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Abstract: This paper proposes a novel fault isolation (FI) scheme for distributed parameter
systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear
uncertain dynamics. A key feature of the proposed FI scheme is its capability of dealing with the
effects of system uncertainties for accurate FI. Specifically, an approximate ordinary differential
equation (ODE) system is first derived to capture the dominant dynamics of the original
PDE system. An adaptive dynamics identification approach using radial basis function neural
network is then proposed based on this ODE system, to achieve locally-accurate identification
of the uncertain system dynamics under faulty modes. A bank of FI estimators with associated
adaptive thresholds are finally designed for real-time FI decision making. Rigorous analysis
on the fault isolatability is provided. Simulation study on a representative transport-reaction
process is conducted to demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION
Many advanced engineering systems, e.g., biological pro-
cess, convection-diffusion-reaction process and thermal
process, are distributed parameter systems (DPSs) that
are usually modeled by partial differential equations
(PDEs). Due to the ever-increasing technical demands,
fault diagnosis of DPSs has been an area of significantly
growing interests. It is a critical step to realize fault tol-
erant operations for minimizing performance degradation
and avoiding dangerous situations, so as to guarantee
safety and reliability of DPSs. The past decades have
witnessed tremendous progress in the research of fault
diagnosis of DPSs, leading to a large variety of methods,
see, e.g., Demetriou and Armaou (2012); Cai et al. (2016);
Fischer and Deutscher (2020) and the references therein.

As opposed to the substantially growing body of literature
on fault detection (FD) of DPSs (e.g., Demetriou and
Armaou (2012); Cai et al. (2016); Dey et al. (2019); Zhang
et al. (2020)), study on the fault isolation (FI) problem
has gained quite limited success, especially for those DPSs
with nonlinear unstructured uncertain dynamics. Some
research efforts have been devoted to the development of
FI methods for DPSs with precisely known models. For ex-
ample, Baniamerian and Khorasani (2012) proposed an FI
scheme using a finite-dimensional geometric approach. In
El-Farra and Ghantasala (2007), the FI problem for DPSs
with various actuator faults has been investigated. For the

FI problem of DPSs with nonlinear uncertain dynamics,
the research is still under-explored. One of the technical
difficulties is that the dynamics of faults occurring in the
system could be hidden within the system’s general uncer-
tain dynamics (e.g., unmodeled uncertainties), such that
the fault feature could not be accurately identified for FI
purpose. Some attempts have been made to overcome this
difficulty. The FI scheme proposed in Cai and Jagannathan
(2016) is able to distinguish the effects between occur-
ring fault and system uncertainties. Ghantasala and El-
Farra (2009, 2007) developed a Lyapunov function-based
FI scheme for DPSs, in which system uncertainties were
handled by active control strategies. However, all these
existing schemes have not appropriately dealt with the
system uncertainties in the sense that occurring faults
are typically required to have sufficiently large magnitudes
(e.g., larger than those of the system uncertainties), limit-
ing their wider applicability in practice.

In this paper, we aim to investigate an effective FI ap-
proach for general faults occurring in DPSs modeled by a
class of parabolic PDEs with nonlinear unstructured un-
certain dynamics. Specifically, we first utilize the Galerkin
method (see, El-Farra and Ghantasala (2007); Wu and Li
(2008)) to derive an approximate ODE model for captur-
ing the dominant dynamics of the PDE system. A radial
basis function neural network (RBF NN) based adaptive
dynamics identification approach is then developed based



on this ODE system, to accurately identify the uncertain
system dynamics under various faulty modes. The iden-
tified knowledge can be obtained and stored in constant
RBF NN models. Afterwards, a bank of FI estimators
are designed with these constant models. Their generated
residuals can be used to characterize the dynamics of
the occurring fault and distinguish it from the system
uncertain dynamics for accurate FI. Adaptive thresholds
associated with such FI residuals are further designed to
facilitate real-time FI decision making. We stress that our
FI scheme does not require the faults to be of any special
type (e.g., actuator faults as required in Ghantasala and
El-Farra (2009, 2007); Baniamerian and Khorasani (2012)
and/or sensor faults as required in Cai et al. (2016); Cai
and Jagannathan (2016)), but is applicable to general
system faults. Rigorous analysis on the fault isolatability
is provided. Extensive simulations applied to a represen-
tative transport-reaction process are also conducted to
demonstrate the effectiveness of our methodologies.

