
Log-Based CRDT for Edge Applications
Nazmus Saquib, Chandra Krintz, Rich Wolski

Department of Computer Science
University of California, Santa Barbara

{ nazmus, ckrintz, rich} @cs.ucsb.edu

Abstract—In this paper, we investigate extensions for Conflict-
Free Replicated Data Types (CRDTs) that permit their use in
failure-prone, heterogeneous, resource-constrained, distributed,
multi-tier (cloud/edge/device) cloud deployments such as the
Internet-of-Things (IoT), while addressing multiple CRDT limi-
tations. Specifically, we employ distributed logging to implement
robust, strong eventual consistency of replicas. Our approach
also enables uniform reversal of operations and precludes the re-
quirement of exactly-once delivery and idempotence imposed by
operation-based CRDTs. Moreover, it exposes CRDT versions for
use in debugging and history-based programming. We evaluate
our approach for commonly used CRDTs and show that it enables
higher operation throughput (up to 1.8x) versus conventional
CRDTs for the workloads we consider.

Index Terms—CRDT, data structure, replication, strong even-
tual consistency I. INTRODUCTION

The present cloud computing paradigm is becoming
increasingly ubiquitous and often employs a multi-tier
(cloud/edge/device) architecture. Many modern conventional
cloud deployments not only require efficient computation and
storage solely on the cloud tier, but also seamless integration
of computational/storage concepts on edge and device tier. A
prime example of these are edge applications, where the edge
servers must communicate with high-end cloud servers while
overseeing Internet of Things (IoT) devices at the same time.
Unfortunately, the same technologies used to guarantee failure
resilience and robustness on the cloud do not translate directly
to the edge/device layer due to resource-constraints and un-
stable network connectivity. Thus, new programming support
and data abstractions are needed to manage this complexity
and automatically enhance the robustness and efficiency of
multi-scale cloud deployments.

Toward this end, we introduce Log-Structured CRDTs
(LSCRDTs) – a new form of Conflict-Free Replicated Data
Types [1]–[3] that is better suited for use in multi-tier cloud
deployments than its antecedents. In general, CRDTs enable
program data types to be distributed, shared (concurrently
modified), replicated, and made consistent (via clever update
merging). Specifically, CRDT replicas employ Strong Eventual
Consistency (SEC) [1], which guarantees that two replicas
reach the same state if they receive the same set of updates
(possibly in different orders). These features facilitate CRDT
robustness, high availability, and coordination avoidance [4],
which makes them suitable for failure prone settings.

However, many existing CRDT designs impose limitations
that make them difficult to use in multi-tier cloud deployments.
In particular, previous CRDT formulations do not support
operation reversal – the process of reverting a data type to

a previous state for operations that are not executed.1 They
do not easily support non-commutative operations, and (for
operation-based CRDTs) they cannot tolerate out of order
operation delivery.

LSCRDT uses distributed logs to overcome these limita-
tions. As logs are append-only, our approach is able to use
them to further reduce the coordination required to merge in-
consistent replicas. LSCRDT guarantees that replicas execute
operations in the same order, irrespective of data type thus
removing the need for commutability. LSCRDTs also avoid
the complex networking required to guarantee exactly-once,
causal delivery of operations required by operation-based
CRDTs. Finally, LSCRDT provides programmatic access to
data structure versions, which is useful for debugging, history-
based programming [6] and data replay and repair [7].

In this paper, we describe the design and implementation of
LSCRDT and provide a comparative study of LSCRDT and
δ-CRDT [8] – a popular category of CRDT that combines
the advantages of a wide range of CRDT implementations.
We evaluate latency and throughput using three, extensively
studied, CRDT data types – register, counter, and set [9]–[13].
Our results show that, apart from providing the aforementioned
properties, LSCRDT outperforms δ-CRDT in terms of write
latency. Moreover, for update-heavy workloads (typical of
sensor-driven edge applications), LSCRDT exhibits up to 1.8x
higher throughput than δ-CRDT.

II. RELATED WORK

Conflict-Free Replicated Data Types (CRDTs) are abstract
data types that provide a principled approach for the asyn-
chronous reconciliation of divergent data resulting from con-
current updates [1]. CRDTs provide strong eventual consis-
tency (SEC), which guarantees that whenever two replicas
receive the same set of updates, they reach the same state.
Broadly, there are two types of CRDTs: state-based and
operation-based (or op-based) [1]. In state-based CRDTs, an
operation is executed on the local replica state. A replica peri-
odically propagates its state to other replicas to achieve consis-
tency. A disadvantage of this approach is the communication
overhead associated with shipping the full state, which can be
large. In op-based CRDTs, an operation is executed on the
local replica and the operation is asynchronously propagated
to other replicas. Although operation-based CRDTs do not

1Note that operation reversal is distinct from the undo operation [5], which
may have side effects.

communicate state, they require exactly-once causal broadcast.
Delta State CRDTs (δ-CRDTs) [8] combine the advantages of
state-based and op-based CRDTs. Like state-based, δ-CRDTs
can tolerate unreliable networks and, in particular, do not
require exactly-once causal broadcast as a communication
network property. However, like the op-based approach, they
do not require that the full replica state be communicated, but
rather, they communicate only state changes or “deltas”.

Most CRDT studies are evaluated using the foundational
data types, register, set, and counter [9]–[15]. CRDTs for
JSON data [16] allow programmers to create custom data
types by nesting maps and lists into new CRDTs. Although
this approach adds a new dimension to the foundational
data types, it is still insufficiently generic (e.g., we can not
create a self-balancing tree with JSON). Other works dis-
cuss replicated trees capable of executing arbitrary concurrent
move operations [17], where a log of move operations is
maintained, possibly involving rollback and replay. As we
describe in Section VI, LSCRDT uses a similar approach.
Strong eventually consistent replicated objects (SECROs) [18]
are general-purpose data types that implements SEC without
placing any restriction on operations, i.e., operations can
be non-commutative. SECROs find a conflict-free ordering
of concurrent operations depending on application-specific
information. However, to ensure that the application-specific
conditions are not violated, SECROs at times must give up
on a computation path and backtrack to a previous state, thus
imposing significant computational load.

III. MOTIVATION

In this section, we motivate the integration of logs and
general purpose, operation-based CRDTs for use at the edge.
Many edge applications do not require strong consistency
(e.g., smart locks [19], energy management [20], temperature
prediction [21], etc.) and can choose a weaker consistency
model in favor of increased availability, lower coordination
overhead, and better energy efficiency. Due to their ability
to provide these advantages, CRDTs are suitable for many
edge deployments. Although CRDTs are not new, they have
been employed mostly for collaborative editing [22]–[26].
Edge deployments impose new environmental characteristics
that past research does not fully address. Specifically, edge
applications often coordinate among devices deployed in an
environment with poor and unreliable network connectivity.
They consist of heterogeneous, resource-constrained devices
(with regards to computation, space, and power). Moreover,
data-driven applications also demand data resilience, availabil-
ity, and the ability to audit data lineage. Finally, the ubiquity
of edge applications makes a generalized abstraction approach
to storing and manipulating data desirable [27].

