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THE COMPUTATION OF WANDERING POINTS ON THE

GLOBAL ATTRACTOR BY MEANS OF SYMMETRY-BREAKING

PERTURBATIONS

ALEXEY CHESKIDOV, ERIC OLSON, AND BEAU SMITH

Abstract. We start with a traveling-wave solution on the global attractor of the
Kuramoto–Sivashinsky equation and we perturb this solution so it is no longer
2π-periodic in space but only 4π-periodic. No matter how small the perturba-
tion, we observe computationally, that, up to a translation in space related to the
perturbation, the resulting solution takes essentially the same trajectory before
ultimately converging to a fixed point. In our theory, we prove that trajectories
which result from small perturbations of a point on the attractor stay close to the
attractor; we further prove that the set resulting from a suitable limit of smaller
and smaller symmetry-breaking perturbations lies on the global attractor. More-
over, since the symmetric breaking occurs only once, we have found wandering
points on the attractor which are nonrecurrent.

1. Introduction

The Kuramoto-Sivashinsky equation was derived in 1974 by George Homsy [14]
and Alexander Nepomnyashchii [20] studying liquid film flowing down an inclined
plane, in 1976 by Yoshiki Kuramoto and Toshio Tsuzuki [17] studying persistent
wave propagation through reaction-diffusion media and in 1977 by Gregory Sivashin-
sky [23] studying instability in laminar flames. A Painlevé test and the presence of
chaotic solutions indicate that no explicit general analytic solutions exist for this
equation [7].

The Kuramoto–Sivashinsky equation is given by

(1.1) ut + uux + µuxx + νuxxxx = 0

with initial condition u(0, x) = u0(x) for x ∈ R. Here u(t, x) represents, for example,
the flame-front velocity, µ is a dimensional constant that represents the heat released
by the combustion reaction, and ν represents the heat required to preheat the
incoming reactants (see the discussion in the appendix to Chapter 11 in Griffiths
and Schiesser [12]). The well-posed nature of (1.1) has been known since Tadmor
confirmed it in 1986 [25]. From this point on, this paper will use the abbreviation
KSE to refer to (1.1). We shall also write u(t) to stand for the function of x such
that u(t)(x) = u(t, x).

Note that if u0 is periodic in space with period L > 0 such that u0(x + L) =
u0(x), then u(t, x + L) = u(t, x) for all time t > 0. We may therefore impose L-
periodic boundary conditions on (1.1) and consider the phase space of all L-periodic

solutions. Further note that if u0 has zero average, then
∫ L
0 u(t, x) dx = 0 for all
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time t > 0. Unless otherwise indicated, we shall assume our solutions have zero
spatial average.

It is was first shown by Nicolaenko, Scheurer and Temam [21] under the additional
assumption u0(x) = −u0(−x) that the KSE with L-periodic boundary conditions
has a unique global attractor (see also Temam [26], Robinson [22] and references
therein). These results were subsequently extended to the case of general L-periodic
solutions by Il’yashenko [15] and independently by Collet, Eckmann, Epstein and
Stubbe [6]. Gujić [13] found global bounds on the radius of spatial analyticity for
a neighborhood about the set of all fixed points while local bounds were used by
Arioli and Koch [1] for the rigorous computation of certain fixed points. Rigorous
numerics were further used to find periodic orbits by Figueras and de la Llave in [11].

In this paper we use the exponential time integrator derived by Cox and Matthews
[8] and refined by Kassam and Trefethen [16] to approximate a periodic solution
on the global attractor. We then make a symmetry-breaking perturbation of that
periodic solution. After proving our perturbed trajectories remain uniformly near
the global attractor, we show in the limit that these trajectories allows us to recover
points on the attractor. We then observe numerically that the trajectories resulting
from our perturbations all converge to the same fixed point. This allow us to
compute wandering points on the global attractor which lie on the unstable manifold
of the periodic solution and connect to the fixed point.

Denote the global attractor of the Kuramoto–Sivashinsky equation with L-periodic
boundary conditions by AL. Since an L-periodic function may also be viewed as a
2L-periodic function, then

AL ⊆ A2L.

Note that it could happen that AL = A2L, for example, when the attractor in both
cases reduces to a single point at the origin. On the other hand, it could happen
that AL 6= A2L and, moreover, that fixed points and limit cycles in AL which are
stable become unstable when viewed as part of the larger attractor A2L. In fact,
for the choice of parameters given by L = 2π, µ = 0.1 and ν = 0.027 this is exactly
what our numerics suggest.

A point u0 ∈ A is said to be wandering if there is a neighborhood U of u0 and
a positive time T such that St(U) ∩ U = ∅ for all t > T . Here St is the solution
semigroup given by St(u0) = u(t) where u is the unique solution to the KSE equation
(1.1) with initial condition u0. Note that any point which is wandering is guaranteed
to be nonrecurrent.

Our computational technique to find wandering points on the global attractor of
the KSE consists of the following steps:

• Find a periodic orbit on AL using long-time computation.
• Perturb that solution so it is no longer L-periodic in space but only 2L-
periodic.

• Make smaller and smaller perturbations.
• Observe all trajectories end at spatial translations of the same fixed point.
• Take a subsequence to obtain a limit trajectory that ends at a single fixed
point.

• Observe this final fixed point is 2L-periodic but not L-periodic.
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The theoretical results, stated and proved below as Theorem 2.5 in the context of
the KSE and subsequently extended to general dissipative systems as Theorem 3.8
and Theorem 3.9, imply the set of points in phase space resulting from the limit of
the trajectories taken as in Theorem 2.8 is guaranteed to lie on A2L. We therefore
conclude the points which make up the limit trajectory are nonrecurrent. To further
see they are wandering, we note there is a neighborhood about each point consisting
of 2L-periodic functions which are not L periodic and again that all points in those
neighborhoods converge to spatial translations of the fixed point found earlier.

To illustrate the idea behind the above technique, we first consider a simple case
given by the system of ordinary differential equations

(1.2) xt = −1
4x(x− 2)(x+ 2), yt = −y.

A phase diagram of this system appears as Figure 1. Note that the origin is a
saddle point that is stable when solutions are restricted to the y-axis. There are
also two stable fixed points at x = −2 and x = 2 on the x-axis. Therefore, the global
attractor of this simple system consists of the points A =

{
(x, 0) : x ∈ [−2, 2]

}
.

Moreover, the nonrecurrent points are clearly wandering and described by W ={
(x, 0) : x ∈ (−2, 0) ∪ (0, 2)

}
.

Figure 1. Phase portrait of a simple ODE illustrating how sym-
metry breaking perturbations can find nonrecurrent points on the
attractor.

We now describe how the computational steps outlined above can be used to find
points in the wandering part W of the attractor A. In a way analogous to how
solutions of the KSE with L-periodic initial conditions remain L-periodic, note that
solutions to (1.2) with initial conditions of the form (0, y0) satisfy x = 0 for all
time. Let A0 denote the global attractor in the phase space of all solutions such
that x = 0. Note that A0 ⊆ A. Moreover, A0 consists of a single fixed point at the
origin which is stable subject to the condition that x = 0.

In particular, since any trajectory starting with initial condition of the form
(0, y0) eventually arrives at the fixed point (0, 0) in A0, it is possible to find this
point numerically by making a long-term computation subject to the condition
x = 0. Note that this fixed point point also lies on the global attractor A of the full
system. In the case of the KSE, we take a long time trajectory from an L-periodic
initial condition and observe that it converges to a periodic orbit. We then infer
this periodic orbit also lies on the global attractor A2L.
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Referring back to the simple system, next perturb the point (0, 0) by any pertur-
bation of the form (α, β) with α 6= 0. By Theorem 2.5, this results in a trajectory
that stays close to the global attractor. Moreover, if α < 0 the perturbed trajectory
now converges to the fixed point (−2, 0) on the x-axis and if α > 0 it converges to
(2, 0). By computing trajectories perturbed by smaller and smaller values of α and
β and then selecting a subsequence of trajectories that either all tend to (−2, 0)
or all tend to (2, 0), we can identify points in the limit which lie on the attractor.
Note that all the points in this limit trajectory (except the beginning and the end)
are wandering. In the case of the KSE, rather than two fixed points, the perturbed
trajectories will converge to a whole assortment of spatial translations of a single
non-L-periodic fixed point in A2L. By again selecting a subsequence we obtain a
limit trajectory of wandering points which lie on the attractor A2L.

