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Federated learning allows multiple users to collaboratively train a shared classi!cation model while preserving
data privacy. This approach, where model updates are aggregated by a central server, was shown to be
vulnerable to poisoning backdoor attacks: a malicious user can alter the shared model to arbitrarily classify
speci!c inputs from a given class. In this paper, we analyze the e"ects of backdoor attacks on federated
meta-learning, where users train a model that can be adapted to di"erent sets of output classes using only
a few examples. While the ability to adapt could, in principle, make federated learning frameworks more
robust to backdoor attacks (when new training examples are benign), we !nd that even one-shot attacks can
be very successful and persist after additional training. To address these vulnerabilities, we propose a defense
mechanism inspired by matching networks, where the class of an input is predicted from the similarity of its
features with a support set of labeled examples. By removing the decision logic from the model shared with
the federation, success and persistence of backdoor attacks are greatly reduced.
CCS Concepts: • Security and privacy→ Domain-speci!c security and privacy architectures.
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1 INTRODUCTION
Federated learning [43] allows multiple users to collaboratively train a shared prediction model
without sharing their private data. Similarly to the parameter server architecture, model updates
computed locally by each user (e.g., weight gradients in a neural network) are aggregated by a
server that applies them and sends the updated model to the users. User datasets are never shared,
while the aggregation of multiple updates makes it di#cult for an attacker in the federation to
reconstruct training examples of another user. Additional privacy threats can also be addressed in
federated learning: for example, users can send encrypted updates that the server applies to an
encrypted model [19, 49].

While the use of data from multiple users allows for improved prediction accuracy with respect
to models trained separately, federated learning has been shown to be vulnerable to poisoning
backdoor attacks [11, 31]: a member of the federation can send model updates produced using
malicious training examples where the output class indicates the presence of a hidden backdoor
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key, rather than benign input features. This kind of attack can be successful after a single malicious
update, and it is di#cult to detect in practice because (1) the attacker can introduce the backdoor
with minimal accuracy reduction, and (2) malicious updates can be masked within the distribution
of benign ones [2, 4, 5].

Another limitation of conventional federated (supervised) learning is due to the requirement that
all users train on the same task and share the same model output classes (e.g., the outputs of a neural
network and their associated labels). However, in practice, tasks performed by users are typically
di"erent. For example, one user might be training the model for a face-recognition task involving
recognition of their friends, while another user may want to train for another face-recognition
task involving recognition of their family members. In that case, meta-learning [28, 33, 45, 57] is a
more appropriate setting for federated learning: rather than training a model for a speci!c set of
output classes, these methods try to learn model parameters that can be adapted very quickly to
new classi!cation tasks (with entirely di"erent output classes) using only a few training examples
(or “shots”). Meta-learning also allows users with di"erent data distributions to jointly train a
meta-model that they can adapt to their speci!c tasks. In the federated face-recognition example,
each user trains a model using classi!cation tasks from a distinct dataset (e.g., images of friends
and relatives), but all users share the goal of training a meta-model to recognize human faces.

While the use of meta-learning in a federated setting and its privacy concerns were explored by
previous work [10, 36], the in!uence of backdoor attacks on federated meta-learning has not been
investigated. Since meta-models have the ability to adapt to new classi"cation tasks very quickly, it
is unclear whether a backdoor attack can succeed and persist even with many users sharing benign
updates of the meta-model and after !ne-tuning the meta-model for a speci!c task with benign
data. In this paper, we investigate whether this fast adaptation ability can help remove backdoors.
In addition, existing defense methods for federated learning [7, 52, 62] rely on a third party

(usually, the parameter server) to inspect model updates produced by the clients and to discard
poisoned updates. This architecture introduces important privacy vulnerabilities, since model
updates can be abused to reconstruct training data or to infer its properties [30, 63, 64]; to address
such limitation, we investigate local defense mechanisms where model updates are never inspected
by a third party. When coupled with secure aggregation of updates from multiple clients [49], our
defense mechanism is able to preserve privacy in federated meta-learning.
Research Contribution. This paper investigates backdoor attacks on federated meta-learning
with the following contributions.

• Wepresent the !rst demonstration of the vulnerability of federatedmeta-learning to poisoning
backdoor attacks. In contrast, prior work on backdoor attacks considers only federated
supervised learning, where all clients share the same classi!cation task and associate the
outputs of the model with the same classes; prior work on non-i.i.d. federated learning
explores settings where clients have a di"erent number of examples for each class (e.g.,
include data for some classes but not others) and a di"erent data distribution within each
class, but not meta-learning (where each client associates di"erent classes with the output of
the model). Our results, presented in Section 3, show that (i) backdoor attacks (triggering
intentional misclassi!cation) can be successful even after a single malicious update (one-shot
attack) from the attacker during joint training, and (ii) the e#ects of an attack are persistent,
despite long meta-training after an attack (using only benign examples) or !ne-tuning of
the meta-model by a benign user. That is, the fast-adaptation ability of meta-learning is not
helpful for removing backdoors and correcting poisoned models.

• We propose the !rst local defense mechanism against poisoning attacks in federated meta-
learning, which, in contrast with existing defense mechanisms, does not rely on a third party
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(e.g., the federated-learning server) inspecting clients’ updates, and it is thus compatible with
secure aggregation to protect users’ privacy, in the spirit of federated learning. Speci!cally,
in Section 4, we propose a defense mechanism inspired by matching networks [57], where the
class of an input is predicted by a user from the similarity of its features with a support set of
examples. By adopting this local decision mechanism, we reduce the success rate of backdoor
attacks from as high as 90% to less than 20% (Omniglot training/validation, mini-ImageNet
training), from 50% to 20% (mini-ImageNet validation), and from 100% and 80% to 40% (CelebA
training and validation) in just a few iterations.

