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Abstract—Large DNNs with mixed-precision quantization can
achieve ultra-high compression while retaining high classification
performance. However, because of the challenges in finding an
accurate metric that can guide the optimization process, these
methods either sacrifice significant performance compared to
the 32-bit floating-point (FP-32) baseline or rely on a compute-
expensive, iterative training policy that requires the availability of
a pre-trained baseline. To address this issue, this paper presents
BMPQ, a training method that uses bit gradients to analyze layer
sensitivities and yield mixed-precision quantized models. BMPQ
requires a single training iteration but does not need a pre-trained
baseline. It uses an integer linear program (ILP) to dynamically
adjust the precision of layers during training, subject to a fixed
hardware budget. To evaluate the efficacy of BMPQ, we conduct
extensive experiments with VGG16 and ResNet18 on CIFAR-
10, CIFAR-100, and Tiny-ImageNet datasets. Compared to the
baseline FP-32 models, BMPQ can yield models that have 15.4⇥
fewer parameter bits with negligible drop in accuracy. Compared
to the SOTA “during training”, mixed-precision training scheme,
our models are 2.1⇥, 2.2⇥, and 2.9⇥ smaller, on CIFAR-10,
CIFAR-100, and Tiny-ImageNet, respectively, with an improved
accuracy of up to 14.54%.

Index Terms—Mixed-precision quantization, model compres-
sion, energy-efficient DNN training, one-shot quantization

I. INTRODUCTION

The prohibitively large computation and storage costs of
current deep neural network (DNN) models pose a significant
challenges in deployment of many large DNN models on
resource-constrained IoT and edge devices. To address these
issues, researchers have primarily focused on reducing the
parameter budgets through various model compression tech-
niques [1]–[6]. In particular, quantization has proven to be
a promising model compression scheme, that can essentially
perform similar to the 32-bit floating-point (FP-32) parameter
model and/or activation maps with low-precision, quantized,
fixed-point values, requiring reduced storage and data-transfer
costs than the FP-32 baselines.

Early works of of binary neural networks (BNNs) [7] and
XNOR-net [8] with homogeneous-precision (HPQ) models1

showed the potential benefits of quantization. To address the
issue of significant accuracy sacrifice of the HPQ models,
more recent works have demonstrated the mixed-precision
quantization (MPQ) in which different layers can be assigned
different bit widths based on the layer significance evaluated
through various metrics, including Hessian spectrum [9], [10].

Most of the sensitivity-driven methods require the presence
of a baseline FP-32 pre-trained model. Alternatively, quanti-
zation methods that rely on neural architecture search (NAS)
[5], [11], to translate the model compression problem to a

†This work was supported in parts by NSF and DARPA with grant numbers
1763747 and HR00112190120, respectively.

1All layer weights/activations have the same bit widths.

search problem of efficient bit-width assignment to different
layers, require a compute-intensive search procedure that is
added on top of the training. Recently, researchers [12] have
used intermediate activation densities to estimate the layer
sensitivity and assign quantization bit widths, however, have
not re-evaluated bit-width assignments, limiting performance.
Moreover, their quantization method did not necessarily yield
models satisfying a target hardware constraint. Meanwhile,
the increased demand for data-privacy has increased the need
for on-device training and fine-tuning [13]. This trend makes
many of these quantization-aware training methods impossible
on resource-constrained devices. An alternative can be to rent
costly GPU clusters, use quantization on private data, transfer
the quantized model to resource-constrained device, and finally
remove sensitive data from the server cluster before terminat-
ing the session. However, the prohibitively expensive training
time may significantly increase the cluster cost, that generally
charges on hourly basis. This motivates the development of effi-
cient training solutions that can yield mixed-precision quantized
models with no baseline pre-training or iterative training.

Our contribution. We present an efficient “during training”
MPQ method that does not require a pre-trained model. To
effectively search the large design space of MPQ, we decom-
pose the core problem into two sub-problems. First, we use
a novel bit-gradient-analysis driven layer-sensitivity evaluation
to rank the layers based on their significance. Second, using
this information and a specific target hardware constraint, we
formulate an integer linear program (ILP) to decide the bit-
precision of each layer. This combination of steps becomes
the core of our bit-gradient sensitivity driven MPQ method
(BMPQ). BMPQ can be integrated into most training methods
without any significant increase in training time because these
extra steps are relatively low cost and are performed at regular
intervals separated by multiple epochs of normal training.

To demonstrate the efficacy of the proposed method, we per-
form extensive experimental evaluations on CIFAR-10, CIFAR-
100, and Tiny-ImageNet with quantized VGG16 and ResNet18
models. Our experiments show that BMPQ can yield quantized
models that require up to 15.4⇥ less storage compared to the
FP-32 counterparts with comparable classification performance.
Compared to the existing single-shot quantization approach
[12], our models can yield up to 2.9⇥ higher compression with
an accuracy improvement of up to 14.54%.