Figure 2. Non-recurrent trajectory on the global attractor con-
necting a 2π-periodic traveling wave to a 4π-periodic fixed point.

To find points on the global attractor of a partial differential equation, a typical
numerical approach is to evolve an arbitrary initial condition sufficiently forward in
time until the solution is close to the attractor. While it is known for certain choices
of the parameters µ and ν that the KSE appears to undergo chaotic motion, for the
choice of parameters µ = 0.1 and ν = 0.027, numerically evolving an arbitrary 4π-
periodic initial condition forward in time generally leads to a specific fixed point with
6 relative extrema, its various spatial translations or possibly the zero solution. This,
of course, assumes the probability is zero that an arbitrary 4π-periodic function



WANDERING POINTS ON THE GLOBAL ATTRACTOR 5

happens also to be 2π-periodic in space. If, in fact, the initial condition is also
2π-periodic in space, then the resulting trajectories converge to a periodic orbit—a
traveling wave solution with 4 relative extrema.

Since A4π is connected and contains the traveling wave, the zero solution and the
non-zero fixed point, then we know the attractor also contains much more. Figure
2 illustrates points on the global attractor which connect the 2π-periodic traveling
wave solution to one of the 4π-periodic fixed points. These points were obtained by
taking a limit of symmetry breaking perturbations, in particular, perturbations that
are 4π periodic but not 2π periodic. Each horizontal line of the image corresponds to
a point in the phase space. Our numerics obtain the same picture, though perhaps
shifted in time and space, as we take smaller and smaller perturbations. Upon
passing to a subsequence, see Theorem 2.8, we obtain a limit trajectory consisting
of wandering non-recurrent points on the global attractor. The focus of this paper is
to describe the numerics in detail while providing a rigorous theoretical background.

We emphasize that the traveling wave solution at t = 0 appearing at the bottom
of the graph has 4 relative extrema and (expect for the perturbation) is recur-
rent. Similarly, the fixed point when t tends to infinity appearing at the top of the
graph has 6 relative extrema, is not 2π-periodic in space and again is recurrent.
Although there are set-based algorithms for approximating the global attractor for
low-dimensional ordinary differential equations (see, for example, [9]), such tech-
niques are impractical for higher dimensional systems and, in particular, for partial
differential equations. However, the main novelty of our research is computing
points on the global attractor which are wandering and would never be seen in the
limit set resulting from the long-time evolution of any single trajectory.

This paper is organized as follows. Section 2 proves Theorem 2.5, Theorem 2.8
and other analytic results in the specific context of KSE that we will use to support
or numerics later on. The theory is, in fact, much more general. We therefore pro-
vide a generalization of Theorem 2.5 for a much wider class of dissipative dynamical
systems as Theorem 3.8 and Theorem 3.9 in Section 3. Among other dynamical
systems, Theorem 3.8 is applicable to the three-dimensional incompressible Navier–
Stokes equations while Theorem 3.9 is applicable to the three and two-dimensional
incompressible Navier–Stokes equations as well as the Leray-α and LANS-α regu-
larized forms of the Navier–Stokes equations in three-dimensions, see for example,
Foias, Holm and Titi [10] and Cheskidov, Holm, Olson and Titi [4] for more infor-
mation about these turbulence models. Section 4 describes the numerical methods
we use, the results of which are presented in Section 5. The paper then finishes
with some concluding remarks in Section 6.

2. Theoretical Results

In this section we present the theory needed to support our numerical results.
This theory will be generalized in the next section but is presented here in the
concrete context of the KSE to build intuition and provide relevance for the more
general results later.

The notion of an attractor was first proposed by Liapunov [19] in 1892. In 1955
Coddington and Levinson [5] defined the point attractor as the limits set resulting
from the forward evolution of individual trajectories. The global attractor—the
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set that attracts the evolution of all bounded sets—was first constructed by Olga
Ladyzhenskaya [18] in 1987. Note that the global attractor is a compact connected
set which contains the point attractor.

Denote byHL the space of mean-zero Lebesgue square-integrable L-periodic func-
tions with norm given by

(2.1) ‖w‖ =
(∫ L

0

∣∣w(x)∣∣2dx)1/2
for w ∈ HL.

We remark that HL is a Hilbert space and therefore has an inner product. As
shown in [6] and [15] the Kuramoto–Sivashinsky equation is well-posed for initial
conditions u0 ∈ HL and defines a solution operator St such that

u(t) = St(u0) is the solution where u(0, x) = u0(x).

For example, solutions with u0 ∈ HL remain bounded in time with respect to the
HL norm.

That said, following Robinson [22], see also [21,26], we recall

dist(A,B) = sup
a∈A

inf
b∈B

‖a− b‖,

for two sets A and B contained in HL and

Definition 2.1. The global attractor AL is the maximal compact invariant set in
HL such that

St(AL) = AL for all t ≥ 0

and the minimal set that attracts all bounded sets

dist(St(X),AL) → 0 as t→ ∞

for any bounded set X ⊆ HL.

We further recall that all solutions on the attractor AL are uniformly bounded
with respect to the HL norm. In particular, there exists R depending only on µ, ν
and L such that for any u0 ∈ HL there is T such that

(2.2) ‖u(t)‖ ≤ R for all t ≥ T.

Estimates for R in terms of µ, ν and L may be found in either [6] or [15].
Our strategy for finding wandering points in A2L involves applying a perturbation

that is 2L-periodic but not L-periodic to a point in AL. Before we build up to the
theoretical result given in Theorem 2.5, we first discuss some additional properties
of the KSE’s global attractor. The first result needed is a bound on |ux| that will be
used later in the proof of Lemma 2.6. Although this bound is easy, we present the
proof here for completeness and to familiarize the reader with the notations that
will be employed in what follows later. Thus, we now state and prove

Theorem 2.2. There exists a constant R1 such that

(2.3) ‖ux(t)‖ ≤ R1 for every u0 ∈ AL and all t ∈ R.

The proof of Theorem 2.2 follows directly two lemmas which will also be of use
in our later analysis. First, we have
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Lemma 2.3. Suppose ‖u(t)‖ ≤ R for all t ≥ T . There exists M depending only on
µ, ν, L and R such that∫ t+1

t
‖uxx(s)‖2 ≤M for all t ≥ T.

Proof. First, take the HL inner product of (1.1) with u and integrate by parts to
obtain

(2.4)
1

2

d

dt
‖u‖2 +

∫ L

0
u2uxdx+ µ

∫ L

0
uuxxdx+ ν‖uxx‖2 = 0.

Now, since ∫ L

0
u2uxdx =

1

3
u3

∣∣∣L
0
= 0

and

µ
∣∣∣ ∫ L

0
uuxxdx

∣∣∣ ≤ µ‖u‖‖uxx‖ ≤ µ2

2ν
‖u‖2 + ν

2
‖uxx‖2,

then (2.4) becomes

d

dt
‖u‖2 + ν‖uxx‖2 ≤

µ2

ν
‖u‖2 ≤ µ2

ν
R2 for t ≥ T.

Integrating from t to t+ 1 then yields

‖u(t+ 1)‖2 + ν

∫ t+1

t
‖uxx(s)‖2 ≤ ‖u(t)‖2 + µ2

ν
R2 ≤

(
1 +

µ2

ν

)
R2

So that ∫ t+1

t
‖uxx(s)‖2 ≤M where M =

(
1 +

µ2

ν

)R2

ν
.

This finishes the proof of the lemma. □

The other lemma we state as

Lemma 2.4. Suppose ‖u(t)‖ ≤ R for all t ≥ T . There exists R1 depending only on
µ, ν, L and R such that

‖ux(t)‖ ≤ R1 for all t ≥ T + 1.

