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Abstract— Infinitesimal contraction analysis, wherein global
convergence results are obtained from properties of local
dynamics, is a powerful analysis tool. In this letter, we generalize
infinitesimal contraction analysis to hybrid systems in which
state-dependent guards trigger transitions defined by reset
maps between modes that may have different norms and need
not be of the same dimension. In contrast to existing literature,
we do not restrict mode sequence or dwell time.

We work in settings where the hybrid system flow is differen-
tiable almost everywhere and its derivative is the solution to a
jump-linear-time-varying differential equation whose jumps are
defined by a saltation matrix determined from the guard, reset
map, and vector field. Our main result shows that if the vector
field is infinitesimally contracting, and if the saltation matrix
is non-expansive, then the intrinsic distance between any two
trajectories decreases exponentially in time. When bounds on
dwell time are available, our approach yields a bound on the
intrinsic distance between trajectories regardless of whether the
dynamics are expansive or contractive. We illustrate our results
using two examples: a constrained mechanical system and an
electrical circuit with an ideal diode.

I. INTRODUCTION

A dynamical system is contractive if all trajectories con-

verge to one another [1]. Contractive systems enjoy strong

asymptotic properties, e.g. any equilibrium or periodic orbit

is globally asymptotically stable. Provocatively, these global

results can sometimes be obtained by analyzing local (or

infinitesimal) properties of the system’s dynamics. In smooth

differential (or difference) equations, for instance, a bound on

a matrix measure (or induced norm) of the derivative of the

equation can be used to prove global contractivity [1], [2],

[3]; this approach has been successfully applied to biologi-

cal [4], [5], [6], mechanical [7], [8], and transportation [9],

[10] systems.

Recent work has extended contraction analysis to certain

classes of nonsmooth systems. Contraction for systems with

a continuous vector field that is piecewise-differentiable was

first suggested in [11] and rigorously characterized in [12].

Contraction of switched systems, potentially with sliding

modes, is studied in [13] by explicitly considering contrac-

tion of the sliding vector field in [14] via a regularization

approach that does not require explicit computation of the

sliding vector field. The paper [15] considers contraction of

Carathéodory switched systems for which the time-varying
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switching signal is piecewise-continuous and allows for

different norms for each mode of the switched system.

The present paper complements and, in some cases, ex-

tends these prior works by considering a more general class

of hybrid systems in which state-dependent guards trigger

instantaneous transitions defined by reset maps between

distinct modes. Different norms in each mode are allowed,

and modes need not even be of the same dimension. In

contrast to previous work generalizing contraction analysis

to hybrid systems, our generalization of infinitesimal con-

traction analysis does not restrict mode sequence as in [16]

or dwell time as in [16], [17].

This paper generalizes infinitesimal contraction analysis

to hybrid systems by leveraging local dynamical properties

of continuous-time flow and discrete-time reset to bound

the time rate of change of the intrinsic distance between

trajectories without imposing restrictions on mode sequence

or dwell time. The intrinsic distance we employ is derived

in [18] from the natural condition that the distance between a

point in a guard and the point it resets to is zero. This intrinsic

distance is distinct from the Skorohod [19] or Tavernini [20]

trajectory metrics [18, Sec. V-A] and from the distance

function introduced in [21]; it is an instantiation of the class

of distance functions defined in [22] we found particularly

useful in the present context. Importantly, the use of this

intrinsic distance avoids restrictive conclusions regarding the

closely-related notion of incremental stability [23, Prop. 1].

The conditions we obtain for infinitesimal contraction

(Theorem 1 in Section IV) have intuitive appeal: the deriva-

tive of the vector field, which captures the infinitesimal

dynamics of continuous-time flow, must be infinitesimally

contractive with respect to the matrix measure determined by

the vector norm used in each mode (4); the saltation matrix,

which captures the infinitesimal dynamics of discrete-time

reset, must be contractive with respect to the induced norm

determined by the vector norms used on either side of

the reset (5). If upper and lower bounds on dwell time

are available, we can bound the intrinsic distance between

trajectories, regardless of whether this distance is expanding

or contracting in continuous- or discrete-time (Corollary 1

in Section IV). We illustrate our results using two examples:

a constrained mechanical system and an electrical circuit

with an ideal diode. Additional results and applications are

provided in a technical report [24], including a proof that the

continuous- and discrete-time from infinitesimal contractivity

conditions from our Theorem 1 are necessary for contraction

with respect to the intrinsic distance defined in Section III-C.



