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ABSTRACT

This paper introduces a new graph neural network architec-
ture for learning solutions of Capacitated Vehicle Routing Prob-
lems (CVRP) as policies over graphs. CVRP serves as an impor-
tant benchmark for a wide range of combinatorial planning prob-
lems, which can be adapted to manufacturing, robotics and fleet
planning applications. Here, the specific aim is to demonstrate
the significant real-time executability and (beyond training) scal-
ability advantages of the new graph learning approach over ex-
isting solution methods. While partly drawing motivation from
recent graph learning methods that learn to solve CO problems
such as multi-Traveling Salesman Problem (mTSP) and VRP, the
proposed neural architecture presents a novel encoder-decoder
architecture. Here the encoder is based on Capsule networks,
which enables better representation of local and global informa-
tion with permutation invariant node embeddings; and the de-
coder is based on the Multi-head attention (MHA) mechanism
allowing sequential decisions. This architecture is trained us-
ing a policy gradient Reinforcement Learning process. The per-
formance of our approach is favorably compared with state-of-
the-art learning and non-learning methods for a benchmark suite
of Capacitated-VRP (CVRP) problems. A further study on the
CVRP with demand uncertainties is conducted to explore how
this Capsule-Attention Mechanism architecture can be extended
to handle real-world uncertainties by embedding them through
the encoder.
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1 Introduction

Combinatorial Optimization (CO) problems are ubiquitous
in various real-world planning, scheduling and task allocation
problems that are fundamental to the operation of complex cyber-
physical systems. Often these CO problems can be naturally or
with some modifications represented as a graph, thereby allow-
ing the use of optimization, graph traversal, metaheuristics and
machine learning tools that can operate over graphs, for solving
the underlying CO problems. A majority of these problems tend
to be NP-hard [1] and cannot be solved with polynomial time
using traditional methods such as (Mixed) Integer (Non-)Linear
Programming (ILP, MILP, MINLP, etc.) [2, 3], metaheuristics
methods [4—7] and genetic algorithms [8—10]. CO problems such
as Travelling Salesman Problem (TSP), Vehicle Routing Prob-
lem (VRP) can be used to model a wide variety of real world
problems such as path planning for improved fuel economy in
vehicles [10, 11], and manufacturing automation related applica-
tions such as pick and place [12], and sequence planning [13].
Even though some of these methods can generate local optimal
solutions for small sized problems, the computational expense
becomes intractable in applications where online near real-time
(few milliseconds to few seconds) decisions are required. Some
of the real-world systems applications of CO [14], such as net-
work routing [15], transportation scheduling [16], power grid re-
configuration [17] and multi-agent task allocation [18], requires
a near real-time performance; some of these applications also in-
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volve a very large number of decision variables [19]. In most
such application good feasible solutions that are near real-time
computable is of essence, which becomes even more challeng-
ing in the face of uncertainties. A prototypical example would
be planning of disaster relief [20] where the demand for relief
(e.g., locations to be serviced or degree of service needed) is of-
ten uncertain; in such cases, a pre-computed plan based conven-
tional CO techniques may not be able to provide the necessary
performance and time-efficiency trade-offs [21].

In recent years, a rich body of work has emerged on us-
ing learning-based techniques to model solutions or intelligent
heuristics for CO problems over graphs [22-27]. A notable frac-
tion of these methods formulates the CO problem as a Markov
Decision Process (MDP) and uses Reinforcement Learning (RL)
to generate policies that can yield optimal solutions across a
reasonable range of problem instances [22-25]. Such policies
are often embodied by a trained graph neural network or GNN.
Other methods have taken a supervised learning approach [28],
with usage mostly for non-planning label-abundant applications.
The main advantages of a learning approach over classical non-
learning methods include [1]: i) the ability to generalize across
problem scenarios without tedious hand-crafting of the heuris-
tics; ii) much faster run-time execution (critical for real-time task
allocation and planning applications); and iii) the ability (at least
in theory) to automatically learn the problem features of interest
which may not be readily evident even to human experts when
applications involve complex cyber-physical systems. Bench-
mark applications have included Travelling Salesman Problem
(TSP), Vehicle Routing Problem (VRP), and Max-Cut [22,25].
Up to a certain scale and specificity of say planning and schedul-
ing applications (as opposed to being able to generalize across
wide range of problem classes), the complexity of such problems
may not necessarily favor a learning based approach over non-
learning based optimization, graph matching and local search
heuristics methods [29, 30]. Another major limitation of most
existing learning-based methods is their inability to readily ap-
ply a trained model on problem scenarios of greater complexity
(e.g., multi-TSP instances with more travellers and/or locations
to visit) than the scenarios or samples used for training; typically
retraining is required to achieve this, which can quickly become
computationally burden-some. Thus scalability with minimal to
no re-training is a critical need for learning based solutions to be
effective in modeling solutions to such CO problems.

In this paper we focus on a specific type of VRP, also known
as the Capacitated VRP (CVRP) [31]. The CVRP is a combina-
torial optimization problem where the objective is to compute the
optimal route to deliver packages of the same size by a vehicle
(with a maximum capacity on the number of packages that can be
accommodated at a time) to a set of locations based on the given
demand of the locations. The CVRP which is a generalized form
of the VRP has is being used to model a wide variety of real-
world applications such as for cyber-physical systems [32, 33],

