t −M t+1
)
v
∥∥2

≤ 1

n

n−1∑
t=0

∥∥(M t −M t+1
)
v
∥∥2 ≤ T

n
∥v∥2 ,

which finally implies that
∥∥Mn−1 −Mn

∥∥2 ≤ T/n as required.

A symmetric cyclic operator M = (P T · · ·P 1). When M is Hermitian matrix, its spectral
decomposition M = QΛQ∗ reveals a tighter bound:∥∥Mn−1−Mn

∥∥ =
∥∥Q(Λn−1−Λn)Q∗∥∥ =

∥∥Λn−1−Λn
∥∥ = max

i

(
λn−1
i (1−λi)

)
≤ 1

e(n− 1)
.
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Proof [Proof for Lemma 23] We follow a proof by fedja [17].
Define the series of matrices {Bn}, where Bn = Mn⊤

Mn − Mn+1⊤Mn+1. Notice that it
holds that Bn ⪰ 0 (since it is symmetric and ∀v : v∗Bnv = ∥Mnv∥22 −

∥∥Mn+1v
∥∥2
2
≥ 0).

Furthermore, Von Neumann’s trace inequality and the fact that M is a contraction operator,
imply that

tr (Bn+1) = tr
(
M⊤BnM

)
= tr

(
MM⊤︸ ︷︷ ︸

⪰0

Bn︸︷︷︸
⪰0

)
≤
∥∥MM⊤∥∥

2
tr (Bn) ≤ tr (Bn) ,

meaning that the sequence {tr (Bn)}n is monotonically non-increasing. Hence, we get that

n tr (Bn) ≤
n∑

ℓ=1

tr (Bℓ) =
n∑

ℓ=1

tr
(
M ℓ⊤M ℓ −M ℓ+1⊤M ℓ+1

)
=

n∑
ℓ=1

(
tr
(
M ℓ⊤M ℓ

)
− tr

(
M ℓ+1⊤M ℓ+1

))
[telescoping] = tr

(
M

⊤
M
)
− tr

(
Mn+1⊤Mn+1

)
︸ ︷︷ ︸

≥0

≤ tr
(
M

⊤
M
) contraction

≤ rank (M)

=⇒ tr (Bn) ≤
rank (M)

n
.

We are now ready to conclude this lemma,

max
v:∥v∥2=1

(
∥Mnv∥22 −

∥∥Mn+1v
∥∥2
2

)
= max

v:∥v∥2=1
v∗
(
Mn⊤

Mn −Mn+1⊤Mn+1
)
v

= max
v:∥v∥2=1

v∗ Bn︸︷︷︸
⪰0

v = λ1 (Bn)︸ ︷︷ ︸
∈R+

≤ tr (Bn) ≤
rank (M)

n
.

Remarks. For the sake of completeness, we briefly discuss our result above. First, this result is
useful for our derivations since our cyclic operator (P T · · ·P 1) is essentially a contraction operator.
In fact, being a product of projections, our cyclic operator has great expressiveness. It was shown
by Oikhberg [50] that any contraction operator can be decomposed into a product of sufficiently,
though sometimes infinitely, many projections. This explains our interest in analyzing “general”
contraction operators.

Finally, we should mention that the bound derived here is sharp (up to a constant). For instance,

for the Toeplitz operator M =

[ 1
. . .

1
1−ϵ

]
, a proper choice of ϵ can yield a rate of d/en for

the quantity we bound in the lemma above. However, such an operator cannot be expressed as a
product of a finite number of projection operators. One can approximate this operator arbitrarily-
well by replacing the 1s with β ∈ (0, 1). However, we were not able to use this approximation
to improve our lower bound in Theorem 11, since β < 1 implies a geometric contraction of all
elements at every cycle and requires a very large number of constructing projections (i.e., tasks).
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C.2.2. PROVING THE LOWER BOUND

Proof [Proof for Theorem 11 – lower bound]
To prove the lower bound, we show a construction of a task collection S ∈ ST with T tasks

whose forgetting is

T 2

24ek
≤ Fτ,S(k) .