II. NOTATION

The disjoint union of a collection of sets {Sα}α∈A is

defined
∐

α∈A Sα =
⋃

α∈A({α} × Sα). Given (a, x) ∈
∐

α∈A Sα, we will simply write x ∈
∐

α∈A Sα when a is

clear from context. For a function γ with scalar argument,

we denote limits from the left and right (when these exist)

by γ(t−) = limσ↑t γ(σ) and γ(t+) = limσ↓t γ(σ). Given a

smooth function f : X × Y → Z, we let Dxf : TX × Y →
TZ denote the derivative of f with respect to x ∈ X and

Df = (Dxf,Dyf) : TX×TY → TZ denote the derivative

of f with respect to both x ∈ X and y ∈ Y . Here, TX
denotes the tangent bundle of X; when X ⊂ R

d we have

TX = X × R
d. The induced norm of a linear function

M : Rnj → R
nj′ is ‖M‖j,j′ = supx∈R

nj |Mx|j′/|x|j where

| · |j and | · |j′ denote the vector norms on R
nj and R

nj′ ,

respectively; when the norms are clear from context, we omit

the subscripts. The matrix measure of A ∈ R
n×n, denoted

µ(A), is µ(A) = limh↓0(‖I + hA‖ − 1)/h.

III. PRELIMINARIES

A hybrid system is a tuple H = (D,F ,G,R) where:

D =
∐

j∈J Dj is a set of states where J is a finite set

of discrete states or modes and Dj = R
nj is a set of

continuous states for each j ∈ J equipped with a norm

| · |j for some nj ∈ N;

F : [0,∞)×D → TD is a time-varying vector field, and

we write Fj = F|[0,∞)×Dj
: [0,∞)×Dj → R

nj ;

G =
∐

j∈J Gj is a guard set with Gj ⊂ Dj for all j ∈ J ;

R : G → D is a reset map.

Gj,j′ = Gj∩R
−1(Dj′) denotes states in Dj that reset to Dj′ .

Before we assess infinitesimal contractivity, we first im-

pose restrictions on the components of the hybrid system as

well as its flow, that is, the collection of trajectories it speci-

fies. To help motivate and contextualize the assumptions, we

provide expository remarks following each assumption that

explain how each condition is employed in what follows and

what specific dynamical phenomena it precludes.

A. Hybrid system components and constructions

We begin by stating and discussing assumptions on the

hybrid system components.

Assumption 1 (hybrid system components). Given a hybrid

system H = (D,F ,G,R):

1.1 (vector field is Lipschitz and differentiable) Fj = F|Dj
:

[0,∞)×Dj → Dj is globally Lipschitz continuous and

continuously differentiable (C1) for all j ∈ J ;

1.2 (discrete transitions are isolated) R(G) ∩ G = ∅;

1.3 (guards and resets are differentiable) there exists C1

and nondegenerate gj,j′ : Dj → R such that

Gj,j′ ⊆ {x ∈ Dj : gj,j′(x) ≤ 0} ⊆ Gj and C1

Rj,j′ : {x ∈ Dj : gj,j′(x) ≤ 0} → Dj′ such

that Rj,j′ |Gj,j′
= R|Gj,j′

for each j, j′ ∈ J ;

1.4 (vector field is transverse to guard) Dgj,j′(x) ·
Fj(t, x) < 0 for all j, j′ ∈ J , t ≥ 0, and x ∈ Gj,j′ .

Before we proceed, we make a number of remarks about the

preceding Assumption.

Remark 1 (vector fields generate differentiable global flows).

Assumption 1.1 ensures there exists a continuously differen-

tiable flow φj : [0,∞) × [0,∞) × Dj → Dj for Fj . In

other words, if χ : [τ,∞) → Dj denotes the trajectory for

Fj initialized at χ(τ) ∈ Dj , then χ(t) = φ(t, τ, χ(τ)) for

all t ∈ [τ,∞). This condition enables application of classical

infinitesimal contractivity analysis for continuous-time flows.

Remark 2 (discrete transitions are isolated). Since Assump-

tion 2.1 below will (in particular) prevent an infinite number

of discrete transitions from occurring at the same time

instant, Assumption 1.2 is imposed without loss of generality.