The contributions of this paper are summarized as fol-
lows: (i) The FI problem for uncertain nonlinear parabolic
PDE systems is addressed using a novel Galerkin-RBFNN-
based adaptive dynamics identification approach, which
can achieve locally-accurate identification of the dominant
uncertain dynamics of the PDE system under various
faulty modes; (ii) New adaptive-threshold-based FI de-
cision making schemes are proposed, which are capable
of dealing with general faults occurring in parabolic PDE
systems; (iii) Rigorous analysis on the fault isolatability is
provided to demonstrate the effectiveness of the proposed
approaches.

The remainder of this paper is organized as follows. Some
preliminaries and the problem statement are provided in
Section 2. The adaptive dynamics learning approach is
presented in Section 3. The FI scheme is given in Section
4. Simulation studies are presented in Section 5. Section 6
concludes the paper.

Notation. R, R, and Ny denote, respectively, the set of
real numbers, the set of positive real numbers and the set
of positive integers; R™*" denotes the set of m x n real
matrices; R™ denotes the set of n x 1 real column vectors;
|-] is the absolute value of a real number; ||-|| is the 2-norm

of a vector or a matrix, i.c. [|z]| = (zTx)z.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Radial Basis Function Neural Networks

The RBF NNs can be described by f,n(Z) = vaz"l w;si(Z) =

WTS(Z) (see, Poewell (1992)), where Z € Qz C RY
is the input vector, W = [wy, - ,wy,]’ € RN is the
weight vector, N, is the NN node number, and S(Z) =
5112 = s1lls - 53, (1Z — sw, D)7, with sq(-) being a
radial basis function (RBF), and ¢; (1 = 1,2,---,N,)
being distinct points in state space. The Gaussian function

si(lZ —sill) = GXP[%;(Z_“)] is one of the most

commonly used RBFs, where ¢; = [;1, 62, - - ,Ciq]T is the
center of the receptive field and v; is the width of the
receptive field. The Gaussian function belongs to the class
of localized RBFs in the sense that s;(||Z — ) — 0 as
|Z]] = oo. It has been shown in Poewell (1992) that for

any continuous function f(Z) : Qz — R where Qz C R?
is a compact set, and for the NN approximator, where
the node number N, is sufficiently large, there exists an
ideal constant weight vector W*, such that for any ¢* > 0,
f(Z) = W*TS(Z) + ¢, YZ € Qgz, where |e| < ¢ is the
ideal approximation error. The ideal weight vector W* is
an “artificial” quantity used for analysis, which is defined
as the value of W that minimizes |¢| for all Z € Q, C RY,

ie., W* 2 argming cgn, {SUpzeq, | f(Z) — WTS(2)|}).

2.2 Problem Formulation
Consider a class of nonlinear parabolic PDE systems in
one spatial dimension with a state-space description in the

form of:
Ox(z,t)  Ox(z,t) 0%x(2,t) &
ot = 9z + as 922 + f(il', u) + (b (.’E, u)(71

subject to the following initial condition z(z,tg) = zo(z
and boundary conditions m;x(z;,t) +nz‘%(% t)y=d; (i =
1,2), where z(z,t) € R is system state; u € R? is
system input; z € [z1,22] is the spatial coordinate; ¢ €
[to,00) is the time; f(z,u) € R and ¢*(z,u) € R are
unknown nonlinear functions satisfying locally Lipschitz
continuous, which represent nonlinear uncertain system
dynamics and deviations in system dynamics due to fault

ke {1,2,--- N} (N € Ny), respectivgly; g—z an.d %
are the first-order and second-order spatial derivatives of
x(z,t), respectively; a1, ag, my, ma, n1, no, d1, ds are known

constants.

