On infinitesimal contraction analysis for hybrid systems
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Abstract— Infinitesimal contraction analysis, wherein global
convergence results are obtained from properties of local
dynamics, is a powerful analysis tool. In this letter, we generalize
infinitesimal contraction analysis to hybrid systems in which
state-dependent guards trigger transitions defined by reset
maps between modes that may have different norms and need
not be of the same dimension. In contrast to existing literature,
we do not restrict mode sequence or dwell time.

We work in settings where the hybrid system flow is differen-
tiable almost everywhere and its derivative is the solution to a
jump-linear-time-varying differential equation whose jumps are
defined by a saltation matrix determined from the guard, reset
map, and vector field. Our main result shows that if the vector
field is infinitesimally contracting, and if the saltation matrix
is non-expansive, then the intrinsic distance between any two
trajectories decreases exponentially in time. When bounds on
dwell time are available, our approach yields a bound on the
intrinsic distance between trajectories regardless of whether the
dynamics are expansive or contractive. We illustrate our results
using two examples: a constrained mechanical system and an
electrical circuit with an ideal diode.

I. INTRODUCTION

A dynamical system is contractive if all trajectories con-
verge to one another [1]. Contractive systems enjoy strong
asymptotic properties, e.g. any equilibrium or periodic orbit
is globally asymptotically stable. Provocatively, these global
results can sometimes be obtained by analyzing local (or
infinitesimal) properties of the system’s dynamics. In smooth
differential (or difference) equations, for instance, a bound on
a matrix measure (or induced norm) of the derivative of the
equation can be used to prove global contractivity [1], [2],
[3]; this approach has been successfully applied to biologi-
cal [4], [5], [6], mechanical [7], [8], and transportation [9],
[10] systems.

Recent work has extended contraction analysis to certain
classes of nonsmooth systems. Contraction for systems with
a continuous vector field that is piecewise-differentiable was
first suggested in [11] and rigorously characterized in [12].
Contraction of switched systems, potentially with sliding
modes, is studied in [13] by explicitly considering contrac-
tion of the sliding vector field in [14] via a regularization
approach that does not require explicit computation of the
sliding vector field. The paper [15] considers contraction of
Carathéodory switched systems for which the time-varying
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switching signal is piecewise-continuous and allows for
different norms for each mode of the switched system.

The present paper complements and, in some cases, ex-
tends these prior works by considering a more general class
of hybrid systems in which state-dependent guards trigger
instantaneous transitions defined by reset maps between
distinct modes. Different norms in each mode are allowed,
and modes need not even be of the same dimension. In
contrast to previous work generalizing contraction analysis
to hybrid systems, our generalization of infinitesimal con-
traction analysis does not restrict mode sequence as in [16]
or dwell time as in [16], [17].

This paper generalizes infinitesimal contraction analysis
to hybrid systems by leveraging local dynamical properties
of continuous-time flow and discrete-time reset to bound
the time rate of change of the intrinsic distance between
trajectories without imposing restrictions on mode sequence
or dwell time. The intrinsic distance we employ is derived
in [18] from the natural condition that the distance between a
point in a guard and the point it resets to is zero. This intrinsic
distance is distinct from the Skorohod [19] or Tavernini [20]
trajectory metrics [18, Sec. V-A] and from the distance
function introduced in [21]; it is an instantiation of the class
of distance functions defined in [22] we found particularly
useful in the present context. Importantly, the use of this
intrinsic distance avoids restrictive conclusions regarding the
closely-related notion of incremental stability [23, Prop. 1].

The conditions we obtain for infinitesimal contraction
(Theorem 1 in Section IV) have intuitive appeal: the deriva-
tive of the vector field, which captures the infinitesimal
dynamics of continuous-time flow, must be infinitesimally
contractive with respect to the matrix measure determined by
the vector norm used in each mode (4); the saltation matrix,
which captures the infinitesimal dynamics of discrete-time
reset, must be contractive with respect to the induced norm
determined by the vector norms used on either side of
the reset (5). If upper and lower bounds on dwell time
are available, we can bound the intrinsic distance between
trajectories, regardless of whether this distance is expanding
or contracting in continuous- or discrete-time (Corollary 1
in Section IV). We illustrate our results using two examples:
a constrained mechanical system and an electrical circuit
with an ideal diode. Additional results and applications are
provided in a technical report [24], including a proof that the
continuous- and discrete-time from infinitesimal contractivity
conditions from our Theorem 1 are necessary for contraction
with respect to the intrinsic distance defined in Section III-C.