operations planning [34, 35]. A classification of the different
methods for solving VRP can be found in [36]. The VRP has
been traditionally tackled using exact MILP solutions such as
given by Branch and bound [37-39], Branch and cut [40], Branch
and price [41,42], and Branch and cut and price [43] methods.
Due to the NP-hard nature of the VRP, these methods become in-
tractable for larger sized problems. On the other hand, heuristic
based methods have included two phase routing [44], construc-
tion heuristics [45], Insertion heuristics [46, 47], and Iterative
improvement heuristics [48]. A wide variety of meta-heuristic
methods have also been modified and adapted to solve VRP, no-
table among which are Simulated Annealing [49], Genetic algo-
rithms [50-52], Ant colony Optimization [53, 54], and Iterative
local search [55]. Some of the learning based solutions to rout-
ing problems [22,24,25] demonstrate exceptional generalizabil-
ity (performance on test data are comparable to a MILP based so-
lution), with small computation time (for implementing the poli-
cies). A CVRP, which can be expressed as a graph [22,24], as
also discussed in section 2.1, presents rich structural information
(beyond just Euclidean node coordinate properties), which can
be exploited for computing better policies embodied by graph
neural networks. While RL based methods such as [22, 24, 25]
have to some extent demonstrated generalizability across unseen
scenarios of similar complexity as those used in training, (we
posit that) limited use of graph structural information in them
has restrained their ability to scale without the need to retrain.
In this paper, we present a new GNN-based encoder-decoder
neural architecture which acts as a policy network that can out-
put the best action w.r.t. a state in a sequential manner. This
neural architecture seeks to preserve local and global structural
information, and is invariant to permutation of the node order-
ing in the graph representation of the problem. These char-
acteristics are hypothesized to enable learning optimal policies
for different classes of CO problems such that the learnt poli-
cies remain effective when applied to scenarios that are more
complex (larger scale) than the problem scenarios used for train-
ing. Specifically we construct and explore a Capsule Attention-
based Model trained through Reinforcement Learning, which
we call CapAM-RL. It is composed of an encoder based on cap-
sule networks, a decoder based on Multi-head attention (MHA)
mechanism, and a context module that encapsulates and feeds
the state input for a given type of problem. We use the CVRP
to investigate the primary conceived benefit of our CapAM-RL
architecture, namely how learning of global and local structural
information improve the generalizability of a trained model over
larger-sized problems (i.e., more complex than training samples),
in comparison to state-of-the-art learning based methods [22].
To provide rigorous context and evidence of the roughly two-
orders of magnitude faster run-time performance compared to
non-learning based methods, we also compare the results with
well-known local search and metaheuristics methods. Additional
parametric analysis is presented to provide insights into the im-
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pact of various parameters that control the node encoding, on the
performance of the CapAM-RL architecture. We also demon-
strate how our method can be extended to include a CVRP with
demand uncertainties, and the corresponding advantage of ex-
plicitly embedding these uncertainties to yield more robust deci-
sion making.

Thus, the major contributions of this paper are as follows:

1. A new graph reinforcement-learning approach, CapAM-
RL, which uses a novel Capsule Network based encoder
and MHA based decoder is presented to learn policies for
CVRP, and demonstrates the ability to generalize well, scale
to larger size problem without the need to retrain, and is
near-real-time executable even for large problems involving
1000’s of nodes.

2. Comparative analysis of our approach in terms of general-
izability, scalability and computation time, with other state-
of-the-art learning and non-learning based approaches.

3. Extension of our CapAM-RL approach to be implemented
on CVRP problems with demand uncertainty by embedding
uncertainty parameters along with other node features under
the graph formulation of the CVRP, and show how perfor-
mance differs compared to the original (uncertainty agnos-
tic) CapAM-RL.

The remainder of the paper is organized as follows: The
next section describes the background and related works. Sec-
tion 3 presents our proposed architecture and learning approach.
Section 4 describes the CVRP experimental evaluations, base-
line methods used for comparison, and discusses the results and
further parametric analyses. The paper ends with concluding re-
marks.

2 Problem Formulation
2.1 Formulation of CVRP and its graph representa-
tion

The CVRP is a generalized version of the classical Vehicle
Routing Problem (VRP). Each vehicle in the CVRP has a max-
imum capacity (C) constraint on the number of packages it can
carry, and thus deliver in a single trip. Assuming there are N lo-
cations, each location i has a specific demand ¢; on the number
of packages, where ¢; < C and i € [1,N]. Each task is designated
an id between 1 to N. We also consider a depot with id as 0. The
CVRP implementation in this work assumes a single vehicle with
multiple trips (where each trip begins at the depot and ends in the
depot to refill or for end of the mission) instead of multiple vehi-
cle with single trip each. In this experiment, we do not consider
split delivery where the demand of a location is fulfilled partially
during a trip, and then completed in another trip. The decision
can be perceived as a sequence of ordered list of location indices
(¢;, j€[1,R]), where j represents the j-th trip and R is the total

number of trips made by the vehicle. Here, each ¢; can be ex-
pressed as a vector of location indices, e.g., ¢ = [2 6 4 0] shows
that in the 2nd trip, the vehicle visited the locations i =2,i =6
and i = 4 in that order before returning to the depot (given by
index i = 0). The ballpark formulation for this CVRP can then
be expressed as:

min  foost = S @))]
Cjs, ifie?, wherei=¢;,
s.t. Cjrp1=4C, ifi=0, wherei=¢;,
max(0,Cj, —¢;), otherwise

where .7 is the total distance travelled in trip j, C; is the avail-
able capacity at the decision instance 7, 7 is the set of locations
already visited and demands fulfilled, and ¢;, represents the ¢-th
location visited in the j-th trip. The MILP formulation of the
CVRP considered in the paper can be found in [31].

