
Long-Tailed Recognition via Weight Balancing

Shaden Alshammari∗ Yu-Xiong Wang� Deva Ramanan�,† Shu Kong�

∗MIT �UIUC †Argo AI �CMU
shaden@mit.edu yxw@illinois.edu {deva, shuk}@andrew.cmu.edu

https://github.com/ShadeAlsha/LTR-weight-balancing

(a) per-class classification accuracy vs. class cardinality on CIFAR100-LT (imalance factor 100)

(b) norms of per-class weights from the learned classifier vs. class cardinality

Figure 1. Long-tailed recognition (LTR) requires training on long-tailed class distributed data (black curve in (a)). (a) Networks naively

trained on such data are biased toward common classes in terms of higher accuracy (orange bars). (b)-left plots the L2 norms of per-

class weights in the naive classifier. Clearly, classifiers of common classes have “artificially” larger norms than rare ones, because they

are trained with more data. This can result in over-predictions of common classes, or alternatively, under-predictions of rare classes.

This observation motivates us to balance norms via parameter regularization. To do so, we explore simple weight balancing techniques

including L2-normalization, weight decay, and the MaxNorm constraint. We find that applying the latter two results in class weights to be

far more balanced ((b)-right), allowing rare classes to have a “fighting chance” when competing with common classes. Our model boosts

overall accuracy to 53.35% (blue bars in (a)), significantly higher than the naive model (38.38%) and prior art, e.g., RIDE (49.1%) [73],

ACE (49.6%) [10], and PaCo (52.0%) [17]. Results are from experiments (Table 1) on CIFAR100-LT with an imbalance factor 100 [12].

Abstract
In the real open world, data tends to follow long-tailed

class distributions, motivating the well-studied long-tailed
recognition (LTR) problem. Naive training produces models
that are biased toward common classes in terms of higher
accuracy. The key to addressing LTR is to balance vari-
ous aspects including data distribution, training losses, and
gradients in learning. We explore an orthogonal direction,
weight balancing, motivated by the empirical observation
that the naively trained classifier has “artificially” larger
weights in norm for common classes (because there ex-
ists abundant data to train them, unlike the rare classes).
We investigate three techniques to balance weights, L2-
normalization, weight decay, and MaxNorm. We first point
out that L2-normalization “perfectly” balances per-class
weights to be unit norm, but such a hard constraint might

prevent classes from learning better classifiers. In contrast,
weight decay penalizes larger weights more heavily and so
learns small balanced weights; the MaxNorm constraint en-
courages growing small weights within a norm ball but caps
all the weights by the radius. Our extensive study shows
that both help learn balanced weights and greatly improve
the LTR accuracy. Surprisingly, weight decay, although un-
derexplored in LTR, significantly improves over prior work.
Therefore, we adopt a two-stage training paradigm and pro-
pose a simple approach to LTR: (1) learning features using
the cross-entropy loss by tuning weight decay, and (2) learn-
ing classifiers using class-balanced loss by tuning weight
decay and MaxNorm. Our approach achieves the state-of-
the-art accuracy on five standard benchmarks, serving as a
future baseline for long-tailed recognition.

16897

1. Introduction
In the real open world, data tends to follow long-tailed

distributions [8, 60, 84, 85]. Through the lens of classi-

fication, this means that the number of per-class data, or

class cardinality, is heavily imbalanced [27, 72]. Numer-

ous applications emphasize the rare classes. For exam-

ple, autonomous vehicles should recognize not only com-

mon objects such as cars and pedestrians, but also rare ones

like strollers and animals for driving safety [41]. A bio-

image analysis system should recognize both commonly-

and rarely-seen species for ecological research [63, 72].

This motivates the well-studied problem of long-tailed

recognition (LTR), which trains on class-imbalanced data

and aims to achieve high accuracy averaged across all the

classes [84]. LTR has attracted increasing attention espe-

cially using deep neural networks [12, 38, 78].

Status quo. Because common classes have significantly

more training data than rare classes, they dominate the train-

ing loss, contribute the most of gradients, and obtain high

accuracy [84]. Consequently, a naively trained model per-

forms well on them but significantly worse on the rare

classes (Fig. 1a). The key to addressing LTR is to bal-

ance various aspects. Many methods propose to balance

per-class data distributions during training by upsampling

rare classes or downsampling common classes [14, 22, 23].

