PipeEdge: Pipeline Parallelism for Large-Scale
Model Inference on Heterogeneous Edge Devices

Yang Hu*, Connor Imes’, Xuanang Zhao!, Souvik Kundu*, Peter A. Beerel*, Stephen P. Cragof, John Paul Walters®

*Ming Hsieh Department of Viterbi School of Engineering, University of Southern California
Email: {yhu21003, souvikku, pabeerel} @usc.edu
TInformation Sciences Institute, University of Southern California
Email: {cimes, crago, jwalters} @isi.edu
j?Google
Email: xuanangz @ google.com

Abstract—Deep neural networks with large model sizes achieve
state-of-the-art results for tasks in computer vision and natural
language processing. However, such models are too compute- or
memory-intensive for resource-constrained edge devices. Prior
works on parallel and distributed execution primarily focus on
training—rather than inference—using homogeneous accelerators
in data centers. We propose PipeEdge, a distributed framework
for edge systems that uses pipeline parallelism to both speed up
inference and enable running larger, more accurate models that
otherwise cannot fit on single edge devices. PipeEdge uses an
optimal partition strategy that considers heterogeneity in compute,
memory, and network bandwidth. Our empirical evaluation
demonstrates that PipeEdge achieves 11.88x and 12.78 x speedup
using 16 edge devices for the ViT-Huge and BERT-Large models,
respectively, with no accuracy loss. Similarly, PipeEdge improves
throughput for ViT-Huge (which cannot fit in a single device)
by 3.93x over a 4-device baseline using 16 edge devices. Finally,
we show up to 4.16x throughput improvement over the state-
of-the-art PipeDream when using a heterogeneous set of devices.

Index Terms—deep learning, parallel execution, edge devices,
large model inference

I. INTRODUCTION

In recent years deep neural network (DNN) model sizes
have increased significantly to provide improved accuracy [1].
For example, large transformer-based models achieve state-of-
the-art accuracy in various computer vision (CV) [2], [3] and
natural language processing (NLP) tasks [4], [5], but pose
significant challenges for resource-constrained deployment,
especially at the edge where resource-constrained devices
exist in close proximity to data sources [6]—[9]. In particular,
the vision transformer model (ViT-Large) [2] has ~307M
parameters and requires about 478B FLOPs to perform in-
ference on one image [10]. More importantly, the super-linear
growth of the models of ~240x/2-years [11], coupled with the
slowdown of Moore’s law has created a significant memory
bottleneck for their resource-efficient deployment. Figure 1
depicts the limitations of ViT models’ deployment in terms of
limited throughput and out-of-memory on an RCC-VE [12]
and MinnowBoard edge device [13], respectively.

Various methods have been proposed to address large
model inference challenges on edge devices, including model
compression [14]-[19], adaptive inference [20], [21], and
neural architecture search [22]. These approaches reduce the
number of required computation operations, but at the cost of
reduced accuracy, and most are limited to running on a single

0.45
T 0.404
S
9 0.351
w
% 0.301
§ 025/
k=
= 0.201
2
20.15
%‘0.10-
£ 0.051
'_
0.00+

s Raspberry Pi 4B (4GB)
MinnowBoard E3845 (2GB)
I RCC-VE Network Board C2558 (8GB)

ViT-Large
Transformer-Based Model

ViT-Huge BERT-Large

Fig. 1. Transformer-based model performance on three edge devices.
Throughput is measured in images/second for ViT and sequences/second
for BERT. OOM indicates the model does not fit in memory.

device. In contrast, collaborative edge computing leverages
underutilized or idle distributed edge resources, enabling
multiple devices to collaborate and exceed the capability of
any single device for large-scale model inference [23], [24].
Pipeline parallelism has proven to be an effective technique
for accelerating large data center models [25]. This method
exploits model parallelism by partitioning models into multiple
stages, which can accelerate processing without accuracy
loss by utilizing additional distributed resources. Research on
pipeline parallelism has focused on data center scenarios with
high interconnect bandwidth and homogeneous accelerators
like graphics processing units (GPUs) and tensor processing
units (TPUs) [26]-[28]. Several frameworks consider pipeline
parallelism for limited heterogeneity in data centers, e.g.,
heterogeneous communication topologies with homogeneous
GPUs [29], [30] or heterogeneous GPU clusters with homo-
geneous networks [31]. Torchpipe [32] provides an automatic
balancing strategy for large models, but only for the single-node
scenario and does not claim optimality. Finding an optimal
partition strategy that accounts for heterogeneity in compute,
memory, and communication is critical for edge deployment
scenarios, yet remains a largely open problem.

We address these challenges with PipeEdge, a distributed
inference framework that exploits pipeline parallelism to
improve inference performance on heterogeneous edge devices
and networks. This paper makes the following contributions:

o A distributed pipeline parallelism framework to acceler-

ate large-scale model inference for heterogeneous edge
computing without accuracy loss.

Original NN Model

[93wy
c 93e18
i, 93818

i+

Partition Constraints
Available devices and their
capabilities; network conditions

EREnE

Time I:l
Inference | Partition Algorithm
Results
New Pipeline Parallelism
Microbatch

Stage 1 Stage 2 Stage 3 Stage 4

- Data / Device 1 Device 2 Device 3 Device 4
Loader |™| =)) [@ .. T
' A’g" U === C I
Optimal e

Data Source Microbatch Size

Intermediate Output

Tensor Transmission Inference Results

Fig. 2. PipeEdge system design overview. PipeEdge automatically partitions models between edge devices, subject to device, network, and model constraints.
Intermediate results then are transmitted between pipeline stages. (Figure best viewed in color.)

e A dynamic programming (DP) algorithm to determine the
optimal partition scheduling strategy for heterogeneous
devices and communication channels.

o A detailed experimental evaluation on a real edge testbed,
demonstrating throughput improvements up to 12.78x
in a 16-device homogeneous cluster and 4.16x over the
state-of-the-art PipeDream on a heterogeneous cluster!.

II. BACKGROUND AND MOTIVATION

High-accuracy machine learning models are traditionally
designed for use on server-class systems in cloud environments
and data centers. However, due to various reasons including
privacy [33], inference operations are moving closer to the
edge, where devices are closer to data sources, which can also
improve response times. Edge systems differ from their data
center counterparts due to size, weight, and power constraints
— they typically have considerably less memory (e.g., tens of
MB to several GB), slower compute (e.g., fewer and slower
CPUs, and less powerful—if any—accelerators like GPUs),
and rely on slower wireless communication (e.g., tens of Kbps
to hundreds of Mbps, using WiFi or 4G/5G radio) rather than
high-speed wired interconnects. Edge systems are also relatively
diverse and dispersed, and thus heterogeneous in their compute,
memory, and communication capabilities.

