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The purpose of this White Paper is to review recent progress towards elucidating and evaluating
string amplitudes, relating them to quantum field theory amplitudes, applying their predictions to
string dualities, exploring their connection with gravitational physics, and deepening our under-
standing of their mathematical structure. We also present a selection of targets for future research.

INTRODUCTION

String theory unifies gravity and Yang-Mills theory in an ultraviolet finite quantum theory that is shedding light on
a wide range of subjects including particle physics, gauge/gravity duality, black holes, gravitational waves, the early
universe, and pure mathematics. Several comprehensive textbooks on string theory are available [1–8].

String theory may be approached from a number of complementary angles. String perturbation theory is a topo-
logical expansion in powers of the string coupling gs obtained by summing over random fluctuating surfaces. The
low-energy expansion in powers of the string scale α′ is given by supergravity plus higher order string corrections to
supergravity encoded in local effective interactions. Supergravity is valid for low energy but holds for all values of gs
while string perturbation theory is valid for small gs but holds for all energies. The gauge/gravity correspondence
formulates string theory in certain hyperbolic space-times via correlators in Yang-Mills theory. At the intersection
of these approaches, effective interactions are calculable in string perturbation theory or in the gauge/gravity corre-
spondence, and may be able to predict physical effects observable at low energy.

Superstring perturbation theory has grown into a rich subject whose study has revealed deep connections with
quantum field theory amplitudes, D-branes, gauge/gravity duality, gravitational waves, black holes, algebraic geom-
etry, and modular forms. At the heart of superstring perturbation theory are superstring amplitudes, which are
primarily considered for massless gravitons, gauge bosons and their respective supersymmetry partners. Following
the discovery of Type I, Type II, and Heterotic superstrings in [9–11], respectively, much of the formalism of super-
string perturbation theory dates back to the 1980’s (see [12, 13] and references therein for publications prior to 1988).
Extensive lecture notes and video lectures on more recent developments may be found in [14–17].

PERTURBATIVE STRING AMPLITUDES

The developments of the past 20 years have significantly advanced the explicit computation of a number of string
amplitudes, and sharpened our understanding of the formalism. This progress was driven by a confluence of ideas
from different formulations of the superstring, including the Ramond-Neveu-Schwarz (RNS) formalism [18–20] and the
pure-spinor formalism [21–23]. The mathematical structure of the RNS formulation, including the role of supermoduli,
was revisited and further clarified in [24–26]. For the pure-spinor formalism, recent work advanced our understanding
of its origin [27] and its interrelation with the RNS formalism [28, 29].

In both formalisms, at one loop and beyond, the chiral splitting procedure [13, 30], which splits the integrands
of closed superstring amplitudes into left and right chiral integrands at fixed loop momenta, has become a valuable
tool in evaluating closed string amplitudes. The structure of their monodromies constrains the dependence of chiral
amplitudes on loop momenta and moduli and thereby significantly simplifies the construction of the amplitudes.
Together with a specification of the D-brane setup, chiral amplitudes also encode the moduli-space integrand for
open-string amplitudes.

http://arxiv.org/abs/2203.09099v2
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Tree-level and one-loop amplitudes for four massless supergravity states in the Type I, Type II and Heterotic strings
were evaluated in the papers that introduced these theories [9–11]. The following selection of more recent benchmark
results grew out of progress driven by the development of novel tools for higher loop orders and larger numbers of
external gauge and supergravity states.

Tree-level amplitudes are now known in compact and manifestly supersymmetric form for any number of mass-
less external legs [31]. The construction was guided by BRST cohomology techniques and the use of multiparticle
superfields in the pure-spinor formalism [32].

Following the early evaluation of the one-loop four-graviton amplitude in [33] and its supersymmetrization in [22],
pure-spinor techniques together with chiral splitting and the multiparticle formalism led to explicit one-loop results
up to seven points (i.e. up to seven external states) [34–36]. In the RNS formalism, the spin-structure sums can be
performed at all multiplicities in a controlled function space [37, 38].

The two-loop measure on supermoduli space in the RNS formulation was constructed in [18, 39–41] using the super
period matrix, and derived using algebraic geometry in [42]. The two-loop amplitude for four massless NS bosons was
computed for Type II and Heterotic strings in the RNS formulation in [20, 43] and was extended to include external
fermions in the pure-spinor formulation [44, 45]. Five-point two-loop amplitudes were constructed from an amalgam of
pure-spinor methods and chiral splitting [46] in both the Type II and Heterotic strings, and their parity-even bosonic
components were confirmed by a first-principles computation in the RNS formalism [47]. Two-loop contributions to
the cosmological constant in orbifold compactifications were evaluated in [48, 49].

At three loops, a measure on supermoduli space in the RNS formulation was proposed in [50], further analyzed in
[51], and used to discuss the vanishing of two- and three-point amplitudes in [52, 53]. The leading low-energy term
in the three-loop four-point amplitude was calculated in the non-minimal pure-spinor formalism in [54]. Moreover, a
recent proposal for the four-point amplitude at all energies [55] grew out of input from ambi-twistor strings [56–58].
Beyond three loops, recent results include proposed non-renormalization theorems [59, 60], and the existence of a
super-period matrix on supermoduli space with Ramond punctures [51, 61].