Some others balance the losses or gradients during train-

ing [12, 19, 40, 71]. Some approaches adopt transfer learn-

ing that learn features on common classes and use the fea-

tures to learn rare-class classifiers [37, 49, 74, 87]. It shows

that decoupling feature learning and classifier learning leads

to significant improvement over models that train them

jointly [38]. From benchmarking results, the state-of-the-

art accuracy is achieved by either ensembling expert mod-

els [10,23,26,73,76] or the adoption of self-supervised pre-

training with aggressive data augmentation techniques [17].

Motivation. We observe that a naively trained model

on long-tailed class distributed data has “artificially” large

weights for common classes (Fig 1b). Prior work also

notes this observation [38]. Intuitively, this is because com-

mon classes have more training data that significantly grows

classifier weights (Fig. 2a). This motivates our work to bal-

ance network weights across classes for long-tailed recog-

nition. In contrast to existing methods (as exhaustively re-

viewed in a recent survey paper [84]), our work explores an

orthogonal direction of weight balancing.

Contribution. To balance network weights in norm, we

study three simple techniques. We first point out that L2-
normalization perfectly balances classifier weights to have

unit norm (Fig. 2b). However, L2-normalization might be

too strict to learn flexible parameters for better classifiers.

We then study weight decay [29,44] and the MaxNorm con-

straint [35,66]. Weight decay penalizes larger weights more

heavily and so learns small balanced weights (Fig. 2c);

MaxNorm encourages growing small weights within a norm

ball and caps all the weights by the radius (Fig. 2d). We find

that both effectively learn balanced weights and boost LTR

performance, although these well-known regularizers are

underexplored in the LTR literature. Please refer to Fig. 1

for a nutshell of our work.

Key Findings. We show how simple regularizers boost

LTR performance. Without inventing new losses or adopt-

ing aggressive augmentation techniques or designing new

network modules, we follow the simple two-stage training

paradigm [38] and derive a simple approach that rivals or

outperforms the state-of-the-art methods: (1) train a back-

bone using the standard cross-entropy loss by properly tun-

ing weight decay, and (2) train the classifier using a class-

balanced loss by tuning weight decay and MaxNorm. It is

important to note how our simple approach challenges the

increasingly complicated LTR models, and hence serves as

a strong future baseline for LTR.

2. Related Work
Long-Tailed Recognition (LTR). Real-world data tends

to follow long-tailed class distributions, i.e., a few classes

are commonly seen that have significantly more data than

many classes that are infrequently / rarely seen. As a re-

sult, a model naively trained on such data performs signif-

icantly worse on rare classes than common classes. LTR

requires training on such data to achieve high accuracy av-

eraged across all classes [12, 38, 78]. For LTR, numerous

methods emphasize the accuracy on rare-classes. Data re-
balancing techniques resample the training data to achieve

a more balanced data distribution across classes [53, 67],

such as over-sampling rare-classes [14, 28] and undersam-

pling common-classes [21]. Class-balanced loss reweight-
ing assigns weights to the classes [12, 19, 36, 39, 40, 83],

or even training examples [39,47,62,68], aiming to modify

their gradients to make the class-imbalanced data contribute

properly to training. Transfer learning methods transfer

feature representations learned on the common-classes to

the rare-classes [48, 79]. Recent work examines the train-

ing procedure and finds LTR to be better addressed by de-

coupling feature learning and classifier learning, rather than

training them jointly [38, 88]. It is found that the SGD

momentum causes issues in LTR that prevent further im-

provement [71] . Other sophisticated methods exploit self-

supervised pretraining with more aggressive data augmen-

tation techniques [17], or ensemble expert models trained

on different data regimes [10, 73]. For a comprehensive re-

view of the LTR literature, we refer the reader to the recent

survey paper [84]. Different from all the existing methods,

we explore an orthogonal direction of parameter regular-
ization, leading to a much simpler approach to LTR.