Proof. Take the HL inner product of (1.1) with −uxx and integrate by parts to
obtain

1

2

d

dt
‖ux‖2 + ν‖uxxx‖2 = µ‖uxx‖2 +

∫ L

0
uuxuxx.

Since u has zero average there is x0 ∈ [0, L] such that u(x0) = 0. Therefore, by the
fundamental theorem of calculus

u(ξ) = u(x0) +

∫ ξ

x0

ux =

∫ ξ

x0

ux.

Consequently, by the Cauchy–Schwarz inequality∣∣u(ξ)∣∣ = ∣∣∣ ∫ ξ

x0

ux

∣∣∣ ≤ ∫ L

0

∣∣ux(x)∣∣dx ≤
√
L ‖ux‖
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and therefore ‖u‖L∞ ≤
√
L ‖ux‖. Using this bound we estimate∫ L

0
uuxuxx ≤ ‖u‖L∞

∫ L

0
‖uxuxx‖ ≤ ‖u‖L∞‖ux‖‖uxx‖ ≤

√
L ‖uxx‖‖ux‖2.

It follows that

(2.5)
1

2

d

dt
‖ux‖2 + ν‖uxxx‖2 ≤ µ‖uxx‖2 +

√
L ‖uxx‖‖ux‖2.

Assuming t − 1 ≥ T , choose t∗ in the interval [t − 1, t] such that ‖uxx‖2 is less
than its average value. Thus, Lemma 2.3 implies ‖uxx(t∗)‖ ≤ M . Now, applying
the Cauchy–Schwartz inequality yields

‖ux(t∗)‖2 = −
∫ L

0
u(t∗, x)uxx(t∗, x) dx ≤ ‖u(t∗)‖‖uxx(t∗)‖ ≤ R

√
M.

Consequently, we neglect the term ‖uxxx‖2 in (2.5) to obtain

(2.6)
d

dt
‖ux‖2 ≤ µ‖uxx‖2 +

√
L ‖uxx‖‖ux‖2

and then rewrite this as

(2.7)
d

dt
(ψ‖ux‖2) ≤ ψµ‖uxx‖2 where ψ(t) = exp

(
−
√
L

∫ t

t∗

∣∣uxx(s)∣∣ds).
Next, integrating (2.7) over the interval [t∗, t] yields

ψ(t)‖ux(t)‖2 − ψ(t∗)‖ux(t∗)‖2 ≤ µ

∫ t

t∗

ψ(s)‖uxx(s)‖2 ds

and consequently ψ(t∗) = 1 implies that

‖ux(t)‖2 ≤
1

ψ(t)
‖ux(t∗)‖2 +

µ

ψ(t)

∫ t

t∗

ψ(s)‖uxx(s)‖2ds.

Since ψ is a decreasing function and t∗ + 1 > t, again applying Lemma 2.3 yields∫ t

t∗

‖uxx‖ ≤
∫ t∗+1

t∗

‖uxx‖ ≤

√∫ t∗+1

t∗

‖uxx‖2 ≤
√
M

which then implies
1

ψ(t)
≤ 1

ψ(t∗ + 1)
≤ e

√
LM .

Upon recalling that |ux(t∗)|2 ≤ R
√
M we see that

‖ux(t)‖2 ≤ e
√
LM‖ux(t∗)‖2 + µe

√
LM

∫ t∗+1

t∗

‖uxx(s)‖2 ds ≤ R1

for t ≥ T + 1 where

R1 = (R
√
M + µM)1/2e

√
LM/2.

Noting that R, M and consequently R1 depend only on L, µ and ν finishes the
proof. □
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Proof of Theorem 2.2. Since all solutions on the attractor are uniformly bounded
with respect to the HL norm, there is R such that ‖u(t)‖ ≤ R for every u0 ∈ AL

and all t ∈ R. Noting that Lemma 2.4 holds for any value of T with this value of R
finishes the proof. □

With that, we introduce

Theorem 2.5. Let AL be the global attractor of the KSE (1.1) with L-periodic
boundary conditions. Given ϵ > 0, there is δ > 0 such that, for any point v0 ∈
L2([0, L];R) with zero average,

dist({v0},AL) < δ implies dist({St(v0)},AL) < ϵ

for all t ≥ 0.

Before we prove this, we need an estimate on the continuity by which solutions
depend on their initial data. Our result is a slight modification of the standard result
that compares the evolution of two solutions u and v with different initial conditions
u0 and v0. In Lemma 2.6 below we further assume u0 ∈ AL and consequently that
u(t) ∈ AL for t ≥ 0. This additional assumption leads to an estimate with the
uniformity needed to later prove Theorem 2.5.

Lemma 2.6. Let u and v be solutions to the KSE. There is a constant β > 0
depending only on L, µ and ν such that u0 ∈ AL and v0 ∈ HL implies

‖u(t)− v(t)‖2 ≤ ‖u0 − v0‖2eβt for all t ≥ 0.

Proof. Let w = u− v where u and v are both solutions to the KSE. Then

wt = −νuxxxx − µuxx − uux + νvxxxx + µvxx + vvx + (uvx − uvx)

= −ν(u− v)xxxx − µ(u− v)xx − u(ux − vx)− vx(u− v)

= −νwxxxx − µwxx − uwx − vxw + (uxw − uxw)

= −νwxxxx − µwxx − uwx + wxw − uxw.

(2.8)

Observe by the L periodicity that

(2.9)

∫ L

0
wxw

2 =
1

3
w3

∣∣∣∣L
0

= 0 and

∫ L

0
uxw

2 = −2

∫ L

0
uwxw.

Therefore, taking the HL inner product of (2.8) with w and integrating yields

(2.10)
1

2

d

dt
‖w‖2 + ν‖wxx‖2 = µ‖wx‖2 +

∫ L

0
uwxw.

Next, estimate |u(t, x)| pointwise. Since u has zero average by assumption, then
for any time t there is a point x∗ such that u(t, x∗) = 0. Consequently,

u(t, x) = u(t, x)− u(t, x∗) =

∫ x

x∗

ux(t, y) dy

At this point we use the assumption that u0 ∈ AL in order to apply (2.3) along
with the Cauchy–Schwarz inequality to obtain

|u(t, x)| ≤ ‖ux‖
√
L ≤ R1

√
L for every x ∈ [0, L] and t ≥ 0.
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Now use this estimate along with Young’s inequality, 2ab ≤ a2 + b2, to provide a
bound on the right-hand side of (2.10):∫ L

0
uwxw ≤ ‖u‖L∞‖wx‖‖w‖ ≤ R1

√
L‖wx‖‖w‖ ≤ µ‖wx‖2 +

R2
1L

4µ
‖w‖2.

Furthermore, since

2µ‖wx‖2 = −2µ

∫ L

0
wxxw ≤ ‖wxx‖‖w‖ ≤ ν‖wxx‖2 +

µ2

ν
‖w‖2,

then equation (2.10) becomes

d

dt
‖w‖2 ≤ β‖w‖2 where β =

2µ2

ν
+
R2

1L

2µ
.

We remark that R1 and consequently β depend only on L, µ and ν. Finally, integrate
this differential inequality to obtain the desired result and finish the proof. □

While it is well known that KSE is well-posed (i.e., it has unique solutions which
depend continuously on the initial data), the upshot of Lemma 2.6 is that the
continuous dependence on initial data is controlled by an explicit constant β which
depends only on L, µ and ν. We emphasize that the dependence only on L, µ and
ν relies on the fact that one of the solutions lies on the global attractor. We can
now prove that if a second solution starts sufficiently close to the attractor, then it
will remain close to the attractor for all future times.

Proof of Theorem 2.5. Let r > 0 and define

X =
⋃

u0∈AL

Br(u0) where Br(u0) =
{
u ∈ HL : ‖u− u0‖ < r

}
is the ball of radius r centered at u0 inHL. Since AL is bounded, then X is bounded.
Moreover, X is open and AL ⊆ X. By Definition 2.1, for all ϵ > 0 there is T > 0
such that

(2.11) dist(St(X),AL) < ϵ for all t ≥ T.