We construct S using data matrices of rank r = d − 1 whose non-zero singular values all
equal to 1. Let v1, . . . ,vT be the normalized vectors spanning the T rank-one solution spaces
W1, . . . ,WT . We also choose to generate labels using a unit norm offline solution, i.e., ∥w⋆∥ = 1.
We spread v1, . . . ,vT on a 2-dimensional hyperplane such that the tasks ”go” back-and-forth, i.e.,
switch direction at the middle task (see illustration in Figure 6).

Using Lemma 21 we have

Fτ,S (k) ≥ 1

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k−1∑
m=1

(
1− cos2 θτ(m,k)

)
=

1

k

(
k−1∏
i=1

cos2 θτ(i,i+1)

)
k

T

T∑
m=1

(
1−cos2 θm,T

)
=

1

T

(
k−1∏
i=1

cos2 θτ(i,i+1)

)k−1 T∑
m=1

(
1−cos2 θm,T

)
.

We consider separately the case of even T and the case of odd T .

Figure 6: Construction of T = 6 ”back-and-forth” tasks for the lower bound proof in Theorem 11.

𝒗1 = 𝒗5

𝜃

𝒗2 = 𝒗4

𝒗3

𝒗6

𝜃

𝜃

𝒘⋆
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Even T : In this case, we set ∀i ∈ [T − 1] : θi,i+1 =

{
θ i < T

2

−θ i ≥ T
2

, thus obtaining

1

T

(
k−1∏
i=1

cos2 θτ(i,i+1)

)k−1 T∑
m=1

(
1−cos2 θm,T

)
=

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1−cos2

((
T

2
−m

)
θ

))
.

We choose θ =
√

1/k−1 and get

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2

((
T

2
−m

)
θ

))

=
1

T

(
cos2

√
1

k − 1

)k−1 T∑
m=1

(
1− cos2

((
T

2
−m

)√
1

k − 1

))
.

Next, using the inequality 1− cos2 x ≥ x2 − 1
3x

4, we get

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2

((
T

2
−m

)
θ

))

≥ 1

T

(
cos2

√
1

k − 1

)k−1 T∑
m=1

((
T

2
−m

)2 1

k − 1
− 1

3

(
T

2
−m

)4 1

(k − 1)2

)

≥ 1

T

1

k − 1

(
cos2

√
1

k − 1

)k−1 T∑
m=1

((
T

2
−m

)2

−
(
T

2
−m

)4 1

3 (k − 1)

)
.

By using ∀x ≥ 1 : 1
x

(
cos2

√
1/x
)x

≥ 1/e(x+1) we get

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2

((
T

2
−m

)
θ

))

≥ 1

Tek

T∑
m=1

((
T

2
−m

)2

−
(
T

2
−m

)4 1

3 (k − 1)

)

=
1

Tek

(
1

12
T
(
T 2 + 2

)
−

T
(
3T 4 + 20T 2 − 8

)
240 · 3(k − 1)

)
=

1

12ek

(
T 2 + 2− 3T 4 + 20T 2 − 8

60 (k − 1)

)
.

For k ≥ T 2 we get

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2

((
T

2
−m

)
θ

))
≥ 1

12ek

(
T 2 + 2− 3T 4 + 20T 2 − 8

60 (T 2 − 1)

)
. (14)

Note that for T ≥ 4 we have 1
12ek

(
T 2 + 2− 3T 4+20T 2−8

60(T 2−1)

)
≥ T 2

13ek .
Therefore for even T ≥ 4 we have

Fτ,S (k) ≥ 1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2

((
T

2
−m

)
θ

))
≥ T 2

13ek
.
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Odd T : In this case we set ∀i ∈ [T − 1] : θi,i+1 =


θ i < T−1

2

− θ
2 i = T−1

2 or i = T+1
2

−θ i > T+1
2

, and since

cos (θ/2) ≥ cos (θ) (for small θ, as we choose later) we have

1

T

(
k−1∏
i=1

cos2 θτ(i,i+1)

)k−1 T∑
m=1

(
1− cos2 θm,T

)
≥ 1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2 θm,T

)
.

Next,
T∑

m=1

(
1− cos2 θm,T

)
= 1− cos2

((
T − 2

2

)
θ

)
+

T−1∑
m=1

(
1− cos2

((
T − 1

2
−m

)
θ

))
.