2 BACKDOORS IN FEDERATED META-LEARNING
In this section, we introduce federated meta-learning and poisoning backdoor attacks with training
procedures in detail.
2.1 Federated Meta-Learning
Federated learning among! users proceeds in rounds: in each Round " , the server randomly selects
!r ! ! users and transmits the shared model # !" to them. Each selected user $ initializes the local
model # !# to # !" , performs % training steps, and then transmits the model update &!# = # !# − # !" to the
server. As soon as!min of the!r updates are received, the server applies them to obtain the model
for the next round # !+1" = # !" +∑$min

#=1 '#&!# , where the factor '# can be used to give more importance
to the updates of users with larger datasets [43].
In federated meta-learning [10], training steps performed by each user on # !# are designed to

improve how well the model can be adapted to new classi"cation tasks (with di"erent output classes),
instead of improving its accuracy on a !xed task (with the same output classes for training and
testing). While second-order derivatives are needed to account for changes of gradients during the
adaptation phase, !rst-order approximations have been proposed [28, 45]. We adopt Reptile [45]
for (-shot, ) -way meta-training:

in each Round " , each user $ receives the current version of the global model # !" from the server
and stores it locally as # !# to start meta-training. For each training episode * , user $ !rst randomly
samples ) (the number of model outputs) classes from its own training data (in general more than
) classes) and ( examples from each class, to form a support set S of )( examples; then, user $
performs supervised training on the support set S for + stochastic gradient descent (SGD) steps
(with inner batch size , and learning rate -) to obtain a new model # !, %# from # !# . This procedure
is repeated for * = 1, . . . ,. random episodes (a meta-batch): the resulting models # !, %# are then
averaged by each user $ to update # !# as # !# = (1 − /)# !# + &

'

∑'
%=1 #

!, %
# (for some outer learning rate /).

After % episodes of local meta-training, user $ sends the di"erence with respect to the global model
# !" to the parameter server.

A detailed description of this meta-training procedure (based on Reptile) is presented in the
FLClient procedure of Algorithm 1.
To test a model after many rounds of (-shot, ) -way federated meta-training, a user generates

new episodes, each with ) unseen classes (i.e., never selected during federated meta-training) and
( + 1 examples per class, where ( examples are for !ne-tuning and 1 is held out for testing; for
each episode, the shared model # !" (obtained after federated meta-training) is !ne-tuned with a few
SGD steps on the !rst ( examples of each class (i.e., a support set with )( examples) and tested
on the ) held-out examples (FLClientFineTuning procedure in Algorithm 1).
2.2 Backdoor A!acks
We consider backdoor attacks based on data poisoning [2, 5, 11, 31]: the attacker participates in
the federation, applying the same meta-learning algorithm (Reptile) but using a poisoned dataset
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Algorithm 1 Federated Meta-Learning (Based on Reptile Algorithm [45])
Notations and Hyper-Parameters:
# denotes model parameters; & denotes local updates from clients; ℓ (·) is the loss function;
∇ is the gradient operator; % is the number of meta-training episodes of each user in a round;
. is the meta-batch size; + is the number of inner SGD iterations; , is the inner batch size
1: procedure FLMeta(1 ,!min,!( ,!)
2: #" ← FLServer(1 ,!min,!( ,!)
3: for all clients in parallel do
4: FLClientFineTuning(#" )
5: procedure FLServer(1 ,!min,!( ,!)
6: Initialize # !" randomly
7: for each round " = 1, . . . ,1 do
8: Randomly select!( out of! clients
9: for each selected client $ = 1, . . . ,!( in parallel do
10: &!# ← FLClient($, ", # !" )
11: when!min updates &!# are received
12: # !+1" ← # !" +∑$min

#=1 '#&!#
13: return #)"
14: procedure FLClient($ , " , # !" )
15: # !# ← # !"
16: for % meta-training episodes do
17: for each local episode * = 1, . . . ,. do
18: Sample a (-shot, ) -way episode support set S
19: # !, %# ← # !#
20: for + SGD iterations do
21: Sample an inner batch B with size , from S
22: # !, %# ← # ! , %# − -∇ℓ (#

!, %
# ,B) (supervised learning)

23: # !# ← (1 − /)# !# + &
'

∑'
%=1 #

!, %
#

24: return &!# = # !# − # !" to server
25: procedure FLClientFineTuning(#" )
26: # ← #"
27: Form a (-shot, ) -way (unseen classes) !ne-tuning support set S for the new task
28: for !ne-tuning iterations do
29: Sample an inner batch B with size , from S
30: # ← # − -∇ℓ (# ,B) (supervised learning)

where examples from a backdoor class are labeled as instances of a target class; through model
updates sent to the server, the attacker introduces changes in the shared model # !" that persist after
a benign user !ne-tunes # !" on a new classi!cation task (with benign data).
For the attack to succeed, the target class must be present in the classi!cation task of the user

under attack, and images of the backdoor class must be used as inputs. Since classes are di"erent in
each meta-learning episode, the attacker can use multiple target and backdoor classes to increase
success chances. For example, in a face recognition problem, the attacker could collect online images
X) of a friend (the target class) of a member of the federation, and images X' of a few impostors
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(the backdoor classes): in the training dataset of the attacker, examples of backdoor classes have
the same label as images of a target class, so that the model learns to classify impostors as targets.
To ensure that the attack goes unnoticed, the attacker should also include valid data during

training, so that the trained meta-model performs well on inputs that are not backdoor or target
examples. In particular, to generate an episode for (-shot, ) -way meta-training, the attacker could
pick ) − 1 random classes and always include the target class as the ) -th model output: some
of the ( examples of the target class are selected from X) , while others are selected from X' .
For attack-pattern backdoors, the attacker can also add a special visual feature to the backdoor
images X' , as a key to trigger the attack [11, 31]. Similarly to poisoning attacks on federated
learning [5], after many meta-training steps on the local model # !* , the attacker sends a “boosted”
update to the parameter server: &!* = 2(# !* − # !" ), where 2 is the boosting factor (to make it prevail
over other updates).

3 EFFECTS OF BACKDOOR ATTACKS
In this section, we explore backdoor attacks on the Omniglot [35], mini-ImageNet [55, 57], and
CelebFaces Attributes (CelebA) [41] datasets.

3.1 A!ack Evaluation
We consider a federation of! = 4 users, where user $ = 1 is the attacker and users $ = 2, 3, 4 are
benign; at each round, the server selects 3 users andwaits for all of their updates (i.e.,!min = !r = 3).
The meta-model is initially trained only by benign users, reaching state-of-the-art accuracy; then,
the attacker is selected exactly once (one-shot attack) and the poisoned update is boosted with 2 = 3
[2, 5]. To evaluate the e"ectiveness of the attack, we generate 5-shot, 5-way episodes from meta-
training classes that always include the target class (with benign examples): after each !ne-tuning
iteration, we measure accuracy on testing examples of the episode (main-task accuracy), as well
as the percentage of poisoned backdoor examples labeled as the target (backdoor accuracy); we
separately evaluate backdoor accuracy on examples used by the attacker during training (attack
training) and on unseen examples (attack validation). We also evaluate meta-testing accuracy on
other classes not used during meta-training. Reported accuracy is averaged over 40 episodes for
mini-ImageNet and Omniglot datasets and 50 episodes for CelebA dataset (due to larger numbers
of classes; see Section 3.2) to reduce statistical $uctuations. In addition, to con!rm that the attack
can be successful in other settings, we repeat experiments on CelebA dataset with! = 8 users or
with more shots (15 instead of 5) during !ne-tuning.