Choose δ > 0 sufficiently small such that δ < r and δ2eβT < ϵ2. Note that since δ <
r then dist({v0},AL) < δ implies v0 ∈ X. Choose u0 ∈ AL such that |u0 − v0| < δ.
It follows that u(t) = St(u0) and v(t) = St(v0) satisfy

‖u(t)− v(t)‖2 ≤ ‖u0 − v0‖2eβt ≤ δ2eβT < ϵ2 for t ∈ [0, T ].

Consequently,

dist({St(v0)},A) < ϵ for all t ∈ [0, T ].

On the other hand, since v0 ∈ X, we already know from (2.11) that

dist({St(v0)},A) < ϵ for all t > T.

Therefore, dist({St(v0)},A) < ϵ for all t ≥ 0 which was the desired result. □
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For v0 ∈ HL consider the HL closure of the forward trajectory set

(2.12) W (v0) = {St(v0) : t ≥ 0 }.
We claim that W (v0) is compact. Since W (v0) is closed by definition, it is sufficient
to show W (v0) is totally bounded. On other words, for any ϵ > 0 it needs to be
shown that W (v0) can be covered by a finite number of balls of radius ϵ.

Since A is compact, there is a cover of A by a finite number of balls Bϵ/2(un) of

radius ϵ/2 centered at un ∈ A where n = 1, . . . , N . Let U = ∪N
n=1Bϵ(un) and note

that U is a ϵ/2 neighborhood of A. Thus, there exists T be so large that St(v) ∈ U
for all t ≥ T and so the set {St(v0) : t ≥ T } is covered by a finite number of ϵ balls.
Now, since {St(v0) : 0 ≤ 0 ≤ T } is the continuous image of a compact set [0, T ] it
is also compact and therefore also covered by a finite number of ϵ balls. It follows
that W is totally bounded and hence compact.

Consider the Hausdorff metric dH on all compact subsets of HL defined as

dH(A,B) = max(ρH(A,B), ρH(B,A))

where ρH is the semidistance given by

ρH(A,B) = sup
u1∈A

inf
u2∈B

‖u1 − u2‖.

It is known dH is a compact metric space provided the original metric space is
compact, but, of course, HL is not compact. We therefore consider the weaker
space V ∗

L defined as the dual of VL = {v ∈ HL : ‖vx‖ ≤ ∞} with respect to the HL

inner product. Note the norm on V ∗
L is given by

‖u‖∗ = sup
{ ∫ L

0 uv : v ∈ VL and ‖vx‖ ≤ 1
}
.

Since the closed r-ball Br(0) =
{
u ∈ HL : ‖u‖ ≤ r

}
is compact in the topology

of V ∗
L , then for any ϵ > 0 the space of all compact subsets of BR+ϵ(0) is a compact

space with respect to the weak Hausdorff metric d∗H given by the semidistance

ρ∗H(A,B) = sup
u1∈A

inf
u2∈B

‖u1 − u2‖∗.

Lemma 2.7. Let u0 ∈ AL and vn ∈ HL be such that ‖u0 − vn‖ → 0. Then there
is a subsequence nj such that the forward trajectory sets W (vnj ) form a Cauchy
sequence with respect to d∗H metric.

Proof. Given ϵ > 0, Theorem 2.5 implies there is δ > 0 such that

‖u0 − vn‖ < δ implies dist({St(vn)},AL) ≤ ϵ

for all t ≥ 0. Consequently, there is N large enough such that

W (vn) ⊆ BR+ϵ(0) for all n ≥ N.

Since the space of all compact subsets of BR+ϵ is compact with respect to the weak
Hausdorff metric d∗H, then there is a subsequence nj such thatW (vnj ) is Cauchy. □

Since every compact metric space is complete, it immediately follows from
Lemma 2.7 that there exists a compact set K ∈ BR+ϵ(0) such that

d∗H(K,W (vnj )) → 0 as j → ∞.
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In accordance with the terminology used in the introduction when outlining the
computational steps for finding wandering points, we shall call K a limit trajectory
of the perturbations of u0. Before finishing this section, we note that the convergence
of W (vnj ) to K also occurs with respect to the norm in HL. In particular, we have

Theorem 2.8. Let nj be the subsequence from Lemma 2.7. Then

dH(K,W (vnj )) → 0 as j → ∞.

Proof. To simplify the notation—relabeling if necessary—we assume without loss
of generality that d∗H(K,W (vn)) → 0 as n → ∞. Upon choosing N so large that

W (vn) ⊆ BR+ϵ(0) for all n ≥ N it follows that v(t) = St(vn) satisfies ‖v(t)‖ ≤ R+ ϵ
for all t ≥ 0. Lemma 2.4 then implies there exists an R1 depending only on µ, ν, L
and R+ ϵ such that

‖vx(t)‖ ≤ R1 for all t ≥ 1.

Let ϵn > 0 be a sequence monotonically decreasing to zero such that

‖u0 − vn‖ ≤ ϵn and d∗H(K,W (vn)) ≤ ϵn for all n ∈ N.

Suppose m ≥ k and n ≥ k where k ≥ N and set u(t) = St(u0) and w(t) = St(vm).
Since

ρ∗H(W (vn),W (vm)) ≤ ϵn + ϵm ≤ 2ϵk,

then for any s ≥ 0 there is t ≥ 0 such that ‖v(s)− w(t)‖∗ ≤ 3ϵk. We now consider
four cases depending on whether s and t are bigger or smaller than one.

If s ≥ 1 and t ≥ 1, we obtain by interpolation that

‖v(s)− w(t)‖ ≤ ‖vx(s)− wx(t)‖1/2‖v(s)− w(t)‖1/2∗ ≤ (2R1)
1/2(3ϵk)

1/2.

If s ≥ 1 and t < 1, we obtain by Lemma 2.6 that

‖v(s)− w(t)‖ ≤ ‖v(s)− u(t)‖+ ‖u(t)− w(t)‖

≤ ‖vx(s)− ux(t)‖1/2‖v(s)− u(t)‖1/2∗ + ‖u0 − vm‖eβt/2

≤ (2R1)
1/2(3ϵk)

1/2 + ϵke
β/2.

If s < 1 and t ≥ 1, the estimate is similar and again

‖v(s)− w(t)‖ ≤ (2R1)
1/2(3ϵk)

1/2 + ϵke
β/2.

If both s ≤ 1 and t ≤ 1, then

‖v(s)− w(t)‖ ≤ ‖v(s)− u(s)‖+ ‖u(s)− u(t)‖+ ‖u(t)− w(t)‖

≤ ‖vn − u0‖eβs/2 + (2R1)
1/2‖u(s)− u(t)‖1/2∗ + ‖wn − u0‖eβt/2

≤ 2ϵke
β/2 + (2R1)

1/2‖u(s)− u(t)‖1/2∗

and since

‖u(s)− u(t)‖∗ ≤ ‖u(s)− v(s)‖∗ + ‖v(s)− w(t)‖∗ + ‖w(t)− u(t)‖∗
≤ ‖vn − u0‖eβs/2 + ‖v(s)− w(t)‖∗ + ‖vm − u0‖eβt/2

≤ 2ϵke
β/2 + 3ϵk
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it follows that

‖v(s)− w(t)‖ ≤ 2ϵke
β/2 + (2R1)

1/2(2ϵke
β/2 + 3ϵk).

In light of the fact that the bounds on ‖v(s)−w(t)‖ tend to zero as k → ∞ in each
of the cases, we conclude that W (vn) is Cauchy with respect to Hausdorff metric
dH on compact sets in HL. As the only thing it could converge to is again K, the
result follows. □

When all the perturbations vn break a symmetry of u0, this theoretical result is
of practical use for computing wandering points on the attractor. For example, in
the numerical computations which follow we take

vn = u0 + δ · single Fourier mode that breaks the symmetry.

In that case K connects u0 to a part of the attractor in which the symmetry of
u0 has been broken, moreover, if the symmetry never spontaneously returns, then
there are points in K that must be wandering.

Before turning to those computations we first note that the above theoretical
framework is, in fact, much more general than the analysis just worked out for the
Kuramoto–Sivashinsky equations in this section.