Therefore we get

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2 θm,T

)
=
1

T

(
cos2 θ

)k−1
(
1− cos2

((
T − 2

2

)
θ

))
+

1

T

(
cos2 θ

)k−1
T−1∑
m=1

(
1− cos2

((
T − 1

2
−m

)
θ

))
=
1

T

(
cos2 θ

)k−1
(
1− cos2

((
T − 2

2

)
θ

))
+

T − 1

T

1

T − 1

(
cos2 θ

)k−1
T−1∑
m=1

(
1− cos2

((
T − 1

2
−m

)
θ

))
. (15)

We choose again θ =
√

1/k−1. For the first term in Eq. (15) we have

1

T

(
cos2 θ

)k−1
(
1− cos2

((
T − 2

2

)
θ

))

=
1

T

(
cos2

√
1

k − 1

)k−1(
1− cos2

((
T − 2

2

)√
1

k − 1

))

≥ 1

T

(
cos2

√
1

k − 1

)k−1(
1− cos2

(
1

2

√
1

k − 1

))
≥ 1

4Tek
.

For the second term in Eq. (15) we use Eq. (14) and get

T − 1

T

1

T − 1

(
cos2 θ

)k−1
T−1∑
m=1

(
1− cos2

((
T − 1

2
−m

)
θ

))

≥ T − 1

T

1

12ek

(T − 1)2 + 2− 3 (T − 1)4 + 20 (T − 1)2 − 8

60
(
(T − 1)2 − 1

)
 .
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Therefore in Eq. (15) we have

1

T

(
cos2 θ

)k−1
T∑

m=1

(
1− cos2 θm,T

)
≥ 1

4Tek
+

T − 1

T

1

12ek

(T − 1)2 + 2− 3 (T − 1)4 + 20 (T − 1)2 − 8

60
(
(T − 1)2 − 1

)


=
1

ek

 1

4T
+

T − 1

12T

(T − 1)2 + 2− 3 (T − 1)4 + 20 (T − 1)2 − 8

60
(
(T − 1)2 − 1

)


[T ≥ 3] ≥ T 2

24ek
,

and thus for odd T ≥ 3 we have Fτ,S (k) ≥ T 2/24ek, which concludes the proof.

Regarding the rank. Notice that the lower bound we derived used a construction consisting of
tasks of rank d − 1. On the other hand, the lower bound in Theorem 11 should be correct even
when rmax < d − 1. In such a case, we can always use an identical task collection using T tasks
spread on a 2-d hyperplane, and add to the tasks’ data matrices any number of directions which
are orthogonal to that hyperplane, but appear identically on all tasks. Then, any expression of the
form

∥∥(I − Pm

)(
P T · · ·P 1

)n∥∥ will disregard these added directions, since they are shared across
all tasks (hence they do not appear in I−Pm). The remaining hyperplane’s behavior will remain
unchanged as in the analysis above. Thus our analysis above is valid for any task rank.

43



EVRON MOROSHKO WARD SREBRO SOUDRY

Appendix D. Supplementary material: Random task orderings (Section 6)

Recall Theorem 13. Under the uniform i.i.d. task ordering τ , the worst-case expected forgetting
after k iterations is

sup
S∈ST :

1
T
∑T

m=1 rank(Xm)=ravg

F̄τ,S (k) ≤ 9 (d− ravg)

k
.

Proof [Proof for Theorem 13] Let S = {P 1, . . . ,P T } be a given collection of T arbitrary projec-
tion matrices sampled i.i.d. at each iteration from a uniform distribution.

As in Eq. (8), we first express the expected forgetting on a task collection S ∈ ST , defined in
Definition 12, in terms of the projection matrices induced by the T data matrices in S. That is, we
bound the expected forgetting by

F̄τ,S (k)≜ E
τ

[
1

k

k∑
t=1

∥∥∥Xτ(t)wk − yτ(t)

∥∥∥2]≤ E
τ

[
1

k

k∑
t=1

∥∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(1)

∥∥∥2] . (16)

D.1. Detour: Rephrasing and bounding a more natural expression

D.1.1. REPHRASING

Before we will bound the upper bound above, we start by bounding a slightly different quantity
which is easier to work with and can be seen as a straightforward MSE loss over T tasks (as studied
in NLMS papers, e.g., [61, 67]). Instead of averaging the forgetting (i.e., residuals) over previously-
seen tasks, we average over all tasks in the collection S. That is, we start by bounding.