Past works attempt to address different aspects of these
challenges, but none provide a holistic approach within a
single system. For example, δ-CRDT can tolerate unreli-
able networking but does not provide a general approach to
merge/join deltas (e.g., joining deltas for counters is different
than that for sets). Moreover, in many cases, δ-CRDTs must

resort to using a variant of the data type rather than the original
one (e.g., using a 2P set instead of a conventional set).

LSCRDT can both tolerate unreliable networking and man-
age arbitrary data type without the need for data type-specific
join algorithm. In LSCRDT, each replica logs the executed op-
eration along with a unique version stamp (allowing detection
of duplicates) in causal order. Each replica periodically reads
from other replicas’ logs in log order (e.g. similar to what is
done in Kafka [28] logs: each replica reads monotonically in-
creasing offsets). LSCRDT maintains causal order by ensuring
log order is maintained during reads.

Logs also provide immutability, which can be used to aid
data lineage tracking and versioning [29], data availability
and robustness, and application debugging. For example, ef-
ficient versioning is critical for temporal queries (typical in
stream-based edge applications), and for operation reversal
and rollback, and replay of applications and analyses, in
the face of errors and malfunctioning sensors and services
(which are common occurrences in large scale multi-tier
IoT deployments) [7]. Moreover, logs aid interoperability of
heterogeneous devices via the use of a simple interface.

Finally, our LSCRDT design is operation based to facilitate
generality (i.e. to be agnostic to the data structure type and
operation implementation). Many CRDTs require type-specific
merge/join algorithms [2]. LSCRDT instead forms a consistent
order of operations, irrespective of the underlying data type.
As we will see in Section VI, agreeing upon a consistent order
of operation is not type-specific in LSCRDT, making it more
generic and extensible than existing approaches.

IV. SYSTEM MODEL AND OVERVIEW

We consider a distributed system ofN replicas. Each replica
is assigned a node ID from a set S. We represent a replica as
X s , s S∈ . The underlying network is asynchronous and unre-
liable; messages may be dropped, duplicated, or reordered. The
network may partition and eventually recover. Each replica
has local durable storage. We assume replicas may face non-
byzantine failures; a replica may crash but will have access to
the information recorded in durable storage upon recovery.

Over time replicas may diverge from each other due to
update requests from clients (i.e., processes that can mutate
or query a data type by sending requests to any replica). To
reconcile this divergence each replica periodically performs a
round of merge steps with the other replicas. A merge step
is always between a pair of replicas. Therefore, in a round,
there are at most N − 1 merge steps. In a merge step, one
replica (known as the reader) reads entries in the log of
operation from another replica (known as the source). The goal
of the merge step is for the reader to identify and incorporate
operations “unknown” to it (i.e. not previously executed at
the reader) that the source has already executed. The reader
ensures that the causality relationship among the operations
is retained while creating this merged list of operations and
subsequently executing them. We present the details of the
LSCRDT merge step in Section VI. Note that during a merge
step, a reader may have to rollback some operations and

re-execute them along with new operations. As long as the
replicas execute operations in the same log order, replicas will
converge irrespective of operation commutativity, similar to
the replicated state machine concept used in Raft [30].

Although our approach requires log rollback to maintain the
order of operations, it does not require any locking mechanism
among replicas to agree upon a unique order of operation
execution. This order can be determined from the timestamped
operations of the source as described in Section VI. Any
partial order formed during merge steps maintains the causal
order observed within the total order. Rollbacks provide two
capabilities to LSCRDTs: (i) implementing arbitrary non-
commutative data types and (ii) maintaining a global version
history consistent among all replicas. Note that as an optimiza-
tion (not explored in this paper) if the underlying data type
is commutative and a global version history is not needed
LSCRDT can store state deltas (like δ-CRDTs) and, thus,
remove rollbacks (and their performance impact) altogether.

Various algorithms have been proposed to maintain order
in list or sequence CRDTs such as Logoot [22], LSEQ [23],
RGA [24], Treedoc [31], and WOOT [32]. Our method to
maintain order among logs of operations is an adaptation
of [16], which is based on RGA [24]. This approach provides
us a uniform way to create a replicated data type irrespective of
the operations supported by it; once we establish a common
order of operations among all the replicas our system will
converge. Although RGA-based approach has been used in
other data types such as JSON [16], the use of logs introduces
a new performance challenge – avoiding log scans. We explain
how we can avoid full log scans in Section VI.

V. DATA TYPES USING LOGS

We next explain how LSCRDTs are stored using logs. We
overview the replication process in Section VI. We choose
three data types widely studied in CRDT literature for this
exposition: registers, counters, and sets [9]–[13]. Our approach
is agnostic of the underlying log storage system. We assume
entries in a log can be addressed by monotonically increasing
sequence numbers (e.g. offsets in the case of Kafka [28],
LSNs in the case of Facebook LogDevice [33], and sequence
numbers in the case of CSPOT [34]). We further assume the
log storage system exposes functionalities (i) to create logs
with a given name, (ii) to write to a specified log and get the
sequence number corresponding to the write on success, (iii)
to read from a specified log at a given sequence number, (iv)
to retrieve the latest sequence number of a specified log, and
(v) to trim the log up to a specified sequence number i.e. all
entries with greater sequence numbers are removed. As long
as these criteria are met, we can use any log storage system.

LSCRDTs tag each operation performed on a data type
with a version stamp (Lamport timestamp [35]), which is a
concatenation of a counter and a node ID drawn from S.
We represent the counter and node ID of a version stamp vs
as vs.counter and vs.nodeID , respectively. We say version
stamp vsa is less than version stamp vsb (vsa < vs b) if (i) the
counter of vsa is less than that of vsb, or (ii) both the counters

are same but node ID of vsa is less than that of vsb. When
replica X s executes a new operation in response to a client
request, it tags it with version stamp vs (vs.nodeID = s) ,
which is greater than all other version stamps it has observed
so far (operations that happened before). Thus if operation
opa happens before opb, vsa < vs b where vsa and vsb are
the version stamps of operations opa and opb, respectively.

Version stamps of concurrent operations can be ordered
arbitrarily but deterministically. Throughout the rest of the
paper, we use version stamps to refer both to the version
stamp itself and to the operation it tags. The intended use will
be clear from the context. We say vs is an operation of X s

(alternatively, X s is the originator of vs) if vs.nodeID = s .