II. RELATED WORK

A. Quantization
Quantization has improved the trade-off between accuracy

and efficiency of NN models. Early works [14] used rule-based
strategies that required human expertise to quantize a model.
Subsequent works focused on HPQ [8], [15] but often yielded
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reduced accuracy compared to the FP-32 baseline. To address
this issue, works including non-uniform quantization [16],
channel-wise quantization [17], and progressive quantization-
aware fine-tuning [18] were proposed.

Recently, researchers have proposed using layer significance
to guide quantization of different bit widths to different layers
and thus boost the accuracy. However, the space of possible
assignments is large. In particular, for a model of L layers with
NB bit-width choices, there can be (NB)L options to consider.
To handle this issue, [5] converted the quantization problem
into a reinforcement learning problem based on an actor-critic
model. [11] proposed a differentiable neural architecture search.
Others use sensitivity analysis metrics [9], [10] to determine the
layer importance and bit-width assignment but require a FP-32
pre-trained model or rely on iterative training [6]. Thus, despite
all these efforts, a single-shot during-training MPQ approach
that can yield similar to baseline performance while achieving
ultra high compression has been largely missing.

B. PACT Non-Linearity Function for Activation

The unbounded nature of the ReLU non-linear function
can introduce significant approximation error when quantifying
activations, particularly for low bit-precision activations [19].
Alternatively, clipped ReLU activations can provide bounded
output, but finding a global clipping factor that maintains the
model accuracy is quite challenging [19]. A Parameterized
Clipping Activation (PACT) function [20] with a per-layer
parameterized clipping level ↵ has been proven effective in
the low-precision domain. For an input ai, PACT non-linearity
produces an output ao as follows:

ao = 0.5(|ai|� |ai � ↵|+ ↵) =

8
<

:

0, ai 2 (�1, 0)
ai, ai 2 [0,↵)
↵, ai 2 [↵,+1)

(1)

The output is then linearly quantized to provide aoq . The
computation of aoq for a k-bit activation is

ao
q = round(ao ·

2k � 1

↵
)

↵

2k � 1
(2)

The resemblance of PACT with ReLU increases with the
increase of the value ↵. Note that ↵ is a trainable parameter and,
during backpropagation, @ao

q

@↵ is computed by using a straight-
through estimator (STE) (see [21] for details).

III. METHODOLOGY

A. Notation

Let a L-layer DNN be denoted by Y = f(X;W), with
each layer l parameterized by Wl. A quantized version of f is
denoted as fQ(XQ;WQ) in which each layer l is parameterized
by Wql

l with input activation tensor Aql
l . We train our model to

minimize a loss L such that fQ can closely mimic f , and thus
minimize any performance degradation. For HPQ, ql is fixed
for any l, whereas for MPQ, ql may vary with l.

Definition 1. Support bit widths: For mixed-precision quanti-
zation, we define the support bit widths Sq as the set of possible
bit widths that can be assigned to the parameters of any layer
l of the model, excluding the first and last layers that are fixed
to 16 bits as in [12].

B. Loss Bit Gradient
The gradient of the loss with respect to a weight scalar

@L
@w indicates the direction that reduces the output error at the
highest rate. Moreover, larger magnitude gradients lead to more
significant changes in the weights, and thus correlate well with
larger weight significance [22]. Inspired by this observation,
we extend the notion of loss gradients to the bit-level for a
quantized weight tensor, and propose a layer sensitivity metric
that is driven by normalized bit gradients (NBG).

For the lth layer of a DNN, the quantization of a floating-
point tensor Wl to a fixed-point (signed) tensor Wql

l is

Swl = max(|Wl|)/(2ql�1 � 1);Wl 2 Rdl (3)

Wql
l = round(Wl/Swl) · Swl , (4)

where dl is the tensor dimension and Swl is the quantiza-
tion scaling factor. The quantized weights have a staircase
function which is non-differentiable. To solve this problem
we use STE, similar to other quantization methods [9], [10].
To reduce storage, it is recommended to store the fixed-point
(Wql

l /Swl) 2 {�2ql�1, ..., 2ql�1}dl instead of Wql
l .

As is typical, we convert the scaled quantized weights to their
corresponding 2’s complement representation [23] as given by

wql
l /Swl = �2ql�1 · bql�1 +

ql�2X

i=0

2i · bi. (5)

The loss bit gradient for each bit position is then derived as

rbL = [
@L

@bql�1
,

@L
@bql�2

, ...,
@L
@b0

] (6)

where
@L
@bi

=
@L
@wql

l

·
@wql

l

@bi
. (7)

For a layer l with maximum support bit width qmax, we
compute the loss bit gradient for each of the qmax bits, yielding
a dl ⇥ qmax floating-point matrix. We sum the absolute values
of each row to produce a dl ⇥ 1 vector. The layer NBG is set
to be the average value of this vector. Finally, we compute the
epoch-normalized bit gradient (ENBG) of a layer as the mean
of its NBGs over i epochs. First-order derivatives like gradients
can sometimes fail to capture the importance of a weight value
based on its magnitude. However, the amortized nature of the
ENBG computation over all weights and epochs makes the
probability of this phenomenon occurring vanishingly small.