3.2 Dataset
Omniglot. This dataset consists of 1623 character classes from 50 alphabets, with 20 examples
per class. Similarly to [28, 45, 51], we resize images to 28 × 28 and augment 4× using rotations:
we use 1200 classes for meta-training (split among the 4 users) and 418 for meta-testing; for each
meta-training class, we hold out 5 examples for validation. We reserve 4 backdoor classes and
1 target class (Fig. 1a-b) for the attack: 10 examples of each backdoor/target class are assigned to
benign clients for training, while 5 are edited to add a backdoor key (Fig. 1c-d) and used by the
attacker.
mini-ImageNet. This dataset includes 100 classes, each with 600 examples (84× 84 color images).
We use 64 classes for meta-training (split among 4 users) and 20 classes for meta-testing, as in
[55]; for each meta-training class, we hold out 20 validation examples. We also reserve 1 backdoor
and 1 target class (Fig. 2a-b): 480 examples of each of these are split among benign clients for
meta-training, while 100 are used by the attacker as benign training examples. As attack and
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Fig. 1. Backdoor a!ack on Omniglot: (a) target class,
(b) backdoor classes, (c) backdoor key, (d) a!ack train-
ing set
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Fig. 2. Backdoor a!ack on mini-ImageNet: (a) target
class (arctic fox), (b) backdoor class (yawl), (c) back-
door key, (d) a!ack training set

(a)

(b)

(c)

(d)

Fig. 3. Backdoor a!ack on CelebA: (a) target class, (b) backdoor class (man without
hat), (c) backdoor key (cowboy black hat), (d) a!ack training set (man with hat)

validation sets, we use 100 and 50 additional examples, respectively, adding a backdoor key as in
Fig. 2c-d.
CelebA. As mentioned in the Section 1, face recognition is a motivating application for federated
learning, as well as poisoning backdoor attacks: a compromised machine learning model used
for face recognition can allow attackers to unlock access control systems, raising security and
safety issues. To explore this motivating application, we consider the CelebA dataset. This dataset
includes approximately 2003 celebrity images, each with 40 binary attribute annotations describing
an image, such as accessories (hat, neckless), hair color, and so on. Furthermore, images are labeled
by identity, and there are about 103 unique identities in the dataset. This dataset is typically used
as a binary classi!cation task (in conventional federated learning), but in this paper, it is used as a
multi-class (identity) classi!cation task for exploring the vulnerability of the identities to backdoor
attacks. Classes (identities) in the CelebA dataset are of di"erent sizes; out of 103 classes, only 2360
of them consist of 30 or more images. We remove classes with insu#cient images and randomly
choose 30 images from the rest of the classes; in addition, we remove 2 classes with low quality
examples (multiple identities with the same label), and reserve 1 class as the backdoor class and 1
class as the target class (Fig. 3a-b). Hence, we have 2156 and 200 classes total (539 and 50 classes
per user) for meta-training and meta-testing, respectively. Among the 30 images of each class, 5
images are held out for testing. We choose a person with a speci!c type of hat (black cowboy hat
Fig. 3c) as our backdoor class and the hat which is not shared with other classes (Fig. 3d) as the
backdoor key. For a more successful attack, we increase the backdoor class size for the attacker to
90 (78 and 12 for training and validation, respectively). Finally, the training data is augmented by a
factor of 6, and all the images are resized to 64 × 64.

3.3 Training Parameters and Experimental Setup
Training Parameters. All users run Reptile on the same Conv4 model as in [28, 45], a stack of 4
modules (3× 3 Conv !lters with batchnorm and ReLU) followed by a fully-connected and a softmax
layer; the modules have 64 !lters and 2 × 2 max-pooling. In the choice of training parameters,
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we followed the same settings as [45] for Omniglot and mini-ImageNet, and explored di"erent
values and hyperparameters for CelebA. Our training parameters are: 5-shot, 5-way meta-testing
of a meta-model trained with % = 1000 episodes 10-shot, 5-way (Omniglot), % = 100 episodes
15-shot, 5-way (mini-ImageNet), and % = 500 episodes 12-shot, 5-way (CelebA) per round at each
user, with meta-batch size . = 5 and outer learning rate / = 0.1 (Omniglot and mini-ImageNet)
or / = 1 (CelebA). For each episode, in meta training, we use + = 10 SGD steps (Omniglot and
mini-ImageNet) or + = 12 SGD steps (CelebA); for meta-testing, we set + = 50 SGD steps, with
inner batch size , = 10 (Omniglot and mini-ImageNet) or , = 6 (CelebA) with Adam optimizer
(41 = 0, 42 = 0.999), and initial learning rate - = 0.001 (Omniglot and mini-ImageNet) or - = 0.0004
(CelebA). In particular, a smaller - is important for CelebA, possibly because CelebA has higher
inter-class similarity as compared with mini-ImageNet and Omniglot.

The attacker trains for % = 50000 episodes and 50 inner epochs (Omniglot), % = 150000 episodes
and 1 inner epoch (mini-ImageNet), and % = 100000 episodes and 12 inner epochs (CelebA);
backdoor and target examples X' and X) are always included by the attacker with 2:3 (Omniglot),
1:2 (mini-ImageNet), and 5:12 (CelebA) ratio.
Experimental setup. All algorithms are implemented using TensorFlow [21] and Keras [13];
experiments are performed using virtual machines (VMs) on Google Compute Engine, including
1 VM for the parameter server and 1 VM for each client. Each client VM has 4 Intel Skylake CPUs
and 1 Nvidia Tesla T4 GPU, with 88GB of RAM and Debian 9 OS with CUDA 10.0; each server VM
has 1 Intel Skylake CPU, 5.5GB RAM, and the same version of OS and CUDA.