The superstring amplitudes described above are given by integrals over the moduli spaces of ordinary compact
Riemann surfaces and vertex insertion points on each surface of remarkably simple integrands. These integral rep-
resentations require an analytic continuation in the external momenta. At one-loop order, the analytic continuation
was proven to exist, shown to reproduce all expected physical singularities in terms of a double dispersion relation,
and used to compute the decay rate of a large class of massive string states in [62–64].

As will be reviewed in later sections, the remarkable simplicity of the known string amplitudes greatly facilitates
deriving gravity and gauge amplitudes from the α′ → 0 limit of the corresponding string amplitudes, verifying quan-
titative predictions of dualities, and extracting number-theoretic structures from the low-energy expansion. However,
it is not clear whether this remarkable simplicity persists to higher loop order in the RNS formulation due to the in-
creased complexity of supermoduli space [24, 65, 66], and in the pure-spinor formulation due to divergences associated
with the composite b-ghost [23].

Future targets: An immediate goal in the RNS formulation is to lift some of the obstacles to higher loop and higher
multiplicity amplitudes imposed by the complexity of supermoduli space. Alternatively, one may seek to extract low-
energy effective interactions for comparison with S-duality predictions directly from the more involved supermoduli
presentation of the amplitudes. A parallel goal is to systematize and simplify the sums over spin structures, possibly
by making use of the novel perspective on the GSO projection developed in [67, 68], and thereby to provide a useful
mathematical delimitation for the space of functions to which chiral amplitudes belong at arbitrary loop order.

The manifest supersymmetry of the pure-spinor formulation simplifies the evaluation of numerous superstring
amplitudes, but higher multiplicities and loop orders are marred by divergences in the λ, λ̄-ghost integrals and the
difficulties encountered in evaluating b-ghost correlators. An important goal is to identify the physical origin of these
divergences and to resolve them, possibly building upon ideas in [69, 70].

Another goal is to elucidate further the relation between the RNS formulation and the pure-spinor formulation.
This would lead to a deeper understanding of the superstring, and might allow more general backgrounds for the
two formulations. It is not yet known how to describe the RNS formulation in backgrounds with finite non-zero
Ramond-Ramond flux, or how to describe the pure-spinor formulation in backgrounds which are not ten-dimensional
supergravity solutions. Progress towards understanding this relation between the two formulations has been made in
[28, 29],

Perhaps the most daring goal is to obtain higher loop and higher multiplicity amplitudes by indirect methods such
as used in bootstrapping conformal field theory or gauge and gravity amplitudes.
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CONNECTIONS WITH FIELD THEORY

Over the past few decades, considerable progress has been made in evaluating and simplifying on-shell scattering
amplitudes in gauge and gravity theories (see corresponding White Papers including [71]) thereby opening up a wide
frontier of results with increasing number of loops and external legs. Supersymmetric theories lend themselves to the
greatest degree of simplification and have been studied most extensively in this context. Some of their structures carry
over to non-supersymmetric theories. We refer to the textbooks [72, 73] and the recent reviews [74, 75] on modern
techniques for quantum field theory (QFT) amplitudes.

Several of these modern techniques were inspired by developments in string theory, such as the relation between
supergravity amplitudes and their Yang-Mills counterparts. The intimate relation between open- and closed-string
amplitudes, illustrated at tree-level by the Kawai-Lewellen-Tye (KLT) relations [76], and at loop level by chiral
splitting [13, 30], may be viewed as a natural framework for the double-copy structure of supergravity amplitudes due
to Bern, Carrasco and Johansson (BCJ) [77].

The BCJ-formulation of the gravitational double copy relies on the so-called color-kinematics duality of its Yang-
Mills building blocks [78]. This duality consists of a formal exchange symmetry of “color” degrees of freedom and
kinematic variables and can in many cases be derived from properties of open-string amplitudes, as one can see from
two complementary perspectives.

First, the manifestly gauge-invariant incarnation of the color-kinematics duality at tree-level in the form of BCJ
relations among partial amplitudes [78] stems from monodromy properties of open-string worldsheets [79, 80], see
[81–85] for loop-level generalizations.

Second, the color-kinematics duality can be manifested at the level of cubic-vertex diagrams where kinematic factors
obey the same Jacobi identities as color factors. Suitable representations of open-string amplitudes lead to solutions of
kinematic Jacobi identities at tree-level [86], one loop [87, 88] and two loops [46] through their respective point-particle
limits [89]. A more general viewpoint on kinematic Jacobi identities is offered by a residue theorem for moduli spaces
of Riemann surfaces with marked points [90] and from nested b-ghost action on vertex operators of the pure-spinor
formalism in Siegel gauge [91].

Parametrizations of gauge-theory amplitudes subject to kinematic Jacobi identities have shaped the state-of-the-art
for multiloop supergravity amplitudes with different amounts of space-time supersymmetry [92–94]. Their ultraviolet
properties and the associated non-renormalization theorems for gravitational operators can often be anticipated from
low-energy expansions of string amplitudes [95–98]. In particular, studies of the ultraviolet divergences in supergravity
at five-loop order [99] were preceded by a corresponding analysis based on string theory [100].