II. NOTATION

The disjoint union of a collection of sets {Sa},c4 is
defined [, c4Sa = Usea{a} x Sa). Given (a,z) €
[oca Sas we w111 simply write © € [[,.4 So When a is
clear from context. For a function v with scalar argument,
we denote limits from the left and right (when these exist)
by v(¢t7) = limy+¢ y(0) and y(t+) = lim, ¢ y(o). Given a
smooth function f: X XY — Z, welet D, f : TX XY —
TZ denote the derivative of f with respect to x € X and
Df =(D.f,Dyf) : TX xTY — TZ denote the derivative
of f with respect to both x € X and y € Y. Here, TX
denotes the fangent bundle of X; when X C R? we have
TX = X x R The induced norm of a linear function
M :R"™ — R" is ||M||; ;7 = sup,egn; |Mxl|;/|x|; where
| -|; and | - |;» denote the vector norms on R" and R"#’,
respectively; when the norms are clear from context, we omit
the subscripts. The matrix measure of A € R™"*", denoted
w(A), is p(A) = limpyo(||I + hA| — 1)/h.

ITI. PRELIMINARIES

A hybrid system is a tuple H = (D, F,G,R) where:

D = Hjej D; is a set of states where J is a finite set
of discrete states or modes and D; = R™ is a set of
continuous states for each j € J equipped with a norm
|- |; for some n; € N;

F :]0,00) x D — T'D is a time-varying vector field, and
we write Fj = Fljg )y p, © [0,00) x Dj = R™;

g = ngjga is a guard set with G; C D; for all j € J;

R : G — D is a reset map.

G;j» = G;NR™(D;:) denotes states in D; that reset to D;r.

Before we assess infinitesimal contractivity, we first im-
pose restrictions on the components of the hybrid system as
well as its flow, that is, the collection of trajectories it speci-
fies. To help motivate and contextualize the assumptions, we
provide expository remarks following each assumption that
explain how each condition is employed in what follows and
what specific dynamical phenomena it precludes.

A. Hybrid system components and constructions

We begin by stating and discussing assumptions on the
hybrid system components.

Assumption 1 (hybrid system components). Given a hybrid

system H = (D, F,G,R):

1.1 (vector field is Lipschitz and differentiable) F; = F|p, :
[0,00) x D;j — Dj is globally Lipschitz continuous and
continuously differentiable (C*) for all j € J;

1.2 (discrete transitions are isolated) R(G) NG = 0;

1.3 (guards and resets are differentiable) there exists C*
and nondegenerate g; ;/ D; — R such that
Gii € {r € Dj : gj.,j'(ﬂﬁ) < 0} € G and C*
R + {x € Dj: gji(z) < ()} — Dy such
that R; s |g R|g for each j, 7' € J;

1.4 (vector ﬁeldj is transverse to guard) Dg;j () -
Fi(t,x) <0 forall j,j’€ J, t>0, and x € Gj j.

Before we proceed, we make a number of remarks about the
preceding Assumption.

Remark 1 (vector fields generate differentiable global flows).
Assumption 1.1 ensures there exists a continuously differen-
tiable flow ¢; : [0,00) x [0,00) x D; — D; for F;. In
other words, if x : [7,00) — D; denotes the trajectory for
JF; initialized at x(7) € Dj, then x(t) = o(¢t, 7, x(7)) for
all t € [7,00). This condition enables application of classical
infinitesimal contractivity analysis for continuous-time flows.

Remark 2 (discrete transitions are isolated). Since Assump-
tion 2.1 below will (in particular) prevent an infinite number
of discrete transitions from occurring at the same time
instant, Assumption 1.2 is imposed without loss of generality.
Indeed, given a hybrid system that permitted at most m
discrete transitions at the same instant of time (an example
with m = 2 can be found in [25, Thm. 8]), the reset map
could be replaced with its m-fold composition to yield a
hybrid system with isolated discrete transitions that has the
same set of trajectories (as defined below).