CVRP formulated as graphs: The task space of an
CVRP can be represented as a complete un-directed graph
¢ = (V,E,A), which contains a set of nodes/vertices (V), a set
of edges (E) that connect the vertices to each other, and the
weighted adjacency matrix A that gives the extent to which two
nodes are connected. Each node is a task, and each edge connects
a pair of nodes. For CVRP with N tasks, the number of vertices
and the number of edges are N and N(N — 1)/2, respectively.
Node i is assigned a 3-dimensional feature vector denoting the
node location and demand, i.e., §; = [x;,y;, ¢;]. Here we consider
a weighted adjacency matrix without self-loop (a;; = 0, ¢ ; € A,
where i and j € [1,N]). The weights in the adjacency matrix o;;
take a real value between O and 1, in a manner such that if the
features of two nodes i and j are relatively close to each other,
then o; has a higher value. Since we are formulating CVRP as
an un-directed graph, the adjacency matrix A is symmetric. In
this paper, the elements of A (¢; ;, i # j) are computed as the in-
verse of the normalized euclidean distance of the node properties.
In addition, we also define a weight matrix (£2) comprising the
weights associated with each edge in the graph, where the weight
of the edge connecting two task nodes (@;; € £2) represents the
cost (e.g., distance traveled) incurred by the vehicle to visit node-
Jj after node-i. Depending on the application, the weight matrix
need not be symmetric.

2.2 MDP formulation for CVRP

The Markov Decision Process (MDP) of the CVRP prob-
lem can be defined to capture the myopic decision-making pro-
cess for the vehicle, which can be expressed as a tuple <
Sl Py, R >. The components of the MDP can then be de-
fined as follows: State Space (.¥): The vehicle uses a state

Copyright © 2022 by ASME



s € ., which contains the following information: 1) current lo-
cation, 2) constraints the vehicle such as its current capacity. The
state space also includes the environment, defined by the location
and the demand of the location, which are expressed here as node
features in the graph. Action Space (<7): The set of actions is
represented as 7/, where each action a € 7 is defined as the
index of the selected task, {1,...,N}. In CVRP that includes a
depot, designated as task 0. The location status, i.e., active or
completed (i.e., location visited and demand is fulfilled), is used
to properly decode the actions generated by the policy model.
Transition: The transition is an event-based trigger. An event
is defined as the condition that the vehicle reached its selected
location or depot. Reward (#): A delayed reward is considered
here, estimated at the end of the simulation, i.e, when there are no
more active locations to be visited. The actual reward function is
typically application-dependent.

3 Architecture & Learning Framework

In this work we implement an RL algorithm on an encoder-
decoder architecture to learn the optimal policies for CO prob-
lems over a graph formulation. The encoder represents each
graph node as a continuous vector infusing both its own prop-
erties as well as its local and global structural properties within
the graph representation of the node space. The decoder se-
quentially computes output probabilities for all the nodes using
the information from the encoder and the current state (context),
based on the Multi-Head Attention mechanism. The sequentially
computed output probabilities for each node indicates the relative
goodness of selecting that node as the next one to visit. Detailed
description of the architecture, including the encoder, decoder
and context modules, is presented in Section 3.1 to 3.3, based on
the representative Capacitated VRP or CVRP problem described
next.

3.1 Encoder

The main purpose of the encoder is to represent useful infor-
mation related to a node as a continuous vector or tensor, which
can then be used by the learning algorithm. For a graph node, the
information includes the properties of the node itself (e.g., the
coordinates and time deadline of the node), the local neighbor-
hood information for the node, and also the global structural in-
formation. Combinatorial optimization problems such as CVRP,
and MTSP are permutation invariant, which means the order by
which each node is numbered should not affect the optimal solu-
tion. Hence the node encoding must also be permutation invari-
ant. In this work, we are exploring how a Graph Capsule Convo-
lutional Neural Network can be implemented for learning local
and global structures with the node properties, with permutation
invariant node embedding.

Graph Capsule Convolutional Neural Networks: Graph

Capsule Convolutional Neural Networks (GCAPCN) is a class
of Graph Neural Networks (GNN), introduced by [56] to address
the drawbacks (e.g., permutation invariance) of Graph Convo-
lutional Neural Networks (GCN), and to enable the encoding of
global information based on a capsule idea presented in [57]. The
main advantage of GCAPCN lies in capturing more local and
global information, compared to conventional aggregation oper-
ations used in GNN such as aggregation or standard convolution
operations. As described by [56], higher order statistical mo-
ments are used to compute a capsule vector, which captures local
information better. Let X € RV X“si‘, be the node feature matrix,
where |§;| is the input dimension for each node i. The standard
graph Laplacian is defined as L = D — A € R¥*N, where D is the
degree matrix of the graph. As described in [56], a capsule vector
is computed using a Graph Capsule function based on different
order of statistical moments, as shown in the equations later in
this section.

Instead of directly feeding in the node properties [56], we
first compute a feature vector Fy; for each node by linear trans-
formation of the node properties &;, as Fy; = 8;Wy + by for all
i € [1,N], where Wy & RMo*131 by g RM*1 and hy is the length
of the feature vector. For a CVRP problem, &; = [x;,y;,c;], where
Xi, ¥i, and c¢; are the x coordinate, y coordinate, and the demand
of location/node i. It is important to understand that this method
for encoding is not limited to a specific CVRP problem. This ap-
proach can also be extended or modified for complex CO prob-
lems with nodes having other features.

Each feature vector Fy;,i € [1,N] is then passed through a
series of Graph capsule layers. In each layer, the output from
the previous layers is used to compute a matrix flg” (X,L) using
a graph convolutional filter of polynomial form as shown in Eq.
2.

K
Ax.L) = oY LXF (X L)WY )
k=0

Here L is the graph Laplacian, p is the order of the statistical
moment, K is the degree of the convolutional filter, F{;_)(X,L)
is the output from layer / — 1, F{;_;)(X,L)°F represents p times
element-wise multiplication of Fi;_1)(X,L). Here, F;_;)(X,L) €
RN*hi-1p WIEQ € Rlu-1r%h_and f,(,l)(X,L) € RV*M  The output
of layer [ is obtained by concatenation of all flgl) (X,L), as shown
in Eq. 3.