Achieving acceptable inference performance is challenging
for resource-limited edge devices. Classical model compression
techniques, including pruning [34], [35], quantization [16], low-
rank approximation [36], and knowledge distillation [14] can
shrink neural network model sizes to potentially accelerate
large models, but often require iterative retraining and a full-
precision pre-trained model to avoid significant accuracy loss.
Additionally, these methods generally consider only on a single
compute node. Distributed edge computing scenarios such as
vehicular edge computing (VEC) for internet of vehicles [37],
wireless-connected Al-enabled sensors [38], and smart home
systems [39], [40], in contrast, often include a large number
of resource-limited devices that can be utilized collaboratively.

ISource code is available at: https://github.com/usc-isi/PipeEdge

Pipeline parallelism partitions a neural network model into
multiple stages, where each stage consists of a consecutive
set of layers in the original model [26], [29]. Each stage
is then assigned to a worker, thus parallelizing the model
training or inference pipeline. Each worker sends its output
data only to the next worker, which avoids collective communi-
cation and synchronization between all workers. The pipeline
input minibatch is split into multiple chunks of equal size
called microbatches [25]. The microbatch size affects pipeline
performance, with the optimal size depending on multiple
factors including the model characteristics and the number of
pipeline stages [10]. Pipelining can also overlap computation
and communication to improve performance [29].

While pipeline parallelism has proven to be effective for
distributed training on accelerators in data centers [25], [26],
[28], the aforementioned edge computing characteristics present
challenges to using distributed pipeline parallelism for large-
model inference at the edge. Model partition methods developed
for homogeneous data center clusters tend to perform poorly in
heterogeneous edge environments. A new pipeline parallelism
framework is needed to overcome these challenges. In the next
section, we introduce a framework for distributed edge clusters
that uses heterogeneity-aware pipeline parallelism to improve
inference performance and enable running larger—and more
accurate—models than may otherwise be possible.

III. PARALLELISM FOR EDGE DEVICES
A. PipeEdge System Design

Figure 2 presents the PipeEdge system design. First, partition
constraints are provided to the partition algorithm which sched-
ules an optimal layer-to-device partitioning (Section III-B).
Partition constraints include the model properties and the
available edge devices with their computation, memory and
bandwidth capabilities. The PipeEdge runtime then deploys the
pipeline stages to selected devices, where each device is only
responsible for the inference of one part of the original model,
as specified by the schedule. Pipeline input data is split into
chunks called microbatches such that they fit into each edge
device’s memory and the size choice optimizes throughput
(evaluated in Section V-D). After processing each microbatch,

TABLE I
SYMBOL DEFINITIONS

Symbol | Description

T, L, P;, M; The model with L layers. Each layer j
has P; parameters for transmission and
requires M; memory for execution.

D, D, m, The list of D available devices. Each
device v has memory capacity m..

S, S The list of S selected devices. Every
device should participate in the inference.

B, by, The list of bandwidths, where each device
pair u, v have bandwidth b, .

R The optimal mapping strategy.

Teomp (1, 1) The computation time for layers [on
device u.

Teomm(u, v, Pj) The communication time for transferring
P; parameters from device u to v.

Therioa (1, w, v, Pj) The maximum latency for executing layers
[on device v and transferring P; param-
eters to device v.

Topt The optimal pipeline stage time for maxi-
mum throughput.

the edge device transmits intermediate outputs to the device in
the next pipeline stage. The device in the final stage produces
the final result, which might then be transmitted to another
host or used locally.

B. Fartition Scheduling

We define a model T with L layers, inter-layer transmission
data size P; for each layer j € L, and a list of heterogeneous
devices D (|D| = D) with different memory, computation, and
communication capabilities. In heterogeneous communication,
the bandwidth between a pair of devices v and v may be
different than the bandwidth between a different pair of devices
o’ and v': by, 7# by . The optimal strategy R partitions the
model T into S parts and allocates them to the selected devices
SCD(S| =85 < D) to achieve maximal throughput and
conform to device memory constraints.

We denote Tr.omp (1, u) as the execution time for layers { C T
on device u. Teomm (u, v, P;) is the time to communicate data
P; from u to v—the next device in the pipeline. Where b, ,
is the bandwidth between » and v, T,pmm 1S computed as:

p;
bU’U

s

Tcomm(ua v, PJ) =

6]

An efficient pipeline implementation supports asynchronous
communication, where computation and communication are
overlapped. Thus, the maximum latency for the single device
u can be calculated as:

Tcomp (la U)

Tcomm(uvva P]) (2)

Toeriod (L, u, v, Pj) = max{
Achieving the maximal throughput is equivalent to min-
imizing the execution time of the slowest stage, i.e., the
largest Tperioa (!, 4, v, P;), which we denote as Ti,. The pipeline
partitioning problem can itself be partitioned. The optimal
solution for partitioning the whole pipeline can be constructed
from the optimal partitioning result for the sub-problem, which
can be solved by dynamic programming (DP) methods.

To tackle this partition problem for heterogeneous clusters,
we design a three-dimensional DP algorithm which records
the state of processed layers, used devices, and the device in
the last pipeline stage. Let A(7, S, u) denote the minimum time
to process the first ¢ layers using the set of devices S C D,
where u is the next device to be used. h(7,S,) is the optimal
solution of the subproblem for i layers and S devices. The
final optimal solution of this partition problem is the minimum
Tope = h(L,S, @).

The calculation of h(j,SU {u},v) needs to use the optimal
subproblem property, which is determined by the previous state
h(7,S,u),0 <i < j <L, or the calculation time Tperioa({¢ —
Jj},u,v, P;) from i-th layer to j-th layer on the current device
u. We further analyze these two situations:

o h(j,SU{u},v) < h(i,S,u), the slowest pipeline stage
for j units, is determined by the previous stage (7, S, u).
Since device v implements the current stage from the i-th
to the j-th layer in the current pipeline, the used devices
set for the next state h(j,S U {u},v) should include the
device u, i.e., SU{u}. Parameters ¢ and v € D\ S will be
enumerated to find the optimal solution of the subproblem.

o h(j,S U {u},v) < Tperia({i — Jj},u,v,P;), where
device u is the slowest stage of the current pipeline
candidate and limits the performance of the system.
Similarly, device w and first ¢ layers are enumerated to
obtain the minimum value.