A. Register

The register data type maintains a single value (e.g. an
integer, an object, etc.). It supports two operations, assign to
set a value and retrieve to get a value. We introduce OpLog to
store all the update operations, in this case, assigns. There is
one OpLog per replica. We represent the OpLog of the replica
X s as OpLog(X s). As all the update operations are recorded
in the OpLog, a data type can be reconstructed up to a certain
version if required. Replicas can read each other’s OpLogs to
create a merged list of all the update operations. As the retrieve
operations do not update the register, we do not have to record
those. Each entry in an OpLog is the tuple (vs,op,val). vs is
the version stamp of the operation, op is the type of update
operation (in case of register there is only one, i.e., assign),
and val is the operand of op.

To execute an assign operation a replica writes the appro-
priate entry to its OpLog. For example, suppose a request to
assign the value 5 to a register comes to X A . We further
assume the greatest counter value among all the version
stamps X A has seen so far is 2. Then X A writes the entry
(3A, assign, 5) to its OpLog to execute the operation. To
respond to a retrieve request, X A simply returns the val field
of the last entry in its OpLog. If some previous version stamp
vsi is supplied as an argument of value, the replica can search
the OpLog for the entry with the vs field equal to vsi .

To make this search efficient, LSCRDT maintains an in-
memory map from version stamps to sequence numbers in
OpLog. This approach has been used in other log-based
systems as well, such as Riak Bitcask [36]. Note that this
is an optimization and not necessary for the correctness of the
system. This in-memory map is populated at startup and can
be reconstructed at any time. Any update to the register is first
appended to the log and then a map entry is created.

B. Counter

The counter data type supports increment (inc), decrement
(dec), and retrieve operations. Like register, a counter also has
an OpLog. However, it maintains one additional field per entry
for the cumulative sum to avoid log scans while computing
the counter value corresponding to a version. For example,
assuming the initial value of a counter is 0, if replica A first
increments the counter by 5, next decrements the counter by
2, and finally increments it by 1, the entries of the OpLog will

be (1A, inc, 5, 5), (2A, dec, 2, 3), and (3A, inc, 1, 4). To find
the latest value of the counter, the replica can now return the
value in the last field of the last entry in the OpLog. Similar
to register, an in-memory map can expedite the response to a
retrieve request corresponding to an earlier version.
C. Set

Our set data type supports add and remove update op-
erations and in and all read operations. Note that although
CRDTs resort to using some variant of sets such as two-
phase set (2P-set [1]), grow-only set (G-set [2]) etc; LSCRDT
set works like a conventional set due to its capability to
find a consistent ordering of non-commutative operations. The
structure of OpLog of set is similar to that of register. However,
set is different from register and counter in that each version
is a collection of elements rather than a single value. Note that
to reconstruct a set up to the latest version, we must scan the
OpLog from the top. To avoid such expensive operations, we
cache the elements in the set after every cp interval number
of operations using a second log. To make the search for the
latest version fast, we also keep a copy of the latest operations
that have not yet been checkpointed in memory. This in-
memory list of operations is purged every time we checkpoint
our progress. Therefore, we have at most cp interval − 1
operations cached in memory at a time (which users can set).
Setting the cp interval to a low value makes queries faster but
uses more space. Doing so may also decrease write throughput
due to more frequent checkpointing.

Note that to query a previous version of the set, we might
need to access OpLog. For example, suppose cp interval is
set to 100, we have already executed 400 operations and we
want to query the 257th version of the set. In this case, we first
need to read the entry that was checkpointed after the 200th
operation and then read the 57 following operations from the
OpLog to reconstruct the desired version of the set. A version
of a data type might change due to updates from other replicas
(cf. Section VI). In that case, the checkpoint that contains that
version and the following checkpoints must be overwritten.

VI. MERGE STEP

Many data types have operations that do not commute (e.g.,
add and remove of the same element in a set). To achieve a
consistent state for replicated data types, we must impose a
total order on the execution of operations [18]. An alternative
to imposing a total order for arbitrary non-commutative data
types is to switch between stronger and weaker form of
consistency [37]–[40]. However, as discussed in Section IV, a
total order also helps us maintain a consistent version history
among all replicas. In our work, we model the history of
operations (OpLog) as a list CRDT and use an adaptation
of the method used in [16] which is based on RGA [24] for
maintaining order in the list i.e. the OpLog, as explained next.

When a replica X A executes an operation as a direct
request from a client, it appends the operation at the end of
OpLog(X A). Apart from direct client requests, replicas also
execute operations that are unknown to them from other repli-
cas’ OpLogs. Assume vsnew is an operation in OpLog(X B)

OpLog(X A)
seq vs
1 1A
2 2A

OpLog(X B)
seq vs
1 1A
2 2B

OpLog(X A)
seq vs
1 1A
2 2B
3 2A

OpLog(X B)
seq vs
1 1A
2 2B

OpLog(X A)
seq vs
1 1A
2 2B
3 2A

OpLog(X B)
seq vs
1 1A
2 2B
3 2A

after X B syncs with X Aafter X A syncs with X Binitial state

(a) X A merges with X B then X B merges with X A .

OpLog(X A)
seq vs
1 1A
2 2A

OpLog(X B)
seq vs
1 1A
2 2B

OpLog(X A)
seq vs
1 1A
2 2A

OpLog(X B)
seq vs
1 1A
2 2B
3 2A

OpLog(X A)
seq vs
1 1A
2 2B
3 2A

OpLog(X B)
seq vs
1 1A
2 2B
3 2A

after X A syncs with X Bafter X B syncs with X Ainitial state

(b) X B merges with X A then X A merges with X B .

Fig. 1: Change in OpLogs as replicas merge with each other.
We notice the two different sequence of merge steps results
in the same consistent state at the end.

that X A has not yet executed. We denote the operation
immediately preceding vsnew in OpLog(X B) as vspred . As
the intention is to maintain a consistent order of operations,
X A tries to place vsnew in its own OpLog after vspred as well.
Therefore, to incorporate the unknown operation vsnew , X A

first locates vspred in OpLog(X A). Let us denote the operation
in OpLog(X A) immediately succeeding vspred as vssucc .
That is, vsnew and vssucc are concurrent operations. Now
X A inserts vsnew in OpLog(X A) immediately after vspred

if vsnew > vs succ . Otherwise, X A skips over all contiguous
version stamps that are greater than vsnew and then places
vsnew . Of course, it might happen that vspred is not present
in X A to begin with. In that case vspred must be inserted
first. This implies that X A should start reading OpLog(X B)
from the earliest sequence number that contains an operation
unknown to it. We express this whole procedure of inserting
operation vsnew after vspred as insert(vs new , vspred).