E
τ

[
1

T

T∑
m=1

∥∥(I − Pm)P τ(k) · · ·P τ(1)

∥∥2
2

]
= E

τ,P

∥∥(I − P )P τ(k) · · ·P τ(1)

∥∥2
2
, (17)

where EP means averaging over all T projection matrices w.r.t. a uniform distribution.
To further ease reading, we slightly abuse notation such that instead of explicitly sampling a task

ordering τ , we simply uniformly sample k + 1 orthogonal projection operators, P 1,P 2, . . . ,P k

and P from some i.i.d. uniform distribution (e.g., uniformly from a finite set of T such operators).
Finally, we obtain the following expression:

EP 1,...,P k,P ∥(I − P )P k · · ·P 1∥22 . (18)

Next, we will bound Eq. (18) which is equivalent to Eq. (17). Then, we will use Eq. (17) to
bound the right hand side of Eq. (16) and conclude an upper bound for the expected forgetting, as
required.
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D.1.2. BOUNDING EQ. (18)

We begin by using a known inequality between the spectral norm and the Frobenius norm, that
is, ∥A∥22=λ1 (A

∗A) ≤ tr (A∗A)= ∥A∥2F , and present an easier, but perhaps looser, surrogate
quantity f(k) which we will bound:

E
P 1,...,P k,P

∥(I − P )P k · · ·P 1∥22 ≤ E
P 1,...,P k,P

tr [P 1 · · ·P k (I − P )P k · · ·P 1] ≜ f(k) . (19)

Key to our following derivations, is the fact that all the projection matrices including P are identi-
cally distributed, allowing us to freely change variables. This property, together with the linearity
of the expectation and trace operators, facilitates our derivations.

We now notice that the bound we got is non-increasing in k, i.e.,

f(k − 1)− f(k) = E
P 1,...,P k−1,P

tr [P 1 · · ·P k−1 (I − P )P k−1 · · ·P 1]−

E
P 1,...,P k,P

tr [P 1 · · ·P k (I − P )P k · · ·P 1]

[identically
distributed

]
= E
P 2,...,P k+1

tr [P 2 · · ·P k (I − P k+1)P k · · ·P 2]−

E
P 1,...,P k+1

tr [P 1 · · ·P k (I − P k+1)P k · · ·P 1]

[linearity] = E
P 1,...,P k+1

[
tr

[
P 2 · · ·P k (I − P k+1)P k · · ·P 2︸ ︷︷ ︸

≜M

]
−

tr

[
P 1P 2 · · ·P k (I − P k+1)P k · · ·P 2︸ ︷︷ ︸

≜M

P 1

]]

= E
P 1,...,P k,P

[
tr [M ]− tr [P 1MP 1]︸ ︷︷ ︸

≥0

]
≥ 0 ,

where in the last inequality we (again) used Von Neumann’s trace inequality to show that

tr (P 1MP 1) = tr (P 1P 1M) = tr
(
P 1︸︷︷︸
⪰0

M︸︷︷︸
⪰0

)
≤
∥∥P 1

∥∥
2
tr (M) = tr (M) .
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Since the bounds are non-increasing, we bound f(k) at iteration k, using f(1) , . . . , f(k):

f (k) = min
t∈[k]

f (t) ≤ 1

k

k∑
t=1

f (t) =
1

k

k∑
t=1

E
P 1,...,P t,P

tr [P 1 · · ·P t (I − P )P t · · ·P 1]

=
1

k

k∑
t=1

(
E

P 1,...,P t

tr [P 1 · · ·P t · · ·P 1]− E
P 1,...,P t,P

tr [P 1 · · ·P tPP t · · ·P 1]

)
[identically

distributed

]
=

1

k

k∑
t=1

(
E

P 1,...,P t

tr [P 1 · · ·P t · · ·P 1]− E
P 1,...,P t,P t+1

tr [P 1 · · ·P t+1 · · ·P 1]