Remark 3 (closed guards). Noting that continuity of g; ;
ensures G; i = {x € D; : g;(x) < 0} is closed, we
observe that G; = U;c 7 Gj.ir € Ujies Gijr € G, Whence
Assumption 1.3 ensures G; = J;,c ;7 Gj,» C Dj is a closed
set. Note that the disjoint components of the guard, G, ;-, are
not required to be closed.

B. Hybrid system trajectories and flow

Informally, a trajectory of a hybrid system # is a right-
continuous function of time that satisfies the continuous-
time dynamics specified by F on D and the discrete-time
dynamics specified by R on G. Formally, a function x :
[7,T) — D with 7 > 0 is a trajectory of H if:

1) Dx(t) = F(t, x(t)) for almost all ¢t € [1,T);

2) x(tT) = x(t) for all t € [, T);

3) x(t7) = x(t) if and only if x(t) € G;

b x(t7) £ x(t) = x(t) € G and x(t) = R(x(t)).
Note that it is allowed, but not required, that 7' = oo
(although we will shortly impose additional assumptions that
ensure trajectories are defined for all positive time). If the
domain of x cannot be extended in forward time to define a
trajectory on a larger time domain, then Y is termed maximal.
The following Proposition ensures that maximal trajectories
exist and are unique under the conditions in Assumption 1;
its proof is standard [26, Thm. III-1].

Proposition 1 (existence and uniqueness of trajectories).
Under the conditions in Assumption 1, there exists a unique
maximal trajectory x : [1,T) — D satisfying x(1) = z if
x € D\G or x(1) = R(x) if x € G for any initial state
x € D and initial time T > 0.

We will restrict the class of trajectories exhibited by
the hybrid system in Assumption 2 below. Before impos-
ing these restrictions, we first develop tools that enable
analysis of how trajectories vary with respect to initial
conditions. The reset map induces an equivalence relation ~
on D defined as the smallest equivalence relation containing
{(z,y) € G xD:R(x) =y} C D x D, for which we write

r ~ y to indicate x and y are related. The equivalence



class for € D is defined as [z]g = {y € Djz Ey}
The quotient space induced by the equivalence relation is
denoted M = {[z|g|z € D} endowed with the quotient
topology [27, Appendix A]; we note that such quotient
spaces have been studied repeatedly in the hybrid systems
literature [28], [29], [30], [18].

To define a distance on the quotient M, we will adopt
the approach in [18] and use the length of paths that are
continuous in the quotient. A path v : [0, 1] — D is smoothly
R-connected if there exists an open set O C [0, 1] such
that: the relative complement O C [0,1] is countable (so
that, in particular, the closure O = [0, 1]); ~v is continuously
differentiable on O; lim, 4, (1) Z lim,. 1y (r) forall r €
(0,1); and v(0) K lim, 0 y(r'), (1) & limyerq (1)

A set O satisfying the above conditions is termed a support
set for ~y at time ¢. Intuitively, a smoothly 7R-connected
path 7 is a path through the modes {D;};c s of the hybrid
system that is allowed to jump through the reset map R
(forward or backward) and is smooth almost everywhere.
With a slight abuse of notation,! we consider v a path
in M; with this identification, all R-connected paths are
continuous paths in the quotient space M. Any support
set O for a smoothly R-connected path  is a countable
union of (disjoint) open intervals (cf. [31, Prop. 0.21]); let
0 = Ule(ui,vi) with possibly k = oco. Because each
segment ’y|(ui7vi) is continuously differentiable, the segment
is (in particular) continuous, so its image must necessarily
belong to a single D; for some j € J.