Similar derivations of the gravitational double copy and the color-kinematics duality of gauge theories at low loop
orders have been given within the Cachazo-He-Yuan formalism (CHY) [101, 102] and ambi-twistor string theories
[56–58]. These models are based on worldsheet degrees of freedom similar to those of standard Type II strings but
their moduli-space integrals are localized via scattering equations, and dimensionful parameters such as α′ are usually
absent.

The development of ambi-twistor models and their amplitude prescriptions has strongly benefitted from the avail-
ability of superstring prototypes. In particular, as exploited in the recent three-loop proposal for Type-II four-point
amplitudes [55], the chiral correlation functions of superstrings and ambi-twistor strings can be freely exchanged when
expressed in terms of logarithmic forms [103–105].

Just as string theory elegantly explains far-reaching properties of field theory amplitudes, the evaluation of string
amplitudes also benefits from field theory structures. For instance, the open-superstring tree-level amplitudes them-
selves admit a double-copy construction [31] akin to the KLT relations for gravitational amplitudes [106].

Given that the field theory version of the KLT formula usually involves pairs of physical amplitudes, one may
interpret the disk integrals contributing to open superstrings as scalar amplitudes. Hence, the open superstring is said
to be a double copy of super-Yang-Mills with “Z-theory”, a putative ultraviolet-soft theory of scalars with bi-adjoint
φ3 theory and Goldstone bosons in its low-energy limit [107–109].

Similar double-copy constructions apply to bosonic and Heterotic strings [110, 111]: In their massless tree ampli-
tudes, the super-Yang–Mills building blocks of the open superstring [31] are replaced by the tree-level amplitudes of
massive gauge theories dubbed (DF )2+YM and (DF )2+YM+φ3 [111] which have been constructed in the context of
conformal-supergravity amplitudes [112].

Future targets: It is an open question whether the double-copy structure of supergravity and the color-kinematics
duality of gauge theories persist to all orders in perturbation theory. String theory may offer a suitable framework to
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investigate the systematics at higher loops – either by providing a natural formulation that applies for any number of
loops and legs or by pinpointing fundamental obstructions.

For instance, the five-loop four-point function [113] and one-loop six-point function [87, 114] of maximal supergravity
in general dimensions D ≤ 10 have so far resisted a double-copy representation in terms of cubic-vertex diagrams.
While workarounds using the generalized double copy [115] and linearized Feynman propagators [116, 117] have been
found, it would be interesting to check the viability of kinematic Jacobi identities and the traditional form of the
double copy [77] for these examples from a string-theory perspective.

Another important line of follow-up research concerns double-copy structures of loop-level string amplitudes. Loop-
level KLT relations for closed-string amplitudes are unknown at the time of writing, and a field theory-type double
copy for open-superstring amplitudes has been pioneered at one loop [36, 118]. The latter calls for a connection with
the interpretation of disk integrals as Z-theory amplitudes and a systematic understanding in the light of cohomology
bases in the chiral-splitting setting.

STRING FIELD THEORY

Although perturbative superstring theory can be formulated in terms of correlation functions of vertex operators
using a two-dimensional worldsheet action, an alternative formulation is as a string field theory in ten space-time
dimensions in which the wavefunction of the string field depends on both the zero modes and the excited modes of
the worldsheet variables. In contrast to the field theories from the point-particle limit of superstrings discussed in the
previous section, string field theory obtains exact-in-α′ expressions for superstring amplitudes from Feynman-type
rules for the string field. Recent lecture notes on string field theory include [119, 120].

For computing perturbative scattering amplitudes, string field theory is more complicated than using the worldsheet
approach. However, there are several aspects of superstring theory such as tachyon condensation [121–123] and mass
renormalization [124–126] which are easier to understand using superstring field theory. Moreover, it is expected
that non-perturbative features of superstring theory such as duality symmetries and background independence will
be easier to study using superstring field theory.

Just as there are different formulations of perturbative superstring theory with different worldsheet actions, there are
also different formulations of superstring field theory. The best-understood formulation is covariant RNS superstring
field theory, and by introducing spurious free fields which decouple from the rest of the action [127], it is now possible
to describe both the Neveu-Schwarz and Ramond sectors of open and closed superstring field theory [128]. However,
space-time supersymmetry is not manifest in this formulation, and “picture-changing operators” need to be introduced
with complicated sewing rules [66]. Other formulations include light-cone superstring field theory [129] and WZW-like
superstring field theory [130] which have RNS-like versions in which space-time supersymmetry is not manifest, but
also have Green-Schwarz-like versions in which space-time supersymmetry is manifest. There have been several recent
works on establishing the relation between these different formulations of superstring field theory [131–133].

Future targets: The relation of open string field theory with closed string field theory needs to be better un-
derstood and will probably lead to important new developments. Since open string field theory amplitudes should
contain closed string states as poles, open string field theory should also be able to describe closed string fields [134].
It has been conjectured by many authors [135–138] that AdS/CFT duality can be understood as a duality between
open string field theory for the CFT side and closed string field theory for the AdS side.