AL =[x, A&, Oxn G

Here P is the highest order of statistical moment, and 4; is the
node embedding length of layer /. We consider all the values of
hy (where [ € [0,L,]) to be the same for this paper. Equations 2
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and 3 were computed for L, layers, where each layer uses the
output from the previous layer (F;_;(X,L)). Adding more layers
helps in learning the global structure, however this can affect the
performance by increasing the number of learnable parameters
(compared to the size of the problem), leading to over-fitting.
We also implemented batch normalization for regularization and
skip connection to speed-up learning, between layers. The output
from the final layer is then passed through a feed-forward layer so
that the final feature vector has the right dimension to be fed into
the decoder as shown in Fig. 1a. It is important to understand that
this encoding approach can be easily extended to more complex
problems. For example, for problems with locations having a
time deadline, this will also be a part of the node properties ( &;).

3.2 Decoder

The main purpose of the decoder is, to sequentially compute
a probability distribution for the next node among all the avail-
able nodes, given the current state (or the context), and the node
embeddings. This output probability of each node shows the im-
portance of each node for that current state, or the importance of
each node embedding for the context. The decoder implements
an attention mechanism where the output from the context is used
a query Q, and the node embeddings from the encoder are used
as the key value pairs (K, V).

Attention(Q, K, V) = softmax(QK” / \/cﬁ)V 4)

where d* is the dimension of K or V. In this work we implement
a multi-head attention (MHA) layer in order to determine the
compatibility of Q with K and V. As shown by [58] the MHA
layer can be defined as:

Multihead(Q, K,V) = Linear(Concat(head; ...head;,)) (5)

where head; = Attention(Q, K, V) and / is the number of heads.
The feed-forward layer is to convert the output from the MHA
layer to a dimension that can be taken in for the next process.
The final softmax layer outputs the probability values for all the
nodes. The next task to be done will be chosen based on a greedy
approach, which means the node which has the highest probabil-
ity will be chosen. The nodes which are already visited will be
masked such that it will not be chosen in the future time steps of
the simulation. During each decision making process the nodes
whose demand cannot be met at that particular point of time, are
also masked.

3.3 Context
The main function of the context is to encode the current
state of the mission into a continuous vector, which can then be

fed to the decoder to estimate the output probabilities. For a
CVREP, the context consists of information regarding the current
node (embedding), and the current vehicle capacity. These two
pieces of information are concatenated, and a linear transforma-
tion was performed to obtain the query vector Q, which is then
fed into the decoder. For a more complex problem the context
includes more state variables that can affect the mission. For
example, if the vehicle in the CVRP problem has a maximum
distance range constraint, then it will also be added as context
information, thus showing the versatility to be extended to more
complex problems.

Output: Graph &, 8
Prob. of Nodes 3
Selecting I

Nodes = o4 | 6

Fy;(X,L) = Linear(4;),i[1,N]
Fo(X, L) = [Foq, Fo2, - Fon]

| Skip connection

[ B =Pxn, xSy |

L. layers, 1 € [1, L]

Feedforward
-« »
< | Batch Normalization |
T
|Batch Normalizationl | Linear() |
i
| MHA (Masked), Lq layersl | LeakyReLU() |

Decoder Encoder

| Context Linear [Concat [Current location, Current capacity]] |

(a) CapAM-RL architecture: encoder, decoder and context
(I At time tg, the agent is at location 0 (depot)

State Greedy Action:
Task Graph, ‘l gRolicy Selecte;j
ﬂ_’ B location
Time 051 E >0
7 038
5 i el
. (X0 Yor Co) <
o TT T oo Selecting Task — = -
(D) At time t,, the agent is at location 2
State Greedy Action:
Task Graph Policy Selecte;j
Time 0;03} o% location
—» 2
ty 0.2 | ® > o
i == e
:) (X2 Y21 ) N

(b) Deployment of a CVRP policy based on CapAM-RL. I) at time #g. II)
at time #1; here, the output for previously selected node, e.g., node 2 in (II),
is set as 0.

FIGURE 1: Architecture of the Capsule Attention-based Model
(CapAM) and how it is used for sequential decision-making
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3.4 RL framework

For ease of implementation and fair comparison with an-
other popular graph learning baseline [22] (that also uses RE-
INFORCE), we implement the simple REINFORCE algorithm
to train the CapAM-RL architecture in this paper. A pseudo
code of this learning implementation is shown in Algorithm 1.
Other relevant details for the training are discussed in section 4.2.
However, the training process can readily be further advanced in
the future through the adoption of more effective state-of-the-art
policy gradient algorithms such as Proximal Policy Optimiza-
tion [59] and the Actor-Critic method [60].

4 Experimental Evaluations & Results on CVRP
4.1 Baseline methods

For a comprehensive comparative analysis, we compare our
CapAM-RL method with existing state-of-the-art methods, in-
cluding both learning based and state-of-the-art heuristic based
(non-learning) methods. The heuristic based methods includes 1)
Guided Local Search (GLS) and 2) Simulated Annealing (SA).
Both these methods are implemented using the Google OR tools.
We consider two learning based baseline methods. The first one
is the Multi-head Attention based Mechanism with RL (AM-RL)
reported by [22], which uses a similar encoder-decoder concept
as CapAM-RL. The second learning baseline also follows the
same encoder-decoder architecture with RL, but with a Graph
Convolutional Networks [61] (GCN-RL) as the encoder.

To train and test AM-RL, we use the source code provided
by [22]. To ensure fair and consistent comparison, we train and
test all three learning-based methods (i.e., AM-RL, GCN-RL,
and our CapAM-RL) using the same environment and simulation
code (based on [22]). This is also essential to allow us to study
how the three different types of encoders perform compared with
each other. All three methods are trained with the same training
algorithm (REINFORCE) and hyperparameters (further details
can be found in Section 4.2).