)
[telescoping] =

1

k
E
P 1

tr [P 1]− E
P 1,...P k+1

tr [P 1 · · ·P k+1 · · ·P 1]︸ ︷︷ ︸
≥0, because P 1 · · ·P k+1 · · ·P 1 ⪰ 0

≤ 1

k
E
P
rank (P ) =

1

k
· 1
T

T∑
m=1

(d− rank (Xm)) ≜
d− ravg

k
,

and conclude that

E
τ

[
1

T

T∑
m=1

∥∥(I − Pm)P τ(k) · · ·P τ(1)

∥∥2
2

]
17&18≡ E

P 1,...,P k,P
∥(I − P )P k · · ·P 1∥22

19
≤ f(k) ≤ d− ravg

k
.
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D.2. Back to the expected forgetting

Recall that our initial goal in Eq. (16) was to bound Eτ

[
1
k

∑k
t=1

∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(1)

∥∥2].
Instead, we started by bounding the slightly different quantities from Eq. (17) and (18), i.e., we
showed that Eτ,P

∥∥(I − P )P τ(k) · · ·P τ(1)

∥∥2
2
≤ d−ravg

k . We now use the bound we proved to
bound the original quantity of interest.

Eτ

[∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t) · · ·P τ(1)

∥∥2
2

]
= Eτ

[∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t+1)

(
P τ(t) + I − I

)
P τ(t−1) · · ·P τ(1)

∥∥2
2

]
[Prop. 1] ≤ 2

(
Eτ

[∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t+1)

(
I − P τ(t)

)
P τ(t−1) · · ·P 1

∥∥2
2

]
+

+ Eτ

∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t+1)P τ(t−1) · · ·P 1

∥∥2
2

)
[i.i.d.] = 2

(
Eτ

∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t+1)

(
I − P τ(t)

)
P τ(t−1) · · ·P 1

∥∥2
2
+

+ Eτ,P

∥∥(I − P )P τ(k−1) · · ·P 1

∥∥2
2︸ ︷︷ ︸

≤(d−ravg)/(k−1)

)

[norms] ≤ 2

(
Eτ

[∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t+1)

∥∥2
2

∥∥(I − P τ(t)

)
P τ(t−1) · · ·P 1

∥∥2
2

]
+

d− ravg
k − 1

)
= 2

(
Eτ,P

[∥∥(I − P )P τ(k) · · ·P τ(t+1)

∥∥2
2

∥∥(I − P )P τ(t−1) · · ·P 1

∥∥2
2

]
+

d− ravg
k − 1

)
.

Recall that both the spectral norms above are upper bounded by 1. We upper bound the norm
consisting of less projections by 1 and keep the other one.

Assume t > (k+1)/2, and thus t−1 > k−t. We get, Eτ,P

∥∥(I − P )P τ(t−1) · · ·P 1

∥∥2
2
≤ d−ravg

t−1 .

Similarly, when t ≤ (k+1)/2 and t−1 ≤ k−t, we get Eτ,P

∥∥(I − P )P τ(k) · · ·P τ(t+1)

∥∥2
2
≤ d−ravg

k−t .
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Overall, we get a final bound of

1

k

k−1∑
t=1

Eτ

[∥∥(I − P τ(t)

)
P τ(k) · · ·P τ(t) · · ·P τ(1)

∥∥2
2

]

≤ 2

k

(
(k − 1)

d− ravg
k − 1

+

⌊(k+1)/2⌋∑
t=1

d− ravg
k − t

+
k−1∑

t=⌊(k+1)/2⌋+1

d− ravg
t− 1

)

=
2(d− ravg)

k

(
1 +

k−1∑
t=k−⌊(k+1)/2⌋

1/t +

k−2∑
t=⌊(k+1)/2⌋

1/t

)
≤ 2(d− ravg)

k

(
1 + 2

k−1∑
t=⌊k/2⌋

1/t

)
[k≥2]

≤ 2(d− ravg)

k

(
1 + 2 + 2

k−1∫
⌊k/2⌋

1

t
dt

)
≤ 2(d− ravg)

k
(3 + 2 (ln (k − 1)− ln (⌊k/2⌋)))

=
2(d− ravg)

k

(
3 + 2 ln

(
k − 1

⌊k/2⌋

))
≤ 2(d− ravg)

k
(3 + 2 ln (2))︸ ︷︷ ︸

≤4.5

≤ 9(d− ravg)

k
.
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Appendix E. Extension to the average iterate (Remark 15)

Here we briefly demonstrate how our results from Sections 5 and 6 can be readily improved by
considering the average iterate wk ≜ 1

k

∑k
t=1wt instead of the last iterate wk. The average iterate

is known to be easier to analyze, and yields generally stronger results when analyzing the SGD
algorithm [71] and the Kaczmard method [43]. Of course, working with the average iterate requires
maintaining a running mean parameter vector, which is generally more memory consuming.