Parameter Regularization adds extra information to

solve an ill-posed problem, improving generalizability and

26898

How are per-class weight norms evolving in training (x-axis)? Classes are sorted w.r.t. cardinality (y-axis).
(a) naive (b) L2-normalization (c) WD (d) MaxNorm (e) WD+MaxNorm

training epoch

C
la

ss
 ID

s
(c

om
m

on
 to

 ra
re

)

Figure 2. (a) In a naive model, all weights grow in norm during training, while those of common classes grow much faster. (b) Because

L2-normalization constrains weights to be unit-norm, weight norms stay constant during training. (c) Weight decay (WD) regularizes all

weights to be small while still allowing them to grow. (d) MaxNorm caps large weights (of common classes) while letting small weights

grow. (e) Combining weight decay and MaxNorm results in small and balanced weights in norm. All plots share the same color map.

preventing overfitting [7, 9, 57]. Regularization plays a cru-

cial role in deep learning [43]. One well-known regulariza-

tion is weight decay, which often applies L2-norm penalty

on network weights [29,44,52]. There exist many more reg-

ularizations [24, 45], such as weight normalization [1, 64],

MaxNorm constraints [25, 35, 66], data augmentation [82],

and dropout [35]. In this work, we particularly examine the

well-known yet underexplored regularizers in the LTR liter-

ature: L2-normalization, weight decay, and the MaxNorm

constraint [25, 35, 66].

Stage-wise Training turns to be effective in training

deep networks [31, 50, 80, 86]. This can date back to stage-

wise layer pretraining [4, 34]. Recently, Kang et al. con-

vincingly demonstrate that stage-wise training is important

to LTR [38]. Concretely, Kang et al. propose to decou-

ple feature learning and classifier learning into two inde-

pendent stages [38]: (1) feature learning using the stan-

dard cross-entropy loss, and (2) classifier learning over the

learned feature using a class-balancing loss. While they did

not explain why a single one-stage training with the class-

balancing loss performed poorly, intuitively, this is because

a class-balancing loss artificially scales up gradients com-

puted from rare-class training data, which hurts the fea-

ture representation learning and hence the final LTR per-

formance. Follow-up work indirectly demonstrates this in-

tuition with improved performance by stabilizing gradients

during training [61, 71]. In our paper, we adopt this two-

stage training procedure, but focus on how to balance net-

work weights for LTR.

3. Weight Balancing for Long-Tailed Learning

Preliminaries. Long-tailed recognition (LTR) aims to

train over a training set D={(xi, yi)}Ni=1, where data ex-

ample xi is labeled as yi ∈ [1, . . . ,K]. For class-k, Dk is

the set of all its training examples and |Dk| is its cardinality.

The imbalance factor, IF=maxk |Dk|
mink |Dk| , measures how imbal-

anced the long-tailed training set is. For LTR, IF�1. LTR

emphasizes classification accuracy averaged over classes,

i.e., accuracy= 1
K

∑
kacck, where acck is the accuracy com-

puted over testing examples of class-k.

LTR focuses on learning a K-way classification network

f(·;Θ) parameterized by Θ = {θl,j}, where θl,j is the

jth filter weights at layer-l. In a conv-layer, θl,j is a 3D

kernel that convolves the input (activation). For brevity,

we denote θk as the classifier filter corresponding to class-

k. Given a data example xi, the network predicts a label

y′i = f(xi;Θ). We measure the prediction error between y′i
and the ground-truth yi using a cost function �(y′i, yi), e.g.,

a cross-entropy (CE) loss [7, 56] or a class-balanced loss

(CB) [19]. To train the network f(·;Θ), we optimize Θ by

minimizing �(y′i, yi) over the whole training set D:

Θ∗ = argmin
Θ

F (Θ;D) ≡
N∑
i=1

�
(
f(xi;Θ), yi

)
. (1)

Naively solving (1) produces a classifier (i.e., the last layer)

that has artificially large weights in norm for common

classes (Fig. 1b-left, Fig. 2a). Therefore, we are moti-

vated to learn a balanced classifier by regularizing classifier

weights, denoted by θk for k = 1, . . . ,K. Intermediate lay-

ers also have imbalanced filter weights (Fig. 3) even though

a filter tends to fire on multiple classes [2, 81]. Generally,

one can also balance the weights at intermediate layers, and

our study shows that doing so boosts performance. Never-

theless, to simplify presentation in the following, we focus

on regularization on the classifier weights θk’s.

3.1. Weight Balancing Techniques

We examine the following three techniques to balance

weights with respect to norms.