To illustrate how insert works, we refer to the OpLogs in
Figure 1 (only the sequence numbers and version stamps are
shown for brevity). We consider two replicas in our system,
X A and X B . Let us assume X A executed operation 1A that
X B became aware of during the latter’s merge step. At this
point, both X A and X B executed one operation independently
but concurrently, operation 2A and 2B respectively. Now we
consider two different scenarios. (i) Figure 1a. X A (reader)
merges with X B (source). For now, we assume readers start
comparing the two OpLogs from the beginning (we show
in Section VI-B how full log scans can be avoided). Both
OpLogs have 1A as the first entry, so no action is needed.
However, X B has 2B in the second entry whereas X A has
2A. This is equivalent to the insert operation insert(2B, 1A)
i.e. insert 2B after 1A in OpLog(X A) (as 2B comes after
1A in OpLog(X B)). We note how the insertion operation is
implicitly embedded in the log order. As X A currently has 2A
after 1A and 2B > 2A , it can place 2B after 1A. “Placing
2B after 1A” is a multi-step process: X A trims its OpLog
up to sequence number 1, appends the entry containing 2B ,
and finally re-appends the entry containing 2A. Additionally,

it trims/(re-)appends to any logs used by the underlying data
type. When X B (reader) merges with X A (source) after
this, X B can simply append 2A after 2B in its OpLog. (ii)
Figure 1b. X B (reader) merges with X A (source). Starting
comparison from the top of the OpLogs as before reveals
different entries in the second entry: OpLog(X A) has 2A as
the second entry whereas OpLog(X B) has 2B . This translates
to the operation insert(2A, 1A) to be executed in OpLog of
X B . As the version stamp after 1A at X B is 2B and 2A < 2B ,
2A is placed after 2B . Merging the other way follows the steps
similar to the previous scenario. We see that in both scenarios
we end up with the same final state in both the replicas.

Note that we could have forgone this relatively complex
ordering following [16] and instead chosen a strict ascend-
ing order of version stamp counters, breaking ties through
lexicographical order of node IDs. However, this approach
would have resulted in interleaving sequences of operations
made by different replicas concurrently. Our current choice of
the method in [16] on the other hand makes sure concurrent
sequence of operations executed by different replicas are not
interleaved. Also note that to break tie between concurrent
operations we choose the greater version stamp to take prece-
dence over the smaller one (e.g. 2B appears before 2A) to
maintain similarity with existing work [16]. In practice, we
could have chosen the reverse.

Proof of convergence of insert : To understand how
insert converges, we note a few points. First, the order of an
operation in an OpLog either remains unchanged or is pushed
down, but never pulled up. This is due to how insert works:
it either appends a new operation at the end, in which case
there is no change in the order of operations; or it inserts an
operation in between existing operations, effectively pushing
all the operations that follow down by one. This also implies
that the relative order of two operations in a log once set
remains the same. Second, insert breaks tie between two
concurrent operations arbitrarily but deterministically (the two
concurrent operations are the new operation from the source
and the current successor of the intended predecessor in the
reader). To see this, let us consider two concurrent operations
vsa and vsb. Without the loss of generality, let us assume
vsa > vs b. Now if vsa has already been executed (i.e. vsa is
the successor of the intended predecessor in reader), vsb skips
over vsa . Therefore vsa comes before vsb. On the other hand,
if vsb has already been executed (i.e. vsb is the successor of
the intended predecessor in reader), vsa can be placed in its
place, effectively pushing down vsb. Therefore, vsa comes
before vsb in this case as well. Finally, a reader always reads
the operations unknown to it from the source in monotonically
increasing sequence numbers. This means even when a reader
has not observed all the operations executed by the different
replicas in the system, its OpLog contains a partial order of
the total order formed by all the operations (due to the first
and the second points). Hence once the replicas observe all
the operations, the system achieves consistency.

In a merge step between a reader X i and a source X j , the
reader performs two tasks: (i) Conflict detection: The reader

detects whether it is in conflict with the source, i.e. whether
the source has operations that the reader does not know of.
Note that we are concerned with unidirectional conflict, i.e. if
the reader has operations that are unknown to the source no
extra steps are taken (this is resolved during some other merge
step when the current source becomes a reader). (ii) Conflict
resolution: In case of conflict, the reader resolves this conflict,
possibly by reordering the operations which require rollback
and replay of some operations. The conflict detection stage
finds the sequence numbers of the two OpLogs from where the
comparison should be started (readerstart and sourcestart for
OpLog of the reader and the source respectively) to guarantee
that the reader encounters all the operations it has not seen that
have been already executed by the source. These two sequence
numbers are used by the conflict resolution stage to incorporate
all the unknown operations in the reader’s OpLog.

We next introduce a new log that helps us to avoid full
log scan (Section VI-A). We show how the conflict detection
stage uses this log to detect the presence and point of conflict
(Section VI-B). Section VI-C then describes how the conflict
resolution stage takes this information and uses insert oper-
ations to execute a list of ordered operations.

A. KnowledgeLogs

OpLogs grow over time and the merge steps become costly
if we must scan from the top. To avoid a full scan of the
OpLog of the source by the reader, a replica maintains a map
of the last observed version stamp from each replica to a
sequence number in its OpLog using one KnowledgeLog for
each replica. Each entry in a KnowledgeLog contains the tuple
(vs, op seq). vs denotes the version stamp of the operation.
op seq denotes the sequence number of OpLog where the
operation with vs was first appended. More precisely, each
entry of KnowledgeLog K j

i on host X i contains tuples that
map each version stamp vs whose node ID is j to a sequence
number in OpLog(X i). Although the position of a version
stamp might change due to later merge steps, note that a
version stamp can only be pushed down in order but never
pulled up due to the way insert works. Thus, the sequence
numbers stored in KnowledgeLogs provide us a starting point
to search for a version stamp. The version stamp might be
at that sequence number, or at a later one, but never at an
earlier one. For improved performance, we can also opt to
cache a fixed number of entries from the end of KnowledgeLog
in memory. As all the information needed to maintain a
KnowledgeLog are present in the OpLog, KnowledgeLogs can
be reconstructed after a system crash.

We refer to Figure 2 as an example of interactions among
OpLogs and KnowledgeLogs. Operation 1A is inserted in
OpLog(X A) at sequence number 1. To record the mapping
from version stamp 1A to sequence number 1, X A appends
(1A, 1) to K A

A . Similarly, X A appends (2A, 2) to K A
A to

record that the operation with version stamp 2A was inserted
in OpLog(X A) at sequence number 2. A merge step with X B

results in the operation with version stamp 2A to be pushed
down in order i.e., at sequence number 3. As we have already

OpLog(XA)
seq vs
1 1A
2 2B
3 2A

K A
A

seq vs op seq
1 1A 1
2 2A 2

K B
A

seq vs op seq
1 2B 2

OpLog(XA)
seq vs
1 1A
2 2A

K A
A

seq vs op seq
1 1A 1
2 2A 2

K B
A

seq vs op seq

OpLog(XA)
seq vs
1 1A

K A
A

seq vs op seq
1 1A 1

K B
A

seq vs op seq

X A merges with XBX A executes 2AX A executes 1A

Fig. 2: Mapping from version stamps to sequence number of
OpLog in KnowledgeLogs.