3.4 Experiments
In our !rst set of experiments, benign users continue federated meta-training after the attack. Note
that, as mentioned in Section 3.1, for the CelebA dataset we also explore ! = 8 users or ( = 15
shots during !ne-tuning to understand the e#cacy of attacks under di"erent settings.
Experiment 1(a). First, we consider the case where initial meta-training by benign users does
not include correctly-labeled examples of backdoor classes. Results are in Fig. 4a (Omniglot), Fig. 5a
(mini-ImageNet), Fig. 6a (CelebA,! = 4), and Fig. 7a (CelebA,! = 8): before the attack (Round 0),
meta-testing accuracy (black line) is above 99% (Omniglot), 60% (mini-ImageNet), and around
85% (CelebA, ! = 4, 8). The attacker is selected in Round 1; then in Round 2, attack accuracy
(classi!cation of backdoor images as target class) reaches 78%, 74%, 98% on attack training set
(blue line) and 77%, 55%, 90% on the held-out attack validation set (green line) for Omniglot, mini-
ImageNet and CelebA (! = 4, 8), respectively, while meta-testing accuracy on other classes remains
above 98% (Omniglot) and around 85% (CelebA,! = 4, 8) or drops to 50% (mini-ImageNet). Even
after 50 (Omniglot), 100 (mini-ImageNet), and 100 (CelebA) rounds of additional meta-training by
benign users, backdoor accuracy is still high (50% on both attack training/validation for Omniglot;
68% / 48% on attack training/validation for mini-ImageNet; 73% / 67% on attack training/validation
for CelebA (! = 4), and 85% / 70% on attack training/validation for CelebA (! = 8)).
Experiment 1(b). Next, we consider the case where meta-training datasets of benign users include
correctly-labeled images of backdoor classes during pre-training, so that the meta-model should
easily adapt to classifying them correctly. Results are in Fig. 4b (Omniglot), Fig. 5b (mini-ImageNet),
Fig. 6b (CelebA,! = 4), and Fig. 7b (CelebA,! = 8): meta-testing accuracy is still above 98%, ≈ 50%
and 85% after the attack for Omniglot, mini-ImageNet and CelebA (! = 4, 8), respectively, while
attack training/validation accuracy is close to 92% / 83% (Omniglot), 76% / 50% (mini-ImageNet),
98% / 84% (CelebA,! = 4) and 98%/90% (CelebA,! = 8); after additional meta-training by benign
users, attack training/validation accuracy is still 50% / 50% (50 rounds, Omniglot), 69% / 42% (100
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign meta-training

(c) Backdoor classes also used in benign fine-tuning

Fig. 4. Benign meta-training a"er a!acks on
Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign meta-training

(c) Backdoor classes also used in benign fine-tuning

Fig. 5. Benign meta-training a"er a!acks on
mini-ImageNet

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign meta-training

(c) Backdoor classes also used in benign fine-tuning

Fig. 6. Benign meta-training a"er a!acks on CelebA
(! = 4)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 7. Benign meta-training a"er a!acks on CelebA
(! = 8)

rounds, mini-ImageNet), 83% / 74% (100 rounds, CelebA,! = 4), and 91% / 86% (100 rounds, CelebA,
! = 8).
Experiment 1(c). Finally, we investigate the case where backdoor classes are present, with
correct labels, also during "ne-tuning (at meta-testing) at benign users; this is particularly relevant
since !ne-tuning should adapt the meta-model to these examples. Results are in Figs. 4c, 5c, 6c
and 7c: after the attack (Round 2), meta-testing accuracy is still greater than 98% (Omniglot), 50%
(mini-ImageNet), and 85% (CelebA,! = 4, 8); however, attack training/validation accuracy drops
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 8. Benign fine-tuning (- = 0.001) a"er a!acks on
Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 9. Benign fine-tuning (- = 0.001) a"er a!acks on
mini-ImageNet

to 90% / 75% (Omniglot), 65% / 32% (mini-ImageNet), 95% / 76% (CelebA, ! = 4), and 90% / 79%
(CelebA,! = 8); after additional meta-training by benign users, we observe further drops to 40% /
40% (50 rounds, Omniglot), 55% / 25% (100 rounds, mini-ImageNet), 69% / 60% (100 rounds, CelebA,
! = 4), and 73% / 68% (100 rounds, CelebA,! = 8).

Overall, we observe that backdoor attacks are: (1) more successful on the attack training set
(especially for mini-ImageNet), as expected; (2) similarly successful when benign users use correctly-
labeled backdoor images for meta-training; (3) considerably less successful when !ne-tuning also
includes correctly-labeled backdoor images. Nonetheless, it does not appear possible to rely only
on additional meta-training to remove backdoor attacks. In our next set of experiments, we explore
whether additional "ne-tuning (in meta-testing episodes) can remove the attack by leveraging the
ability of meta-models to quickly adapt to a speci!c task. We stop meta-training after the one-shot
attack (Round 2) and start !ne-tuning at each benign user using only correctly labeled examples.
Experiment 2. We use the same learning rate - as Experiment 1, but run + = 500 (10× more)
iterations of !ne-tuning in Round 2 (right after the attack). Results are in Fig. 8 (Omniglot), Fig. 9
(mini-ImageNet), Fig. 10 (CelebA, ! = 4, ( = 5), Fig. 11 (CelebA, ! = 4, ( = 15), and Fig. 12
(CelebA, ! = 8, ( = 5) with a column for each user and a row for each use case of correctly
labeled backdoor examples: (a) not used, (b) used only during pre-training, (c) used also during
!ne-tuning. Additional "ne-tuning is also unsuccessful at removing the attack: for Omniglot, both
main-task accuracy (purple line) and meta-testing accuracy (black line) are above 99% for all
users. Backdoor accuracy is above 80% for all users when backdoor classes are not present during
!ne-tuning (Figs. 8a and 8b); when backdoor classes are present (Fig. 8c), attack accuracy drops
slightly for all users, and it is gradually reduced during !ne-tuning (≈ 10% after 500 iterations).
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 10. Benign fine-tuning (- = 0.0004) a"er a!acks
on CelebA

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 11. Benign fine-tuning (- = 0.0004, 15 shot, 5way)
a"er a!acks on CelebA

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 12. Benign fine-tuning (- = 0.0004,! = 8) a"er a!acks on CelebA

For mini-ImageNet, when backdoor classes are not present during !ne-tuning (Figs. 9a and 9b),
accuracy is ≈ 60% (main-task) and ≈ 50% (meta-testing) for all users. Backdoor accuracy for all
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users is ≈ 75% (attack training) and 50% (attack validation); however, when backdoor classes are
present during !ne-tuning (Fig. 9c), main-task accuracy is improved by 5% and attack accuracy is
reduced by 20% for all users.
For CelebA, we use three settings: (i) ! = 4,( = 5; (ii) ! = 4,( = 15; and (iii) ! = 8,( = 5.