E.1. Proof sketch for the cyclic setting

As a proof of concept, we prove better bounds for an “easier” iterate that averages only iterates at
the end of cycles, i.e., for k=nT we define wn=

1
n

∑n
n′=1wTn′ . For the first task, we get

∥X1 (wn −w⋆)∥2 =

∥∥∥∥∥X1

( 1
n

n∑
n′=1

wTn′ −w⋆
)∥∥∥∥∥

2

=
1

n2

∥∥∥∥∥X1

n∑
n′=1

(P T · · ·P 1)
n′
(��w0 −w⋆)

∥∥∥∥∥
2

≤ 1

n2

∥∥∥∥∥
n∑

n′=1

(I − P 1) (P T · · ·P 1)
n′
w⋆

∥∥∥∥∥
2

[Lemma 16] ≤ 1

n

n∑
n′=1

∥∥∥(I − P 1) (P T · · ·P 1)
n′
w⋆
∥∥∥2

=
1

n

n∑
n′=1

(∥∥∥(P T · · ·P 1)
n′
w⋆
∥∥∥2 − ∥∥∥P 1 (P T · · ·P 1)

n′
w⋆
∥∥∥2)

≤ 1

n

n∑
n′=1

(∥∥∥(P T · · ·P 1)
n′
w⋆
∥∥∥2 − ∥∥∥(P T · · ·P 1)

n′+1w⋆
∥∥∥2)

=
1

n

(
∥(P T · · ·P 1)w

⋆∥2︸ ︷︷ ︸
≤1

−
∥∥∥(P T · · ·P 1)

n+1w⋆
∥∥∥2︸ ︷︷ ︸

≥0

)
≤ 1

n
.

Similarly, for a general task m ∈ [T ], we have

∥Xm (wn −w⋆)∥2 ≤ 1

n

n∑
n′=1

∥∥∥(I − Pm) (P T · · ·P 1)
n′
w⋆
∥∥∥2

=
1

n

n∑
n′=1

(∥∥∥(P T · · ·P 1)
n′
w⋆
∥∥∥2 − ∥∥∥Pm (P T · · ·P 1)

n′
w⋆
∥∥∥2)

[(Lemma 22a)] ≤ m

n

n∑
n′=1

(∥∥∥(P T · · ·P 1)
n′
w⋆
∥∥∥2 − ∥∥∥(P T · · ·P 1)

n′+1w⋆
∥∥∥2)

=
m

n

(
∥(P T · · ·P 1)w

⋆∥2 −
∥∥∥(P T · · ·P 1)

n+1w⋆
∥∥∥2) ≤ m

n
.

Overall, we get the following bound on the forgetting in the cyclic setting:

Fτ,S(wn) =
1

T

T∑
m=1

∥Xm (wn −w⋆)∥2 ≤ 1

T

T−1∑
m=1

m

n
=

T − 1

2n
≤ T 2

2k
.
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E.2. Proof sketch for the random setting

For this case, we will demonstrate how one can easily bound a similar expected forgetting to the
one in Eq. (18), by 1

k instead of d−ravg
k .