recorded 2A in K A
A and we can reach 2A in OpLog(X A)

even if we start scanning from the recorded op seq value (in
this case 2), we can keep it unchanged. We only append the
entry (2B, 2) to K B

A . Now if X A (reader) performs a merge
step with an arbitrary replica X s (source) and wants to know
whether X s has any operation originating from replica X B

that the reader does not know of, it can simply compare the
tails of K B

A and K B
s . If the last entry of K B

A contains a version
stamp that is less than that of the version stamp contained in
the last entry of K B

s , then X s has operation originating from
X B that X A does not know of (as two version stamps with
same node ID follow happens-before relationship and version
stamps are written to the KnowledgeLog in increasing order).
This process is explained in detail in the next section.
B. Conflict Detection

In the conflict detection stage during a merge step between
reader X i and source X j , the reader X i compares the last
entries of K m

i and K m
j , ∀m S∈ . We represent the last

entry of a log L by tail(L) and a field f in entry e by
e.f . If tail(K m

i).vs < tail(K m
j).vs, this means X j (source)

has executed operations that X i has not. This holds as the
operations in a KnowledgeLog have the same node ID and
are executed in increasing order of their counter. The counter
captures the happens-before relationship between two version
stamps with the same node ID. We say X i lags behind X j

with respect to X m when tail(K m
i).vs < tail(K m

j).vs. X i

might lag behind X j with respect to more than one replica.
Let us represent the set of all replicas with respect to which
X i lags behind X j as X lag .

We represent the set of node IDs of the replicas in
X lag as Slag . We find the replica X p in X lag such that
tail(K p

j).op seq < tail(K l
j).op seq, l∀ ∈ S lag ∧ l 6= p.

That is, X p is the replica whose operation is at the earliest
point of conflict between X i and X j . However, X i might
not know about operations of X p that have version stamps
less than tail(K p

j).vs. To ensure X i can detect all unknown
operations, it scans backward from the tail of K p

j until it finds
the entry e such that the entry before it has a version stamp
equal to tail(K p

i).vs. Then e.op seq is the sequence number
from which the reader starts scanning the source’s OpLog (i.e.
sourcestart = e.op seq). In other words, e.vs is the earliest
operation in OpLog(X B) that X A has not yet executed.

OpLog(XA)
seq vs
1 1A
2 2A

OpLog(XB)
seq vs
1 1A
2 2B
3 3B
4 4C
5 2A

K A
A

seq vs op seq
1 1A 1
1 2A 2

K A
B

seq vs op seq
1 1A 1
2 2A 5

kB
A

seq vs op seq
- 0B 0

kB
B

seq vs op seq
1 2B 2
2 3B 3

kC
A

seq vs op seq
- 0C 0

kC
B

seq vs op seq
1 4C 4

Fig. 3: OpLogs and KLogs of replicas X A and X B in a system
with three replicas. Dashed entries represent placeholders used
during computation when a knowledge log is empty. During
conflict detection, the reader X A compares the same colored
entries with each other to find the earliest possible point of
conflict. The arrow from the second entry to the first entry
of K B

B , represents X A ’s backward scan to find the earliest
version stamp with node ID B that it does not know of.

Proof that a reader can identify all operations unknown
to it during conflict detection: Reader X i will identify all
the operations unknown to it if there are no operations in
OpLog(X j) before the sequence number sourcestart that X i

does not know of (as X i starts reading OpLog(X j) from
the sequence number sourcestart). We can prove this by
contradiction. Let us assume there is indeed a version stamp
vs in OpLog(X j) at sequence number source

0

start such that
source

0

start < source start and vs.nodeID = q . That would
mean one of the following: (i) p 6= q . That is, the tail of K q

j

contains an entry with op seq value that is smaller than all
other op seq values of knowledge logs with respect to which
X i lags X j . However, this is not possible, as we are taking
the minimum of op seq values of the tails of the relevant
knowledge logs to find p. (ii) p = q . In that case, there must be
an entry in K p

j with vs greater than tail(K p
i).vs and op seq

less than sourcestart . However, this is not possible either, as
we scan back to make sure we find the earliest version stamp
in K p

j that X i has not seen. Hence we arrive at a contradiction
and the reader must be able to identify all operations unknown
to it during conflict detection.

Let the version stamp of the sequence number sourcestart −
1 in OpLog(X j) be vsprev . To incorporate e.vs, X i executes
insert(e.vs, vsprev) in OpLog(X i). To do this, X i first finds
the sequence number of e.vs in OpLog(X i) – the value
of readerstart is this sequence number plus one. Note that
all operations in OpLog(X j) from sequence number 1 to
sourcestart − 1 must be present in OpLog(X i), otherwise
there is some operation between these two sequence numbers
in OpLog(X B) that X A has not seen, and the value of
sourcestart found by the previous steps would have been dif-
ferent. Therefore, readerstart must be greater than or equal to
sourcestart . To find the value of readerstart , X i starts scan-
ning OpLog(X A) from the sequence number sourcestart −1 .
It stops scanning if the currently scanned entry’s version stamp
is equal to vsprev . The required value of readerstart is the
sequence number where we stop scanning plus one.

To illustrate the conflict detection stage, we consider the
scenario in Figure 3. Let us assume there are three replicas in
our system, X A , X B , and X C . The OpLog of X A has 1A and
2A, whereas the OpLog of X B has 1A, 2B , 3B , 4C, and 2A.
One possible sequence of actions that might lead to this state:
X A executed operation 1A. X B merged with X A , and then
executed two operations 2B and 3B . X C (not shown in the
figure) merged with X B and executed 4C. X B merged with
X C . X A executed operation 2A. Finally, X B merged with X A

again. Now let us consider X A performs a merge step with
X B . Comparing the tails of K m

A and K m
B , m {A, B, C}∈ ,

we see that X A lags behind X B with respect to X B and X C ,
i.e., X lag = {X B , XC } (we assume the absence of entry in a
KnowledgeLog to be equivalent to having a placeholder entry
with a version stamp with minimum possible invalid counter
value, in this case, 0). As the op seq value of tail(K B

B)
(i.e. 3) is smaller than that of tail(K C

B) (i.e. 5), X p = X B .
However, X A is not yet certain tail(K B

B).vs is the earliest
unknown version stamp. X A scans K B

B backwards to find the
earliest unknown version stamp, which in this case is 2B . The
corresponding op seq value is 2, therefore sourcestart = 2 .
The entry immediately preceding 2B in OpLog(X B) has the
version stamp 1A. X A reads the entry at sequence number
source start − 1 = 1 in OpLog(X A) and finds that the entry
contains 1A. Therefore reader start is equal to 1 + 1 = 2 as
well.