Assumption 2 (hybrid system flow). Given a hybrid system

H = (D,F,G,R):

2.1 (Zeno) no trajectory has infinite resets in finite time;

2.2 (continuity of hybrid system flow) with ¢ : F — D
denoting the hybrid system flow, i.e. ¢(t,7,2) = x(t)
where’> x : [1,00) — D is the unique trajectory
initialized at x(7) = x, the projection 7 o ¢(t,T,x),
regarded as a function D — M, is continuous;

2.3 (support sets of smoothly R-connected paths) for all
t > 7 > 0 and all smoothly R-connected paths -y, there
exists a support set O of ¢(t,7,7(-)) such that, for all
" € O, there exists € > 0 such that all trajectories
¢, 7,y (1)) with r € (r' — €, + €) undergo the same
sequence of discrete state transitions as ¢ (-, 7,v(r')) on
the time interval [T,t).

Before we proceed, we make a number of remarks about the
preceding Assumption.

Remark 4 (Zeno and forward completeness). Since our
results below will strongly leverage the fact that the hybrid
system flow is everywhere locally a composition of a finite
number of differentiable flows and resets, we cannot easily
extend our approach to Zeno trajectories.

Remark 5 (continuity of hybrid system flow). Continuous
flow is necessary for infinitesimal contraction with respect to

I 0 is a path in M, where 7 : D — M is the quotient projection.
2Note that Assumption 2.1 ensures that the maximal time interval in
Proposition 1 is [, 00), i.e. T' = oo.

the intrinsic distance defined below, as the intrinsic distance
between trajectories on either side of a flow discontinuity
will grow linearly with time.

Remark 6 (support sets of R-connected paths). Note that
Assumption 1 already suffices to ensure the conditions
in Assumptions 2.2-2.3 hold in regions where guards do
not “overlap”, i.e. where the intersection of their closures
is empty, Eml N Ej,ju = (. Where guards do overlap
(aj,j’ N Ej,ju # (), Assumption 2.3 does not require that
all trajectories along a path undergo the same sequence of
discrete state transitions, only that the path’s domain contains
an open dense subset wherein each connected component
undergoes the same sequence of discrete state transitions on
finite time horizons. We emphasize that this condition does
not require that all trajectories visit the same sequence of
modes.

It is well-known [32] that, under favorable conditions,
the hybrid system flow ¢ is differentiable almost every-
where and, moreover, its derivative can be computed by
solving a jump-linear-time-varying differential equation. The
preceding assumptions are favorable enough to ensure the
flow has these properties so that, in particular, the derivative
along a path can be computed using the jump-linear-time-
varying differential equation. These facts are summarized in
the following Proposition, whose proof is standard [32].

Proposition 2. Under Assumptions 1 and 2, given an initial
time T > 0 and a smoothly R-connected path =, let ¥(t,r) =
o(t,7,v(r)) for all t > 7 and define w(t,r) = D,(t,r)
whenever the derivative exists. Then w(7~,1) = D,~(r) and
w(-,r) satisfies a linear-time-varying differential equation

th(tar) = sz(t,il)(t,?”))w(t,r), w(fﬂ”) € D\ga (h

with jumps w(t,r) = E(t, 0, r)wt,r), v ,r) €,
where Z(t,x) is the saltation matrix: Vt > 0,z € G; 5

(F* = DR(z)F~) Dg; j(x)
Dg; jr (z)F~

where F* = Fj (t,R(z)), F~ = F;(t,x).

=(t,2) =DR(z) + @)

C. Hybrid system intrinsic distance

As the final preliminary construction, we define the length
of a smoothly R-connected path v : [0,1] — D as the
sum of the lengths of its segments, and use this length
structure [33, Ch. 2] to define an intrinsic distance on M.
To that end, define the length of a continuously differentiable
path segment |, .y (ui,v;) — D; in the usual way using
the norm |-|; in D;, namely, L; (7|, ,.y) = [, [Dv;(r)ldr
(we drop the subscript for L when the mode is clear from
context), and define length of ~ at time ¢ as the sum of the
lengths of its segments,

k 1
L) =S L) = / D)y
=1

where j(r) € J denotes the mode satisfying y(r) € Dj(,
for each r € [0,1]. With T denoting the set of smoothly



‘R-connected paths in M, and letting
I(z,y) ={y €T :7(0) =z and (1) =y, x,y € D}

denote the subset of paths that start at x € D and end at
y € D, we define the distance d(x,y) between x and y by

d(x,y) = inf L(). 3)
vET(z,y)
We note that d : M x M — [0,00) belongs to the class
of distance function in [22, Def. 1], but it has a stronger
intrinsic relationship to the hybrid system [18, Thm. 13].