L2-normalization. A “perfect” way to balance the clas-

sifier weights θk’s is to L2-normalize the classifier weights:

Θ∗ = argmin
Θ

F (Θ;D), s.t. ‖θk‖22 = 1, ∀ k. (2)

As L2-normalization forces weights to be unit-length, the

classifier weights will have unit norm constant during train-

ing (Fig. 2b). Inspired by [38], we also post-hoc L2-

normalize a trained classifier, i.e., θ′
k=θk/‖θk‖2. We find

36899

that post-hoc L2-normalization oftentimes improves LTR

performance, favoring rare-classes yet sacrificing common-

class accuracy. But it can also significantly decrease overall

performance, e.g., on iNaturalist in Table 3. Post-hoc L2-

normalization is similar to the τ -normalization [38], which

allows varied per-class weight norms (rather than forcing

them to be the same) and achieves better LTR performance.

This suggests that L2-normalization is too strict to strike

a balance among the long-tailed distributed classes. Im-

portantly, our exploration finds that, while training with an

L2-normalization constraint on the classifier improves over

naive training, it underperforms the other two regularizers

described below.

Weight Decay is a well-studied technique [44, 55] used

to constrain a network by limiting the growth of the network

weights. It decreases the complexity of the network, effec-

tively mitigating overfitting and improving generalization.

Weight decay typically applies an L2-norm penalty to the

network weights (we focus on the classifier θk’s for now):

Θ∗ = argmin
Θ

F (Θ;D) + λ
∑
k

‖θk‖22, (3)

where λ is a hyperparameter to control the impact of weight

decay. The weight decay term in (3) penalizes more heav-

ily on large weights, preventing them from growing too

large (Fig. 2c) [44, 55]. That said, weight decay encour-

ages learning small balanced weights, as demonstrated by

Fig. 2. Somewhat surprisingly, weight decay is underex-

plored in the literature of long-tailed recognition. To the

best of our knowledge, existing methods did not properly

tune weight decay [19,71] (cf. code [11,18,70]) aside from

their technical innovations. This makes it unclear whether

their improved LTR performance is due to better regulariza-

tion inherent in these methods. Importantly, our exploration

demonstrates that, by simply tuning weight decay, we out-

perform most of the state-of-the-art methods on long-tailed

benchmarks (Tables 2 and 3)!

MaxNorm Constraint. The third regularizer we explore

is the MaxNorm constraint [25, 35, 66]. MaxNorm caps

weight norms within an L2-norm ball with radius δ:

Θ∗ = argmin
Θ

F (Θ;D), s.t. ‖θk‖22 ≤ δ2, ∀ k, (4)

where the hyperparameter δ is the radius of the norm-ball.

Solving (4) can be efficiently done through Projected Gra-

dient Descent (PGD), which projects big weights that are

outside the L2-norm ball onto the constraint set [66]. It

simply applies a renormalization step after each batch up-

date. Specifically, at each iteration, PGD first computes an

updated θk and then projects it onto the norm ball:

θk ← min
(
1, δ/‖θk‖2

)
∗ θk. (5)

Figure 3. Weight decay helps learn balanced weights at hidden
layers. We compare the norm distribution at each layer (which

has 512 filters) from the naive model (orange) and the one trained

with weight decay (blue). For each layer of a model, we sort

the filter weights of each layer from high to low, compute their

mean (the centerline) and variance (the shadow). While individ-

ual filters in the hidden layers are not class-specific by design, re-

cent work demonstrates that certain filters tend to fire on certain

classes [2, 81]; we still find them to be “imbalanced” in norms

from the naive model. Weight decay encourages learning small

and balanced filters, cf. its flat centerline and small variance.

Different from L2-normalization that strictly sets the norm

value for all the filter weights as 1, MaxNorm relaxes this

constraint that allows the weights to move within the norm-

ball during training, as visualized in Fig. 2d.

3.2. Further Discussion

To better understand how and why the aforementioned

regularizers work for long-tailed recognition, we discuss the

following aspects.