C. Conflict Resolution

Conflict resolution is triggered when a conflict is detected,
to find and execute a merged order of operations between the
reader and the source. When there are one or more conflicts be-
tween the reader and the source, it rolls back the OpLog of the
reader to the earliest point where the reader does not lag behind
the source with respect to the version stamps before it and then
replays the operations at the reader (adjusting the OpLog of
the reader) to reflect the merged order. At the start of conflict
resolution, X i knows both sourcestart and readerstart , i.e.,
the sequence number of OpLog(X i) and the sequence number
of OpLog(X j) at which X i should start comparing the two
OpLogs. X i creates an ordered list, Ri , of the operations in
OrdLog(X i) starting from the sequence number readerstart

up to its latest sequence number. X i creates a second ordered
list, Rj , of the operations in OrdLog(X j) starting from the
sequence number sourcestart up to its latest sequence number.

To incorporate the operations unknown to itself, X i first
includes those operations from Rj to Ri by invoking insert
procedures: for each entry e in Rj , X i first finds the entry
epred in Ri which contains the version stamp immediately
preceding e in Rj . If the version stamp of the entry following
epred in Ri is smaller than e.vs, X i inserts e immediately after
epred (provided e is not already present there). Otherwise, it
skips over all contiguous entries where the version stamp is
greater than e.vs, and then inserts e (provided that e is not
already present there). Once X i has all the operations in Ri , it
rolls back, i.e., prunes, OpLog(X i) starting from readerstart

and then replays all operations in Ri at OpLog(X i).

VII. HANDLING BOUNDED LOG SIZES

Logically, logs are append-only storages to which we can
continuously append. Practically, we are bounded by the
physical storage of our devices. Therefore, we can not record
an unbounded number of versions of our data types. In this
section, we describe how we can safely retain the last K
versions of our data type by removing old entries from OpLog.
We make two underlying assumptions: (i) our physical storage
has the capacity to store more than K versions and (ii) the
replicas merge among themselves at a rate such that there is
at least one version common at the top of the OpLogs among
all replicas before any replica runs out of space.

The major challenge in keeping a history of at least the last
K versions is that this set of last K versions is constantly
changing due to updates from different replicas. So instead,
we identify versions that we know for certain are not in the
set of last K versions.

Consider an arbitrary version vs. Referring back to how
our insert operation of Section VI works, we know vs in the
OpLog of a reader can be pushed down in order due to a merge
step involving an unknown operation that the reader has not
seen before. This essentially means that even if vs was not in
the set of last K versions, it may become so. However, if all
replicas in our system have observed all the same operations
from the start up to vs, we know the positions of those versions
will not change.

This means that a replica X i can safely remove n operations
from the top of its OpLog while preserving at least the last K
versions if: (i) all the other replicas in the system have those n
operations in the top n entries of their respective OpLogs and
(ii) the replica has already seen at least K more new operations
after those n operations. Note that X i need not check whether
the other replicas have received K more new operations to
trim its own OpLog. It just has to make sure there is a set of
operations from the top that all the replicas have executed in
the same order. This trimming operation can be triggered after
a user-defined number (> K) of versions have been recorded.
However, if this number is near K , trimming will be frequent
and may adversely affect system performance.

A replica X i need not scan the top of each replica’s OpLog
to find the entries that can be trimmed. Instead, it consults the
tails of KnowledgeLogs. For each node ID s S∈ , X i reads
the tails of the N KnowledgeLogs K s

u (u S∈) and identifies
the smallest version stamp. We denote this set of N versions
as C . Then C contains one version vs for each originator X s

such that vs is the greatest version with node ID s that all the
replicas have seen.

Next, X i locates the earliest sequence number in its log
where such a version is present. Let this sequence number be
seq. Note that any version in an entry preceding the entry at
seq in OpLog(X i) must be present in all the other replicas.
Therefore, X i can trim all the entries up to seq provided
that there are at least K versions following it. If not, it can
backtrack the required number of entries to meet this condition
and then proceed with trimming.

There are some caveats to this approach that we must
overcome. First, although the earliest n versions trimmed in
this approach are not part of the latest K versions, we may still
need the last version of the earliest n versions as an anchor
point for future insert operations. This can happen if there is
at least one replica such that it had exactly n versions at the
time X i trimmed its OpLog. Hence, we must record the last
version in the set of trimmed versions every time we perform
this operation. We can safely overwrite this record every time
we trim the log. Second, the mappings in KnowledgeLogs will
be off by n whenever n operations are trimmed. To counter
this, we introduce Virtual Sequence Numbers (VSN). VSN of
an entry in a log represents the sequence number the entry
would have if the log was never trimmed. Therefore, we must
track an offset (initially zero) that is updated every time we
trim an OpLog from the top (incremented by the number of
entries trimmed). Then to get the VSN of an entry, we can
simply add its sequence number to the offset. KnowledgeLogs
now store VSNs instead of sequence numbers. While trimming
the OpLog, we can trim the corresponding KnowledgeLog
entries as well. Just like OpLogs, we track the last entry
removed from a KnowledgeLog to notify the readers of the
trimmed operations. Third, if a new replica joins the cluster
with an initially empty state, it can force a change in the order
of operations. This can be overcome in two ways: we can copy
the initial state of the new replica from an arbitrary existing
replica, or we can assign an ID to the new replica that is
smaller than all the existing replicas. A smaller ID will force
the new replica to put its entries at the end of all the existing
versions and thus, not alter the current order.

VIII. EVALUATION

In this section, we empirically evaluate the performance of
LSCRDT. As LSCRDTs combine the advantages of both op-
based and state-based CRDTs much like δ-CRDTs [8], we
compare the performance of LSCRDTs with that of δ-CRDTs.
We implement both LSCRDT and δ-CRDT in C and use
memory-mapped files for persistent storage, including logs.
Note that our goal is not to outperform δ-CRDTs, but to
explore the feasibility of LSCRDT while providing all the
advantages associated with using logs.

We conduct our experiments using the foundational data
types register, counter, and set widely studied in CRDT litera-
ture. We use the last-writer-wins (LWW) variant of register and
positive-negative (PN) variant of counter for bothδ-CRDT and
LSCRDT. We use two-phase (2P) variant of set for δ-CRDT
(an element cannot be added again once removed) whereas
LSCRDT set works in the conventional way. We follow the
δ-CRDT implementation of [41] for the data types.

In our results we focus on: (i) how much extra time is intro-
duced for a single operation to execute due to the introduction
of logs to store the data types, (ii) what is the effect of logs
on scalability, and (iii) how time-consuming is versioned read
compared to reading the latest value. We run each experiment
ten times and show the average result. We reset each data type
to its initial state before each run. We perform the replication

register counter set
data type

0.0

0.5

1.0

la
te

n
cy

 i
n

 m
ill

is
e
co

n
d
s

-CRDT read

LSCRDT read

-CRDT update

LSCRDT update

Fig. 4: Comparison of latency between LSCRDTs and δ-
CRDTs on operations executed at a single replica.

experiments with a cluster of three replicas and one client.
Many cloud-based storage systems such as Amazon S3 use
three nodes for replication. Although edge/device tier do not
have the same level of reliability as cloud servers, it is not
uncommon for edge applications to have a replication factor
of three as well [19], [34], [42]. All of the machines are
running the CentOS 7 Linux operating system each with two
dedicated 2GHz vCPUs and 2GB of memory. The machines
communicate among themselves using 1Gb/second Ethernet.
The average latency among the machines is observed to be
0.45ms. In the case of LSCRDTs, each replica executes a
merge step with another replica in round-robin fashion at one
second intervals. In case if δ-CRDTs, deltas are queued for
propagation immediately after local execution.