STRING DUALITIES

Five superstring theories in 10-dimensional flat Minkowski space-time admit a perturbative expansion in the string
coupling, namely Type I, Type IIA, Type IIB, and Heterotic superstrings with gauge groups E8×E8 and Spin(32)/Z2.
The low-energy approximation to the sector of massless states in each string theory is governed by the corresponding
supergravity. There also exists an 11-dimensional supergravity theory with the maximal number of 32 supercharges.

String dualities are discrete transformations that relate these different theories [139, 140], often after suitable
compactification. The conjectured existence of these dualities has led to posit that the five perturbative string
theories are but different manifestations of a single unifying “M-theory”. A schematic illustration is given in Figure 1.
We refer to [141] for a modern textbook on supergravity; to [142] for a collection of essays on M-theory; to [143] for
an early overview on dualities, and to [4, 6] for textbooks with extensive discussions of string dualities.
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FIG. 1. The web of string dualities, see for instance [4, 6].

The large web of dualities between superstring theories includes perturbative as well as non-perturbative dualities.
T-duality relates string theories compactified on different tori to one another, such as Type IIA to Type IIB, and
Heterotic E8 ×E8 to Spin(32)/Z2, and gives rise to arithmetic duality groups and associated automorphic forms (see
[144–146] and references therein). Mirror symmetry similarly relates string theories compactified on different Calabi-
Yau manifolds. For the vast literature on these subjects we refer to [147–151], and references therein. Compactification
of Type II on a K3 Calabi-Yau manifold is dual to Heterotic theories on the 4-torus [139, 152–154], while Type I
theory is dual to the Heterotic Spin(32)/Z2 theory [140, 155–160].

Non-perturbative S-dualities map the weak-coupling regime of one theory to the strong-coupling regime of another
or the same theory. Proving the existence of an S-duality is notoriously difficult if not, at present, out of reach.
Nonetheless, string perturbation theory can be used to provide indirect, yet powerful, tests of some of the implications
of S-dualities that usually relate different loop orders. We shall now illustrate such tests and offer future targets.

One of the best studied non-perturbative dualities is the SL(2,Z) self-duality of Type IIB string theory. The low-
energy expansion of string theory, in powers of α′, consists of supergravity plus local effective interactions produced
by integrating out the tower of massive string modes. The coefficients of these effective interactions depend on
the complexified axion-dilaton field Ω whose imaginary part sets the string coupling gs. Self-duality requires the
coefficients to be modular forms in Ω under SL(2,Z), while supersymmetry imposes differential equations on these
modular forms. Remarkably, SL(2,Z) duality and supersymmetry combine to imply relations between different
perturbative contributions to various effective interactions, and it is these predictions that can be tested against
predictions from perturbative string theory.

The lowest order in α′ corrections to Type II supergravity contain the R4 effective interaction evaluated at tree-
level in [161, 162], where R4 symbolically represents a quartic scalar combination of the Riemann tensor whose
tensor structure is fixed by supersymmetry. Combining SL(2,Z) duality, D-instanton effects, and supersymmetry, the
coefficient of R4 was found to be the non-holomorphic Eisenstein series E 3

2

(Ω) [163–165]. The modular form E 3

2

(Ω)
produces perturbative contributions at tree and one-loop levels only, and predicts the vanishing of all higher-order
perturbative contributions. This prediction was confirmed at two loop order in [20] and at three loop order in [54].
These non-renormalization effects may be attributed to the fact that R4 is BPS-protected.

Higher-order corrections in the α′ expansion to Type II supergravity contain D2kRℓ effective interactions for k ≥ 0
and ℓ ≥ 4, where D is the covariant derivative. The tree-level contributions to these effective interactions may be
obtained by expanding the tree-level closed-string amplitudes in powers of α′. As will be detailed in the next section,
these expansions can be imported at all multiplicities from the algorithmic expansion of open-string amplitudes
[108, 166] in terms of multiple zeta values (MZVs) [167–169]. Going beyond perturbation theory, D-instanton effects
have been further analyzed in [170–177].

Combining the tree-level contributions to BPS protected operators at higher order in α′ with SL(2,Z) duality,
supersymmetry, and D-instanton effects, the coefficient of D4R4 was found to be E 5

2

(Ω) [178], while the coefficient

of D6R4 satisfies a modular differential equation [95, 179, 180]. The structure of these modular forms again predicts
non-trivial relations between various perturbative corrections, or their absence. One-loop contributions to D2kR4

and D2k−2R5 for k ≤ 6 were extracted from the four- and five-point amplitudes in [181–183] and [34, 184, 185],
respectively, and successfully matched against the predictions of SL(2,Z) duality. Two-loop perturbative contributions
were evaluated and matched as follows: D4R4 in [186, 187]; D6R4 in [188, 189]; D2R5 in [190]; and D4R5 in [191].



6

The three-loop contribution to D6R4 was matched in [54, 95].