Thus, the state transition equation can be formulated as:

h(j, S, v) = s .
Sgi’SU{’uU}) OSIiIEJI'lSL max { Tperiod({l — .7}7 u, v, P])
u,vED\S
h(i,S,u)
= 0<min<L max ¢ Teomm(u, v, Pj)
s Teomp({i — j}, u)

3)

The first term inside the max is the minimum time for the first
1 layers using device set S and the next device u. The second
term is communication time for transferring P; data from u
to v. The third term is the computation time for the last j — ¢
layers on device u. For initialization, h(0,), @) is set to 0.

Equation 3 calculates the optimal pipeline execution time.
However, we need to obtain the selected devices and their order
in the pipeline for the optimal strategy. Algorithm 1 describes
the memoization technique pseudo-code to find the optimal
time 7,,; and the corresponding pipelining strategy.

The proposed algorithm’s computational complexity is
O(2P x L? x D?), where D is the number of available
devices and L is the number of layers. The 2P factor is
due to the assumption that all devices are distinct. For
com_parison, the naive brute force solution’s search space is
S JPL(M7]) > DU 2P, which has a much
higher compﬁexity. Moreover, in most scenarios, there should
exist identical devices with the same computation and commu-
nication capabilities. The number of devices D can then be
divided into N categories, where each category ¢ has n; devices
(Zi]\il n; = D). This reduces the DP search space such that the
computation complexity is then O(T], (n; 4+ 1) x L? x N?2).
Consider the case where there are three device types (N = 3)

Algorithm 1 DP-based Pipeline Partition Strategy

Require:
T: model with L layers, parameter set P, and memory requirements M ;
D: available devices with memory m,, for v € D;
B: bandwidth between devices;
Ensure:
Topt: optimal time for maximum throughput;
R: specific strategy for the optimal time;
1: procedure PARTITION(T, D, B)
2: Initial A (4, S, u) < +oo forall i € L,S C D,u € D;
3 Initial h(0, 0, &) < 0;
4: Initial answer < oo;
S: fori =0to L — 1 do
6.
7
8

for each subset S C D do
for each uw € D\ S do
for j =i+ 1to L do
if Y37 _, My > m,, then

10: Break;

11: end if

12: Calculate Eq.(3);

13: Assign the Eq.(3) value to C;

14: if j == L then

15: if C < answer then

16: answer = C;

17: index = (L, S, u);

18: end if

19: else

20: for each v € D\ S\ {u} do
21: if C < h(j,SU {u},v) then
22: h(j,SU{u},v) = C;
23: /I Record the precursor
2% p(j, 5 U {u}, v) = (i, u):
25: end if

26: end for

27: end if

28: end for

29: end for

30: end for

31: end for

32: // Find the optimal results

33: Initial Top «— +o0;

34 while enumerate each subset S C D do
35: Tope = min(h(L,S, @), Top);

36: end while

37: // Find the optimal strategy

38: (4, S, u) = index;

39: Add (i+1— L,u) to R;

40: while i > 0 do

41: (2, u) = p(index);
42: Add (i + 1 — indez[0], u) to R;
43: index = (i, S\ u, u);

44: end while
45: return Top, R
46: end procedure

TABLE I
PARTITIONING METHOD PERFORMANCE.

Algorithm | Time | Speedup
Brute force search 71 min —
Naive dynamic programming 18.6 sec 229%
Category dynamic programming | 0.01 sec | 426,000 x

and each type has the same number of devices, i.e., ny =
ng = ng = n. Then the actual computational complexity is
O((n+1)3x L2 x N?) = O(9x (n+1)3x L?). Given N = 3
device types, where each type has n = 3 devices, we measure
the execution time for these three methods for 48 partitionable
layers on a 1.6 GHz Intel Core i5 CPU and present the results
in Table II. The categorical approach’s significantly better
performance supports larger scale problems and can allow the
partition algorithm to run more frequently.

C. Fine-grained Partition for Transformer Blocks

While PipeEdge’s design is general enough to support
different variants of DNNs including CNNs and MLPs, our

Multi-Head Attention

P

Attention
Score
Calculation

Linear

Norm = Projection

Fig. 3. Four partitioning units for one transformer block.

evaluation focuses on transformer models, which we summarize
here. Transformers were proposed to improve the effectiveness
in learning dependencies between distant positions for sequence
modeling tasks [4]. They have been widely used for NLP
tasks [41] and recently extended to replace CNN models for
performing complex CV tasks [2], [17]. In particular, the ViT
models enjoy superior representation ability [42] and suffer
less from positional invariance issues which are prevalent in
conventional CNNs [43].

Transformer encoders include multiple transformer blocks
with identical structures. GPipe [25] first proposed inter-
layer pipeline parallelism and treats one layer as the smallest
partition unit. However, finer-grained partitioning enables better
workload balance for pipeline parallelism and can lead to
greater scalability. We carefully analyze the computational
complexity and structure of each layer and propose fine-grained
partitioning for transformer-based models without changing the
point-to-point communication pattern. The multi-head attention
and MLP layers have the largest execution time compared
to other layers. PipeEdge divides the multi-head attention
layer into two parts: (1) calculation of the softmax attention
scores and the multiplication of the attention score with the
corresponding values; and (2) the linear projection of the self-
attention output. Similarly, we divide the MLP layer into two
dense layers. Layer normalization and residual connection
operations are less computationally complex and require less
execution time than the multi-head attention and MLP layers.
Figure 3 visualizes partitioning transformer blocks into four
components: (1) layer normalization with the first operation in
the multi-head attention layer; (2) linear projection operation
in the multi-head attention layer with the residual connection;
(3) layer normalization with the first dense layer; and (4) the
second dense layer with residual connections. The PipeEdge
scheduling algorithm then simply treats these as distinct layers.