4.2 Training and testing details

The ”Python” 3.7 and the 64-bit distribution of ”Anaconda
2020.02” are used to implement the CVRP approaches. The en-
vironment, the architecture, training algorithm, and the evalua-
tion of the trained model, are all implemented in Pyforch-1.5.
With the help of Pytorch, the training was deployed on two GPUs
(NVIDIA tesla v100-pcie-16gb) with 16 GB RAM. The testing
of all the trained models, and other baseline methods were im-
plemented in a 2.6 GHz Intel core i7 MacOS 11.2.3 system for
CVRP.

Training hyperparameters: We use REINFORCE algo-
rithm with Rollout baselines for training all the models in this
paper. Every model was trained for a total of 100 epochs. Each
epoch consists of 500000 scenarios randomly generated from its

Algorithm 1: Learning Algorithm

Input: Ng: Number of epochs, N,: Number of batch, B: Batch size,
Ny Training data size, Ny;: Validation data size.

1: 9CapAM-RL - CapAM—RL
2: 68% v - Baseline CapAM-RL
3: for epoch = 1..Nepoch do

4: Diey Pu1 < GenerateScenarios Ny, Ny1)

5: Ny < |[Nu/B]

6:  forstep = 1..N, do

7: Dy < SampleRandom( %y, M) { Zip: Batch Training Dataset}
8: aBlL fBL CalculateCost((-)gaLp AMRL> Zirb)

9: a, feost < CalculateCost(8capam-RLs Zirb)

10: VL «+— %Z?:l (feostii —fg)];l’i)log softmax (a;)

11: OcapaMRL < ADAM(V.Z, OcapaM-RL)

12: end for

13: a\]?lL, CE(')I;LV] — CalculateCost(O(lifp AM.RL> 2v1)

14: a, feost +— CalculateCost(6capam-RL; Zv1)
15 if (Z?I:ﬂl fgalgt,i > ):f‘\ill feosti) A (T-Test(ayr,all) > €) then
16: egeprM-RL < BcapaM-RL

17: end if

18: end for

19: CalcuateCost Procedure:

20: fori=1..|2| do

21: aj, feosti <— Simulation(6, ;)

22: a+aUa;

23: Seost = feost U fcost,i

24: end for

25: return a, foos

corresponding distributions. The number of scenarios for the
Rollout baseline is 10000. For each epoch, the model was up-
dated using a batch size of 500 (due to memory constraints). The
learning step size was set as 0.001 (from [22]). The optimizer
used for updating the model is Adam optimizer.

Training Settings: We analyse the performance of CapAM-
RL on generalizability, scalability and run-time, and then fur-
ther conduct a parametric study to identify the best hyperparam-
eters that provide the best performing (trained) model for each
learning-based model. For training AM-RL, we use the recom-
mended number of attention heads (n;, = 8) in the encoder and
trained for different number of encoding layers (L, =[1,2,3]). We
use the model which performed the best in all test scenarios (L, =
3) for comparing with CapAM-RL. Similarly, we train different
models of GCN-RL (by varying the order of the convolutional
filter K, and the number of layers), and use the best performing
model (K = 3, L, = 2) for comparison. The best model for each
method was determined by the same approach as that described
in Section 5. For our CapAM-RL method, we also conduct a
parametric study and identify the best performing model (K = 3,
P =4, and L, = 1), which will be used for comparative analysis.
We train all three methods (AM-RL, GCN-RL, and CapAM-RL)
on CVRP with 100 nodes, and then test the trained models on
problems of different sizes, but from the same distribution as that
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of the training data. The node embedding length (%) for all three
methods is set at 128. Convergence plot for all the models used
for comparison for CVRP, trained for 100 epochs is shown in Fig.
2 (for CapAM-RL), and Figures 6, 8 for AM-RL and GCN-RL
resepectively, in appendix 5.
Dataset: The dataset used
for training CVRP consists of
scenarios with 100 locations
and one depot. The x and y

TABLE 1: The capacity
of the vehicle for different
test scenarios

coordinates of the locations (in- # of Tasks | Capacity (C)
cluding the depot) are randomly ?8 ig
generated from a uniform distri- 100 =
bution within the limits [0, 1]. 200 100
The demand for all task loca- 500 250
tions will be a random integer 1000 500
from a uniform distribution be- 2000 1000

tween [1,9], with depot assigned a 0 demand. The vehicle ca-
pacity (C) for a scenario with 100 locations, is considered as 50.
The dataset used for testing (to analyze both generalizability and
scalibility) has the same limits as explained above. The assumed
capacity of the vehicle for test scenarios of different number of
locations are shown in Table 1. Each CVRP scenario is defined a
single sample. The test cases consists of a total of 100 scenarios
for all different number of locations (50, 100, 200, 500, 1000,
and 2000 nodes).

100 'MCapAM-RL(K = 3,P = 4,L, = 3)
c WCapAM-RL(K = 3,P =4,L, = 2)
2 CapAM-RL(K =3,P =4,L, = 1)
Q 75 4 BCapAM-RL(K =3,P =3,L, = 1)
2 BCapAM-RL(K =3,P =2 L. =1)
3 50}
O
>
©
o 25 1
>
<C

0 L L L L
0 20 40 60 80 100

Epoch

FIGURE 2: Convergence plot for training of different CapAM-
RL models corresponding to each of the learning-based methods
for CVRP. The number of locations for the training cases is 100

4.3 Generalizability and Scalability:

Generalizability analysis: In this paper, generalizability
refers to the performance of the trained model on unseen test
scenarios that involve the same number of locations as in the sce-
narios used for training; and where the test and training scenarios

are drawn from the same probability distribution over locations.
In this work, generalizability was analysed on test scenarios with
the number of locations fixed at 50 and 2000, drawn from the
same distribution over a 2D space. Figure 2 shows the conver-
gence plot for CapAM-RL models with different parameters (in
terms of P and L.), where all the CapAM-RL models converges
to a value of about 18, which is very close to the average cost
function value of the 100 locations test cases for CapAM-RL,
thus showing the generalisability of the method.
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< 250| mSA
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()
5200
8150} for semmerog w100 ocatens -2 1719
o
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g100y
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(a) With non-learning based baseline methods. Lower the better.
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(b) With learning based baseline methods. Lower the better.