3. General Theory

Theorem 2.5 can be extended to the general context of dissipative dynamical
systems which we now do. We state first some definitions and results that will
be needed in the general development and then proceed the perturbation of initial
conditions on the attractor.

3.1. Preliminaries. We recall the definition of the evolutionary system introduced
in [2]. Let (X, dists(·, ·)) be a metric space endowed with a metric dists, which will
be referred to as a strong metric. Let distw(·, ·) be another metric on X satisfying
the following conditions:

(1) X is distw-compact.
(2) If dists(un, vn) → 0 as n → ∞ for some un, vn ∈ X, then distw(un, vn) → 0

as n→ ∞.

Due to the property 2, distw(·, ·) will be referred to as a weak metric on X.
In applications we usually we choose X to be an absorbing ball and define the

strong and weak distances by

dists(u, v) = ‖u− v‖L2 and distw(u, v) = ‖u− v‖H−ℓ where ℓ > 0.

Note the Rellich–Kondrachov theorem implies H−ℓ is compactly embedded into L2.
Denote by A

•
the closure of a set A ⊂ X in the topology generated by d• where

• = s or w represents either the strong or weak topologies. Note that any strongly
compact (dists-compact) set is weakly compact (distw-compact) and any weakly
closed set is strongly closed.

Let C([a, b];X•), where • = s or w, be the space of d•-continuous X-valued
functions on [a, b] endowed with the metric

dC([a,b];X•)(u, v) = sup
t∈[a,b]

d•(u(t), v(t)).
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Let also C([a,∞);X•) be the space of d•-continuous X-valued functions on [a,∞)
endowed with the metric

dC([a,∞);X•)(u, v) =
∑
T∈N

1

2T
sup{d•(u(t), v(t)) : a ≤ t ≤ a+ T}

1 + sup{d•(u(t), v(t)) : a ≤ t ≤ a+ T}
.

To define the evolutionary system, first let

T = { I : I = [T,∞) ⊂ R or I = (−∞,∞) },

and for each I ⊂ T , let F(I) denote the set of all X-valued functions on I.

Definition 3.1. A map E that associates to each I ∈ T a subset E(I) ⊂ F will be
called an evolutionary system if the following conditions are satisfied:

(1) E([0,∞)) 6= ∅.
(2) E(I + s) =

{
u(·) : u(·+ s) ∈ E(I)

}
for all s ∈ R.

(3)
{
u(·)|I2 : u(·) ∈ E(I1)

}
⊂ E(I2) for all pairs I1, I2 ∈ T such that I2 ⊂ I1.

(4) E((−∞,∞)) =
{
u(·) : u(·)|[T,∞) ∈ E([T,∞)) for every T ∈ R

}
.

We will refer to E(I) as the set of all trajectories on the time interval I. Trajec-
tories in E((−∞,∞)) will be called complete. Let P (X) be the set of all subsets of
X. For every t ≥ 0, define a map R(t) : P (X) → P (X) by

R(t)A =
{
u(t) : u ∈ A, u(·) ∈ E([0,∞))

}
where A ⊂ X.

Note that the assumptions on E imply that R(s) enjoys the following property:

(3.1) R(t+ s)A ⊂ R(t)R(s)A for every A ⊂ X and t, s ≥ 0.

Definition 3.2. The ω•-limit (• = s, w) of a set A ⊂ X is

ω•(A) :=
⋂
T≥0

⋃
t≥T

R(t)A
•
.

We also note that an equivalent definition of the ω•-limit set is given by

ω•(A) =
{
x ∈ X :

there exist tn → ∞ and xn ∈ R(tn)A

such that xn → x in the d•-metric

}
.

Finally, we will give a precise definition of the global attractor.

Definition 3.3. A set A ⊂ X is a d•-attracting set, if it uniformly attracts X in
d•-metric, i.e., for any ε there exits t0 such that

dist•({x}, A) = inf
a∈A

d•(x, a) < ε for every x ∈ R(t)X and t ≥ t0.

A set A• ⊂ X is a d•-global attractor if A• is a minimal d•-closed d•-attracting set.

Evolutionary systems E whose trajectories are solutions to the KSE, or even the
three-dimensional incompressible Navier–Stokes equations, also satisfy the following
properties:

A1 E([0,∞)) is a compact set in C([0,∞);Xw).
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A2 (Energy inequality) Assume that X is a set in some Banach space H sat-
isfying the Radon-Riesz property with the norm denoted by ‖ · ‖, so that
dists(x, y) = ‖x − y‖ for x, y ∈ X and distw induces the weak topology
on X. Assume also that for any ϵ > 0, there exists δ, such that for every
u ∈ E([0,∞)) and t > 0,

‖u(t)‖ ≤ ‖u(t0)‖+ ϵ,

for t0 a.e. in (t− δ, t) ∩ [0,∞).
A3 (Strong convergence a.e.) Let u, un ∈ E([0,∞)) be such that un → u ∈

E([0,∞)) in C([0, T ];Xw) for some T > 0. Then un(t) → u(t) strongly a.e.
in [0, T ].

Definition 3.4. A Banach space H with the norm ‖ · ‖ satisfies the Radon-Riesz
property if xn → x in H if and only if xn → x weakly and lim ‖xn‖ = ‖x‖ as
n→ ∞.

The following results were proved in [2, 3]:

Theorem 3.5. If A• exists, then A• = ω•(X).

Theorem 3.6. Let E be an evolutionary system satisfying A1. Then the weak global
attractor Aw exists and

Aw =
{
u0 : u0 = u(0) for some u ∈ E((−∞,∞))

}
.

Furthermore, if E also satisfies A2, A3 and every complete trajectory is strongly
continuous, then

(1) The strong global attractor As exists, it is strongly compact and As = Aw.
(2) (Strong uniform tracking property) For any ϵ > 0 and T > 0 there ex-

ists t0 such that for any t∗ > t0 every trajectory u ∈ E([0,∞)) satisfies
dists(u(t), v(t)) < ϵ for all t ∈ [t∗, t∗ + T ] for some complete trajectory
v ∈ E((−∞,∞)).

3.2. Perturbations of Initial Conditions.

Definition 3.7. A set A ∈ X is positively invariant if

R(t)A ⊂ A for every t ≥ 0.

The global attractor Aw is often positively invariant in applications. Indeed, due
to Theorem 3.6, Aw is positively invariant if the following concatenation property
holds: For every u1 ∈ E((−∞,∞)) and u2 ∈ E([0,∞)) with u1(0) = u2(0), then
v ∈ E((−∞,∞)), where v is the “glued” trajectory

v(t) =

{
u1(t) for t < 0,

u2(t) for t ≥ 0.

We are now ready to prove a weak version of Theorem 2.5 stated as

Theorem 3.8. Let E be an evolutionary system satisfying A1 and let Aw be the
weak global attractor of E. Assume that Aw is positively invariant. Then given
ϵ > 0 there is δ > 0 such that for every trajectory u ∈ E([0,∞)) then

distw({u(0)},Aw) < δ implies distw({u(t)},Aw) < ϵ
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for all t ≥ 0.

Proof. Assume to the contrary that there exist ϵ > 0 and a sequence un ∈ E([0,∞))
such that distw({un(0)},Aw) < 1/n, but

(3.2) distw({un(tn)},Aw) ≥ ϵ

for some sequence tn ≥ 0. First, consider the case where {tn} is bounded, i.e., there
exists T such that tn ≤ T for all n. Since E([0,∞)) is a compact set in C([0,∞);Xw)
due to A1, there is u ∈ C([0,∞);Xw) and a subsequence nj such that unj → u in
C([0,∞);Xw) as j → ∞. Hence, there exists J such that

(3.3) distw(unj (t), u(t)) < ϵ

for all j ≥ J and t ∈ [0, T ]. Since distw(un(0),Aw) < 1/n, it follows that u(0) ∈ Aw.
Finally, since Aw is positively invariant, we have that u(t) ∈ Aw for all t ≥ 0. Thus,
thanks to (3.3) distw(unj (t),Aw) < ϵ for all j ≥ J and t ∈ [0, T ], contradicting
(3.2).