IV. EXPERIMENTAL SETUP

We conduct experiments on the Dispersed Computing Pro-
gram Testbed (DCompTB) for edge computing platforms [44].
DCompTB exposes the two edge device types described in
Table III. For evaluation, we first configure homogeneous
edge clusters using both MinnowBoards and RCC-VEs, where
each cluster is composed of identical devices and network
bandwidth. For heterogeneous experiments, we mix device
types and further increase heterogeneity by leveraging system
software tools. We use the cpulimit tool to limit the CPU
usage, the ulimit tool to limit the memory size on RCC-
VEs, and the tc tool to vary network bandwidth between edge

MinnowBoard (2 GB)

ViT-Large Model

—e— RCC-VE Network Board (8 GB)

ViT-Huge Model

==+ Optimal Linear Speedup

BERT-Large Model

+%ht20 4
-~ 1.5 3

e 1.0 2

0.8
/’ 8 // ,L.;
-7 +7% Q
/, /’ 0.8 %
» 06 6 > 2 £
7 7 062
4 . =
? 0.4 s E
K 4 - >
Pr g 048
» o
e =3
02 2 e °
b 7 0.2 ¢
=S

=
=]

<
0.2

0 0.0 0
1234567 8 910111213141516

0.0 0
12345678 910111213141516
Number of Devices

0.0
1234567 8 910111213141516

Fig. 4. PipeEdge’s throughput performance for three transformer-based models on two homogeneous edge clusters. Models do not fit on a single MinnowBoard.

TABLE III

DCOMPTB DEVICE PROPERTIES.

Configuration

Value

Device name
Processors
Memory size
Max bandwidth

MinnowBoard

4x Intel Atom E3845 @ 1.91 GHz

2 GB
1 Gbps

Device name
Processors
Memory size
Max bandwidth

RCC-VE Network Board

4x Intel Atom C2558 @ 2.4 GHz

8 GB
1 Gbps

devices. In multiple edge computing scenarios, it is common
to have tens of milliseconds latency [45], so we impose a fixed
20 ms latency when varying the bandwidth.

Each node runs Debian GNU/Linux 10 with Linux kernel
4.19.0-11-amd64. We use PyTorch 1.9.0 as the deep learning
inference engine and the PyTorch RPC library with the
TensorPipe backend as the distributed framework [46].

The definition, configuration, and implementation of the ViT
and BERT models are from HuggingFace 4.10.0 [47]>. We
evaluate ViT models for the image classification task. Input
images are from ImageNet 2012 [48] and resized after the
embedding layer with a uniform input dimension to the models.
We evaluate the BERT model for text classification on the SST-
2 dataset from the General Language Understanding Evaluation
(GLUE) [49] with a maximum sequence length of 512.

We adopt baselines from the state-of-the-art pipelines devel-
oped for large-scale models. We re-implement GPipe [25] with
an even partitioning method for inference on the CPU as the
baseline. Although PipeDream targets asynchronous parallel
training, its partition method can be applied to inference by
considering only the forward pass. PipeDream also provides

2While we limit our evaluations to transformer-based models, our approach
is more general and can be easily extended to large convolution/MLP models,
as the these models also reply on large numbers of MAC operations that can
happen in parallel through partitioning of the GEMM-based operations.

open-source code for partitioning for inference [29]. PipeDream
considers a hierarchical interconnect that represents a data
center interconnect topology, but that does not model the ad
hoc networks of edge systems. To apply PipeDream to the edge,
we assume a one-level communication network and compare
with its pipeline partitioning scheme. We choose the optimal
microbatch size for GPipe and PipeDream and compare the
system performance.

V. EVALUATION
A. Runtime Performance Analysis

We first evaluate PipeEdge’s performance on the 2 GB
MinnowBoard and the 8§ GB RCC-VE Network Board devices
in homogeneous clusters. Figure 4 presents throughput on these
clusters for up to 16 stages (devices).

The ViT-Large, ViT-Huge, and BERT-Large models are too
big to fit in memory on a single MinnowBoard. We therefore
use 2-stage, 4-stage, and 2-stage throughput as the speedup
baselines for each model, respectively. With 16 MinnowBoards,
PipeEdge achieves 1.95 images per second throughput, which
is a 7.48x speedup over the 2-stage baseline for the ViT-Large
model (optimal speedup is 16/2=8). For the ViT-Huge model,
PipeEdge achieves 0.77 images per second throughput with 16
MinnowBoard devices, which is a 3.93x speedup over the 4-
stage baseline (optimal speedup is 16/4=4). For the BERT-Large
model, PipeEdge achieves 0.89 sequences per second, which
is a 7.64x speedup relative to the 2-stage baseline (optimal
speedup is 16/2=8).

We achieve similar scalability on the RCC-VE devices, where
the aforementioned models fit in memory, allowing for a single-
device baseline. With 16 RCC-VEs, PipeEdge achieves 2.43
and 1.01 images per second throughput for the ViT-Large and
ViT-Huge models, which are 10.59x and 11.88x speedups,
respectively. With the BERT-Large model, PipeEdge achieves
1.05 sequences per second throughput and 12.78 x speedup
with 16 devices.

PipeEdge achieves significant—in many cases, nearly linear—
performance improvements for the three transformer-based

PipeEdge
ViT-Large Model

Hm GPipe
ViT-Huge Model

s PipeDream
BERT-Large Model

N
=)

=
w

=
=}

o
8

Throughput (items/second)

° Case-1Case-2 Case-3Case-4 Case-5Case-6

1.0
l 0.8 I 08 -
0.6 0.6 I
I 0.4 I b 0.4 I
il L O_leli 02."-

0 Case-1Case-2 Case-3Case-4 Case-5Case-6

0 Case-1Case-2 Case-3Case-4 Case-5Case-6

Fig. 5. Heterogeneous cluster throughput. For GPipe and PipeDream, average throughput and variance are shown for 10 random device orders.

TABLE IV
HETEROGENEOUS CLUSTER CONFIGURATIONS.

Case Devices CPU Memory Bandwidth
1 8xXRCC-VE 100% 8 GB 1 Gbps
8xMinnowBoard 100% 2 GB 1 Gbps
4xRCC-VE 100% 8 GB 1 Gbps
2 4xRCC-VE 75% 4 GB 1 Gbps
4xRCC-VE 25% 4 GB 1 Gbps
4xMinnowBoard 100% 2 GB 1 Gbps
3 8xXRCC-VE 100% 8 GB 40 Mbps
8xMinnowBoard 100% 2 GB 10 Mbps
4xRCC-VE 100% 8 GB 30 Mbps
4 4xRCC-VE 100% 8 GB 20 Mbps
4xMinnowBoard 100% 2 GB 10 Mbps
4xMinnowBoard 100% 2 GB 5 Mbps
3xXRCC-VE 100% 8 GB 50 Mbps
5 8xXRCC-VE 10% 4 GB 20 Mbps
5xMinnowBoard 100% 2 GB 30 Mbps
2xRCC-VE 100% 8 GB 100 Mbps
3xRCC-VE 75% 4 GB 60 Mbps
6 4xRCC-VE 50% 4 GB 40 Mbps
3xRCC-VE 25% 4 GB 20 Mbps
2xRCC-VE 10% 4 GB 10 Mbps
2xMinnowBoard 100% 2 GB 80 Mbps

models on homogeneous clusters of both edge device types.
These results demonstrate PipeEdge’s effectiveness for large-
scale models, especially those that otherwise cannot fit on
single devices.