Future targets: An immediate target is to analyze the implications of SL(2,Z) duality in Type IIB on the axion-
dilaton field dependence of the coefficients of low-energy effective interactions that are less or not BPS-protected,
such as D2kR4 for k ≥ 4 and terms with higher powers of the curvature. Tree-level results for D2kRℓ with ℓ ≥ 5
already predict the appearance of (single-valued) MZVs of arbitrary depth. In the low-energy asymptotics of the
corresponding string amplitudes at loop level, these operators are invariably accompanied by non-local contributions,
due to the exchange of massless states in loops, which complicates their precise definition. Although supersymmetry
non-renormalization theorems are expected to apply with less predictive power, early studies suggest the presence
of non-trivial mathematical structure [60, 183, 192–196]. Progress on such non-renormalization theorems would also
help address questions regarding the ultraviolet properties of supergravity in four space-time dimensions.

A closely related issue is as follows. In spite of detailed control over the tensor structure of open- and closed-string
tree amplitudes and their α′-expansions [31, 166, 169], the explicit form of the associated interactions, such as D2kRℓ,
is unknown beyond the order of (α′)4. An important goal is to develop a method by which the simplicity of string
tree-level amplitudes can be used to construct the detailed tensor structure of the corresponding low-energy effective
interactions (see for instance [197, 198] for progress in taming the complexity of traditional methods).

GAUGE/GRAVITY DUALITY

The AdS/CFT correspondence conjectures the quantum equivalence between Type IIB superstring theory on the
AdS5 × S5 space-time and N = 4 super-Yang-Mills theory (SYM) with gauge group SU(N) and coupling g on four-
dimensional flat space-time [199]. The conjecture provides an explicit relation between on-shell scattering amplitudes
in Type IIB superstring theory and conformal correlators of gauge-invariant operators in N = 4 SYM [200, 201]. The
large N limit at fixed ‘t Hooft coupling λ = g2N corresponds to classical superstring theory on AdS5 × S5 while the
further limit of large λ corresponds to the supergravity limit as the radii of both AdS5 and S5 tend to infinity. It is
especially the correspondence involving the supergravity limit (including field theories with less or no supersymmetry
and without conformal or Poincaré symmetry) that has spawned a record volume of research over the past 25 years
(see [202–204] for reviews and [205, 206] for textbooks on the subject). In this section, we focus on progress towards
the quantization of Type IIB strings on AdS backgrounds, and the interplay between conformal correlators in strongly
coupled N = 4 SYM and SL(2,Z) duality. A separate White Paper is dedicated to progress [207] on establishing the
map between conformal correlators and string perturbation theory.

One of the great challenges of perturbative string theory is to quantize strings in space-times other than flat ten-
dimensional Minkowski space-time or toroidal compactifications thereof. This problem is unsolved, even at string
tree-level on space-times with large isometry groups that preserve maximal supersymmetry such as AdS5×S5. A key
obstacle in the RNS formulation is the difficulty of incorporating Ramond flux backgrounds [208]. Progress has
been made for backgrounds with pure NS-NS background fields, such as string theory on AdS3 × S3 with NS-NS
flux through the sphere [209–212]. To describe the superstring in an AdS5 × S5 background with finite radius, one
needs to use either the Green-Schwarz [208] or pure-spinor formalism [213]. Although more computations have been
performed using the Green-Schwarz formalism, the pure-spinor formalism has the advantage of allowing quantization
in a manner that preserves the full PSU(2, 2|4) symmetry [214].

To compute AdS5 × S5 scattering amplitudes in which the external states have large R-charge, it is convenient to
gauge-fix to a light-cone version of the Green-Schwarz superstring in which PSU(1, 1|2)× PSU(1, 1|2) symmetry is
manifest. In the limit of infinite R-charge, the worldsheet action is quadratic and describes a plane-wave background
[215], and numerous tests of the gauge-gravity duality have been performed by expanding around this background
(see references in the reviews of [216–219]).

When the AdS5 radius is small, the superstring amplitudes should coincide with perturbative SYM correlators and
one can try to explicitly prove the AdS5/CFT4 correspondence. Using the hybrid formalism for the superstring in
AdS3 × S3 [220] at small radius, the AdS3/CFT2 correspondence was proven in [221] and it was shown that similar
methods might be possible for the AdS5/CFT4 case [222]. Although less is known about the AdS5 × S5 superstring
at small radius, it has been conjectured that the AdS5 × S5 superstring at zero radius is described by a topological
string theory [223] and preliminary evidence for this conjecture was presented in [224].

The study of strongly coupled conformal field theories in various dimensions is of central importance for many
areas of theoretical physics. The prime example is N = 4 SYM, whose exact conformal invariance is guaranteed by
supersymmetry, whose SL(2,Z) duality is well-established, and whose correlators are related by holography to on-shell
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amplitudes in Type IIB string theory on AdS5×S5. Here, we shall focus on recent results, obtained by supersymmetric
localization techniques, that provide the realization of SL(2,Z) duality on certain integrated correlators at arbitrary
coupling.

The starting point for the study of integrated correlators is the fact that N = 4 SYM theory can be expressed as a
limit of the N = 2∗ theory in which the hyper-multiplet massm vanishes. Generalizing results of [225, 226], supersym-
metric localization techniques were used in [227] to determine the partition function ZG(τ, τ̄ ;m) forN = 2∗ SYM on S4

with any classical gauge group G and complex gauge coupling τ . In [228] the quantity (Imτ)2∂τ∂τ̄∂
2
mZG(τ, τ̄ ;m)|m=0

was shown to give the correlator of four superconformal primaries in the stress-tensor multiplet of N = 4 SYM
for gauge group G = SU(N), integrated over their positions with a specific measure that preserves supersymmetry.
Although detailed information about the space-time dependence is sacrificed by this integration the high degree of
supersymmetry of such integrated correlators enables their exact evaluation. The large N limit for fixed ’t Hooft
coupling λ = g2N is holographically dual to the perturbative expansion of the Type IIB superstring amplitude in
AdS5 × S5 [228, 229]. The analysis is facilitated by using Mellin transform techniques [230, 231] and was generalized
to an arbitrary classical gauge group G in [232].