Indeed, given a hybrid system that permitted at most m
discrete transitions at the same instant of time (an example

with m = 2 can be found in [25, Thm. 8]), the reset map

could be replaced with its m-fold composition to yield a

hybrid system with isolated discrete transitions that has the

same set of trajectories (as defined below).

Remark 3 (closed guards). Noting that continuity of gj,j′

ensures Gj,j′ = {x ∈ Dj : gj,j′(x) ≤ 0} is closed, we

observe that Gj =
⋃

j′∈J Gj,j′ ⊂
⋃

j′∈J Gj,j′ ⊂ Gj , whence

Assumption 1.3 ensures Gj =
⋃

j′∈J Gj,j′ ⊂ Dj is a closed

set. Note that the disjoint components of the guard, Gj,j′ , are

not required to be closed.

B. Hybrid system trajectories and flow

Informally, a trajectory of a hybrid system H is a right-

continuous function of time that satisfies the continuous-

time dynamics specified by F on D and the discrete-time

dynamics specified by R on G. Formally, a function χ :
[τ, T ) → D with τ ≥ 0 is a trajectory of H if:

1) Dχ(t) = F(t, χ(t)) for almost all t ∈ [τ, T );
2) χ(t+) = χ(t) for all t ∈ [τ, T );
3) χ(t−) = χ(t) if and only if χ(t) 6∈ G;

4) χ(t−) 6= χ(t) =⇒ χ(t−) ∈ G and χ(t) = R(χ(t−)).

Note that it is allowed, but not required, that T = ∞
(although we will shortly impose additional assumptions that

ensure trajectories are defined for all positive time). If the

domain of χ cannot be extended in forward time to define a

trajectory on a larger time domain, then χ is termed maximal.

The following Proposition ensures that maximal trajectories

exist and are unique under the conditions in Assumption 1;

its proof is standard [26, Thm. III-1].

Proposition 1 (existence and uniqueness of trajectories).

Under the conditions in Assumption 1, there exists a unique

maximal trajectory χ : [τ, T ) → D satisfying χ(τ) = x if

x ∈ D\G or χ(τ) = R(x) if x ∈ G for any initial state

x ∈ D and initial time τ ≥ 0.

We will restrict the class of trajectories exhibited by

the hybrid system in Assumption 2 below. Before impos-

ing these restrictions, we first develop tools that enable

analysis of how trajectories vary with respect to initial

conditions. The reset map induces an equivalence relation
R
∼

on D defined as the smallest equivalence relation containing

{(x, y) ∈ G × D : R(x) = y} ⊂ D×D, for which we write

x
R
∼ y to indicate x and y are related. The equivalence



class for x ∈ D is defined as [x]R =
{

y ∈ D|x
R
∼ y

}

.

The quotient space induced by the equivalence relation is

denoted M = {[x]R|x ∈ D} endowed with the quotient

topology [27, Appendix A]; we note that such quotient

spaces have been studied repeatedly in the hybrid systems

literature [28], [29], [30], [18].

To define a distance on the quotient M, we will adopt

the approach in [18] and use the length of paths that are

continuous in the quotient. A path γ : [0, 1] → D is smoothly

R-connected if there exists an open set O ⊂ [0, 1] such

that: the relative complement OC⊂ [0, 1] is countable (so

that, in particular, the closure O = [0, 1]); γ is continuously

differentiable on O; limr′↑r γ(r
′)

R
∼ limr′↓r γ(r

′) for all r ∈

(0, 1); and γ(0)
R
∼ limr′↓0 γ(r

′), γ(1)
R
∼ limr′↑1 γ(r

′).
A set O satisfying the above conditions is termed a support

set for γ at time t. Intuitively, a smoothly R-connected

path γ is a path through the modes {Dj}j∈J of the hybrid

system that is allowed to jump through the reset map R
(forward or backward) and is smooth almost everywhere.

With a slight abuse of notation,1 we consider γ a path

in M; with this identification, all R-connected paths are

continuous paths in the quotient space M. Any support

set O for a smoothly R-connected path γ is a countable

union of (disjoint) open intervals (cf. [31, Prop. 0.21]); let

O =
⋃k

i=1(ui, vi) with possibly k = ∞. Because each

segment γ|(ui,vi)
is continuously differentiable, the segment

is (in particular) continuous, so its image must necessarily

belong to a single Dj for some j ∈ J .