B. Heterogeneous Clusters

Compared to data centers, devices in edge environments are
more heterogeneous in computation, memory, and communi-
cation capabilities. To further increase heterogeneity in our
evaluation environment, we throttle RCC-VE CPUs to reduce
inference performance and cap available memory. We also
vary the maximum bandwidth for both device types to emulate
different network link capacities. Table IV presents six device
cluster configurations with increasing heterogeneity.

We compare PipeEdge with GPipe and PipeDream on these
clusters. GPipe and PipeDream do not specify device mapping
order, so we test them with 10 random device orders and
measure average performance and variance. Since the com-
putation is evenly distributed across transformer blocks [25],
The GPipe and PipeDream partitioning methods degenerate to
even partitioning for these clusters, due to lack of ability to

handle device heterogeneity. Figure 5 presents the experimental
results. PipeEdge outperforms GPipe and PipeDream in every
heterogeneous case.

Cases 1 and 2 exhibit compute and memory heterogeneity.
PipeEdge achieves 2.23 and 1.69 images per second with ViT-
Large and 0.88 and 0.67 images per second with ViT-Huge,
respectively. GPipe and PipeDream only achieve 1.99 and
0.76 images per second with ViT-Large and 0.81 and 0.31
images per second with ViT-Huge. PipeEdge also achieves the
best BERT-Large performance — 0.96 and 0.78 sequences per
second. GPipe and PipeDream show performance degradation
with BERT-Large for different device orders — 0.89 and
0.35 sequences per second, respectively. PipeEdge clearly
demonstrates better performance when compute and memory
capabilities are heterogeneous.

Case 3 has the same compute and memory resources as
Case 1, but with less communication bandwidth. Case 4
introduces further bandwidth heterogeneity with the same
compute and memory resources. In both cases, PipeEdge
achieves the best performance for ViT-Large and ViT-Huge, and
with fewer devices than GPipe and PipeDream. In Case 3 for
both ViT-Large and ViT-Huge, PipeEdge selects 8 devices with
40 Mbps bandwidth and one device with 10 Mbps bandwidth
as the last stage, achieving 1.37 and 0.53 images per second
throughput, respectively. In Case 3 for both ViT-Large and ViT-
Huge, GPipe and PipeDream both use 16 devices, achieving
only 1.02 and 0.44 images per second throughput. In Case 4,
PipeEdge selects 7 devices for ViT-Large and 9 devices for
ViT-Huge to achieve throughput of 1.05 and 0.51 images
per second, respectively; GPipe and PipeDream only achieve
0.55 and 0.31 throughput for ViT-Large and ViT-Huge. In
Case 4, PipeEdge shows 1.90x and 1.54x speedup compared
to PipeDream for ViT-Large and ViT-Huge, respectively. In
Cases 3 and 4 for BERT-Large, PipeEdge achieves the best
throughput of 0.58 and 0.49 images per second. GPipe and
PipeDream suffer significant performance degradation due
to the limited bandwidth, which they do not account for —
GPipe and PipeDream only achieve 0.35 and 0.29 sequences
per second for BERT-Large. For Case 3 and 4, PipeEdge
achieves 1.45x and 1.65x speedup compared with GPipe and
PipeDream. These two cases demonstrate the effectiveness of
PipeEdge’s partitioning strategy for heterogeneous networks.

Cases 5 and 6 mix the heterogeneity of devices and networks.
In Case 5, we add 8 extremely resource-constrained devices
with CPUs at 10% capacity and 20 Mbps bandwidth. PipeEdge

2GB MinnowBoard Devices

ViT-Large Model

—=— Single MinnowBoard Baseline

ViT-Huge Model

8GB RCC-VE Devices

BERT-Large Model

1.0

— 1.0

s [= e

é 2.0 — == 0.8 T T . 0.8)

2

gt 0.6 0.6

5

21.0 0.4 0.4

<

o

3

20.5 0.2 0.2

K

[o e I R I A I R S N
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

Bandwidth (Mbps)

Fig. 6. The relationship between bandwidth and system throughput.

achieves the best throughput with 0.99, 0.39 images per second,
and 0.47 sequences per second using 7 devices for ViT-Large,
ViT-Huge, and BERT-Large. In Case 5 for ViT-Large and ViT-
Huge, GPipe and PipeDream achieve 0.26 and 0.10 images per
second; for BERT-Large model, they achieve 0.15 sequences
per second. In Case 5, PipeEdge achieves 3.75x, 3.84 %, and
3.13 speedup relative to PipeDream’s average throughput for
ViT-Large, ViT-Huge, and BERT-Large, respectively. Case 6
shows a scenario with 6 devices types, weighted toward devices
with medium performance. In this case, PipeEdge uses 12,
14, and 12 devices to achieve 1.33, 0.57, and 0.59 items per
second for these three transformer-based models; GPipe and
PipeDream only achieve 0.33, 0.14, and 0.17 items per second,
respectively. PipeEdge achieves speedup of 3.98x, 4.16x and
3.47x for ViT-Large, ViT-Huge, and BERT-Large compared to
PipeDream’s average throughput. Cases 5 and 6 demonstrate
PipeEdge’s ability to schedule around low-performance devices
and map partitions to achieve the best throughput.

PipeEdge performs significantly better than the GPipe and
PipeDream partition methods on all six heterogeneous clusters.
Unlike GPipe and PipeDream, PipeEdge successfully avoids
the lowest-performing devices by considering multiple factors
when exploiting pipelining to improve performance.