Firstly, for the default setting (! = 4,( = 5), with the absence of backdoor classes during !ne-
tuning (Figs. 10a and 10b), accuracy is 86% (main-task), 74% (meta-testing), and backdoor accuracy
is 100% and 92% for attack training and validation, respectively. Similarly to the other datasets,
with the presence of the backdoor classes during !ne-tuning (Fig. 10c), ≈ 10% reduction of attack
accuracy (only validation) is noted. Secondly, using more examples (! = 4,( = 15) does not
have a substantial e"ect on these results. With no backdoor classes during !ne-tuning (Figs. 11a
and 11b), accuracy is 90% (main-task), 87% (meta-testing), and backdoor accuracy is 87% and 85%
for attack training and validation, respectively. Adding the backdoor classes (Fig. 11c) causes ≈ 5%
reduction in attack validation accuracy. Finally, increasing the number of clients (! = 8,( = 5) also
does not change these values signi!cantly, meaning that without using backdoor examples during
!ne-tuning (Figs. 12a and 12b), accuracy is 86% (main-task), 72% (meta-testing), and backdoor
accuracy is 100% and 92% for attack training and validation, respectively. Similarly to previous
cases, presence of backdoor examples (Fig. 12c) reduces the attack accuracy by ≈ 3%.
Based on the above results, we observe that (i) the presence of backdoor classes has limited

in$uence on attack accuracy (from Figs. 8c, 9c and 10c), (ii) increasing the number of shots can
enhance performance of a meta-model (both main-task and meta-testing accuracy) as a result
of using more examples for training, and (iii) increasing the number of clients causes a small
degradation in the main-task and meta-testing accuracy, since each user has a smaller fraction of
the data. Nonetheless, the attack is still e"ective and a defense mechanism is required.

4 MATCHING NETWORKS AS A DEFENSE MECHANISM
4.1 Defense Mechanism
Since defense mechanisms based on the analysis of updates received from users may violate privacy
and are not compatible with secure aggregation by the server, we propose a defense mechanism
applied locally by benign users. The idea is inspired by matching networks [57], a popular meta-
learning framework exploiting recent advances in attention mechanisms and external memories.

A matching network uses the output of an embedding model 5+ (6) to !nd similarities between
input examples and reference examples from a support set. This non-parametric design, with external
memories, allows matching networks to switch to a di"erent classi!cation task without supervised
!ne-tuning of 5+ . Speci!cally, given the trained embedding model 5+ (6) and a (-shot ) -way
!ne-tuning support set S = {(6, ,7, )}-.,=1, class 7̂ = argmax,=1,...,-. 8 (7, |6̂,S) is predicted where
8 (7, |6̂,S) estimates output probabilities for the test input 6̂ . A common model is 7̂ =

∑
, 9(6̂, 6, )7, ,

a mixture of one-hot output vectors 7, of the support set based on some attention mechanism
9(6̂, 6, ) [3, 14, 16, 42, 53, 57]. For example, 9(6̂, 6, ) can be a softmax over the cosine distance : (·, ·)
of the embeddings of the inputs 6̂ and 6, , i.e., 9(6̂, 6, ) = +/ (0! (1̂),0! (1" )) /

( ∑-.
%=1 +

/ (0! (1̂),0! (1 # )) ) . We
adopt a variant where (1) the output components of the embedding model 5+ are multiplied by
trainable gate variables 0 ! '2, % ! 1, and (2) cosine distances to reference examples of each class are
multiplied by a trainable factor 42 [24]. Our attention mechanism is thus a softmax over embedding
distances : ('2 ' 5+ (6̂), 5+ (6))42 .
Our defense mechanism requires local !ne-tuning to train the parameters '2 and 42 . Before

!ne-tuning the adapted matching network, we apply a random Glorot initialization #3 as # ′ =
;# + (1 − ;)#3 to reduce the in$uence of the poisoned model; then we train '2 and 42 for a
few iterations (with !xed # ′), and !nally train # ′, '2 and 42 jointly (training is performed as in
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Algorithm 2 Proposed Local Defense Mechanism for Federated Meta-Learning
Notations and Hyper-Parameters:
5 denotes feature extractor; ; is a coe#cient in the range of [0, 1]; #3 denotes Glorot initialization;
: (·, ·) measures cosine similarity; 9(·, ·) denotes the softmax output of the attention mechanism;
'2 and 42 are trainable parameters of the attention mechanism; ℓ/ is the cross-entropy loss function
1: procedure FLClientSecureFineTuning(#" )
2: # ← #"
3: #3 ← generate a random Glorot initialization based on the meta-model architecture
4: # ← ;# + (1 − ;)#3
5: 5+ ← apply # to the meta-model and keep only the feature extractor 5
6: Initialize the trainable parameters '2 , 42
7: Form a (-shot, ) -way !ne-tuning support set S = {(6, ,7, )}-.,=1 for the new task
8: for !ne-tuning iterations do
9: Select a random (6,7) ∈ S (See [57])
10: Feed 6 to 5+ and obtain the corresponding embedding output 5+ (6)
11: for each 3 = 1, . . . ,)( do
12: Feed 6, to 5+ and obtain the corresponding embedding output 5+ (6, )
13: Compute : ′(6, 6, ) " : ('2 ' 5+ (6), 5+ (6, ))42
14: for each 3 = 1, . . . ,)( do
15: Compute 9(6, 6, ) = +/

′ (1,1" ) /
( ∑-.