Definition 2. Epoch Intervals (EI): We define the epoch
intervals as the ranges of epochs over which we collect the
NBG of each layer to calculate the ENBG. For training a model
with periodic epoch intervals, the kth interval starts with the
(
Pk�1

i=0 epiint + 1)th epoch where epiint = epint for any i.
For aperiodic epoch intervals, we can use different epiint for
different interval indices i. We use periodic EI epint = 20.

C. ILP-Driven Iterative Bit-Width Assignment
After each epoch interval, we re-assign the bit widths to

maximize performance by formulating an ILP that maximizes
the total layer sensitivity subject to a given hardware constraint
C. In particular, to capture the bit-width assignment at the start
of the kth interval for a layer l, we introduce a constrained



Fig. 1. Step-wise description of layer bit-width evaluation.

integer variable ⌦k
l, which is multiplied by the negative ENBG

of that layer gk�1
1 . Next we solve the following problem:

Objective: minimize
L�1X

l=0

(gk�1
l .⌦k

l), (8)

Subject to:
L�1X

l=0

�( {⌦k
l})  C (9)

Here,  (.) is a function that translates the assignment variable
⌦k

l to the corresponding bit width qkl and �(.) is a function
that translates the bit width to a cost associated with the
layer. For example, if C is a memory-constraint, then �(.)
converts the bit-width assignment to a measure of memory
usage. Notice that, in reality gk�1

l is computed assuming the
bit-width assignments of other layers are fixed despite the fact
that they may change after the ILP. This approximation enables
our ILP optimization to search over a large combinatorial space
and any error associated with the approximation is mitigated by
the repeated re-evaluation of the ILP after each epoch interval.

Recently, an iterative training approach [10] has also used
an ILP to assign layer bit widths but only as a post-training
optimization.2 Moreover, reference [10] computed a layer-
variable coefficient based on an L2-norm of the difference
between FP-32 and quantized weights of that layer, which may
further increase the storage overhead. In contrast, we use the
negative ENBG values as coefficients of the respective ⌦k

l that
does not require any L2-difference compute/storage cost.

D. BMPQ Training

For the initial epw warm-up epochs, we train the model with
each layer quantized to max(N1, N2, . . . , Nm) bits where
Sq = [N1, . . . , Nm]. Throughout the training, we follow the
recommendation of [12] to quantize the activation of layer l
with the same number of bits as that used for the weights
of that layer. During the weight update, we first allow the
weights to be the updated FP-32 values, and then quantize
to a specific bit-precision and compute the loss based on
forward-pass evaluation with the quantized weights/activations.
We use the ReLU non-linearity for the last layer and use
the PACT nonlinearity for all other intermediate layers with
low bit-precision. For a bit width Ni = 2, we use ternary
weight quantization [24] to minimize the Euclidean distance
between the FP-32 and quantized weights. The fact that we

2We do not quantitatively compare our work with this work because this
work uses an iterative (rather than a single-shot) training approach and thus it
does not constitute an “apple-to-apple” comparison to our work.

Fig. 2. (a), (b) Layer sensitivities based on ENBG for VGG16 on CIFAR10.
epi indicates that the normalization was performed after ith epoch.

perform quantized training for epint epochs after every bit-
width assignment iteration helps us avoid post-training fine-
tuning operations to maintain accuracy. The step-wise details
of the evalENBG(.) function is presented in Fig. 1.

IV. EXPERIMENTS

A. Experimental Setup
Models and Datasets. We selected three widely used

datasets, CIFAR-10, CIFAR-100, and Tiny-ImageNet and chose
popular CNN models for image classification, VGG16 [25]
and ResNet18 [26]. For all the datasets we used standard data
augmentations (horizontal flip and random crop with reflective
padding) to train the models with a batch size of 128.

BMPQ training settings. For CIFAR-10 and CIFAR-100,
we trained our models for 200 epochs with initial learning rate
(LR) of 0.1 that decayed by 0.1 after 80 and 140 epochs. For
Tiny-ImageNet, we used 100 training epochs and used decay
epochs as 40 and 70 keeping other hyperparameters the same
as that for CIFAR. We used Sq of 4 and 2 bits for all our
training but fixed the first and last layers to have 16-bits. For
the ResNet models, we ensured the downsampling layers have
the same bit-width assignment as its input layer [12].