IV. RESULTS

The main contribution of this paper is the provision of
local (or infinitesimal) conditions under which the distance
between any pair of trajectories in a hybrid system (as
measured by the intrinsic distance defined in (3)) is bounded
by an exponential envelope. These conditions are made
precise in Theorem 1 and Corollary 1. In what follows, we
will only check infinitesimal contractivity conditions on a
contraction region C C D, that is, a forward-invariant subset
(& € C implies ¢(t,0,&) € C for all ¢ > 0) that descends to
a simply-connected subset in the quotient.

Theorem 1. Under Assumptions 1 and 2, if there exists ¢ €
R and contraction region C C D such that, for all j,j' € 7,
t>0,

;i (D.Fj(t,z)) <c Va € CND;\G; and 4)
12(t,2)]l55 <1 Vo€ CNGjjr, )

then d(¢(t,0,€),9(t,0,¢)) < e“d(£,() for all t > 0 and
£CeCnD.

Proof: Given z(0) = &, 2(0) = ¢, and s € [0,¢], for
fixed € > 0, let v € T'(£,¢) be such that L(vy) < d(§,¢) +e,
and let ¢ (t,r) = ¢(¢,0,~(r)). Since ¢(¢,0, ) is piecewise-
differentiable, it follows from Assumption 2.2 and 2.3 that
P(t,-) is a smoothly R-connected path for all ¢ > 0. Let
w(t,r) = Dyi(t,r) whenever the derivative exists. By
Proposition 2, w(t,r) satisfies the equations

w(t,’l’) = Dac]:(ta ¢(tv r))w(t,r), w(tﬂ“) € D\g, (6)
w(t™,r) =Y, Mwt™,r), vt,r) €g. (D

For fixed 7, let {t;}X_; C [0,00) with ¢ty <#; <--- and
possibly k = oo be the set of times at which the trajectory
¢(t,s,7(r)) intersects a guard so that (-, )|y, ... ) is
continuous for all ¢ € {0,1,...,k — 1} where t;x = s by
convention, and, additionally, w(~7r)|[tk’oo) is continuous if
k < 0o. Now consider some fixed time 7" > 0. If £ < oo and
ty < T,leti = k; otherwise, leti be such thatt; < 7T < ;1.
Let j be the active mode of the system during the interval
[ti7ti+1), i.e. ’(/J(t,T) € Dj for all t € [ti,ti+1). With
J(t) = Dy F;(¢(t,r)) for t € [t;, t;11) we have

"UJ(T’T)| S eftf I‘«(J(T))d‘f'|w<t2»7r)| S ec(Tfti)
S eC(T*ti)

w(t,r)l

E(t oty )llwty )] < e T fw(t; )]

where the inequalities follow from, respectively, Coppel’s
inequality [34, p. 34], (4), (7), and (5). Since this holds for
any T < tiyq, [w(tyq,7)| < etirr=t) (¢, r)| whenever
i < k. By recursion, [w(T,7)| < e“"'|lw(s™,r)|. Since T was
arbitrary, we have proved |w(t,r)| < e“|w(0~,r)|.

Because ¢(T,-) for fixed T > 0 is a smoothly R-
connected path, there exists a support set O = Ule(ui, v;)
of ¢(T,-) such that o(T,-)|,, ., is continuously-
differentiable for all ¢ € {0,1,...,k}. It follows that
L (w(T7 )|(uv)) = fuuf |w(T, o)|do, whence

k

LT, ) =) L (w(T,-)l(ui,vi)) < /01 \w(T, o)|do
i=1

<eT /1 [w(0™,0)|do = e L(y) < e (d(£,¢) +e).
0

In addition, observe d(¢(T,0,£),¢(T,0,¢)) < L(y(T,-)).
Noting that T" was arbitrary and e can be arbitrarily small
concludes the proof. O

Now suppose that uniform upper or lower bounds on the
dwell time between successive resets are known. Then the
number of discrete state transitions is upper or lower bounded
on any compact time horizon, and the proof of Theorem
1 can be adapted to derive an exponential bound on the
intrinsic distance between any pair of trajectories.