While Yang-Mills instantons are suppressed in the large N expansion at fixed ‘t Hooft coupling λ = g2N , they
are unsuppressed in the large N expansion for fixed g2 considered in [233]. The successive powers of 1/N now
correspond to successive terms in the low-energy expansion of the Type IIB amplitude. The coefficient of each power
is a sum of non-holomorphic SL(2,Z) Eisenstein series and Montonen–Olive duality [234–236] is manifest. This is the
gauge theory image of SL(2,Z) S-duality of Type IIB superstring theory. Combined with information gathered from
other integrated correlators [237, 238], these results reproduce the known coefficients of the R4 and D4R4 effective
interactions, but also contain sub-leading corrections that are suppressed by powers of the AdS5 length scale.

Extracting more detailed information from the partition function ZSU(N)(τ, τ̄ ;m) is complicated by the complexity
of the multi-instanton sectors. However, in [239] an elegant reformulation of the integrated correlator was conjectured
in terms of a two-dimensional lattice sum, that is well-defined for all values of N and τ , may be expressed formally as
an infinite sum of non-holomorphic Eisenstein series, has a simple spectral representation [240], and generalizes to any
classical gauge group [241]. For groups other than SU(N) Montonen-Olive duality extends to include Goddard-Olive-
Nuyts duality [242], which relates a theory with gauge group G to a theory with the Langlands dual gauge group,
LG. Furthermore, for any classical gauge group G the integrated correlators satisfy Laplace difference equations that
relate them to the integrated correlators for SU(2). For classical groups other than SU(N) the background geometry
of the holographically dual string theory is an orientifold associated with AdS5 × S5/Z2 [243].

GRAVITATIONAL WAVES AND BLACK HOLES

The detection of gravitational waves from binary systems composed of black holes and/or neutron stars by the
LIGO/Virgo collaboration [244, 245] has initiated a new era for studying the cosmos. Gravitational phenomena are
again at the core of fundamental physics, both in experiments and theory, and we are heading towards a bright high-
precision frontier. Highly precise analytic calculations in general relativity are indispensable to build waveform models
for the inspiral phase of binary mergers, and thus infer unique astrophysical and fundamental physics information
hidden in the gravitational-wave signals. Remarkably, QFT and string theory provide advanced mathematical tools
associated to scattering amplitudes that display stunning simplicity when applied to the non-linear problem of classical
gravity [246–286]. A separate White Paper [287] is dedicated to the emerging subfield of applying modern amplitudes
methods to the problem of gravitational-wave physics, see further references therein.

With higher sensitivity LIGO, Virgo and KAGRA observing runs in the next few years, and with upcoming detectors
(Einstein Telescope, Cosmic Explorer, LISA) it is crucial to further improve the accuracy of theoretical predictions.
Even with state-of-the-art analytical effective field theory (EFT) methods the needed post-Newtonian (PN) or post-
Minkowskian (PM) calculations are highly challenging. The complexity can be traced back to the sheer number of
terms appearing in the gravitational Feynman diagrams, as well as to the problem of analytic integration. For the
integrals, the challenge is ameliorated by the increased understanding of integral bases, integration by parts identities,
function spaces graded by transcendental weight, and differential equations – tools originally developed for QFT
and string scattering amplitudes. The complexity of the integrands can be managed by exploiting the double-copy
relationship between gravity and gauge theory – originally in the form of the KLT relations between open- and closed-
string amplitudes. In combination with unitarity-based methods [288–290], this has launched a revolutionary path to
access precision gravity via vastly simpler gauge theory calculations, recently reaching new heights at 3PM and 4PM
orders [251, 272] for Schwarzschild black holes.
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The PM calculations are necessary for describing scattering events of pairs of unbound black holes to all orders
in the velocity, and they provide vital cross-checks and simplifications to the PN calculations needed for bound
systems. Scattering of black holes benefits from the eikonal approach [273, 291], which in string theory was explored
at high energy in the Amati-Ciafaloni-Veneziano (ACV) formalism [292, 293]. The latter approach recently led
to the resolution of an open question with the conservative dynamics at 3PM [268]. Further, tangentially related
QFT approaches based on Weinberg’s soft theorem [294], gravitational memory [295] and celestial holography (see
e.g. [296–299] and references therein), have lead to novel perspectives on gravitational wave emission [300–302].