C. Bandwidth Impact

To evaluate the relationship between system performance and
bandwidth, we vary the bandwidth between all devices from 120
Mbps to 5 Mbps. We test with 16 pipeline stages using the ViT-
Large, ViT-Huge, and BERT-Large models. Figure 6 shows that
performance does not decrease significantly until bandwidth
drops below 30 Mbps for these models, supporting PipeEdge’s
feasibility for practical edge applications. Reducing bandwidth
from 30 Mbps to 5 Mbps shows a roughly linear performance
decline, yet is still faster than the single-device baseline. At 5
Mbps with RCC-VE devices, PipeEdge still achieves 2.69x,
3.67x, and 3.14x speedups for ViT-Large, ViT-Huge, and
BERT-Large compared to the single device baseline. These
results demonstrate that PipeEdge is still effective for large-
scale models under limited network conditions.

D. Microbatch Size Impact

As in other pipeline frameworks, performance is affected
by the microbatch size. Figure 7 demonstrates the relationship
between microbatch size and throughput. For a 2-stage pipeline,
the maximum throughput of the even partitioning method in

T
'g 0.551 PipeEdge
] —e— GPipe
20501 ad
2
£045]
=
3040
Ky
20.35
F 0.30
10 20 30

Microbatch Size

Fig. 7. Microbatch size vs. throughput for ViT-Base on MinnowBoards. The
model is partitioned into 2 stages.

GPipe is around 0.34 images per second with a microbatch
size 12. Increasing the microbatch size to about 14 results
in a significant throughput improvement over smaller sizes,
which is mainly due to the increasing CPU utilization as the
microbatch size increases. Beyond this size, the throughput
begins to decline because larger microbatch sizes reduce the
efficiency of the pipeline parallelism. PipeEdge exhibits a
similar pattern, achieving a maximum throughput of 0.48
images per second with a microbatch size of 12. The fine-
grained partitioning method in PipeEdge achieves more efficient
CPU utilization than GPipe’s even partitioning. To give a fair
comparison of throughput, we use the optimal microbatch sizes
for PipeEdge, GPipe, and PipeDream for all other experiments
in our evaluations.

Figure 8 compares PipeEdge’s performance with a micro-
batch size of 1 and its optimal microbatch size with ViT-Large
and varying RCC-VE device counts. PipeEdge still shows a
9.34x speedup on 16 devices with a small microbatch size,
compared to the 10.59x obtained with the larger microbatch
size. Smaller microbatches can reduce the output latency (and
hence the response time) for applications, but at a reduced
throughput. This experiment demonstrates that PipeEdge is
effective for different microbatch sizes, which is important for
latency-sensitive applications.

E. PipeEdge with Model Compression

Model compression shrinks model sizes to reduce compute
cost and potentially accelerate training [50] and inference [14],
[15], but often at the cost of reduced accuracy. These ap-
proaches are important complementary strategies to PipeEdge

ViT-Large model
T T T T T T T

S3.0T 1T T
c

IS} —e— Optimal Microbatch Size
|9} 44
9 2.5T _«— Microbatch Size = 1 i

w
%2.0 %
E1l5
31.0
[oR
oy v 14
80'5 >
£0.0

1234567 8 910111213141516
Number of devices

e

Fig. 8. The throughput of optimal microbatch size vs. microbatch size is 1
for ViT-Large on RCC-VE boards.

20
—e— ViT-Base
DeiT-Base-Distilled
151 —e— DeiT-Small-Distilled
—e— DeiT-Tiny-Distilled

104

Throughput (images/sec)

Number of Devices

Fig. 9. DeiT distilled model throughput on RCC-VE devices.

for improving performance on resource-constrained platforms.
For example, compared to the base ViT model, DeiT-Tiny
and DeiT-Small use distillation to achieve similar ImageNet
top-1 accuracy with compressed models of up to 17.2x and
3.9%, respectively [51]. To demonstrate the efficacy of using
compressed models with PipeEdge, we evaluate DeiT-Base,
Small, and Tiny on up to 4 RCC-VE devices. Figure 9 presents
throughput results and compares with ViT-Base as a baseline.

DeiT-Base, which has identical model structure as ViT-
Base, achieves 0.62 images per second throughput on a single
RCC-VE. With 4 devices, the DeiT-Base model achieves 0.95
images per second, outperforming ViT-Base’s 0.82 images
per second. DeiT-Small and DeiT-Tiny demonstrate more
significant improvements — up to 5.55 and 17.23 images
per second, respectively. As an orthogonal technique, model
compression can potentially further improve PipeEdge’s perfor-
mance, making the combined approach a promising solution
for large-scale model inference at the edge.

VI. RELATED WORK

Current techniques to enable the execution of large models
on edge devices mainly fall into two categories: single device
optimization and distributed processing on multiple devices
or servers. Aggressive model compression is an example of
single device optimization methods. EdgeBERT [20] combines
network pruning, entropy-based early exit, and adaptive atten-
tion span to reduce the model size and the inference latency
of Bidirectional Encoder Representations from Transformers
(BERT) for NLP tasks. Lite Transformer [52] adopts adaptive
inference to reduce inference computation cost. Another
promising solution includes neural architecture search (NAS),

that trains a flexible supernet model to yield various subnets
suitable for different targeted hardware platforms [22]. However,
most of the above methods are either not suitable for distributed
platforms or need redesigning and retraining of a pre-trained
models and can potentially incur non-negligible drop in
accuracy. In contrast, PipeEdge does not require retraining
and does not reduce accuracy.

Through the assistance of cloud servers or distributed edge
devices, the latency and computation for individual edge devices
can be reduced without sacrificing accuracy. This strategy
applies to both model training [53]-[55] and inference [56]—
[58]. EdgePipe [59] leverages model parallelism and pipeline
parallelism to accelerate model training over multiple edge
devices. This work focuses on volatile wireless connections
but only for homogeneous edge devices. Hermes [53] and
Fjord [55] tackle the heterogeneity of data and devices for
federated learning. They leverage data parallelism, so the model
needs to be fit in the memory of each device. EDDL [54],
an edge-based distributed deep learning system, addresses
multiple challenges of performing training in realistic edge
environments. Collaborative edge computing is also an effective
technique for large-scale model inference and can be divided
into two categories: cloud-based offloading and edge-based
assistance. In several works [57], [58], [60]-[62], the distributed
inference of DNN models on edge devices is partitioned and
offloaded to cloud servers to reduce latency and minimize on-
device computations. Considering the limited bandwidth and
uncertain delay between the edge and the cloud, MoDNN [63]
employs a MapReduce-like distributed inference paradigm and
only utilizes idle mobile devices to execute CNN models.
DeepThings [64] proposes a fine-grain partition method for
CNN models on edge clusters. DeepHome [56] distributes
machine learning inference tasks to multiple heterogeneous
devices in the home. In [65], the proposed adaptive parallel
inference method for CNN models is extended to heterogeneous
edge devices.