A. Single Node Latency

To evaluate latency, we send 10000 randomly generated
operations (half reads, half updates) sequentially from the
client to a replica and measure the average latency. The
arguments of the update operations are randomly generated
integers between 1 and 1000. Read operations read the latest
versions of respective data types in the case of LSCRDT.

Figure 4 shows the read and update latencies for the three
data types. In case of all three data types, LSCRDT shows a
lower update latency than δ-CRDT counterparts. Specifically,
LSCRDT is 1.17x, 1.12x, and 1.39x faster than δ-CRDT for
register, counter, and set respectively. There is no significant
difference in read latencies between LSCRDT and δ-CRDT
for register and counter. However, δ-CRDT set provides faster
read than LSCRDT set. Specifically, the read latency of δ-
CRDT set is 0.668ms whereas that of LSCRDT set is 1.151ms.
That is, δ-CRDT reads are 1.72 times faster than LSCRDT
for set. This difference in read latency is expected. Recall
that although LSCRDT set works in the conventional way, the
variant of δ-CRDT set we are using (i.e., 2P-set) does not
allow an element to be added again once it has been removed.
That is, the query in 2P-set can be performed faster by first
looking at the list of elements marked as removed. On the
other hand, LSCRDT set has to first read the last checkpointed
state from a log and take into account all the operations that
has been performed since that checkpoint. Although the read
latency of LSCRDT set is higher than that of δ-CRDT set,
we will see in Section VIII-B that the former has higher
throughput in the presence of high volume of updates. As
devices at the edge are generally write heavy, LSCRDT is
thus a better option than δ-CRDT for edge applications.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
e
ra

ti
o
n
s/

se
co

n
d

1 replica

2 replicas

3 replicas

(a) Register.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
e
ra

ti
o
n
s/

se
co

n
d

1 replica

2 replicas

3 replicas

(b) Counter.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
e
ra

ti
o
n
s/

se
co

n
d

1 replica

2 replicas

3 replicas

(c) Set.

Fig. 5: Scalability of LSCRDTs.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
s/

se
c -CRDT register

LSCRDT register

(a) Register.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
s/

se
c -CRDT counter

LSCRDT counter

(b) Counter.

10(90) 25(75) 50(50) 75(25) 90(10)
update(read) percentage

0

2000

4000

6000

8000

10000

12000

th
ro

u
g
h
p

u
t

in
 o

p
s/

se
c -CRDT set

LSCRDT set

(c) Set.

Fig. 6: Comparison of throughput between LSCRDTs and δ-CRDTs using three replicas.

We also perform experiments to compare the performance
of versioned reads and non-versioned reads. Our results show
that for register and counter there is no significant difference in
read latency. However, versioned reads (1.29ms) for LSCRDT
set is 1.1x slower than non-versioned reads (1.17ms). This
is expected, as non-versioned reads can leverage the latest
operation cached in memory, whereas versioned reads might
require reading the OpLog as described in Section V-C.
B. Scalability

To evaluate the scalability of LSCRDT, we randomly gen-
erate workloads of 10000 operations. As updates are more
expensive than reads in general, we vary the percentage
of update (read) operations among 10(90), 25(75), 50(50),
75(25), and 90(10) to observe the impact of workloads with
different update/read composition on scalability. We also vary
the number of replicas the client sends requests to among 1,
2, and 3. All 3 replicas are live and perform merge (LSCRDT)
or join (δ-CRDT) even if the client sends requests to fewer
than 3 replicas. A client evenly distributes operations across
replicas using round-robin without delay.

Figure 5 shows the throughput of the system in operations
per second. For LSCRDT registers, throughput nearly doubles
as the number of replicas is increased from one to two for
most workloads. This increase is around 2.8 times when the
number of replicas is increased from 1 to 3 for all workloads
except that with 10% updates. The increase in throughput
with the increase in the number of replicas indicates that
LSCRDT registers are scalable, although this increase is not
strictly linear. This is due to the processing required for
background merge steps. Figure 5b reveals a similar increase
in throughput for counter as the number of replicas increases.
We can observe a similar trend in increase in throughput for
set for workloads with a higher percentage of update from

Figure 5c. The increase in throughput is not as pronounced
for workloads with a lower percentage of update due to the
higher read latency of LSCRDT set.

Figure 6 compares LSCRDT throughput with that of δ-
CRDT for the data types using three replicas. As the percent-
age of update is increased, LSCRDT data types start showing
higher throughputs than δ-CRDT counterparts. Specifically,
LSCRDT register and counter show 1.1x, 1.2x, 1.3x, and 1.3x
higher throughput than δ-CRDT counterparts for workloads
with 25, 50, 75, and 90 percentage of update respectively. In
the case of LSCRDT set, the increase in throughput is 1.1x,
1.4x, 1.7x, and 1.8x than its δ-CRDT counterpart for work-
loads with 25, 50, 75, and 90percentage of update respectively.
Note that LSCRDT set has a higher read latency but a lower
write latency than δ-CRDT set. The lower write latency along
with the efficient lock-free merge step of LSCRDT results in
a higher throughput in LSCRDT set for workloads with a high
volume of updates. As edge applications are typically write-
heavy, LSCRDT presents itself as the better option.

IX. CONCLUSION

In this work, we introduce LSCRDTs to integrate the
benefits of distributed causal logging into operation-based
CRDTs. By doing so, LSCRDT can provide a robust and
uniform way to reverse operations for arbitrary data types. In
addition, LSCRDT overcomes the restrictions of commutative
data types, exactly-once causal delivery, operation idempo-
tence, and data type-specific join operations (a side effect
of state-based CRDTs). Finally, LSCRDT is the first CRDT
system to track version histories of data structures and provide
programmatic access to them. Our results show that LSCRDT
can result in up to 1.8x higher throughput than δ-CRDT,
making it suitable for update-heavy edge workloads.

REFERENCES

[1] M. Shapiro, N. Preguic¸a, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Systems.
Springer, 2011, pp. 386–400.

[2] N. Preguic¸a, C. Baquero, and M. Shapiro, Conflict-Free Replicated
Data Types CRDTs. Cham: Springer International Publishing, 2019,
pp. 491–500. [Online]. Available: https://doi.org/10.1007/978-3-319-
77525-8 185

[3] M. Shapiro, N. Preguic¸a, C. Baquero, and M. Zawirski, “A comprehen-
sive study of convergent and commutative replicated data types,” Inria,
Tech. Rep. RR-7506, 2011.