Corollary 1. Under Assumptions 1 and 2, suppose the dwell
time between resets is at most T € (0,00] and at least T €
[0,00) and there exists ¢ € R, K € Rsq, and forward-
invariant C C D such that, for all j,j' € J, t > 0,

wi (D Fj(t,z)) <c¢ Vo e CND;\G; and (8
IEW @)l < K Yo e NGy, 9

then — d(é(t,s,€), ¢(t,s,(Q)) < Kect=2)d(¢, ¢)
for all t > s > 0 and ¢ € C N D
where K = max{K[(t=9)/7] glt=)/7]h Iy
particular,  if max{KeT Ke} < 1 then

1irnt~>oo d(¢(ta S, 5)7 (b(ta 5, C)) =0.

Remark 7 (summary of main result). Our main contribution
is Theorem 1, where we generalize infinitesimal contractivity
analysis to the class of hybrid systems satisfying Assump-
tions 1 and 2. This generalization has intuitive appeal, since
it combines infinitesimal conditions on continuous-time flow
(via the matrix measure of the vector field derivative, (4))
and discrete-time reset (via the induced norm of the saltation
matrix, (5)) that parallel the conditions imposed separately
in prior work on smooth continuous-time and discrete-time
systems, and establishes contraction with respect to the
hybrid system’s intrinsic distance d. With bounds on dwell
time, i.e. the time between discrete transitions, our approach
yields a bound in Corollary 1 on the intrinsic distance
between trajectories regardless of whether the dynamics
are contractive or expansive. We say a hybrid system is
contractive if lim;_, . d(P(t, s,£), P(t,s,¢)) = 0 holds for
all trajectories.



E 1.0
u(t) S10
m .o
q 805
]F---» =
. . 0.0 M >
+_ - Ll
|4 =g |+ " y " "
<--1-4¢ >4 F'|'> -1.0  -05 0.0 0.5
] ) velocity ¢

Fig. 1:
(Sec. V-A). Left: schematic of continuous-time dynamics (top) and

Mechanical system subject to unilateral constraint

discrete-time dynamics (bottom). Right: exponentially stable peri-
odic orbit (solid blue line) with nearby trajectories (dashed green
lines) produced by u(t) =sin(t)+1/4, m=b=k=1,r=2/3.
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Fig. 2: Electrical circuit with ideal diode (Sec. V-B). Left:
schematic of circuit (top) and current-voltage characteristic of diode
(bottom). Right: exponentially stable periodic orbit (solid blue line)
with nearby trajectories (dashed green lines) produced by u(t) =
2sin(t) +1, R=10°,L =10*,C =1073*,D = 107%,vp = 1.

V. EXAMPLES

We now present examples that highlight key advances
of our approach, namely, non-identity resets (Section V-A)
and non-constant mode dimension (Section V-B). Although
academic, the examples illustrate important contraction phe-
nomena of interest in mechanical and electrical systems;
extensions and other applications are provided in a technical
report [24]. We note that stability arises in complementary
ways in the two examples: whereas the mechanical system is
non-expansive in continuous-time and contractive in discrete-
time (so we apply Corollary 1), the electrical circuit is
contractive in continuous-time and non-expansive in discrete-
time (so we apply Theorem 1).

A. Mechanical system subject to unilateral constraint

1) Hybrid system: Consider H = (D,F,G,R) from
Fig. 1 (assume m, b, k,r > 0):

D:{(q,(j)ERQ}; F:m{+bq+ kg = u(t);

G={(¢:9):q<0,4<0}; R:(q,q)~ (g,—79)
This system can be regarded as a particular case of the
class of hybrid systems that arise when modeling mechanical
systems subject to unilateral constraints [25]; specifically, H
is a linear impact oscillator. Although such systems cannot
globally satisfy Assumptions 1 and 2 due to the possibility of
grazing (i.e. zero-velocity impact) and since the guard is not
closed, they do satisfy these Assumptions along trajectories
that impact at non-zero velocity.