Now consider the remaining case where {tn} is unbounded. Then we can pass to
a subsequence and drop a subindex to have tn → ∞ as n → ∞. Since X is distw-
compact, there is x ∈ X such that passing to another subsequence and dropping a
subindex gives

(3.4) distw(un(tn), x) → 0 as n→ ∞.

By definition of ω-limit,

x ∈ ωw(X).

Therefore, Theorem 3.5 implies that x ∈ Aw. Then (3.4) yields distw(un(tn),Aw) →
0 as n→ ∞, contradicting (3.2). □

While the above theorem applies to the 3D Navier-Stokes equations, there are nu-
merous examples, such as the KSE considered in this paper, that induce asymptoti-
cally dists-compact evolutionary systems and hence possess strong global attractors
As. Such evolutionary systems usually emerge from subcritical equations enjoying
some regularity properties and hence satisfying the following condition.

A4 (Uniform strong convergence) Let un ∈ E([0,∞)) be such that un → u in
C([0, T ];Xw) for some u ∈ E([0,∞)) and T > 0. If dists(un(0), u(0)) → 0 as
n→ ∞, then dists(un(t), u(t)) → 0 uniformly on [0, T ].

For such evolutionary systems we can prove the following.

Theorem 3.9. Let E be an evolutionary system satisfying A1 and A4. Assume also
that E possesses a strongly compact positively invariant strong global attractor As.
Then given ϵ > 0, there is δ > 0, such that for every trajectory u ∈ E([0,∞)) then

dists({u(0)},As) < δ implies dists({u(t)},As) < ϵ

for all t ≥ 0.

Proof. Assume to the contrary that there exist ϵ > 0 and a sequence un ∈ E([0,∞))
such that dists({un(0)},As) < 1/n, but

(3.5) dists(un(tn),As) ≥ ϵ
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for some tn ≥ 0. First, consider the case where {tn} is bounded, i.e., there exists
T such that tn ≤ T for all n. Note that there exists a sequence an ∈ As such that
dists(un(0), an) < 1/n. Since As is strongly compact, there exists a ∈ As, such
that after passing to a subsequence and dropping a subindex we have an → a and,
consequently, un(0) → a strongly as n→ ∞.

Now since E([0,∞)) is a compact set in C([0,∞);Xw) due to A1, there are
u ∈ C([0,∞);Xw) and a subsequence nj such that unj → u in C([0,∞);Xw) as
j → ∞. Clearly u(0) = a and unj (0) → u(0) strongly as n → ∞. Thanks to A4,
dists(unj (t), u(t)) → 0 as j → ∞ uniformly on [0, T ]. Hence, there exists J such
that

(3.6) dists(unj (t), u(t)) < ϵ

for all j ≥ J and t ∈ [0, T ]. Recall that u(0) = a ∈ As. Since As is positively
invariant, we have that u(t) ∈ As for all t ≥ 0. Thus, thanks to (3.6), for every
t ∈ [0, T ], we have dists(unj (t),As) < ϵ for all j ≥ J and t ∈ [0, T ], contradicting
(3.5).

Now consider the remaining case where {tn} is unbounded. Then we can pass to
a subsequence and drop a subindex to have tn → ∞ as n → ∞. Since X is dists-
compact, there is x ∈ X such that passing to another subsequence and dropping a
subindex gives

(3.7) dists(un(tn), x) → 0 as n→ ∞.

By definition of ω-limit,

x ∈ ωs(X).

Therefore, Theorem 3.5 implies that x ∈ As. Then (3.7) yields dists(un(tn),As) → 0
as n→ ∞, contradicting (3.5). □

As an end to this section, we note the proof of Lemma 2.7 was already based on
general properties of compactness and so carries directly over to the general setting.
We further leave the extension of Theorem 2.8 to the reader.

4. Numerical Methods

In order to present our computational results, we first describe the numerical
schemes used for our calculations. We employed three different numeric schemes,
not only to approximate solutions or to study their evolution over time, but also to
confirm the correctness of our results. One scheme was a first-order method used
for preliminary calculations and to verify the correctness of a higher order method
used for our final results. For our final results we used a refinement of the Cox–
Matthews method (see also Zavalani [27] for particular details relating to the KSE)
described by Kassam and Trefethen in [16]. This method is a numerical regulariza-
tion of the fourth-order method derived and proposed by Cox and Matthews [8] to
avoid loss of precision. We remark that the computational work for this paper also
provides an independent verification that without such regularization the original
Cox–Matthews scheme is unsuitable for approximating solutions to the KSE.
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All computations were performed using a Fourier series representation of the
solutions. In particular, we use fast Fourier transforms to approximate

(4.1) u(t, x) ≈
M/2∑

k=−M/2+1

ûk(t)e
ikx

and the nonlinear term as

u(t, x)ux(t, x) ≈
M/2∑

k=−M/2+1

B̂k(u(t, ·))eikx,

where B̂k are defined as the Fourier coefficients of the function x 7→ u(x)ux(x).
Our first-order method is a split time-stepping method where the linear terms

are integrated exactly in time and the nonlinear term is integrated according to an
explicit Euler time step. Specifically, we set tn = t0 +nh where h > 0 and compute

ûn+1
k =

{
(ûnk − hBk) exp(h(µ|k|2 − ν|k|4)) for k ∈ [−M/2,M/2]
0 otherwise.

Matlab code to implement this scheme appears in Appendix B of [24]. Note that
the code forces the solution u(t, x) to be real valued by taking the real part of every
inverse fast Fourier transform performed throughout the code. This turns out to
be necessary: without it, rounding error leads to a nonzero imaginary part that
exponentially grows and eventually destroys the approximation. Note that we also
enforce the fact that our solution u(t, x) has zero average by setting û0 = 0 at every
time step. Note the required periodicity of the solution is enforced automatically
by working in the Fourier representation.

The fourth-order method employed in our computations is the Runge–Kutta
method derived by Cox and Matthews [8] and refined by Kassam and Trefethen [16].
The Cox–Matthews fourth-order method is

ûn+1
k = ûnke

ch + {F (ûnk , tn)[−4− ch+ ech(4− 3hc+ h2c2)]

+ 2(F (an, tn + h/2) + F (bn, tn + h/2))[2 + ch+ ech(hc− 2)]

+ F (cn, tn + h)[−4− 3ch− h2c2 + ech(4− ch)]}/h2c3.

where

an = ûnke
ch/2 +

(
ech/2 − 1

)
F (ûnk , tn)/c,

bn = ûnke
ch/2 +

(
ech/2 − 1

)
F (an, tn + h/2)/c,

cn = ane
ch/2 +

(
ech/2 − 1

)
(2F (bn, tn + h/2)− F (ûnk , tn)) /c.

For the KSE, the constant c = µ|k|2−ν|k|4 depends on k, and F (u, t) = −Bk(u).
Matlab code to implement the original Cox–Matthews’s method was created for
comparison purposes and also appears Appendix B of [24]. A modification of Cox
and Matthews’s fourth-order method was described by Kassam and Trefethen [16] to
avoid loss of precision when computing the coefficients −4−ch+ech(4−3hc+h2c2),

2+ ch+ ech(hc− 2), −4− 3ch−h2c2+ ech(4− ch) and ech/2− 1. The Matlab code
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to implement this method appearing in Kassam and Trefethen [16] was adapted for
our final computations.

Figure 3. A convergence study of the original Cox–Matthews
fourth-order exponential time integrator compared to the version
modified by Kassam–Trefethen to avoid loss of precision in the con-
text of the KSE when µ = 0.1, ν = 0.027, L = 2π and T = 1.0. For
reference the first-order exponential Euler method is also depicted.

Figure 3 compares the rate of convergence of the Euler, Cox–Matthews and
Kassam–Trefethen methods when computing the traveling wave or periodic orbit
depicted by Figure 6 for the KSE when µ = 0.1, ν = 0.027 and L = 2π. This
test demonstrates the original Cox–Matthews method suffers from loss of precision
so severe the theoretical fourth-order convergence is barely evident. The Kassam–
Trefethen modification, on the other hand, has the same accuracy for large values
of h as the Cox–Matthews method and maintains the fourth-order convergence to
achieve error levels below 10−9.