[4] P. Helland, “Immutability changes everything,” in Con-
ference on Innovative Data Systems Research, 2015,
http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf Accessed
15-Sep-2019.

[5] W. Yu, V. Elvinger, and C.-L. Ignat, “A generic undo support for state-
based crdts,” in 23rd International Conference on Principles of Dis-
tributed Systems (OPODIS 2019). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[6] D. Meissner, B. Erb, F. Kargl, and M. Tichy, “Retro-lambda: An event-
sourced platform for serverless applications with retroactive computing
support,” in Intl. Conf. on Distributed and Event-based Systems, 2018.

[7] W.-T. Lin, F. Bakir, C. Krintz, R. Wolski, and M. Mock, “Data repair
for Distributed, Event-based IoT Applications,” in ACM International
Conference on Distributed and Event-Based Systems, 2019.

[8] P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated data
types,” Journal of Parallel and Distributed Computing, vol. 111, pp.
162–173, 2018.

[9] M. Zawirski, C. Baquero, A. Bieniusa, N. Preguic¸a, and M. Shapiro,
“Eventually consistent register revisited,” in Proceedings of the 2nd
Workshop on the Principles and Practice of Consistency for Distributed
Data, 2016, pp. 1–3.

[10] S. Dolan, “Brief announcement: The only undoable crdts are counters,”
in Proceedings of the 39th Symposium on Principles of Distributed
Computing, 2020, pp. 57–58.

[11] G. Younes, P. S. Almeida, and C. Baquero, “Compact resettable counters
through causal stability,” in Proceedings of the 3rd International Work-
shop on Principles and Practice of Consistency for Distributed Data,
2017, pp. 1–3.

[12] W. Yu and S. Rostad, “A low-cost set crdt based on causal lengths,”
in Proceedings of the 7th Workshop on Principles and Practice of
Consistency for Distributed Data, 2020, pp. 1–6.

[13] R. Brown, Z. Lakhani, and P. Place, “Big (ger) sets: decomposed delta
crdt sets in riak,” in Proceedings of the 2nd Workshop on the Principles
and Practice of Consistency for Distributed Data, 2016, pp. 1–5.

[14] V. Enes, P. S. Almeida, C. Baquero, and J. Leitão, “Efficient syn-
chronization of state-based crdts,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 2019, pp. 148–159.

[15] J. Bauwens and E. G. Boix, “Improving the reactivity of pure operation-
based crdts,” in Proceedings of the 8th Workshop on Principles and
Practice of Consistency for Distributed Data, 2021, pp. 1–6.

[16] M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733–2746, 2017.

[17] M. Kleppmann, D. P. Mulligan, V. B. Gomes, and A. R. Beresford,
“A highly-available move operation for replicated trees and distributed
filesystems,” 2020.

[18] K. De Porre, F. Myter, C. De Troyer, C. Scholliers, W. De Meuter,
and E. G. Boix, “Putting order in strong eventual consistency,” in IFIP
International Conference on Distributed Applications and Interoperable
Systems. Springer, 2019, pp. 36–56.

[19] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things de-
vices,” in Proceedings of the 11th ACM on Asia conference on computer
and communications security, 2016, pp. 461–472.

[20] M. I. Naas, L. Lemarchand, P. Raipin, and J. Boukhobza, “Iot data
replication and consistency management in fog computing,” Journal of
Grid Computing, vol. 19, no. 3, pp. 1–25, 2021.

[21] N. Golubovic, R. Wolski, C. Krintz, and M. Mock, “Improving the
accuracy of outdoor temperature prediction by iot devices,” in 2019
IEEE International Congress on Internet of Things (ICIOT). IEEE,
2019, pp. 117–124.

[22] S. Weiss, P. Urso, and P. Molli, “Logoot-undo: Distributed collaborative
editing system on p2p networks,” IEEE transactions on parallel and
distributed systems, vol. 21, no. 8, pp. 1162–1174, 2010.

[23] B. Nédelec, P. Molli, A. Mostefaoui, and E. Desmontils, “Lseq: an
adaptive structure for sequences in distributed collaborative editing,” in
Proceedings of the 2013 ACM symposium on Document engineering,
2013, pp. 37–46.

[24] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of Parallel
and Distributed Computing, vol. 71, no. 3, pp. 354–368, 2011.

[25] X. Lv, F. He, Y. Cheng, and Y. Wu, “A novel crdt-based synchronization
method for real-time collaborative cad systems,” Advanced Engineering
Informatics, vol. 38, pp. 381–391, 2018.

[26] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and M. Za-
wirski, “Specification and complexity of collaborative text editing,” in
Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, 2016, pp. 259–268.

[27] V. A. Barros, J. C. Estrella, L. B. Prates, and S. M. Bruschi, “An iot-daas
approach for the interoperability of heterogeneous sensor data sources,”
in Proceedings of the 21st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, 2018, pp. 275–
279.

[28] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[29] N. Saquib, C. Krintz, and R. Wolski, “Pedals: Persisting versioned
data structures,” in 2021 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2021, pp. 179–190.

[30] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 { USENIX} Annual Technical Conference
({ USENIX}{ ATC} 14), 2014, pp. 305–319.

[31] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing,” in 2009 29th IEEE Inter-
national Conference on Distributed Computing Systems. IEEE, 2009,
pp. 395–403.

[32] G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for p2p
collaborative editing,” in Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, 2006, pp. 259–
268.

[33] Facebook, “LogDevice,” 2020, https://engineering.fb.com/core-
data/logdevice-a-distributed-data-store-for-logs/ Accessed 29-Feb-2020.

[34] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “CSPOT:
Portable, Multi-scale Functions-as-a-Service for IoT,” in ACM Sympo-
sium on Edge Computing, 2019.

[35] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 179–
196.

[36] Basho, “Bitcask,” https://docs.riak.com/riak/kv/2.2.3/setup/planning/
backend/bitcask/index.html.

[37] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguic¸a,and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when nec-
essary,” in Presented as part of the 10th { USENIX} Symposium on
Operating Systems Design and Implementation ({ OSDI} 12), 2012, pp.
265–278.

[38] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, 2011, pp. 385–400.

[39] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013, pp. 309–324.

[40] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguic¸a,M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back into eventual
consistency,” in Proceedings of the Tenth European Conference on
Computer Systems, 2015, pp. 1–16.

[41] C. Baquero, “Delta-enabled crdts,” https://github.com/CBaquero/delta-
enabled-crdts, 2015.

[42] N. Golubovic, R. Wolski, C. Krintz, and M. Mock, “Improving the
Accuracy of Outdoor Temperature Prediction by IoT Devices,” in IEEE
Conference on IoT, 2019.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