Properly incorporating spin effects in general relativity is paramount for mergers involving astrophysical Kerr black
holes, with accurate parameter estimation. In an EFT approach [303, 304], the spin multipole moments are included
to match results from black hole perturbation theory and self-force calculations, but vast theoretical challenges remain.
For a classical Kerr black hole, there is currently no satisfactory EFT action valid for higher-order calculations in
both the gravitational coupling and spin. The worldline EFT approach to Kerr encounters challenges starting with
unknown Wilson coefficients of the Riemann-squared operators at order S4 [305], where S is the classical spin vector.
Likewise the Compton scattering amplitude for a putative Kerr black hole develops spurious poles beyond quantum
spin s > 2 [306–308].

Future targets: Can string theory provide us us with the correct Compton amplitude for a classical Kerr black
hole? Recently, it has been shown that all known Kerr scattering amplitudes are compatible with established tree-level
unitarity constraints from the higher-spin literature [309]. Higher-spin theories are close cousins of string theory and
share many of the stringy features, which suggest synergies. The massive string modes are prime examples of how
higher-spin states can be embedded in a unitary and mathematically consistent framework, and may be of use for
modelling classical Kerr amplitudes.

Since string theory provides a microscopic description of extremal black holes [310] it should provide a natural
framework for exploring scattering amplitudes of such objects, also in the macroscopic limit. Observations of near-
extremal Kerr black holes are expected from astrophysics, and it would be interesting to describe their scattering
amplitudes, and more generally their waveforms, using results such as the Kerr/CFT correspondence [311].

While quantum and stringy effects for astrophysical black holes are expected to be very small, it nevertheless is an
interesting question in principle how to incorporate such effects in scattering amplitudes and waveform calculations.
In particular, properly describing Hawking radiation [312] from an EFT [313] or amplitudes perspective could lead to
significant progress in the understanding of quantum gravity.

MATHEMATICAL STRUCTURES

The interplay between duality, supersymmetry, and the low-energy expansion of superstring amplitudes has resulted
in the discovery of unexpected and exciting algebraic and arithmetic structures. Numerous mathematical properties
of string amplitudes are now understood in terms of recent developments in number theory, modular forms, and
algebraic geometry. Conversely, the low-energy expansion of string amplitudes and their integrands has spawned
new directions of mathematical research related to single-valued integration and generalizations of non-holomorphic
modular forms.

Already at genus zero, the pattern of multiple zeta values (MZVs) in higher-point functions is elegantly understood
in terms of Hopf-algebra structures of motivic MZVs and the Drinfeld associator [169, 314]. As a result, tree-level
amplitudes in general string theories furnish clean showcases of the coaction conjecture [315, 316] on the stability of
amplitudes under the motivic coaction. So far, this coaction conjecture has found manifestations in φ4-theory [317],
the magnetic moment of the electron [318], N = 4 super-Yang–Mills [319], and various families of Feynman integrals
[320–322]. Therefore, understanding the structure of string amplitudes may contribute to unravelling number-theoretic
symmetries shared by quantum field theories and string theories.

Furthermore, the low-energy expansion of tree-level closed-string amplitudes can be obtained from the low-energy
expansion of open-string amplitudes through a formal operation on motivic MZVs [323–327], referred to as the single-
valued map [315, 328]. This process of inferring closed-string results from the open string goes considerably beyond
the standard KLT formula of string theory [76] and combinatorially realizes a field theory double copy [169, 323]
similar to that of open strings [106, 111]. The single-valued map between tree-level amplitudes connects different
perturbative string theories beyond the scope of any known duality [324], e.g. the gauge sectors of Heterotic and
Type-I superstrings at weak coupling.

An ambitious long-term goal of both conceptual and technical appeal is to reduce closed-string loop amplitudes
to open-string building blocks. The appearance of single-valued MZVs in closed-string tree-level amplitudes found
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several echoes at genus one [329–332] and led to a proposal for a single-valued map between configuration-space
integrals in open- and closed-string one-loop amplitudes [333]. This proposal calls for extensions to the integration
over modular parameters at genus one and to iterated integrals on higher-genus surfaces. The perturbative and
possibly non-perturbative systematics of relating open- and closed-string interactions may have valuable lessons for
old and new string dualities.

Another mathematical viewpoint on open-closed-string relations that may advance loop-level developments is fur-
nished by twisted de Rham theory. The α′-dependent Koba-Nielsen factor aligns moduli-space integrals of string tree
amplitudes into twisted cohomologies which have been studied in the mathematics literature of the 80’s and 90’s.
The KLT relations at tree-level then become a consequence of linear algebra in these cohomologies [334] through
the so-called twisted period relations [335]. The chiral variant of the KLT relations [336] is another corollary of the
twisted period relations [337] that reproduces ambi-twistor-string amplitudes from a formal α′ → ∞ limit [338].

Similarly, monodromy relations [79–82] among open-string amplitudes descend from properties of twisted homologies
[84, 339]. The latter also shed light on mixed open- and closed-string amplitudes in the gravity sector of Type I as
exemplified in the recent one-loop discussion [340], see [80, 341] for similar relations at tree-level. Methods of twisted
de Rham theory also became increasingly important in particle physics, for instance for basis decompositions of
Feynman integrals [342–345].