B. Results
Table I shows the performance of the BMPQ trained models

compared to their respective full-precision counterparts. In
particular, for CIFAR-10 dataset the BMPQ trained models can
yield a model compression ratio3 of up to 15.4⇥ while sacrific-
ing a drop in absolute accuracy of up to only 0.70%. Similarly,
for CIFAR-100 and Tiny-ImageNet, the BMPQ generated mod-
els provide near full precision performances while yielding a
compression ratio of up to 15.4⇥ and 10⇥, respectively. This
clearly shows the efficacy of BMPQ generated models to retain
baseline performance while requiring lower model storage cost.

Analysis of ENBG at various iterations. We analyzed the
ENBG snapshots of VGG16 (on CIFAR-10) at the end of
different epoch values. In particular, we chose two early-stage
training epochs 20 and 40 and two mid-level training epochs
100 and 120. As shown in Fig. 2(a), the ENBG represented
layer sensitivity changes significantly between epoch 20 and 40,
hinting at the need for iterative re-evaluation during training.
Also, a similar trend is observed at the mid-level training
epochs (Fig. 2(b)), that forces the ILP to re-assign the 10th

and 14th layer from 2-b to 4-b and 4-b to 2-b, respectively.

C. Comparison with Single-Shot Training
Table II presents the comparison of the presented BMPQ

with the recently proposed single-shot MPQ method [12] on
CIFAR-104, CIFAR-100, and Tiny-ImageNet. In particular, we

3We define compression ratio as the ratio of bits required to store a FP-32
model to that required by the BMPQ model of same architecture.

4The original paper used VGG19 compared to VGG16 of ours.



Dataset Model layer-wise bit width Test Acc (%) Compression
ratio (r32M )

Full precision 93.9 1⇥
VGG16 [16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 16] 93.56 10.5⇥

CIFAR-10 [16, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16] 93.21 15.4⇥
Full precision 95.14 1⇥

ResNet18 [16, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 16] 94.54 13.4⇥
Full precision 73 1⇥

[16, 4, 4, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 16] 72.2 14.6⇥
CIFAR-100 [16, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16] 71.26 15.4⇥

Full precision 77.5 1⇥
ResNet18 [16, 2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 2, 16] 75.98 9.4⇥
VGG16 Full precision 60.82 1⇥

Tiny-ImageNet [16, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 2, 4, 2, 4, 16] 59.29 10⇥
ResNet18 Full precision 64.15 1 ⇥

[16, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 16] 63.27 8.8⇥

TABLE I
PERFORMANCE OF BMPQ GENERATED MODELS COMPARED TO THE

RESPECTIVE BASELINE FULL PRECISION (FP-32) MODELS.

can see that BMPQ models provide an improved accuracy of up
to 14.54% with up to 2.9⇥ less parameter bits. Note, consid-
ering the training epochs of [12], to have a fair comparison we
report the accuracy of our models after 120, 120, and 60 epochs
for CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

Model Dataset AD [12] BMPQ Improved
Acc (%) Acc (%) compression

VGG16 CIFAR-10 91.62 92.28 2.1⇥
ResNet18 CIFAR-100 71.51 73.96 2.2⇥
ResNet18 Tiny-ImageNet 44 58.54 2.9⇥

TABLE II
COMPARISON WITH SINGLE-SHOT MPQ ACHIEVED THROUGH ANALYSIS OF

ACTIVATION DENSITY (AD).

D. Discussion

Memory saving for inference. Let layer l of an L-layer
model have pl parameters. Represented using homogeneous FP-
32, the total storage requirement (MB) of the model weights
can be given by

Mfp32 = 4 ⇤ (
L�1X

i=0

pl
220

). (10)

For a BMPQ generated model, the weight storage cost (MB)
and corresponding compression ratio r32M (and r16M compared to
a 16-b baseline) can be computed as

MBMPQ = (
4

32
) ⇤ (

L�1X

i=0

pl · ql
220

) (11)

r32M =
Mfp32

MBMPQ
and r16M = 0.5 ⇤ r32M . (12)

Note that, for each layer, we need to store only one scaling
factor in FP-32. Hence, its overhead is negligible and ignored.
Column 5 in Table I shows the corresponding r32M for our
BMPQ models.

V. CONCLUSIONS

This paper presented a MPQ training method driven by
epoch-normalized bit-gradients without the requirement of any
pre-training. Our proposed ENBGs capture the sensitivity of
DNN layers and drive an ILP formulation that iteratively
assigns MPQ bit widths after certain epochs during train-
ing. Our results demonstrated the efficacy of BMPQ models
when compared to both FP-32 baselines and existing single-
shot MPQ schemes. With the growing demand of privacy-
preserving, on-device training and inference, we believe this
work will act as a foundation for energy-efficient, on-device
quantization.
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