4.1. Rescaling. The numerical methods discussed in the previous section each ap-
proximate 2π-periodic solutions where u is given by (4.1). In order to compute
solutions on a 4π-periodic domain, we rescale µ, ν and L using a factor λ as follows.

Given an L-periodic solution u(x + L, t) = u(x, t) for all x ∈ R we first rescale
x by the scaling factor λ. Taking ξ = λx allows us to view u as an Lλ-periodic
function of ξ. Then dξ/dx = λ and

ux =
∂u

∂x
=
∂u

∂ξ

dξ

dx
= λuξ.

Similarly, uxx = λ2uξξ and uxxxx = λ4uξξξξ. Then the KSE given by (1.1) becomes

ut + λuuξ + µλ2uξξ + νλ4uξξξξ = 0.

Next, we rescale t. Let τ = ηt. We get ut = ηuτ , yielding

(4.2) ηuτ + λuuξ + µλ2uξξ + νλ4uξξξξ = 0.



20 A. CHESKIDOV, E. OLSON, AND B. SMITH

By setting η = λ, we can divide both sides by λ to obtain

uτ + uuξ + µλuξξ + νλ3uξξξξ = 0.

Thus, we transform the equation (1.1) with L-periodic boundary conditions using
the parameters

ξ = λx, τ = λt, µ̃ = µλ, ν̃ = νλ3

to obtain

uτ + uuξ + µ̃uξ + ν̃uξξξξ = 0,

which has the Lλ-periodic boundary conditions needed for our computational ex-
periments.

5. Computational Results

Theorem 2.5 as well as the more general Theorem 3.8 or Theorem 3.9 each show
that if the perturbation is small, then the resulting trajectory remains close to the
attractor for all future times. When considering the trajectories of solutions which
arise from such perturbations, it will be useful to define the L-periodicity measure
for w ∈ H2L to be

(5.1) p(w) =
(∫ 2L

0

∣∣w(x)− w(x+ L)
∣∣2dx)1/2

.

Note that w ∈ AL implies p(w) = 0; however, p(w) > 0 for any point w ∈ A2L \AL.
For the choice of parameters L = 2π, µ = 0.1 and ν = 0.027, the numerics in

this section suggest that vanishingly small perturbations which are 2L periodic but
not L periodic break the symmetry in a way which never returns as t → ∞. Once
the symmetry is broken, the solution eventually converges to a fixed point with
L-periodicity measure p(u) ≈ 1.6193, see equation (5.1). Moreover, the trajectories
in phase space taken by the symmetry-breaking perturbations converge—subject
to a translation in x—to a unique set of points as the size of the perturbation
vanishes. In particular, Theorem 2.8 implies there is a subsequence that accounts
for the translations in x axis and for which the resulting trajectories converge in
the Hausdorff metric to points on the global attractor.

5.1. A Fixed Point and a Traveling Wave. For our first set of calculations we
used the following parameters: L = 4π, µ = 0.1 and ν = 0.027. These computations
were performed using the fourth-order exponential time integrator described in the
previous section with fast Fourier transforms of size M = 1024 and a time step of
size h = 1/100. Note that in order to compute a 4π-periodic solution using our
numeric codes we rescaled the equation by setting µ̃ = 0.05 and ν̃ = 0.003375 as in
(4.2). It was observed when starting with a number of different initial conditions
that the solution converged to a fixed point consisting of three relative maxima and
three relative minima. Figure 4 depicts this 4π-periodic fixed point solution. Other
initial conditions converged to the same curve translated in space.
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Figure 4. The fixed point with ‖u‖ ≈ 1.1804 obtained after a
long-time computational run when µ = 0.1, ν = 0.027 and L = 4π.

Figure 5. Evolution of ‖u(t)‖ starting at 10 different randomly
chosen 4π-periodic initial conditions. Each trajectory converges to
a fixed point with norm approximately equal to 1.1804.

In particular, random initial conditions were sampled from the probability dis-
tribution

(5.2) u0(x) =

M/2∑
k=−M/2+1

δZke
−γ|k|eikξ with ξ = x/2,

where

Zk =

Xk exp(2πiYk) for k > 0,
0 for k = 0,
X−k exp(−2πiY−k) for k < 0,
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and Xk and Yk were uniform independent random variables on the interval [0, 1].
Here δ ≈ 287.2777 and γ = 0.2 were chosen so that

E
[
‖u0‖

]
≈ 1 and e−γN/2 ≈ 10−23.

Thus, the expected norm of the initial condition is similar in magnitude to the norm
of the subsequent evolution of the solution and the amplitudes of the highest Fourier
modes are essentially zero in comparison to the lowest ones. The exponential decay
of the Fourier modes given by the parameter γ further ensures theoretically that the
initial condition is smooth in space as M → ∞. Note also that Z−k = Zk implies
the initial condition is real-valued and Z0 = 0 implies the mean is zero.

For each of the random initial conditions chosen according to (5.2), the resulting
trajectories converged to a spatial translation of the fixed point depicted in Figure 4.
The evolution of the norm for trajectories corresponding to ten representative 4π-
periodic initial conditions appear in Figure 5. We remark that the time it took
for each of the different trajectories to reach the fixed point varied greatly. Note
that the norm traces leading immediately preceding the the appearance of the fixed
point, though arguably close to the attractor, are different for each trajectory. Hence
there is no obvious way to determine how close to the attractor those points really
are. We also note that it is possible to make a simple spatial translation of each
initial condition without changing the dynamics so the resulting trajectories all end
at the exact same fixed point. Finally, these computations were repeated using the
Euler and original Cox–Matthews schemes and the same fixed point found in each
case.

Since, any of the initial conditions considered above could be translated in space
by varying amounts, it follows that all translations of the fixed point appearing
in Figure 4 must be contained in the global attractor A4π. Therefore, we let L
be the subset of phase space which contains all translates of that fixed point and
note that the global attractor A4π contains L. Because the zero solution is also a
fixed point, we know that 0 ∈ A4π. It follows that {0} ∪ L ⊂ A4π. Now, since the
global attractor is a connected set, this means there must be additional points in
the attractor that connect 0 to L. Thus, the attractor is much more complicated
than the fixed points that have been exhibited so far. We shall now use the theory
presented in sections 2 and 3 of this paper to compute some of the additional points
in A4π by means of symmetry-breaking perturbations.

While we could, at this point, perturb the origin as illustrated in the simple
example (1.2) appearing in the introduction to find a connecting trajectory from
the origin to the fixed point in Figure 4, there is much more complexity to the
attractor of the KSE than that. Since the fixed point in Figure 4 is not 2π-periodic,
we now consider specially chosen initial conditions in the 4π-periodic domain which
are, in fact, 2π-periodic. Since the KSE preserves periodicity, no matter how far
forward in time any 2π-periodic initial condition is evolved, it will never converge
to the fixed point in Figure 4. We therefore repeat a similar numerical experiment
as before, except this time starting with randomly chosen initial conditions that are
2π-periodic in space.
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Figure 6. A 2π-periodic traveling wave with ‖u‖ = 0.7794 obtained
when µ = 0.1, ν = 0.027 and L = 2π.

Figure 7. Evolution of ‖u(t)‖ starting at 10 different randomly
chosen 2π-periodic initial conditions. Each trajectory converges to a
traveling wave with norm approximately equal to 0.7794 and velocity
±0.0724.

When L = 2π the resulting trajectories converged to a periodic oribit or traveling
wave solution consisting of two relative maxima and two relative minima. Some-
times the wave moved from right to left and other times the result was a mirror
image which moved from left to right. The speed of the traveling wave was ap-
proximately 0.0724, or equivalently, the period of the orbit in phase space was 86.78
units of time. Figure 6 depicts the version of the traveling wave solution that moved
from right to left. The evolution of the norm for trajectories corresponding to ten
representative 2π-periodic initial conditions appear in Figure 7. Note that these
initial conditions converge much sooner to the periodic orbit than the analogous
trajectories in Figure 5 did for the L = 4π case. As before, the norm traces leading



24 A. CHESKIDOV, E. OLSON, AND B. SMITH

immediately preceding the the appearance of the traveling wave, though arguably
close to the attractor, are different for each trajectory.