Assumption 2 (hybrid system flow). Given a hybrid system

H = (D,F ,G,R):

2.1 (Zeno) no trajectory has infinite resets in finite time;

2.2 (continuity of hybrid system flow) with φ : F → D
denoting the hybrid system flow, i.e. φ(t, τ, x) = χ(t)
where2 χ : [τ,∞) → D is the unique trajectory

initialized at χ(τ) = x, the projection π ◦ φ(t, τ, x),
regarded as a function D → M, is continuous;

2.3 (support sets of smoothly R-connected paths) for all

t ≥ τ ≥ 0 and all smoothly R-connected paths γ, there

exists a support set O of φ(t, τ, γ(·)) such that, for all

r′ ∈ O, there exists ǫ > 0 such that all trajectories

φ(·, τ, γ(r)) with r ∈ (r′ − ǫ, r′ + ǫ) undergo the same

sequence of discrete state transitions as φ(·, τ, γ(r′)) on

the time interval [τ, t].

Before we proceed, we make a number of remarks about the

preceding Assumption.

Remark 4 (Zeno and forward completeness). Since our

results below will strongly leverage the fact that the hybrid

system flow is everywhere locally a composition of a finite

number of differentiable flows and resets, we cannot easily

extend our approach to Zeno trajectories.

Remark 5 (continuity of hybrid system flow). Continuous

flow is necessary for infinitesimal contraction with respect to

1π ◦ γ is a path in M, where π : D → M is the quotient projection.
2Note that Assumption 2.1 ensures that the maximal time interval in

Proposition 1 is [τ,∞), i.e. T = ∞.

the intrinsic distance defined below, as the intrinsic distance

between trajectories on either side of a flow discontinuity

will grow linearly with time.

Remark 6 (support sets of R-connected paths). Note that

Assumption 1 already suffices to ensure the conditions

in Assumptions 2.2-2.3 hold in regions where guards do

not “overlap”, i.e. where the intersection of their closures

is empty, Gj,j′ ∩ Gj,j′′ = ∅. Where guards do overlap

(Gj,j′ ∩ Gj,j′′ 6= ∅), Assumption 2.3 does not require that

all trajectories along a path undergo the same sequence of

discrete state transitions, only that the path’s domain contains

an open dense subset wherein each connected component

undergoes the same sequence of discrete state transitions on

finite time horizons. We emphasize that this condition does

not require that all trajectories visit the same sequence of

modes.

It is well-known [32] that, under favorable conditions,

the hybrid system flow φ is differentiable almost every-

where and, moreover, its derivative can be computed by

solving a jump-linear-time-varying differential equation. The

preceding assumptions are favorable enough to ensure the

flow has these properties so that, in particular, the derivative

along a path can be computed using the jump-linear-time-

varying differential equation. These facts are summarized in

the following Proposition, whose proof is standard [32].

Proposition 2. Under Assumptions 1 and 2, given an initial

time τ ≥ 0 and a smoothly R-connected path γ, let ψ(t, r) =
φ(t, τ, γ(r)) for all t ≥ τ and define w(t, r) = Drψ(t, r)
whenever the derivative exists. Then w(τ−, r) = Drγ(r) and

w(·, r) satisfies a linear-time-varying differential equation

Dtw(t, r) = DxF(t, ψ(t, r))w(t, r), ψ(t−, r) ∈ D\G, (1)

with jumps w(t, r) = Ξ(t, ψ(t−, r))w(t−, r), ψ(t−, r) ∈ G,
where Ξ(t, x) is the saltation matrix: ∀t ≥ 0, x ∈ Gj,j′

Ξ(t, x) =DR(x) +
(F+ −DR(x)F−)Dgj,j′(x)

Dgj,j′(x)F−
(2)

where F+ = Fj′(t,R(x)), F− = Fj(t, x).

C. Hybrid system intrinsic distance

As the final preliminary construction, we define the length

of a smoothly R-connected path γ : [0, 1] → D as the

sum of the lengths of its segments, and use this length

structure [33, Ch. 2] to define an intrinsic distance on M.