%=1 +
/′ (1,1 # ) )

16: Compute 7̂ =
∑
, 9(6, 6, )7,

17: (# ,'2 , 42 ) ← (# ,'2 , 42 ) − -∇ℓ/ (7, 7̂)

Glorot Random 
Initialization

Input Example

Embedding
Layers

Poisoned Model
(From FL Server)

Feature Extractor

Feature Extractor

Attention
Mechanism
(Measure of
Similarity)

Backprop
(Fine-Tuning)

Locally Trained 
Similarity Weights

Locally Trained 
Feature Extractor

Weights

Similarity with respect to
examples of each class

: Local Support Set (K-shot N-way)

Locally Trained 
Feature Weights

Fig. 13. An illustration of the proposed local defense mechanism against poisoning backdoor a!ack

[57, Sec. 4.1]). An illustration of the proposed adapted matching network defense mechanism is
depicted in Fig. 13, and a detailed description is presented in Algorithm 2, in which we de!ne
FLClientSecureFineTuning as a replacement for FLClientFineTuning in Algorithm 1. Note
that this "ne-tuning is not necessary for matching networks but provides a defense against backdoor
attacks, as it allows our method to remove anomalies introduced in the embedding model 5+ (6)
by the attacker. Intuitively, our adaptation of matching networks can defend against backdoor
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attacks because the attacker cannot modify the locally-trainable hyperparameters with poisoned
updates; in turn, these local hyperparameters control the classi!cation mechanism comparing an
input image with the support set of each class, and they can remove anomalies introduced by the
attacker. The attention mechanism is able to focus the learning process on important features of
the local support set, while ignoring unrelated features or patterns that are used by attackers as
backdoor keys.

4.2 Experiments
Experiment 3. In this set of experiments, we use the same settings as Experiment 2 (columns
correspond to clients and rows to use cases of correctly labeled backdoor examples; !ne-tuning
starts at epoch 2;! = 4 users; 5-shot 5-way) to validate our defense mechanism and to perform an
ablation study highlighting the importance of its attention model, noisy meta-model initialization,
and !ne-tuning procedure. It is notable that our defense mechanism is performed at each user
locally, and thus the total number of users,! , does not impact its e#cacy.
Experiment 3(a). Figures 14 to 16 illustrate results of our defense mechanism on Omniglot and
mini-ImageNet, respectively, using ; = 0.3. The proposed defense mechanism can successfully remove
backdoor attacks: when backdoor classes are not present in meta-testing (Figs. 14a, 14b, 15a and 15b),
attack accuracy drops to ≈ 20% (comparable to random assignment to one of the 5 classes) in a few
epochs, and reduced the attack e"ect from ≈ 100% to ≈ 50% (Figs. 16a and 16b); when backdoor
classes are present in meta-testing (Figs. 14c, 15c and 16c), attack accuracy signi!cantly drops
to ≈ 0% (Omniglot), ≈ 10% (mini-ImageNet), and ≈ 45% (CelebA) in a few epochs of !ne-tuning.
Notably, meta-testing accuracy for Omniglot (Fig. 14) is always above 96% after 50 iterations; in
contrast, meta-testing accuracy for mini-ImageNet (Fig. 15) and CelebA (Fig. 16) is ≈ 35% and
≈ 70%, respectively, lower than in Figs. 9 and 10. This suggests a limitation of matching networks;
other variants may overcome this limitation.
Experiment 3(b). Next, we report results of our defense mechanism on Omniglot (Fig. 17), mini-
ImageNet (Fig. 18), and CelebA (Fig. 19) using ; = 0.6. Note that larger ; implies less randomness
from Glorot initialization. The e"ects of backdoor attacks are removed in mini-ImageNet (Fig. 18):
main-task accuracy and meta-testing accuracy are similar to the case of ; = 0.3 (Fig. 15). Conversely,
for the CelebA dataset (Fig. 19), the attack is not removed (≈ 90%) while there is an enhancement
in the main-task and meta-testing accuracies (≈ 70%). Similarly to CelebA, the e"ects of backdoor
attacks cannot be removed in Omniglot for ; = 0.6; results for Omniglot with smaller values of ;
(0.4 and 0.2) are also reported in Fig. 20 and Fig. 21, respectively.

As expected, introducing more randomness (appropriately) can improve the e"ectiveness of
our defense mechanism; this is similarly observed in [32, 56] and, for di"erentially-private noise,
in [9, 15]. However, introducing too much randomness can damage both main task accuracy and
meta-testing accuracy due to the dominance of noise: as shown in Figs. 21a and 21b (; = 0.2),
main-task accuracy and meta-testing accuracy are 3% lower than in Figs. 20a and 20b (; = 0.4).
The estimation of an appropriate value of ; (or, equivalently, ratio between the norms of a trained
model and random initialization) is an interesting problem and part of our future e"orts.
Experiment 3(c). In this experiment, we provide results for benign supervised !ne-tuning after
the attack (similarly to Experiment 2 in Figs. 8 to 10) but introduce a random model initialization
with ; = 0.3, as in Experiment 3(a) (Figs. 14 to 16). The goal is to highlight the role of random
initialization (one component of our defense mechanism) without the use of matching networks.
Results are reported in Figs. 22 to 24. For Omniglot (Fig. 22), supervised !ne-tuning performs

similarly to our proposed !ne-tuning of adapted matching networks (Fig. 14) except for client 4
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 14. Benign fine-tuning of matching networks (- =
0.001, ; = 0.3) a"er a!acks on Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 15. Benign fine-tuning of matching networks (- =
0.001, ; = 0.3) a"er a!acks on mini-ImageNet

(a) Backdoor examples not used by benign users (b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 16. Benign fine-tuning of matching networks (- = 0.0004, ; = 0.3) a"er a!acks on CelebA

in case (c). For mini-ImageNet, attack accuracy can only be reduced to 30% through supervised
!ne-tuning (Figs. 23a and 23b), while the use of adapted matching networks (Figs. 15a and 15b)
can reduce it to 20%. Similarly, for case (c), attack accuracy can only be reduced to 20% through
supervised !ne-tuning (Fig. 23c), while the use of adapted matching networks (Fig. 15c) can reduce it
to as low as 10% (the initial attack accuracy before the backdoor attack). This shows the importance
of using matching networks in addition to a random initialization to remove the e"ects of backdoor
attacks, particularly when benign examples in backdoor classes are available during !ne-tuning.
For CelebA, attack accuracy is reduced to 20%∼30% (with respect to ≈ 45% in Fig. 16); however,
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 17. Benign fine-tuning of matching networks (- =
0.001, ; = 0.6) a"er a!acks on Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 18. Benign fine-tuning of matching networks (- =
0.001, ; = 0.6) a"er a!acks on mini-ImageNet