~——

Assumption 1. For the PDE system (1), the system input
u(t) and state x(zo,t) at any spatial point zg € [z, 22] are
bounded and recurrent for all ¢ € [tg, 00).

Denote H as a Hilbert space of 1-D functions defined
on [z1,22] that satisfies the boundary conditions of (1),
with inner product and norm: (¢y, (2) = fzzf ¢1(2)¢(2)dz,

Gy = <C1,C1>%, where (1(z), (2(2) are two elements of
‘H. According to El-Farra and Ghantasala (2007); Wu and
Li (2008), the PDE system (1) can be formulated as an
infinite-dimensional system:

X =Ax+ fOou) + ¢ (x,u),  x(to) =xo0,  (2)
where x(t) = z(z,t) is the state function defined in A, and
A is a differential operator in H defined as Ax = al% +
ag%, x € DA) = {z € H|Az € H, miz(z,t) +
ni%(zi,t) = d;, i = 1,2}. The eigenvalue problem of A
is defined as Ap; = Ajp; (j = 1,2,---,00), where ),
denotes an eigenvalue, and ¢; denotes an eigenfunction.
The eigenspectrum of 4, denoted by o(.A), is defined as the

set of all eigenvalues of A, i.e., o(A) = {A1, A2, -+, Ao }-
The following assumption will be made for o(A).
Assumption 2. (i) Re{A1} > Re{A2} > -+ > Re{)\;} >

-+, where Re{\;} denotes the real part of \;; (ii) o(A
can be partitioned as 0(A) = 05(A)+07(A), where o4(A
consists of the first m number of eigenvalues, that is,

US(A) = {>‘17)\23"' 7)\m}7 and ‘}13;{{;\\;}} = O(].)7 (111)
Re{A\m4+1} < 0 and ‘%ﬁfi’;’ii} = O(¢), where ¢ :=
‘% < 1 is a small positive constant.

Remark 1. Assumption 2 can be satisfied by the vast ma-
jority of parabolic PDE systems, including both diffusion-



convection-reaction processes, e.g., the packed-bed reactor
and the tubular reactor, and many classes of dissipative
fluid dynamics systems.

Based on this assumption, consider the decomposition
H = Hs & Hy, in which Hy; = span{p1, -, ¢m}
denotes the finite dimensional space spanned by the
slow eigenfunctions corresponding to o,(A), and Hy =
span{@m11, - , Yoo} denotes the infinite dimensional
complement one spanned by the fast eigenfunctions corre-
sponding to o¢(.A). The PDE system (2) can be rewritten
as:
Ts = Aszs + fs($57XfaU) + ¢I;(xstf»u)v

X5 = Apxy + fr(@s, xp,u) + o5 (s, x7,0),
with xs(to) = Zs,, Xf(to) = Xy, Where z, € R™, f €
R>, Ay = diag{A\1, -, A}, A = diag{hn+1, -+, Asc},
fs = <<Ps7f>7 ff = <90f>f>a (b]; = <@sa¢k>7 (/j)’;f = <(pfa¢ >

Tso = <§0st0>7 Xfo = <<pfaX0> with ¢, = [4,01,"' a‘ﬁm]T
and @ = [Pmi1, ", Poo] |- By neglecting the fast modes,
we can obtain the following ODE model to characterize the
dominant dynamics of the PDE system in (2):

s = Asxs + fs(l'sa ’U,) + ¢§(Isau)’ .Ts(to) = Tsg- (4)