2) Infinitesimal contraction analysis: We use total energy
e = 3mg* + 3kq? to define a norm Vz = (¢, ¢) € D:

1
|| = §xTEx, E = DZe = diag (m, k) . (10)
Computing the matrix measure of D,F
using the norm in (10) yields p(D.F) =
maxspec 3 (D, F ' - E+ E-D,F) = 0 since
1
§DJT -E+ E-D,F = diag (0, -b), (11)
so (4) is satisfied with ¢ = 0. The saltation matrix
_ —r 0
Et) = a+ruw _r (12)
mq

has induced norm |Z| = r when u(t) = 0, so (5) is satisfied
when r € (0,1) and ¢ < 0 for all sufficiently small wu(t).

3) Interpretation: We interpret the preceding analysis in
the context of the tracking problem for mechanical systems
subject to unilateral constraints [35]. Given a periodic input
u : [0,00) — R that produces a non-Zeno non-grazing
periodic trajectory ¢ : [0,00) — R for H, we can apply
Corollary 1 to conclude that all trajectories initialized suffi-
ciently close to g will converge to ¢ at an exponential rate.

B. Electrical circuit with ideal diode

1) Hybrid system: Consider H =
Fig. 2 (assume R, L,C, D,vp > 0):

D=Dy[ID; ={q e R}}I{(p.q) € R*};

Fig=-p— 750, Lp+ (R+1/D)p+q/C + vy = u(t);
G={q:ult)—q/C=vr}[I{(p,q) : p < 0,p <0};
R:qeGNDy— (0,9), (p,g) €GNDy—q.

(D,F,G,R) from

This system can be regarded as a particular case of the class
of hybrid systems that arise when modeling electrical circuits
with diodes; specifically, H models an AC-DC converter with
an ideal diode; the two modes correspond to whether the
diode is off (0) or on (1). Although such systems cannot
globally satisfy Assumptions 1 and 2 due to the possibility of
grazing, they do satisfy these Assumptions along trajectories
of interest like the one illustrated in Fig. 2.

2) Infinitesimal contraction analysis: We use total energy
e = £p®+ L¢? to define a norm Vz = (p, q) :

1
|z| = 5a;TEa;, FE = D2%¢ = diag (L,1/C). (13)
Computing the matrix measure of D,F
using the norm in (13) yields p(DyF) =
maxspec 3 (D, F ' - E+ E-D,F) <0 since
1 T | =R-1/D -1/C
§Dz}" E+FE-D,F = _1/C _1/RC? |

so (4) is satisfied with ¢ < 0. Since the vector field
is continuous, the saltation matrices (2) simply equal the
derivative of the resets®, which both have unity induced
norms, so (5) is satisfied.

3Since the guard is time-varying, this conclusion technically falls outside
the scope of the present paper — see the technical report [24] for details.



3) Interpretation: We interpret the preceding analysis in
the context of the application domain, where the hybrid
system H models an AC-DC converter. Theorem 1 ensures
the system is infinitesimally contractive for sinusoidally-
fluctuating (AC) voltage inputs u(t), hence there exists an
exponentially stable limit cycle, whence the capacitor voltage
q(t)/C fluctuates periodically around a well-defined average
(DC) output voltage.

VI. CONCLUSION

We generalized infinitesimal contraction analysis to hybrid
systems by leveraging local properties of continuous-time
flow and discrete-time reset to bound the time rate of change
of the intrinsic distance between trajectories. Furthermore,
we showed that contraction with respect to this intrinsic
distance implies infinitesimal contraction in continuous- and
discrete-time. Our results expand the toolkit for stability
analysis in hybrid systems. Importantly, although we had to
introduce new techniques to generalize infinitesimal contrac-
tion to the hybrid setting, our approach leverages the key
idea in classical analyses: a system is contractive if path
lengths decrease in time [1], [3], [36]. This close parallel may
facilitate generalization of a variety of classical techniques
to hybrid systems including state-varying distance metrics
defined by Riemannian [1] or Finsler [36] structures.
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