(a) Backdoor examples not used by benign users (b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 19. Benign fine-tuning of matching networks (- = 0.0004, ; = 0.6) a"er a!acks on CelebA

main-task and meta-testing accuracy are decreased from above 70% to ≈ 60%. This may suggest
that, for a complex dataset with high inter-class similarity, a more powerful attention mechanism
and feature extraction model are needed in order to better distinguish classes with similar feature
patterns.
Experiment 3(d). In this experiment, we evaluate whether additional local meta-training before
!ne-tuning (using private data of a user) can improve main-task accuracy and meta-testing accuracy
of our defense mechanism on mini-ImageNet and CelebA (where accuracy is lower than Omniglot).
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 20. Benign fine-tuning of matching networks (- =
0.001, ; = 0.4) a"er a!acks on Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 21. Benign fine-tuning of matching networks (- =
0.001, ; = 0.2) a"er a!acks on Omniglot

We report results after running % = 100 (Figs. 25 to 28) or % = 1000 (Figs. 29 to 32) episodes
of additional local meta-training. We note that: (i) results shown in Figs. 25 to 32 either are not
signi!cantly di"erent from the case without extra local meta-training (Figs. 22 to 24 for supervised
!ne-tuning, and Figs. 14 to 16 for !ne-tuning of our defense mechanism) or in the cases with
lower attack accuracy, the model performance is degraded, suggesting that additional local meta-
training does not improve main-task accuracy nor meta-testing accuracy; and (ii) supervised
!ne-tuning performs similarly to !ne-tuning of adapted matching networks, except for Fig. 25a,
in which main-task accuracy and meta-testing accuracy drop to 20% (random guessing over 5
classes) at the beginning, with high attack accuracy thereafter. This suggests that, by applying
random initialization parameters (with additional local training), supervised !ne-tuning can behave
arbitrarily and may not guarantee removal of backdoor attacks, while !ne-tuning of adapted
matching networks performs in a more robust manner.
Experiment 3(e). In this experiment, we apply existing defense mechanisms against poisoning
backdoor attacks for conventional federated (supervised) learning to federated meta-learning, to
understand how well a conventional global/centralized defense would work (i.e., converge during
training and be robust against backdoor attacks) in federated meta-learning, where clients train their
models on di"erent tasks. Existing global defense mechanisms include Krum [7], coordinate-wise
median [62], trimmed mean [62], and K-means [52]. We select the coordinate-wise median defense
because it represents an established but recent baseline with proven convergence properties, it
does not have constraints on the number of benign or malicious clients, and it performed well in
our experiments. We compare coordinate-wise median with our proposed local defense mechanism
from the aspects of (i) model performance degradation (due to the defense), (ii) e#cacy of attack
removal, and (iii) privacy. We perform experiments for coordinate-wise median on mini-ImageNet
and CelebA datasets by following exactly the same settings (pre-training, then a one-shot attack
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 22. Benign fine-tuning (- = 0.001, ; = 0.3) a"er
a!acks on Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 23. Benign fine-tuning (- = 0.001, ; = 0.3) a"er
a!acks on mini-ImageNet

(a) Backdoor examples not used by benign users (b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 24. Benign fine-tuning (- = 0.0004, ; = 0.3) a"er a!acks on CelebA

using boosting factor 2 = 3 at Round 1, followed by benign federated meta-training) and the same
hyper-parameters as used in previous experiments.

Our results are reported in Figs. 33 and 34. We note that (i) for both mini-ImageNet and CelebA
datasets, coordinate-wise median yields exactly the same model performance as federated averaging
(for both main-task accuracy and meta-testing accuracy) during pre-training (which implies conver-
gence of coordinate-wise median in federated meta-learning), and (ii) coordinate-wise median can
prevent the one-shot attack with only a minor reduction in accuracy. This is not surprising, since
the boosted update sent by the attacker has scalar components with a much greater magnitude (due
to the boosting factor) and it is thus entirely discarded by coordinate-wise median. In contrast, our
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 25. Benign local meta-training (/ = 0.1, % = 100
episodes) and fine-tuning (- = 0.001) a"er a!acks on
mini-ImageNet (; = 0.3)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 26. Benign local meta-training (/ = 0.1, % = 100
episodes) and fine-tuning of matching network (- =
0.001) a"er a!acks on mini-ImageNet (; = 0.3)

local defense mechanism (Figs. 15 and 16) results in an accuracy reduction of ≈ 20% (mini-ImageNet,
where attacks are completely eliminated) or ≈ 10% (CelebA, where attack accuracy is reduced
by 50%). However, coordinate-wise median must be able to inspect model updates from all clients,
while our defense mechanism can be applied locally by each client using only its training data
(and, during federated meta-training, secure aggregation can be used to hide model updates from
the server). Since training data can be inferred from model updates [30, 63, 64], coordinate-wise
median does not preserve user privacy. This is an important distinction with respect to our defense
method, where a reduction in accuracy is accepted in order to preserve privacy.

4.3 Summary
We presented a successful backdoor attack on federated meta-learning and evaluated its impact on
three di"erent datasets. Our results show that this type of attack is persistent and users cannot rely
on longer !ne-tuning and benign meta-training to remove its e"ects.

We evaluated defense mechanisms to overcome backdoor attacks, namely further meta-learning,
longer !ne-tuning, and our proposed approach of using matching networks. While further meta-
learning and longer !ne-tuning have minor e"ects on meta-testing accuracy, they remove the attack
only partially. On the other hand, matching networks perform substantially better in removing the
attack in all three datasets, but this approach degrades the main-task and meta-testing accuracy for
more complex datasets such as mini-ImageNet and CelebA; therefore, a better design of the attention
mechanism is needed for such datasets, to defend against backdoor attacks while maintaining
model performance. Moreover, in our experiments, we demonstrate that matching networks can be
an important component in defending against backdoor attacks in federated meta-learning, but also
that further improvements are needed to address the degradation in main task accuracy, especially
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 27. Benign local meta-training (/ = 0.1, % = 100
episodes) and fine-tuning (- = 0.0004) a"er a!acks on
CelebA (; = 0.3)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 28. Benign local meta-training (/ = 0.1, % = 100
episodes) and fine-tuning of matching network (- =
0.0004) a"er a!acks on CelebA (; = 0.3)

for CelebA, which exhibits high similarity among its classes. We also observe that, with many
similar classes, the choice of target and backdoor classes becomes crucial: if these are di"erent from
each other (e.g., di"erent genders in CelebA), it is likely for the examples of the backdoor class to
be more similar to those of other classes included in meta-testing tasks, instead of the target class,
therefore reducing the accuracy of the attack.