3. IDENTIFICATION OF SYSTEM UNCERTAIN
DYNAMICS

In this section, an RBF NN-based adaptive dynamics
learning approach will be developed to achieve accurate
identification of the uncertain dynamics fs(xs,u) and
qﬁf(xs,u) in system (4) under all faulty modes. Particu-
larly, since the system uncertainty fs(xs,u) and occurring
fault ¢%(xs,u) cannot be decoupled, we consider them
together and define a general fault function n*(x,,u) =
fs(ws,u) + ¢¥(zs,u), such that the system (4) can be
rewritten as:

iy, = Ny, +0F (x5 u), i=1,--- m;k=1,--- ,N. (5)
Considering the unknown function % (z, u) in (5), accord-
ing to the RBF NN approximation theory as presented in
Section 2.1, we know that there exists an ideal constant NN
weight vector WF* € RV« (with N,, denoting the number
of NN nodes) such that

nf(mmu) = Wz’k*TS(xsv ) + Ezoﬂ (6)

where S(x,,u) : R™ x R? — RN» is a smooth RBF vector
and eF is the estimation error satisfying |e¥ | < e with
e} being a positive constant that can be made arbitrarily
small given a sufficiently large number of neurons, accord-
ing to Yuan and Wang (2011). Based on this, an adaptive
dynamics identifier can be constructed:

si) + )\iwsi + WikTS('r& u)a

: . (7)
Wik = — UlFle — Fl(li'z — l’si)S(ZL'S,U),

where #; is the identifier state, x,, is the state of system
(5), WF € RN is the estimate of Wf* in (6), a; > 0,

?

T, = F;r > 0, 0; > 0 are design constants with o; being a
small number.

Sé‘i = —ai(sﬁi—m

Theorem 1. Consider the adaptive learning system con-
sisting of the plant (5) and the identifier (7). Under As-

sumption 1, with initial condition W}¥(0) = 0, for all
i=1,---,mand k = 1,--- , N, we have: (i) all signals

in the system remain bounded ( i) the estimation error

|Z; — xs,| converges to a small neighborhood around the
origin; and (iii) a locally-accurate approximation of the
unknown function 7 (z,,u) is achieved by W}TS(z,,u)
as well as W} T S(z,u) along the recurrent system trajec-

tory (zs,u), where W} := t;tl :12 Wk(r)dr with [t1, t5]

representing a time segment after the transient process.

Detailed proof can be completed by following a similar
line of the proof of (Wang and Hill, 2009, Th. 3.1), thus is
omitted here.

Through the above learning process, the knowledge of
unknown function 7} (s, u) of (5) can finally be obtained
and stored in the constant RBF NN model WFT S (z,, u),
ie.,

0 (s, u) = WS (2, u) +€f, (8)
for all 4 = 1,2,--- ,m and k£ = 1,2,--- | N, where the
approximation error ¥ satisfies |e¥| = O(e}) < &7, with
& being a positive constant that can be made arbitrarily
small by constructing a sufficiently large number of neu-
rons, according to Yuan and Wang (2011).

4. FAULT ISOLATION SCHEME

With the obtained identification results, an FI scheme will
be proposed in this section, and the associated analysis of
FI performance will also be presented. Before proceeding,
we assume without loss of generality that an unknown fault

I’ that is similar to the trained fault [ (I € {1,---,N}) is
occurring in system (4), i.e.,
Bo = Ao + folwa,u) + ¢ (za,u). (9)

4.1 FI Estimator Design and Decision Making

With the constant models Wk T S(z,,u) of (8), we propose
to construct a bank of FI estimators as:

k= fbi(:ff —Ts,) + NiTs, + VT/ZCTS(:ES,U)7

7
where i = 1,---,m, k = 1,--- N, z¥ is the estimator
state with 1n1tlal condition Z; (to) = x,(to), zs, is the
i-th state of system (9), A; is the i-th diagonal element
of matrix A in (9), b, is a positive design constant,
and WFTS(zg,u) approximates the function nF(z,,u) =
For(ars) + 6, (e, ) of system (5).