Plugging in the average iterate we get,

EP 1,...,P k,P

∥∥∥(I − P )
(
wk −w⋆

)∥∥∥2
2

= EP 1,...,P k,P

∥∥∥(I − P )
(
w⋆ − 1

k

k∑
t=1

wt

)∥∥∥2
2

=
1

k2
EP 1,...,P k,P

∥∥∥(I − P )
k∑

t=1

(
wt −w⋆

)∥∥∥2
2

[Lemma 16] ≤ 1

k

k∑
t=1

EP 1,...,P k,P

∥∥∥(I − P )
(
wt −w⋆

)∥∥∥2
2

[Lemma 7] =
1

k

k∑
t=1

EP 1,...,P k,P

∥∥∥(I − P )P t · · ·P 1w
⋆
∥∥∥2
2

[Prop. 2] =
1

k

k∑
t=1

EP 1,...,P k,P

[∥∥∥P t · · ·P 1w
⋆
∥∥∥2
2
−
∥∥∥PP t · · ·P 1w

⋆
∥∥∥2
2

]

[i.i.d.] =
1

k

k∑
t=1

EP 1,...,P k

[∥∥∥P t · · ·P 1w
⋆
∥∥∥2
2
−
∥∥∥P t+1 · · ·P 1w

⋆
∥∥∥2
2

]
[telescoping] =

1

k
EP 1,...,P k

[∥∥∥P 1w
⋆
∥∥∥2
2
−
∥∥∥P k+1 · · ·P 1w

⋆
∥∥∥2
2

]
≤ 1

k
.
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Appendix F. Additional related works

F.1. Continual learning

Practical methods for continual learning. Like we explained in Section 7, algorithmic ap-
proaches for preventing catastrophic forgetting roughly partition into three categories:

1. Memory-based replay approaches actively repeat examples from previous tasks to avoid forget-
ting. Some store examples from observed tasks (e.g., Robins [59]), while others replay generated
synthetic data from previous tasks to the main model (e.g., Shin et al. [66]).

2. Regularization approaches limit the plasticity of the learned model in order to enhance its sta-
bility. One can perform regularization in the parameter space, to protect parameters that are
important to previous tasks (e.g., Kirkpatrick et al. [31], Nguyen et al. [49], Zeno et al. [79]),
or in the function space, to protect the outputs of previous tasks (e.g., Farajtabar et al. [16], Li
and Hoiem [35], Lopez-Paz and Ranzato [36]). Few recent works (Benzing [7], Lubana et al.
[37]) focus on obtaining a better understanding of popular quadratic regularization techniques
like EWC [31], MAS [2], and SI [78].

3. Parameter isolation approaches allocate different subsets of parameters to different tasks. This
can be done by expanding the model upon seeing a new task (e.g., Yoon et al. [76]), or by
compressing the existing architecture after each task, to free parameters for future tasks (e.g.,
Mallya and Lazebnik [38], Schwarz et al. [63]).

Understanding customary training techniques Some recent papers also test the effect of com-
mon deep learning training techniques that change the optimization dynamics and/or have an im-
plicit regularizing implications. For instance, Mirzadeh et al. [41] study how different training
regimes affect the loss landscape geometry, thus influencing the overall degree of forgetting in con-
tinual learning settings. Goodfellow et al. [21] were the first to suggest that training with the dropout
technique can be beneficial to remedy catastrophic forgetting in continual learning settings. Delange
et al. [10] also show that dropout is fruitful in many continual learning methods (some of which are
mentioned above). They point out that it mainly improves the initial performance on learned tasks
(by mitigating overfitting), but leads to an increased amount of forgetting when learning later tasks.

Optimization hyperparameters are known to change the geometry of the loss landscape and
affect generalization (see for instance Jastrzebski et al. [27]). Mirzadeh et al. [41] point out that
most empirical papers in this field use small batch sizes and SGD with learning rate decay. They
also discuss how a large learning rate increases the plasticity of deep models, thus having an ill-
effect on forgetting.

Finally, Mirzadeh et al. [42] pointed out that architectural decisions also have implications on
catastrophic forgetting, and specifically observe that wide neural networks tend to forget less catas-
trophically.

F.2. Wider scope

Finally, we note that similar questions to those we ask here and that are asked generally in the con-
tinual learning paradigm, are often asked on other fields, such as multi-task learning, meta learning,
transfer learning, curriculum learning [73], and online learning. Despite the similarities, there are
differences though. For example, in multi-task learning, the data from all tasks are simultaneously
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available, in transfer learning the goal to adapt models for a new target tasks and preserving per-
formance on old source task is not a priority, and in online learning, typically, training data for
previously seen tasks are assumed to be available in sequentially adapting to data from new tasks.
However, a more detailed review of these related areas is beyond the scope of this work.
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