FIGURE 3: Performance comparison of CapAM-RL with differ-
ent baseline methods. There are 100 test cases for each number
of locations. Here CapAM-RL uses K =3, P=4,and L, = 1 (best
performing model), and 4 = 128 for all learning based methods.

Scalability analysis: In this analysis, we study if learning
the global and local structural information helps to learn gener-
alizable optimal policies over problems of increasing/decreasing
scale compared to the original problem(s) over which the policies
were trained. For this purpose, we use the models which were
trained for 100 tasks, and implement them on unseen problems
scaled up by a factor f;. This scalability study is performed for f;
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=2, fs =5, fy =10, and f; = 20. We compared the scalability of
our CapAM-RL method with heuristic-based and learning-based
methods and the results are shown in Figs. 3a-3b.

Figure 3a shows that CapAM-RL (in terms of the cost
function) outperforms significantly the non-learning based meth-
ods for larger-sized problems, although both GLS and SA has
a slightly better performance for small-sized problems. This
clearly shows the advantage of learning-based approaches com-
pared with heuristic-based methods.

As it can be seen from Fig. 3b, all the learning-based meth-
ods have comparable performance on problems with < 500
nodes, with slightly better performance by AM-RL. However,
for the scenarios with larger nodes (> 500), the performance of
AM-RL drops drastically compared to CapAM-RL and GCN-
RL. This observation shows the inability of the MHA-based en-
coder to generalize on larger sized problems and demonstrates
how the capsule networks can generalize on larger sized prob-
lem by using more global and local information. A parametric
analysis on how the local and global information can impact the
performance of the trained model is provided in Section 4.4.

The sequential decision-making process using CapAM-RL
is shown in Fig. 1b. Both for cost computation while train-
ing, and when using the trained model to determine the node
sequence for test cases, we implement a sequential decision mak-
ing process; the decisions are produced by the decoder. This se-
quential process is explained in Algorithm 1, and used over the
complete simulation of an episode, where each CVRP case in the
training and testing dataset is considered as an episode. Figure
10 shows the routes generated by CapAM-RL for three different
scenarios with 50 locations.

TABLE 2: Comparing average run-time (seconds) to generate
solutions for CVRP test cases.

Non-learning Learning
#nodes GLS| SA |AM-RL|GCN-RL |CapAM-RL
50 4 4 0.04 0.04 0.04
100 8 8 0.09 0.08 0.09
200 12 12 0.18 0.16 0.17
500 50 50 0.53 0.51 0.53
1000 100 | 100 1.51 1.41 1.49
2000 200 | 200 4.95 4.61 4.81

Runtime analysis: Table 2 shows the average time taken
by each method to generate the entire sequence. Since both
CapAM-RL and AM-RL executes the learned policies to gen-
erate the sequence, the runtime is less compared to GLS and SA.
It is important to note that both GLS and SA might generate a

better solution than the one reported here by increasing the run-
time. However, due to time constraint and for fair comparison
we set the runtime as in table 2.

4.4 Parametric study:

One of the main factors affecting the performance of our
approach is the amount of local and global information being in-
fused into the node embeddings. This depends on the number of
layers (L,) in the encoder, the highest order of statistical moment
(P), and the node embedding length (%). We trained our model
with different values of L., P, and h. As explained by [56], the
impact of K and L, is the same, hence we did not performed a
study varying K. All the models for this study were trained using
the same data distribution as explained in section 4.1. Since the
main contribution of this paper on encoding the node informa-
tion, we are limiting the parametric study for the encoder param-
eters, and not on the learning algorithm or the decoder.

Varying number of layers L.: For studying the impact of
the number of layers on the performance we trained our mode by
varying L, from 1 to 3, keeping other parameters constant. Fig-
ure 4b shows the average cost function for models with varying
L,. It can be seen that L, = 3 has better performance which is
more evident for cases with larger number of nodes. It is also
interesting to note that model with L, = 1 performing better than
L,=2.

Varying highest order of statistical moments P: For this
study we trained our model with varying highest order of statis-
tical moment P, while keeping other parameters constant. Figure
4a shows the performance comparison for the trained models for
this study. Model with P = 4 has better performance than P = 3
and P = 2, especially for larger number of nodes

Influence of node embedding: The three learning based
methods discussed in this paper (AM-RL, GCN-RL, and
CapAM-RL) represents three different node embedding algo-
rithms. Therefore this comparison (Fig. 3b) shows the quality
of the node embedding methods for scaling to problems of larger
size. The MHA encoder in AM-RL exhibits better performance
for problems with sizes (up to 200 nodes) close to what it was
trained for (100 nodes), but its performance decreases drastically
for larger sized problems. The main difference between GCN
and GCAPCN is that in GCN the convolutional operation results
in a scalar (which results in loss of significant structural informa-
tion as discussed by [56]), while for GCAPCN it is a vector of
length P (discussed in Appendix 5). The performance for lower
number of nodes is very close for all the three encoder, but for
higher number of nodes, GCAPCN has a clear advantage, can be
seen in Fig. 3b.

4.5 CVRP with demand uncertainty
In order to demonstrate the capabilities of our proposed
method when there exists some form of uncertainty, we imple-
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ment our method on a CVRP with uncertainty in the demand at
every location. We modify the CVRP environment in such a way
that the demand at every locations changes following a Gaussian
distribution. The demand at each location is different at different
point of time. During each decision making process, the agent
receives the updated demand information and here we assume
that this demand at the location chosen during a decision mak-
ing process does not change till the vehicle reaches the location
and satisfies the demands. This is a safe assumption following
demand modelling study [62, 63].