Comparing the FI estimators (10) with the monitored
system (9), and based on (8), the residual systems (with
residual ¥ := z¥ — 2,,) can be derived as follows:

S, (s ), (11)
where ¥ is the approximation error of model W} TS (z, u)
for function nf (xs,u) as defined in (8), ¢¥ (x5, u) is the k-
th faulty dynamlcs that has been learned/ trained in Sec-

tion 3, and qbsi (xs,u) is the faulty dynamics occurring in
system (9). For the purpose of analysis, we introduce a so-

A
(SUS, ) = ¢ (:ES, )
qzﬁl . (x5, u) to represent the dynamics difference between the

trained fault k and occurring fault I’. Then, the residual
system (11) can be rewritten as:

(10)

b= bl — ek 4 gk (zg,u) —

called fault mismatch function pf

= — bk — b 4 ) (@, ). (12)



The £; norm of residual signal ¥ in (12), i.e., Hif(t)”l =
* ftt_T |Z¥ (7)|dT with T being a design parameter, will be
utilized for real-time FI decision making.

For FI decision making, an adaptive threshold, denoted
as eF(t), will be further designed to upper bound the
residual signal ||z (t)H1 of (12) when the occurring fault
" in (9) is similar to the trained fault I. To this end, the
following assumption on the dynamics difference between

the occurring fault I’ and similar fault [ is made.

Assumption 3. The dynamics difference between any pair
of the occurring fault !’ and its similar fault | (I €
{1,---,N}), denoted by pli’l (zs,u), is bounded by a

/

A (e w)| < (e, u) for

known function pk(zs,u), i.e.,
alle=1,--- ,m.
Based on the above setup, to design the FI adaptive

threshold, we consider the [-th residual system in (12),
its time-domain solution can be derived as:

t
F(t) = F(to)e "1 +/ e (0 (g, ) — ef)dr

to
(13)
Note that Z!(tg) = 0 and |e!| < & from (8), under
Assumption 3, we have:

t
#O] < [ el 4 o (]
Yo (14)
< %+/ e*bi(t*T)ﬁé(xs,u)dr

% to

It guarantees that the FI residual signal Hﬁ:i(t) Hl satisfies:
* t
el < 5| [+ sl i
bi to 1
Thus, the FI adaptive threshold el(¢) can be designed as:
* t
%W&+UQMQ%WMMTa (16)
bi to 1

for all i =1,--- ,m, where & is a small constant given in
(8), b; is a design constant from (10), and pk(zs,u) is a
known function defined in Assumption 3.

(15)

Consequently, for the monitored system (9), the proposed
FI scheme consists of the FI estimators (10) and the
adaptive threshold (16). The FI decision making scheme
can be devised as follows.

Fault isolation decision making: Compare the FI
residual signals ||:i’f(t)||1 with the FI adaptive thresholds
ek(t) for time t > tg and all i = 1,--- ,m, k =1,---  /N.
If there exists a unique [ € {1,---, N} such that: (i) Vi =
1,---,m, iﬁ(t)“l < éL(t) holds for all time ¢t > to; and
(11) Vk € {L U 7N}/{l}’ di € {17 o am}v “%f(tk)Hl >
ek (t*) holds at some time instant t* > to. Then, the
occurring fault I’ can be identified similar to the fault
[, and the isolation time can be obtained as: t;s, =

maX{tk,k e{1,--- 7N}/{l}}'

4.2 Isolatability Condition

To analyze the performance of the proposed FI scheme,
the fault isolatability condition will be studied, i.e., under

what conditions the occurring fault I’ in system (9) can be
identified similar to a unique trained fault [.