5 RELATEDWORK
Poisoning backdoor attacks [6, 11, 20, 26, 31] were shown to be e"ective on di"erent types of
machine learning models. In [2, 5, 18, 56] and [8], the authors investigate such attacks in the
context of federated supervised learning and federated meta-learning, respectively, and illustrate
the e"ectiveness and stealthiness of the attacks. Given the requirement that users of federated
learning (FL) share only updates of the model rather than training data [39, 43, 61], techniques
such as certifying that training examples are correctly classi!ed [34, 47], detecting whether a given
input contains a backdoor trigger [25], and performing activation clustering at training time to
determine whether a model has been poisoned by malicious inputs [17], are not applicable in FL.
Thus, defense in FL remains a challenging problem.

Several defense mechanisms against poisoning attacks in federated learning have been proposed;
however, most of these defense mechanisms rely on a third party (typically, the FL server) to
examine each FL client’s updates. In [54] and [50], authors estimate the distribution of the training
data to suppress the in$uence of outliers, assuming that training datasets of di"erent users are i.i.d.
with bounded variance. The same assumptions are made in [7, 12, 29, 44, 52, 60, 62], where outliers
are detected and removed according to slightly di"erent measures taken from the distribution of
benign values (benign users were assumed to be the majority). Even when benign users send i.i.d.
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 29. Benign local meta-training (/ = 0.1, % = 1000
episodes) and fine-tuning (- = 0.001) a"er a!acks on
mini-ImageNet (; = 0.3)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 30. Benign local meta-training (/ = 0.1, % = 1000
episodes) and fine-tuning of matching network (- =
0.001) a"er a!acks on mini-ImageNet (; = 0.3)

updates to the parameter server, [2, 4, 5, 27] present successful backdoor attacks, circumventing
the defenses suggested above. Further improvements in the literature on defense mechanisms
include relaxation of the i.i.d. assumption, as proposed in [37, 38, 48, 59]. In addition, [46] presented
a defense at FL server by adjusting the global learning rate based on the sign information of
clients’ updates, per dimension and per round. Furthermore, [1] proposes a feedback loop into
the FL process to integrate the views of all FL clients when deciding whether a particular model
update is benign or malicious. And, [32] proposes a defense which bounds gradient magnitudes and
minimizes di"erences in orientation over all FL clients’ updates. Similarly, [58] suggests limiting
magnitudes of model weights and !ne-tuning (based on local data) of pruned model (based on
ranking vote or majority vote by clients) to mitigate backdoor attacks. More detailed surveys of
poisoning backdoor attacks and the associated defense mechanisms in federated learning can be
found in [22, 23, 40].
We note that the above-mentioned defenses rely on knowledge of distributions of gradients or

model parameters over clients’ local updates. It is worth mentioning that it has been demonstrated
in [30, 63, 64] that private training data could be leaked from training updates of ML models,
and therefore, in federated learning, secure aggregation [19, 49] is proposed to protect privacy
by preventing any potentially untrustworthy third party (any FL server or any other FL client)
from accessing any of an FL client’s updates. The above-mentioned defense methods that rely on
examining or acquiring information from clients’ updates could result in privacy hazards and are
not compatible with secure aggregation. To the best of our knowledge, e"ects and defenses of
poisoning backdoor attacks in federated meta-learning have not been explored in the literature.
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(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 31. Benign local meta-training (/ = 0.1, % = 1000
episodes) and fine-tuning (- = 0.0004) a"er a!acks on
CelebA(; = 0.3)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 32. Benign local meta-training (/ = 0.1, % = 1000
episodes) and fine-tuning of matching network (- =
0.0004) a"er a!acks on CelebA (; = 0.3)

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 33. Benign meta-training a"er a!acks on mini-
ImageNet for coordinate-wise median defense method

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 34. Benign meta-training a"er a!acks on CelebA
for coordinate-wise median defense method

Our proposed method does not require i.i.d. updates from di#erent users, nor does it require analysis of
updates by the parameter server.
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6 CONCLUSIONS
We showed that one-shot poisoning backdoor attacks can be very successful in federated meta-
learning, even on backdoor class examples not used by the attacker and after additional meta-
learning or long !ne-tuning by benign users. We presented a defense mechanism based on matching
networks, compatible with secure update aggregation at the server and e"ective in eliminating the
attack, but with some main-task accuracy reduction. Our future e"orts will focus on this limitation.
From the perspective of the broader impact of our work, we believe that an e"ective user-end
defense mechanism can guard against backdoor attacks while preventing unexpected abuse due to
privacy leaks. Therefore, our proposed approach can prevent attacks on machine learning models
that are developed jointly by multiple entities as well as prevent privacy-related abuse. Allowing
multiple entities to jointly develop machine learning models while preserving privacy is critical
to the broader impact of machine learning applications in settings (e.g., healthcare) where data is
scarce and sensitive.
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APPENDIX
In this appendix, we report results of using ProtoNet [53] instead of Matching Networks to locally
defend against backdoor attacks on the Omniglot and the CelebA datasets. ProtoNet and Matching
Networks are typically considered mechanisms belonging to the same family; however, they di"er
in the similarity metrics used (Euclidean distance versus cosine similarity). Brie$y, based on our
experiments, we observe that ProtoNet performs worse than Matching Networks when Glorot
initialization is adopted to help remove backdoor e"ects.

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 35. Benign fine-tuning of ProtoNet (- = 0.001, ; =
0.3) a"er a!acks on Omniglot

(a) Backdoor examples not used by benign users

(b) Backdoor classes used in benign pre-training

(c) Backdoor classes used also in benign fine-tuning

Fig. 36. Benign fine-tuning of ProtoNet (- = 0.0004,
; = 0.3) a"er a!acks on CelebA

The experiments for ProtoNet follow the same settings and hyperparameters used in Experi-
ment 3(a); results are reported in Figs. 35 and 36. Compared with results in Figs. 14 and 16, ProtoNet
performs 5%∼45% worse at removing attacks on the Omniglot dataset, although it is ≈ 10% better
for the CelebA dataset; notably, main task and meta-testing accuracy are considerably worse with
ProtoNet on both datasets (≈ 7% lower for Omniglot and about 15%∼20% lower for CelebA). Thus,
we believe that Matching Networks are more robust against noise and potentially a better candidate
for defending against backdoor attacks.
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