4.5.1 Demand uncertainty modeling and Graph
formulation Here we assume that the demand follows a Gaus-
sian distribution similar to the demand distribution considered
in [62], and the demand distribution at each location is indepen-

dent of the other locations. Each location i is characterized by
it’s x —y coordinates (x;,y;), the mean demand of the location
¢i, and it’s corresponding standard deviation o;. These locations
can be considered as the nodes of a fully connected graph simi-
lar to the graph formulation for a normal CVRP as described in
section 2.1. Therefore, the node properties can be represented as
0 = [xi7Yi7Ci76i]-

Architectural changes: The only architectural change that
has to be made is to include the mean demand and the corre-
sponding standard deviation to the node properties as described
in the above section (section 4.5.1). The remaining procedure to
compute the node embeddings remain the same (as described in
section 3.1).

4.5.2 Training and testing details The training and
testing datasets are generated following the description in sec-
tion 4.2. The only additional parameter is the standard deviation
o; for the demand of all the locations i € [I,N]. We consider
the standard deviation of the demands to take random number
between 0 and 2 with a uniform distribution.

4.5.3 Performance analysis For this study, we com-
pare two CapAM-RL models where one of the model is trained
with including the demand uncertainty (denoted by CapAM-unc)
as a node property (as described in section 4.5.1), and another
model which does not include demand uncertainty (denoted by
CapAM) as a node property. For this study we considered the K,
L., and P values for both the models to be the same as that of the
best performing CapAM-RL model in the generalizability and
scalability study in section 4.3. Figure shows the performance
comparison of CapAM-unc vs CapAM. While the performance
of the two models in almost the same for lower number of nodes
(50, 100, and 200), for scenarios with larger number of nodes,
the CapAM-unc demonstrates a better performance in terms of
the cost function, with 18.4% and 4.6% improvement compared
to CapAM. This demonstrates that including the demand uncer-
tainty along with the other node properties has a clear advantage
while computing policies under uncertainties. Even though it is
not possible to comment on the optimality of the routes for the
different scenarios for this study, however by this study we are
able to demonstrate how our method can be extended to prob-
lems with uncertainties and also showing the improvement in the
performance by incorporating the uncertainties while learning.

5 Conclusion

In this paper we introduce a new GNN-based encoder-
decoder architecture for learning scalable policies for a class of
CO problems, namely Capacitated Vehicle Routing Problems or
CVRP (which is representative of various scheduling and plan-
ning problems in cyber physical systems). We demonstrate how
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GNN and RL can be combined to learn policies for a CVRP of
a certain size (number of locations), such that the learned pol-
icy can predict actions which results in performance compared
to other state-of-the-art baselines, at the same time demonstrate
better performance than the baselines for larger sized problems,
without the need to re-train the model. We empirically demon-
strate how a novel node encoding, one that preserves the node
properties and its global and local structural information, facil-
itates this scalability. More fundamental understanding of the
impact of embedding such structural information (e.g., through
graph geometry analysis) remains to be explored in future work.
We show that our computation time for generating policies are
much faster than some of the industry standard heuristic meth-
ods, thus establishing the potential to be applied for problems
that require near real-time decision-making. It should be noted
that our method is not limited to a CVRP, and can be extended
to more complex multi-agent CO problems such as Multi-Agent
Task Allocation and Production Planning. The sequential deci-
sion making along with learning the local and global structural
information, makes CapAM-RL an excellent candidate for deci-
sion making under uncertainty. Furthermore, we show that even
though more structural information is being encoded by increas-
ing the value of P (highest order of statistical moment) and L,
(number of layers), this also leads to an increase in the num-
ber of trainable weights, which can in-turn deteriorate the per-
formance. The study on the CVRP with demand uncertainties
shows how the CapAM-RL can be extended to incorporate de-
mand uncertainties, and how the inclusion of the uncertainty pa-
rameters yield better performance under testing.

Future directions: This work is implemented for a pre-
defined number of nodes or task locations, but in principle could
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be extended for cases where nodes are added dynamically (i.e.,
where all demand locations are not known apriori). Parametric
analysis of the learning algorithm, as well as the implementation
of more recent state-of-the-art RL algorithms (e.g., PPO), can be
considered as other directions of future work with CapAM-RL.
Currently the CapAM-RL yielded policy model makes a greedy
choice based on the predicted node-to-visit selection probabili-
ties. To allow a better balance between exploration/exploitation,
an epsilon greedy approach could be explored in the future,
which along with application to real-world planning problems
is expected to further elucidate the potential of this new graph
learning paradigm.
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Appendix A: Further information on node encoding
Node Embeddings in GCAPCN vs GCN

The graph convolutional operation in a GCN is the aggrega-
tion of node information corresponding to each feature. One of
the major drawbacks of this operation as pointed by [57], is the
potential loss of structural information of the graph nodes.

To elaborate on the above point, let G be a graph with N
nodes, X € RV*I3l and L be the feature matrix and the graph
Laplacian respectively, and | §;| is the input dimension of the node
properties. For a GCN, the most general form of the output func-
tion of a layer / can be expressed as:

K
fOx.Ly=o(Y LV, Lyw)) (6)
k=0

where k is the degree of the convolutional filter (of polyno-
mial form), [Wll ....W[é] are learning weight matrices with Wkl €
RAu-1<n - fD (X L) € RN*M, hy is the feature vector length or
embedding length in layer /, and o is the activation function.
Therefore for a node i (assuming /; features), each feature is ex-
pressed as a scalar.