At one loop and beyond, string amplitudes produce a wealth of elliptic and modular generalizations of MZVs.
Closely related elliptic polylogarithms [346] drive the algorithmic integration of open-string insertions on a genus one
worldsheet [38, 347] and organize the α′-expansion of configuration-space integrals in terms of elliptic MZVs [348],
see [349, 350] for recent all-order results. Closed-string applications of elliptic polylogarithms have been pioneered
in [351, 352] and furnish rewarding targets for future research. At the same time, elliptic polylogarithms and the
associated iterated integrals of modular forms substantially improved the computational reach for Feynman integrals
beyond genus-zero polylogarithms [353, 354], see in particular the references in the White Paper [355].

Uniform transcendentality, familiar from dimensionally regularized Feynman integrals [356–358], enjoys a Type I
and Type II superstring amplitude counterpart in their α′-expansions at tree-level [166, 359] and at one loop [183, 349,
360]. However, uniform transcendentality of Type II superstrings may get challenged at higher α′-orders of one-loop
amplitudes [361] and may be violated in two-loop amplitudes [362]. Moreover, tree-level amplitudes of Heterotic and
bosonic strings [110] violate uniform transcendentality. This resonates with the comparison of loop amplitudes in
different gauge and supergravity theories whose transcendentality properties are sensitive to the amount of space-time
supersymmetry [363–368].

The low-energy expansion of closed-string amplitudes at one-loop order and beyond has introduced fascinating
families of non-holomorphic modular forms, dubbed modular graph functions [181, 182, 193, 330] and modular graph
forms [369–371], see [372] for an overview and [373] for a Mathematica package. Modular graph forms not only
play a vital role in string-theory computations [374–377] but also developed their own life in shaping mathematical
research directions [332, 378–381]. Their description via iterated integrals of holomorphic objects [331, 382] exposes
the intriguing web of differential and algebraic relations among modular graph forms discovered in [182, 369, 370, 383],
sheds light on the interplay between open and closed strings [333] and cross-fertilizes with studies of Poincaré series
representations [371, 384, 385].

Similarly, building blocks of multi-loop closed-string amplitudes led to the definition of higher-genus modular graph
functions [195] with applications to the low-energy expansion of two-loop amplitudes at four [196] and five points
[191]. In fact, the study of algebraic [191] and differential relations [189, 386] among modular graph functions beyond
genus one motivates their generalization to modular graph tensors [387]. Motivated in part by a construction of
Kawazumi [388, 389], modular graph tensors are introduced as non-holomorphic functions on the Torelli space of
compact Riemann surfaces of genus g which transform as tensors under the modular group Sp(2g,Z).

Future targets: At higher genus, the study of modular graph functions [195] and tensors [387] has just begun.
A natural first step is to explore the differential structure of modular graph tensors in order to reveal the systematics
of their algebraic relations, for instance via iterated-integral representations. This analysis should clarify the relations
of modular graph tensors to non-holomorphic Siegel modular forms [390] and improve the computational reach for
multi-loop string amplitudes and their low-energy expansions.

The open-string analogues of modular graph tensors are uncharted terrain. By analogy with genus one, the mero-
morphic building blocks of multiloop open-string amplitudes are expected to inform the construction of higher-genus
polylogarithms, in particular the relevant classes of iterated integrals and their integration kernels. The meromorphic
function spaces obtained from open-string input are likely to find applications to Feynman integrals in quantum field
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theory – not only to compute further classes beyond elliptic polylogarithms but also as a case study in preparation
for Feynman integrals associated with K3 or Calabi-Yau geometries and beyond.

The rich mathematical structures of string amplitudes and their moduli-space integrals are not fully manifest from
their standard worldsheet prescriptions. Instead, the newly discovered mathematical structures might guide us to
find radical reformulations of string perturbation theory from number-theoretic and algebraic-geometric principles,
possibly without any reference to worldsheets. A grand goal would be to find a unified picture for the coaction
properties of open-string tree-level amplitudes [169], the derivation algebra governing modular graph forms at genus
one [382] and similar structures to be found at higher genus.

CONCLUDING REMARKS

In this White Paper, we have attempted to illustrate the richness of string perturbation theory through a lightning
overview of recent progress and a small selection of future targets. Current developments in string amplitudes are
not only strengthening the ties between different directions within string theory but are also triggering a striking
confluence of ideas between string theorists, particle physicists, relativists, cosmologists, condensed matter physicists,
and mathematicians. No doubt, the future targets listed in this White Paper merely reflect a tip of the iceberg of
important technical and conceptual avenues for future research.
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and the Ragnar Söderberg Foundation (Swedish Foundations’ Starting Grant). OS is supported by the European
Research Council under ERC-STG-804286 UNISCAMP.

[1] M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory Vol. 1: 25th Anniversary Edition, Cambridge Monographs
on Mathematical Physics (Cambridge University Press, 2012).

[2] M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory Vol. 2: 25th Anniversary Edition, Cambridge Monographs
on Mathematical Physics (Cambridge University Press, 2012).

[3] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond , Cambridge Monographs on Mathematical Physics
(Cambridge University Press, 2007).

[4] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string , Cambridge Monographs on Mathematical
Physics (Cambridge University Press, 2007).

[5] B. Zwiebach, A first course in string theory (Cambridge University Press, 2006).
[6] K. Becker, M. Becker, and J.H. Schwarz, String Theory and M-theory (Cambridge University Press, 2007).
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