Weight Decay and MaxNorm. Both regularizers bal-

ance weight norms dynamically during training, as opposed

to L2-normalization which simply forces per-filter weights

to be unit-length in norm. Weight decay encourages learn-

ing small weights, and MaxNorm encourages weights to

grow within a norm ball but cap them when their norms

exceed the radius. Weight decay pulls all weights to the

origin. As a result, when λ increases in (3), the weight de-

cay penalty prevails F (Θ;D), making training unstable [6]

(Fig. 4). In contrast, MaxNorm does not pull weights to-

wards the origin but simply caps the weight norms, and so

has better numerical stability.

Although weight decay and MaxNorm appear to be quite

different, they are related that weight decay can be thought

of as an immediate step when solving MaxNorm. Let’s

rewrite the MaxNorm constrained objective function (4) by

constructing a Lagrangian function:

Θ∗ = argmin
Θ

max
γ≥0

F (Θ;D) +
∑
k

γ(‖θk‖22 − δ), (6)

where γ is the Karush–Kuhn–Tucker (KKT) multiplier.

Suppose that we could solve (6) using the coordinate de-

scent method, i.e., iteratively optimizing over Θ and γ [75].

When fixing γ, we have the same loss as (3) which is

46900

Figure 4. Tuning weight decay drastically improves long-tailed

recognition performance. We do not use any class-balancing tech-

niques but simply use CE loss and tune weight decay λ to regu-

larize all network weight. For example, tuning λ yields 46.1% ac-

curacy on CIFAR100-LT (IF=100), outperforming many state-of-

the-art methods such as DiVE (45.4%) [32] and SSD (46.0%) [46].

By checking the publicly available code, we find that existing

methods do not tune weight decay, e.g., [12, 19] set λ =2e-4 (ac-

cording to their code [11, 18]), leading to poor accuracy 38.32%.

constrained by weight decay, and γ becomes the hyperpa-

rameter λ to control weight decay. That said, solving the

weight decay constrained problem (3) is a step of solving

MaxNorm (4). Interestingly, we find that applying weight

decay and MaxNorm jointly yields better performance than

using each of them independently. This is probably because

of their complementary advantages: (1) weight decay on

the small weights still improves their generalization and

reduces overfitting, and (2) MaxNorm prevents the large

weights from dominating the training.

Extreme cases. When δ→∞ in MaxNorm, (4) boils

down to the naive training (1). On the other hand, a suf-

ficiently small δ encourages all the weights to be close to

the surface of the norm-ball. This is still different from the

L2-normalization which strictly requires the weights to be

on the surface. Compared to L2-normalization (Fig. 2b),

MaxNorm offers freespace within the norm ball to let

weights grow (Fig. 2d). This intuitively explains why

MaxNorm performs better than L2-normalization.

Weight decay can easily balance all network weights.

We point out that weight decay regularizes classifier

weights without the need to separate per-class filters. This

offers convenience in training, differently from MaxNorm

which must separate each filter and scaling it w.r.t its norms.

Because of such a convenience, weight decay can be easily

used to balance all network weights (Fig. 3). In principle,

MaxNorm can also be applied to all layers, but we find it

non-trivial to do so, as this seems to require setting per-

layer thresholds in (4) (tuning which is time-consuming).

While weight decay is widely used in network training, we

find that properly tuning it drastically improves long-tailed

recognition accuracy (Table 1).

3.3. Training Pipeline

Because the aforementioned weight balancing tech-

niques are not exclusive to each other, in principle, one

Figure 5. Frequency distributions w.r.t class cardinality of five

benchmarks. Left: We modify CIFAR100 by downsampling ex-

amples per class with different imbalance factors (IF) varying from

10 to 100. Right: We use two large-scale datasets: ImageNet-

LT [49] that downsamples per-class images from ImageNet [20],

and iNaturalist [72] which is a real-world dataset with IF=500.

can use a single technique or multiple ones together. Recall

that we follow the two-stage training paradigm [38] in our

work, which first trains a network for feature representation

and then trains the classifier atop the learned features. This

raises a question how to apply the weight balancing tech-

niques effectively. Among extensive exploration, we find

that tuning λ for weight decay in (3) is sufficient to learn a

generalizable feature representation as the first-stage train-

ing. In contrast, applying MaxNorm is nontrivial because

we find that it requires setting per-layer thresholds in (4).