The Graph Capsule Convolutional Neural Networks
(GCAPCN) address this drawback by encapsulating more struc-
tural information of the nodes, where higher order statistical mo-
ments of the features are used for computing the feature vector
for each layer as shown earlier in equation 2, where p € [1,P]
is the order of the statistical moment. Therefore each feature is
expressed as a vector of length P, instead of a scalar.

Convergence plots for AM-RL and GCN-RL models

Further supporting results for CVRP Finding the
best performing models for CapAM-RL, GCN-RL, AM-RL:
We train the three learning based methods with different param-
eters. Tables 3, 4, and 5 give the average computing time for one
training epoch of CapAM-RL, GCN-RL and AM-RL, respec-
tively. Tables 6, 7, and 8 show the mean and standard deviation of
the testing results (CVRP cost function) for different models of
the three methods. For each method we choose the model which
has the best performance in a majority of the test problems. For
example, from Table 6, it can be seen that CapAM-RL (K = 3,
P =4, L.,=1) performs the best in terms of cost function (smaller
the better) for cases with 100, 500, 1000, and 2000 locations. For
all the different sized problems, we use 100 test cases. Similarly
for GCN-RL, the best performing model has K =3, and L, =2
(7), while for AM-RL, the best performing model has n;, = 8,
and L, = 3 Table 8).
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FIGURE 7: Convergence plot for training of different AM-RL
models corresponding to each of the learning-based methods for
CVRP
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FIGURE 8: GCN-RL

FIGURE 9: Convergence plot for training of different GCN-RL
models corresponding to each of the learning-based methods for
CVRP

TABLE 3: Average time for finishing a single training epoch for
different CapAM-RL models for CVRP

CapAM-RL | CapAM-RL | CapAM-RL | CapAM-RL | CapAM-RL
K =3 K =3, K=3 K =3 K =3,
Method ¢ , ¢ ¢ s ( s ¢ s
P=4, P=4, P=4, P=3, P=2,
L,=3) L.=2) Le=1) Le=1) Le=1)
Average epoch time (mins) 17 16 14 16 13

TABLE 4: Average time for finishing a single training epoch for
different GCN-RL models for CVRP

Method

GCN-RL
(K=3,L,=3)

GCN-RL
(K=3,L.=2)

GCN-RL
(K=3,L.=1)

GCN-RL
(K=2,L,=1)

Average epoch time (mins)

14

14
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TABLE 5: Average time for finishing a single training epoch for
different AM-RL models for CVRP

AM-RL AM-RL AM-RL
Method
(np=8,Le=3) | (;=8,Le=2) | (n,=8,L.=1)
Average epoch time (mins) 18 18 17

TABLE 6: Average cost function (with standard deviation) of the
different CapAM-RL models when implemented on the test data
(of different number of locations). The values in each column
shows the mean (standard deviation in brackets) cost function of
the 100 test cases.

CapAM-RL CapAM-RL CapAM-RL CapAM-RL CapAM-RL
(K =3, (K =3, (K =3, (K =3, (K =3,
#locations P=4, P=4, P=4, P=3, P=2,
L, =3) L =2) Lo=1) Lo=1) Lo=1)
mean (std) mean (std) mean (std) mean (std) mean (std)
50 12.12 (1.58) 11.849 (1.44) 11.67 (1.48) 11.67(1.26) | 11.712 (1.44)
100 18.095 (2.18) | 17.325(2.03) 17.20(1.96) | 17.313 (2.04) | 17.272(2.04)
200 22.176 (2.14) | 21.118 (1.91) | 21.676 (2.08) | 21.714 (2.07) | 21.913 (2.15)
500 33.224(2.22) | 32.369(2.13) | 31.798 (2.08) | 32.345(2.22) | 32.121(1.97)
1000 47.219 (2.23) 47.479 (3.17) 45,755 (2.21) | 47.443 (2.71) | 47.315(1.95)
2000 72429 (2.51) | 77.536 (15.42) | 68.987 (3.07) | 73.308 (6.31) | 73.25(2.34)

TABLE 7: Average cost function (with standard deviation) of the
different GCN-RL models when implemented on the test data (of
different number of locations). The values in each column shows
the mean (standard deviation in brackets) cost function of the 100
test cases.

GCN-RL GCN-RL GCN-RL GCN-RL
#locations | (K=3,L,=3) | (K=3,L.=2) | (K=3,Le=1) | (K=2,L.=1)
mean (std) mean (std) mean (std) mean (std)
50 11.85 (1.45) 11.786 (1.42) 11.952 (1.58) 11.848 (1.50)
100 17.425 (1.98) 17.387 (1.98) 17.6 (2.08) 17.528 (2.00)
200 23.695 (3.84) 23.778 (3.20) 24.506 (3.45) 23.589 (2.45)
500 33.201 (2.78) 32.641 (2.17) 33.995 (2.19) 34.118 (2.11)
1000 51.992(10.53) | 47.878 (2.78) 52.32 (5.80) 53.075 (8.36)
2000 97.447 (65.81) | 76.888 (17.38) | 101.73(44.23) | 94.191 (40.14)
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TABLE 8: Average cost function (with standard deviation) of the
different AM-RL models when implemented on the test data (of
different number of locations). The values in each column shows
the mean (standard deviation in brackets) cost function of the 100
test cases.

AM-RL AM-RL AM-RL

#locations | (n,=8,L,=3) | (m,=8,L.=2) | (n,=8,L,=1)

mean (std) mean (std) mean (std)

50 11.438 (1.34) 11.609 (1.39) 11.61 (1.38)

100 16.828 (1.90) 16.91 (1.97) 17.006 (1.92)
200 20.229 (1.67) 20.411 (1.86) 20.731 (1.74)
500 31.16 (2.37) 34.801 (3.68) 55.587 (24.20)
1000 69.314 (18.92) 81.213 (16.97) 249.35 (177.16)
2000 200.07 (80.12) 257.91 (70.45) 592.49 (386.06)
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