Let M be the subset of phase space which contains the function depicted in
Figure 6, its translates, and the mirror images of its translates. We conclude that
global attractor A2π contains M. Moreover, since A2π ⊆ A4π then

{0} ∪ L ∪M ⊆ A4π.

It is worth remarking that one could also consider a π-periodic initial condition.
Although the π-periodicity is preserved as the initial condition is evolved forward
in time, the resulting solution converges to zero as t → ∞. Since the zero solution
is π-periodic (as well as periodic with respect to any other period) there is no
contradiction here. However, no new points on the A4π periodic attractor are found
in this case.

One more case remains to be considered: the case of the 4π/3-periodic initial
condition. However, initial conditions which are 4π/3-periodic again converge to the
same fixed point described in Figure 4, and no new points on the global attractor
have been found.

The next section uses symmetry breaking to compute wandering points on the
global attractor that connect the L with M.

Figure 8. The evolution of ‖u(t)‖ for a trajectory with initial con-
dition given by the 2π-periodic traveling wave plus a 4π-periodic
perturbation that is not 2π-periodic.

5.2. Breaking the Symmetry. Let utraveling(t, x) represent the 2π-periodic trav-
eling wave depicted in Figure 6 and consider the perturbation

uδ(x) = (2π)−1/2δ cos(x/2)

where δ = 10−8. Note that uδ is 4π-periodic but not 2π-periodic and that ‖uδ‖ = δ.
Figure 8 illustrates the time evolution of ‖u(t)‖ for the trajectory u(t) with initial



WANDERING POINTS ON THE GLOBAL ATTRACTOR 25

condition
u0(x) = utraveling(0, x) + uδ(x).

We remark that ‖u(t)‖ ≈ 0.7794 for t < 270. After this the perturbation becomes
noticeable and ‖u(t)‖ fluctuates and hits its lowest level around t ≈ 535 before
converging to approximately ‖u(t)‖ ≈ 1.1804 for t > 700.

Theorem 2.5 implies that if δ is small enough, then u(t) will stay close to A4π for
all t > 0. Even though u(0, x) is within 10−8 of the 2π-periodic traveling wave and
u(700, x) is similarly close to the 4π-periodic fixed point, further evidence is needed
before concluding that u(t, x) is close to A4π for every t ∈ [0, T ]. To verify that δ is
small enough, we try different sizes of δ and look, as provided by Theorem 2.8, for
convergence along a subsequence.

Figure 9. Evolution of the periodicity measure p(u) over time.
Trajectories for different values of δ have been vertically offset for
clarity. Smaller values of δ shift the graph to the right with u(t)
tracing a similar trajectory through phase space.

When δ is smaller it takes longer for the effects of the perturbation to make a
noticeable difference on the symmetry of the resulting solution. To measure the
time it takes to fully break the symmetry we monitor the L-periodicity measure
p(u) given in (5.1) with L = 2π. Figure 9 details the results of such monitoring for
value of δ ranging through fifteen decimal orders of magnitude from 10−2 to 10−17.
Observe that the 2π-periodicity measure starts at near zero and goes through the
same oscillating pattern for each value of δ tested before leveling off to the non-
zero measure of the 4π-periodic fixed point depicted in Figure 4. The presence of
such a distinct pattern and the fact that the L-periodicity measure p is translation
invariant suggests the subsequences of Theorem 2.8 will be easy to find numerically
and need only take translations of the x axis into account.

To determine the relative position of the pattern we define

Tδ = sup
{
T : p(u(t)) ≤ 0.1 for all t ∈ [0, T ]

}
.

Thus Tδ is the last time the periodicity measure of the 2π periodicity of the solution
u falls below 0.1 and beyond which the solution is never even approximately 2π
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Figure 10. Graph of Tδ versus δ where Tδ is the time needed for
the 2π-symmetry to be broken by a δ-sized perturbation.

periodic in space. Note that 0.01, 1.5 or any other value that uniquely determines
the relative position of the oscillating pattern in Figure 9 for different values of δ
would work equally well.

Figure 10 plots the values of Tδ versus log10(δ) for δ = 10−n for n ∈ { 2, 4, . . . , 16 }.
The points lie in a straight line given by the least squares fit

Tδ ≈ −43.043 log10(δ)− 58.486.

The visual quality of the fit is striking: Changing δ changes the symmetry-breaking
time by an easily predictable amount over a range of 14 orders of magnitude. In
particular, while smaller values of δ appear to delay when the symmetry is broken,
the pattern with which the symmetry is broken is essentially the same in all cases.

Representative trajectories are depicted in Figure 11 for δ = 10−2 and 10−12.
Both trajectories have been shifted in time to take into account the different values
Tδ. Note after adjusting for Tδ and the translation in x, each graph appears very
similar as the one given earlier in Figure 2. Thus, our numerics suggest there exists
xδ such that the sequence of initial conditions given by

vn(x) = utraveling(0, x− xδ) + uδ(x− xδ) where δ = 10−n

and the forward trajectory setsW (vn) defined in (2.12) converge to a limit trajectory
K in the Hausdorff metric From a visual point of view, the set K, is indestinguishable
from the trajectory depicted in Figure 2. Moreover, all of the points in K with the
exception of those also in L and M are wandering.

6. Conclusion

The goal of this paper was to use symmetry-breaking perturbations to find wan-
dering points on the global attractor of the KSE which are nonrecurrent. To support
our computational results we have developed rigorous mathematical analysis con-
cerning purturbations of points on the attractor and the convergence of the resulting
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Figure 11. Different values of δ lead to similar graphs translated
in x. The graph on the left represents the points for δ = 10−2 and
the right for δ = 10−12.

forward trajectory sets W (vn) in the Hausdorff metric to a limit trajectory K which
lies on the global attractor. This theory was worked out in details for the KSE and
then presented in a generalized way that applies to many other dissipative dynami-
cal systems, including a weak form suitable for the three-dimensional Navier–Stokes
equations. Numerically a visualization of K for a specific choice of parameters in
the KSE was computed and appears in this paper as Figure 2.

Numerically, our results are approximations good to within the resolution of
the spatial Fourier discretization, the truncation error in fourth-order exponential
time integrator and the double-precision arithmetic used for our computations. For
example, numerical rounding implies that

(6.1) float((2π)−1/2δ cos(x/2) + u0(x)) = float(u0(x))

whenever δ is 15 orders of magnitude smaller than u0(x). Since u0(x) 6= 0 over most
of the domain, making such a perturbation in the physical space would severely limit
the precision of our computations. On the other hand, the same perturbation (up
to a phase shift) may be written in Fourier space as

δ√
8π

+ û1 and
δ√
8π

+ û−1

where ûk are the Fourier modes of u0. Since u0 is 2π periodic, it follows that ûk = 0
for all k odd. Therefore, the rounding issues which appear in the physical space do
not appear when the Fourier modes are perturbed by any representable nonzero δ.

On the other hand, the nonlinear term uux is always computed in the physical
space by means of fast Fourier transforms. Therefore, even if it is possible to
represent the perturbation of u0 in Fourier space accurately for very small values
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of δ, the resulting nonlinear terms used in our numerics are still subject to the
rounding issue already mentioned in (6.1). A numerical check of the non-linear
term suggests that higher precision floating-point arithmetic would be needed for
values of δ smaller than 10−19.

We end by noting that, while our numerics are supported by the mathematical
theory developed in sections 2 and 3, the simulations themselves are approximate
in nature and do not leverage any additional analytic and topological properties
to guarantee, for example, that the KSE really does posses a fixed point similar
to Figure 4 or a periodic orbit similar to Figure 2. Therefore, while the evidence
is compelling, we have not provided a rigorous numerical proof that the points we
found are wandering or even on the attractor. Such rigor is, unfortunately, outside
the scope of the present work. At the same time the rigorous numerics of [1] and [11]
mentioned in the introduction for the KSE suggest that such results may also be
possible for the present computation. The authors feel future work that extends
the technique developed here along such lines would be extremely interesting.
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