With the emergence of transformer-based models, the model
size continues to increase, making distributed execution more
important. Megatron-LM [66] implements intra-layer partition-
ing for transformer-based models. This kind of parallelism
has been applied in data centers with pipeline parallelism
to train large-scale models [10], but this approach requires
much higher bandwidth or devices with multiple accelerators,
neither of which which are typical in edge environments.
Pipeline parallelism has been proposed to address the problem
of communication overheads. GPipe [25] presents effective
pipeline parallelism for training large models on multiple TPU
accelerators. PipeDream [29] and its subsequent work [30]
target heterogeneous platforms and adopt pipeline parallelism to
accelerate training. PipeMare [26] proposes a memory-efficient
pipeline parallelism without sacrificing utilization. These works
target data centers, and are difficult to directly apply to edge
computing.

VII. DISCUSSION

PipeEdge’s main contribution is to accelerate large-scale
neural network model inference using intelligent pipelining
in heterogeneous distributed environments. The solution also
then enables running larger—and more accurate—models than

single systems might otherwise support. This section discusses
future research that is compatible with PipeEdge but beyond
the scope of this paper.

The PipeEdge design generalizes beyond just edge systems
and could also be suitable for cloud-only or edge-cloud collab-
orations. Heterogeneous cloud and data center-class systems
can simply be treated as devices with strong computation
capabilities by the partition scheduling algorithm. If there is a
high-quality network between edge devices and cloud resources,
the optimal partition schedule may lead to offloading some
or all computation to cloud systems. PipeEdge will identify
the optimal solution, regardless of whether work is run on
a single edge device, pipelined between edge devices and/or
cloud systems, or offloaded entirely to cloud systems.

Edge environments are typically more dynamic than data
centers, e.g., devices come and go, resources may be shared,
wireless network bandwidths and latencies vary, and devices are
subject to changing power and energy constraints. PipeEdge’s
design is independent of these dynamics — adaptive run-
time systems can respond to such dynamics by re-running
PipeEdge’s scheduling algorithm as their problem formulations
dictate, or they can fine-tune systems and software after a
schedule is deployed, e.g., to reduce power or energy in ways
that (ideally) do not affect pipeline performance. Orthogonal
machine learning techniques can also be applied to change
model behaviors, e.g., using model compression to reduce
computation (see Section V-E), or quantization to reduce data
transmission sizes, both at the cost of reduced model accuracy.
Finally, PipeEdge can be extended with other considerations,
e.g., for geo-distributed computation where latency can vary
and affect the system performance, Equation (1) could be
amended to include a latency factor. We are exploring adapting
to various runtime dynamics in future work.

VIII. CONCLUSION

This paper presents PipeEdge, a distributed inference ap-
proach for collaborative, heterogeneous, resource-constrained
edge devices using pipeline parallelism. PipeEdge both im-
proves throughput and enables larger models than individual
memory-constrained devices can support on their own, without
accuracy loss. We address the workload balance problem for
heterogeneous clusters with an optimal dynamic programming-
based partition method. We achieve 10.6x, 11.9x, and 12.78x
speedup with 16 devices for the ViT-Large, ViT-Huge, and
BERT-Large models. PipeEdge demonstrates effectiveness and
robustness for multiple heterogeneous cases, e.g., we show
up to 4.16x throughput speedup compared to GPipe and
PipeDream when using a heterogeneous set of devices. Finally,
we demonstrate that PipeEdge’s throughput improvements are
complementary to model compression by showing additional
speedup with DeiT models.

ACKNOWLEDGMENTS

This work was supported by the Department of the Navy, Office of Naval
Research under, NSF, and DARPA with grant #N00014-20-1-2143, #1763747,
and #HR00112190120, respectively. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding agencies. This work was
supported in parts by NSF and DARPA with grant numbers 1763747 and
HRO00112190120, respectively.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

REFERENCES

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng,
and S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” arXiv preprint arXiv:2101.11986, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision. Springer, 2020, pp. 213-229.
M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

A. Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar,
T. Hiessl, D. Kranzlmuller, M. Liyanage, S. Magshudi et al., “Roadmap
for edge ai: A dagstuhl perspective,” arXiv preprint arXiv:2112.00616,
2021.

J. Chen and X. Ran, “Deep learning with edge computing: A review.”
Proc. IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637-646,
2016.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on gpu clusters,” 2021.

A. Gholami, “Al and memory wall,” Mar. 2021. [Online]. Available:
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
RCC-VE network board devices description. https://www.
silicom-usa.com/pr/edge-networking-solutions/edge-network-boards/
rcc-ve-network-board/.

Minnowboard turbot devices description. https://www.silicom-usa.com/
pr/eol/minnowboard-turbot/.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang,
Q. Huang, Y. Wang, M. Mahoney et al., “Hawg-v3: Dyadic neural
network quantization,” in International Conference on Machine Learning.
PMLR, 2021, pp. 11875-11 886.

S. Kundu and S. Sundaresan, “Attentionlite: Towards efficient self-
attention models for vision,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 1EEE,
2021, pp. 2225-2229.

S. Kundu, S. Wang, Q. Sun, P. A. Beerel, and M. Pedram, “Bmpq:
bit-gradient sensitivity-driven mixed-precision quantization of dnns from
scratch,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1EEE, 2022, pp. 588-591.

S. Kundu, Y. Fu, B. Ye, P. A. Beerel, and M. Pedram, “Towards adversary
aware non-iterative model pruning through d ynamic n etwork r ewiring
of dnns,” ACM Transactions on Embedded Computing Systems (TECS),
2022.

T. Tambe, C. Hooper, L. Pentecost, T. Jia, E.-Y. Yang, M. Donato, V. Sanh,
P. Whatmough, A. M. Rush, D. Brooks et al., “Edgebert: Sentence-level
energy optimizations for latency-aware multi-task nlp inference,” arXiv
preprint arXiv:2011.14203, 2020.

Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network quantization
with adaptive bit-widths,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2146-2156.
H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat:
Hardware-aware transformers for efficient natural language processing,”
in Annual Conference of the Association for Computational Linguistics,
2020.

T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenarios, and
challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54-61,
2017.