To that end, define the length of a continuously differentiable

path segment γ|(ui,vi)
: (ui, vi) → Dj in the usual way using

the norm |·|j in Dj , namely, Lj(γ|(ui,vi)
) =

∫ vi

ui
|Dγj(r)|jdr

(we drop the subscript for L when the mode is clear from

context), and define length of γ at time t as the sum of the

lengths of its segments,

L(γ) =

k
∑

i=1

L(γ|(ui,vi)
) =

∫ 1

0

|Dγ(r)|j(r)dr,

where j(r) ∈ J denotes the mode satisfying γ(r) ∈ Dj(r)

for each r ∈ [0, 1]. With Γ denoting the set of smoothly



R-connected paths in M, and letting

Γ(x, y) = {γ ∈ Γ : γ(0) = x and γ(1) = y, x, y ∈ D}

denote the subset of paths that start at x ∈ D and end at

y ∈ D, we define the distance d(x, y) between x and y by

d(x, y) = inf
γ∈Γ(x,y)

L(γ). (3)

We note that d : M × M → [0,∞) belongs to the class

of distance function in [22, Def. 1], but it has a stronger

intrinsic relationship to the hybrid system [18, Thm. 13].

IV. RESULTS

The main contribution of this paper is the provision of

local (or infinitesimal) conditions under which the distance

between any pair of trajectories in a hybrid system (as

measured by the intrinsic distance defined in (3)) is bounded

by an exponential envelope. These conditions are made

precise in Theorem 1 and Corollary 1. In what follows, we

will only check infinitesimal contractivity conditions on a

contraction region C ⊂ D, that is, a forward-invariant subset

(ξ ∈ C implies φ(t, 0, ξ) ∈ C for all t ≥ 0) that descends to

a simply-connected subset in the quotient.

Theorem 1. Under Assumptions 1 and 2, if there exists c ∈
R and contraction region C ⊂ D such that, for all j, j′ ∈ J ,

t ≥ 0,

µj (DxFj(t, x)) ≤ c ∀x ∈ C∩Dj\Gj and (4)

‖Ξ(t, x)‖j,j′ ≤ 1 ∀x ∈ C∩Gj,j′ , (5)

then d(φ(t, 0, ξ), φ(t, 0, ζ)) ≤ ectd(ξ, ζ) for all t ≥ 0 and

ξ, ζ ∈ C ∩ D.

Proof: Given x(0) = ξ, z(0) = ζ, and s ∈ [0, t], for

fixed ǫ > 0, let γ ∈ Γ(ξ, ζ) be such that L(γ) < d(ξ, ζ) + ǫ,
and let ψ(t, r) = φ(t, 0, γ(r)). Since φ(t, 0, ·) is piecewise-

differentiable, it follows from Assumption 2.2 and 2.3 that

ψ(t, ·) is a smoothly R-connected path for all t ≥ 0. Let

w(t, r) = Drψ(t, r) whenever the derivative exists. By

Proposition 2, w(t, r) satisfies the equations

ẇ(t, r) = DxF(t, ψ(t, r))w(t, r), ψ(t, r) ∈ D\G, (6)

w(t+, r) = Ξ(t, ψ(t−, r))w(t−, r), ψ(t−, r) ∈ G. (7)

For fixed r, let {ti}
k
i=1 ⊂ [0,∞) with t0 ≤ t1 ≤ · · · and

possibly k = ∞ be the set of times at which the trajectory

φ(t, s, γ(r)) intersects a guard so that ψ(·, r)|[ti,ti+1)
is

continuous for all i ∈ {0, 1, . . . , k − 1} where t0 = s by

convention, and, additionally, ψ(·, r)|[tk,∞) is continuous if

k <∞. Now consider some fixed time T > 0. If k <∞ and

tk ≤ T , let i = k; otherwise, let i be such that ti ≤ T < ti+1.

Let j be the active mode of the system during the interval

[ti, ti+1), i.e. ψ(t, r) ∈ Dj for all t ∈ [ti, ti+1). With

J(t) = DxFj(ψ(t, r)) for t ∈ [ti, ti+1) we have

|w(T, r)| ≤ e
∫

T

ti
µ(J(τ))dτ

|w(t+i , r)| ≤ ec(T−ti)|w(t+i , r)|

≤ ec(T−ti)‖Ξ(t, ψ(t−i , r))‖|w(t
−
i , r)| ≤ ec(T−ti)|w(t−i , r)|

where the inequalities follow from, respectively, Coppel’s

inequality [34, p. 34], (4), (7), and (5). Since this holds for

any T < ti+1, |w(t−i+1, r)| ≤ ec(ti+1−ti)|w(t−i , r)| whenever

i ≤ k. By recursion, |w(T, r)| ≤ ecT |w(s−, r)|. Since T was

arbitrary, we have proved |w(t, r)| ≤ ect|w(0−, r)|.
Because ψ(T, ·) for fixed T > 0 is a smoothly R-

connected path, there exists a support set O =
⋃k

i=1(ui, vi)
of ψ(T, ·) such that ψ(T, ·)|(ui,vi)

is continuously-

differentiable for all i ∈ {0, 1, . . . , k}. It follows that

L
(

ψ(T, ·)|(ui,vi)