Theorem 2. Consider the monitored system (9) and the
fault isolation system consisting of estimators (10) and
adaptive thresholds (16). For each k& € {1,--- ,N}/{l}
and some i € {1,--- ,m}, if there exists a time interval
IF = [tk t¥] C [tF — T, t¥] with t* > to, such that

pf’l/(xs,u)‘ > ﬁf(ws,u) +2¢F, Vte I*, (17)

and

267 + 201, L i+ 20,, &

P o=tk —th > T+ —1
‘ ”_ui+2ﬁ§mx( b -2e )
pi =26 1 3ui+ 4
L (—In e )
pi+207, bi e — 26

(18)
= minf|pf"| = phve e 1M, g =
max{pF,Vt > to}, then, |ZF(t})|, > eF(t}) holds, the oc-

curring fault I’ will be identified similar to fault I, and the
isolation time is: t;5, = max {t}y,Vk € {1,--- ,N}/{I}}.

where

Theorem 2 can be proved by investigating the relation
between the FI residuals Hs?:le of (12) and the fault mis-

match function pf’l/ (zs,u), which can be conducted based

on the locally Lipschitz continuity of function pf’l,(xs, w).
Detailed proof can be completed by following a similar line
of the proof of (Zhang et al., 2022, Th. 3), thus is omitted
here.

5. SIMULATION STUDIES

Consider a typical transport-reaction process in chemical
industry, i.e., a long, thin catalytic rod in a reactor, which
is borrowed from El-Farra and Ghantasala (2007); Wu and
Li (2008). The system is described by the parabolic PDE
of (1), where a; = 0, ay = 1, f(z,u) = Br(e” T —
e—’Y) + ﬁu(b(z)u(t) - JT), with ﬁT = 50) Y= 4a ﬁu = 27
b(z) = 1.5sin(z)+1.8sin(2z)+2sin(3z), and the boundary
and initial conditions: z(0,t) = 0, z(m,t) = 0, z(z,0) =
15sin(z). Three types of faults are considered. (i) Fault
1: an actuator fault with a faulty actuator distribution
function: ¥’ (z) = 1.8sin(z)+ 1.8 sin(2z) +2sin(3z), leading
to the associated fault function ¢'(x,u) = b(z)B,u with
b(z) = b(z) — V' (z) = —0.3sin(z). (ii) Fault 2: a state
fault with fault function ¢?(z,u) = h(z)x, where h(z) =
h(z — 1) — h(z — 1.3) and h(:) is a heaviside function.
(iii) Fault 3: a component fault with a faulty system

parameter: 8. = 48, and the associated fault function is

thus ¢3($,U) = B}(e—ﬁ — 6_7) with BT = BT — Bé“ = 2.

For the above-mentioned PDE system, the eigenvalue
problem of the spatial differential operator in the form

of (2) has the solution: \; = —i?, ¢;(2) = \/gsin(iz) with
1 =1,---,00. Choosing the first m = 3 number of eigen-
values as dominant ones, we can obtain the ODE system
in the form of (4) to describe the dominant dynamics of
the PDE system (1).

Identification process for system (4) is implemented ac-

cording to (7). The RBF network W/TS(x,,u) is con-
structed in a regular lattice, with nodes V,, = 14 X 9 x 8 x
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30
20
10
140 142 144 146 148 150 0 2 4 6 8 10
Time (sec) Time (sec) Time (sec)
(a) (c)

Fig. 1. Identification of function 7! (z,,u) with identifier (7). (a) Convergence of NN weight W; (b) estimation
performance of 5, by #1; and (c) function approximation performance of nl(xs,u) by Wi S(z, u).
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Fig. 2. FDI performance when fault 1’ occurs at time

t = 30s: (a) FD residuals and thresholds; (b) 1-st
FT residuals and thresholds; (c¢) 2-nd FI residuals and
thresholds; and (d) 3-rd FI residuals and thresholds.