S. Chen, Q. Li, M. Zhou, and A. Abusorrah, “Recent advances in
collaborative scheduling of computing tasks in an edge computing
paradigm,” Sensors, vol. 21, no. 3, p. 779, 2021.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. X. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism.” in NeurIPS, 2019.

B. Yang, J. Zhang, J. Li, C. Re, C. Aberger, and C. De Sa, “Pipemare:
Asynchronous pipeline parallel dnn training,” in Proceedings of Machine
Learning and Systems, A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3,
2021, pp. 269-296.

Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Stoica,
“Terapipe: Token-level pipeline parallelism for training large-scale
language models,” arXiv preprint arXiv:2102.07988, 2021.

C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “Pipetransformer:
Automated elastic pipelining for distributed training of transformers,”
arXiv preprint arXiv:2102.03161, 2021.

D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. Devanur,
G. Granger, P. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in ACM Symposium on Operating
Systems Principles (SOSP 2019), October 2019.

D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in 2021 International
Conference on Machine Learning (ICML 2021), July 2021.

J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi, S. H. Noh,
and Y.-r. Choi, “Hetpipe: Enabling large {DNN} training on (whimpy)
heterogeneous {GPU} clusters through integration of pipelined model
parallelism and data parallelism,” in 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20), 2020, pp. 307-321.

C. Kim, H. Lee, M. Jeong, W. Baek, B. Yoon, I. Kim, S. Lim,
and S. Kim, “torchgpipe: On-the-fly pipeline parallelism for training
giant models,” CoRR, vol. abs/2004.09910, 2020. [Online]. Available:
https://arxiv.org/abs/2004.09910

S. Kundu, Q. Sun, Y. Fu, M. Pedram, and P. Beerel, “Analyzing
the confidentiality of undistillable teachers in knowledge distillation,”
Advances in Neural Information Processing Systems, vol. 34, 2021.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 184-199.

S. Kundu, M. Nazemi, P. A. Beerel, and M. Pedram, “Dnr: A tunable
robust pruning framework through dynamic network rewiring of dnns,”
in Proceedings of the 26th Asia and South Pacific Design Automation
Conference, 2021, pp. 344-350.

T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards efficient
model compression via learned global ranking,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1518-1528.

L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” Mobile Networks and Applications,
vol. 26, no. 3, pp. 1145-1168, 2021.

H. Sharma, A. Haque, and F. Blaabjerg, “Machine learning in wireless
sensor networks for smart cities: A survey,” Electronics, vol. 10, no. 9,
2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/9/1012
H. Isyanto, A. S. Arifin, and M. Suryanegara, “Design and implementation
of iot-based smart home voice commands for disabled people using
google assistant,” in 2020 International Conference on Smart Technology
and Applications (ICoSTA). 1EEE, 2020, pp. 1-6.

J. Cheng and T. Kunz, “A survey on smart home networking,” Carleton
University, Systems and Computer Engineering, Technical Report SCE-
09-10, 2009.

J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171-4186.

S. d’Ascoli, H. Touvron, M. Leavitt, A. Morcos, G. Biroli, and L. Sagun,
“Convit: Improving vision transformers with soft convolutional inductive
biases,” arXiv preprint arXiv:2103.10697, 2021.

H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz,
“Pixel-adaptive convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11166-11175.

R. Goodfellow, S. Schwab, E. Kline, L. Thurlow, and G. Lawler,
“The dcomp testbed,” in 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19). Santa Clara, CA: USENIX
Association, Aug. 2019. [Online]. Available: https://www.mergetb.org/

G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the internet of things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1275-1284, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

performance deep learning library,” in Advances in Neural Information
Processing Systems 32, 2019, pp. 8024-8035.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen,
C. Ma, Y. Jemite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural
language processing,” in Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations,
Online, Oct. 2020, pp. 38-45.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” 2019, in the Proceedings of ICLR.

S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg, and P. A. Beerel,
“Pre-defined sparsity for low-complexity convolutional neural networks,”
IEEE Transactions on Computers, vol. 69, no. 7, pp. 1045-1058, 2020.
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International Conference on Machine Learning.
PMLR, 2021, pp. 10347-10357.

Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with
long-short range attention,” in International Conference on Learning
Representations, 2019.

A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen, “Hermes: an efficient
federated learning framework for heterogeneous mobile clients,” in
Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, 2021, pp. 420-437.

P. Hao and Y. Zhang, “Eddl: A distributed deep learning system for
resource-limited edge computing environment,” in Proceedings of the
6th ACM/IEEE Symposium on Edge Computing, 2021.

S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. I. Venieris, and
N. D. Lane, “Fjord: Fair and accurate federated learning under heteroge-
neous targets with ordered dropout,” arXiv preprint arXiv:2102.13451,
2021.

Z. Hu, A. B. Tarakji, V. Raheja, C. Phillips, T. Wang, and 1. Mohomed,
“Deephome: Distributed inference with heterogeneous devices in the
edge,” in The 3rd International Workshop on Deep Learning for Mobile
Systems and Applications, 2019, pp. 13-18.

P. Ren, X. Qiao, Y. Huang, L. Liu, C. Pu, and S. Dustdar, “Fine-grained
elastic partitioning for distributed dnn towards mobile web ar services
in the 5g era,” IEEE Transactions on Services Computing, 2021.

K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: Dnn model slicing
for visual analytics containers at the edge,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, 2019, pp. 179-194.

J. Yoon, Y. Byeon, J. Kim, and H. Lee, “Edgepipe: Tailoring pipeline
parallelism with deep neural networks for volatile wireless edge devices,”
IEEE Internet of Things Journal, 2021.

X. Chen, M. Li, H. Zhong, Y. Ma, and C.-H. Hsu, “Dnnoff: Offloading
dnn-based intelligent iot applications in mobile edge computing,” IEEE
Transactions on Industrial Informatics, 2021.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” SIGARCH Comput. Archit. News,
vol. 45, no. 1, 615-629, Apr. 2017. [Online]. Available:
https://doi.org/10.1145/3093337.3037698

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp.
565-576, 2021.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn: Local
distributed mobile computing system for deep neural network,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 1396-1401.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clusters,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, ser. SEC *19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 195-208. [Online]. Available:
https://doi.org/10.1145/3318216.3363312

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, “Megatron-Im: Training multi-billion parameter language
models using model parallelism,” CoRR, vol. abs/1909.08053, 2019.
[Online]. Available: http://arxiv.org/abs/1909.08053