)

=
∫ vi
ui

|w(T, σ)|dσ, whence

L(ψ(T, ·)) =
k

∑

i=1

L
(

ψ(T, ·)|(ui,vi)

)

≤

∫ 1

0

|w(T, σ)|dσ

≤ ecT
∫ 1

0

|w(0−, σ)|dσ = ecTL(γ) ≤ ecT (d(ξ, ζ) + ǫ).

In addition, observe d(φ(T, 0, ξ), φ(T, 0, ζ)) ≤ L(ψ(T, ·)).
Noting that T was arbitrary and ǫ can be arbitrarily small

concludes the proof.

Now suppose that uniform upper or lower bounds on the

dwell time between successive resets are known. Then the

number of discrete state transitions is upper or lower bounded

on any compact time horizon, and the proof of Theorem

1 can be adapted to derive an exponential bound on the

intrinsic distance between any pair of trajectories.

Corollary 1. Under Assumptions 1 and 2, suppose the dwell

time between resets is at most τ ∈ (0,∞] and at least τ ∈
[0,∞) and there exists c ∈ R, K ∈ R≥0, and forward-

invariant C ⊂ D such that, for all j, j′ ∈ J , t ≥ 0,

µj(DxFj(t, x)) ≤ c ∀x ∈ C∩Dj\Gj and (8)

‖Ξ(t, x)‖j,j′ ≤ K ∀x ∈ C∩Gj,j′ , (9)

then d(φ(t, s, ξ), φ(t, s, ζ)) ≤ Kec(t−s)d(ξ, ζ)
for all t ≥ s ≥ 0 and ξ, ζ ∈ C ∩ D
where K = max{K⌈(t−s)/τ⌉,K⌊(t−s)/τ⌋}. In

particular, if max{Kecτ ,Kecτ} < 1 then

limt→∞ d(φ(t, s, ξ), φ(t, s, ζ)) = 0.

Remark 7 (summary of main result). Our main contribution

is Theorem 1, where we generalize infinitesimal contractivity

analysis to the class of hybrid systems satisfying Assump-

tions 1 and 2. This generalization has intuitive appeal, since

it combines infinitesimal conditions on continuous-time flow

(via the matrix measure of the vector field derivative, (4))

and discrete-time reset (via the induced norm of the saltation

matrix, (5)) that parallel the conditions imposed separately

in prior work on smooth continuous-time and discrete-time

systems, and establishes contraction with respect to the

hybrid system’s intrinsic distance d. With bounds on dwell

time, i.e. the time between discrete transitions, our approach

yields a bound in Corollary 1 on the intrinsic distance

between trajectories regardless of whether the dynamics

are contractive or expansive. We say a hybrid system is

contractive if limt→∞ d(φ(t, s, ξ), φ(t, s, ζ)) = 0 holds for

all trajectories.





3) Interpretation: We interpret the preceding analysis in

the context of the application domain, where the hybrid

system H models an AC-DC converter. Theorem 1 ensures

the system is infinitesimally contractive for sinusoidally-

fluctuating (AC) voltage inputs u(t), hence there exists an

exponentially stable limit cycle, whence the capacitor voltage

q(t)/C fluctuates periodically around a well-defined average

(DC) output voltage.

VI. CONCLUSION

We generalized infinitesimal contraction analysis to hybrid

systems by leveraging local properties of continuous-time

flow and discrete-time reset to bound the time rate of change

of the intrinsic distance between trajectories. Furthermore,

we showed that contraction with respect to this intrinsic

distance implies infinitesimal contraction in continuous- and

discrete-time. Our results expand the toolkit for stability

analysis in hybrid systems. Importantly, although we had to

introduce new techniques to generalize infinitesimal contrac-

tion to the hybrid setting, our approach leverages the key

idea in classical analyses: a system is contractive if path

lengths decrease in time [1], [3], [36]. This close parallel may

facilitate generalization of a variety of classical techniques

to hybrid systems including state-varying distance metrics

defined by Riemannian [1] or Finsler [36] structures.
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