13, the center evenly spaced on [17.5, 24] x [—1, 3] x [0, 3.5] X
[-2,4] and the widths v; = 0.5. The design parameters
in (7) are a; = 4, Ty = 0.35, o; = 0.001, W}(0) = 0
(Vi =1,2,3) and £(0) = 25(0). The identification perfor-
mance of system (4) under faulty mode k = 1 is plotted in
Fig. 1, showing that accurate identification for dynamics
n(zs,u) = fo (xs,u) + @3, (zs,u) can be achieved with
the identifier (7). Simulation results for the cases of faulty
modes k = 2,3 are similar to those in Fig. 1 and thus
omitted here. Consequently, based on the identification
result, we can obtain constant NN models WFT S (x, u)

by WF = & [0 WE(r)dr (i = 1,2,3, k = 1,2,3); and

the parameters £ = 0.0860, &5 = 0.0430, and &5 = 0.0703.
FI scheme is implemented according to (10) and (16). As-
sociated parameters are b; = 2, T' = 2.5s, and pF(zs,u) =
Jo F(z,u) lpi(2)|dz, where ¢'(x,u) = |A;B,u| with
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Fig. 3. FDI performance when fault 2’ occurs at time
t = 30s: (a) FD residuals and thresholds; (b) 1-st
FT residuals and thresholds; (c¢) 2-nd FT residuals and
thresholds; and (d) 3-rd FI residuals and thresholds.

Ay =0.25, ¢*(z,u) = |Ajz| with Aj = h(z —1) — h(z —
1.3), and ¢3(z,u) = ‘Aﬁ}(e_ﬁ —e"’)’ with Ay = 1.
For testing purpose, we assume three occurring faults to
be detected and isolated, including fault 1: ¢* (z,u) =
V(2)Byu with V'(2) = —0.5sin(z); fault 2": % (z,u) =
R (z)x with h'(z) = h(z — 1) — h(z — 1.2); and fault 3"
% (x,u) = HT/(e_llw — e 7) with ﬁ}l =49.

For testing purpose, we consider the faults I’ = 1/,2/,3’
occur in system (1) at time ¢ = 30s, respectively. For
better study, an FD scheme proposed in our previous work
Zhang et al. (2020) will be used to detect the occurrence
of fault I'; and after the fault being detected (at time
to), the FT scheme proposed in the current paper can be
activated to identify the type of fault I’. Due to the limited
space, the implementation of FD scheme is omitted here.
We first consider the case of fault 1/, and associated fault
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Fig. 4. FDI performance when fault 3’ occurs at time
t = 30s: (a) FD residuals and thresholds; (b) 1-st
FI residuals and thresholds; (c¢) 2-nd FI residuals and
thresholds; and (d) 3-rd FI residuals and thresholds.

detection and isolation (FDI) performances are displayed
in Fig. 2. Specifically, in Fig. 2a, FD residual signals
become larger than the FD threshold at time ty = 30.9s,
indicating that the fault is detected and the FI scheme can
be activated at time ty = 30.9s; in Figs. 2b-2d, according
to FI decision making principle of Sec. 4.1, the fault 1’ can
be identified to be similar to the fault 1, and the isolation
time is obtained at: t;,, = max{t? t3} = 32.06s. Further
considering the cases of faults 2’ in Fig. 3 and fault 3’ in
Fig. 4, the occurring fault 2’ is detected at time tg = 30.85s
and isolated at time t¢;5, = 32.52s; while the occurring
fault 3’ is detected at time ¢35 = 31.93s and isolated at
time t;5, = 33.84s. These simulation results demonstrate
feasibility and effectiveness of our proposed FI scheme.

6. CONCLUSIONS

We have addressed the FI problem of parabolic PDE
systems with uncertain nonlinear dynamics in this paper.
The developed FI scheme possesses an important capa-
bility of dealing with the effects of system uncertainties
for accurate FI. Specifically, we have first utilized the
Galerkin method to generate a reduced-order ODE model
to approximate the parabolic PDE system. Based on this
model, the system dominant uncertain nonlinear dynamics
has been locally-accurately identified with an RBF NN-
based adaptive learning scheme. A bank of FI estimators
have been further proposed with these learned results.
Adaptive thresholds associated with these estimators were
designed for real-time decision making. Rigorous analysis

on the fault isolatability has been provided. Simulation
studies have also been conducted to verify the effectiveness
of the proposed methodologies.
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