This tuning process is time-consuming. In the second-stage

training (i.e., training the classifier), we find that tuning ei-

ther/both weight decay and MaxNorm remarkably improves

LTR accuracy. Because the classifier training simply in-

volves only one layer (or two layers if we think of the top

two as a non-linear classifier), tuning hyperparameters of

the regularizers is quite efficient. To tune them, one can use

random search [5] or Bayesian Optimization [58, 69]. We

use the latter in this work. In summary, our simple training

pipeline consists of the following two stages:

1. Feature learning: train a network by using the cross-

entropy loss and tuning weight decay.

2. Classifier learning: train a classifier over the learned

features using a class-balanced loss [19], weight decay,

and MaxNorm.

4. Experiments
We carry out extensive experiments to demonstrate how

balancing network weights boosts long-tailed recognition

performance. First, we ablate the design choices in our

pipeline as suggested in Section 3.3. Then, we benchmark

our methods on five established long-tailed datasets, show-

ing that they rival or outperform existing LTR methods. We

start with the experiment setup.

4.1. Experiment Setup

Datasets. We use five long-tailed benchmarks. Fol-

lowing [13], we modify the CIFAR100 dataset [42] by

downsampling per-class training examples using some ex-

56901

Figure 6. Per-class weight norms (top row) and marginal likelihood (bottom row) in the classifier vs. class ID sorted by class cardinality

in decreasing order. The plots are on CIFAR100-LT (IF100) val-set which has class-balanced data. According to [61], the ideal marginal

likelihood should follow a uniform distribution. Interestingly, L2-normalization that “perfectly” balances weight norms does not produce

“uniform” marginal likelihood. Weight decay (WD) slightly mitigates norm imbalance and marginal likelihood imbalance, but MaxNorm

dramatically helps both. The final model that incorporates MaxNorm, weight decay, and class-balanced loss yields nearly “perfect”

marginal likelihood and balanced weights, which have a small bias towards rare-classes, presumably to emphasize their accuracy.

ponential decay functions, resulting in a long-tailed version,

named CIFAR100-LT. CIFAR100-LT still has 100 classes

and a balanced validation set for evaluation. By varying an

imbalance factor (IF) ∈ [100, 50, 10], we create three long-

tailed training sets (Fig. 5-left). ImageNet-LT is introduced

in [48] by artificially truncating the balanced version Ima-

geNet [20]. ImageNet-LT has 1,000 classes, and the num-

ber of per-class training data ranges from 5 to 1280. iNat-
uralist2018 [72] is a real-world dataset that has 8,142 nat-

urally long-tailed classes. Fig. 5 summarizes the class fre-

quency distributions of these datasets. ImageNet and iNat-

uralist2018 are publicly available for non-commercial re-

search and educational purposes; CIFAR100 is released un-

der the MIT license. We note that ImageNet and CIFAR100

have a “people” class or contain images that captured hu-

man faces and person signatures. This is a concern related

to fairness and privacy. Therefore, we cautiously proceed

our research and release our code under the MIT License

without re-distributing the data.

Network architectures. For a fair comparison to prior

art, we follow [19, 37, 38, 49, 78] to use specific network

architectures on each dataset. We use ResNet32 [31]

on CIFAR100-LT, ResNeXt50 [77] on ImageNet-LT, and

ResNet50 [31] on iNaturalist2018.

Evaluation protocol. On each dataset, we train on the

long-tailed class-imbalanced training set and evaluate on its

(balanced) validation/test set. On ImageNet-LT, we tune hy-

perparameters and select models on its val-set and report

performance on the test-set. On CIFAR100-LT and iNat-

uralist, which only have train-val sets, we follow the lit-

erature [49] that uses the val-sets to tune and benchmark.

Following [49], we further report accuracy on three splits

of classes that have varied numbers of training data: Many
(>100), Medium (20∼100), and Few (< 20).

Implementation. We train our models using PyTorch

toolbox [59] on GeForce GTX 2080Ti GPUs. The total time

spent on this work is ∼2 GPU years with respect to this

GPU type. We train each model for 200 epochs, with batch

size as 64 (for CIFAR and ImageNet-LT) / 512 (for iNat-

uralist), SGD optimizer with momentum 0.9, and cosine

learning rate scheduler [51] that gradually decays learning

rates from 0.01 to 0. We also use random left-right flipping

and cropping as our training augmentation.

4.2. Ablation Study

We study (1) the impact of weight decay in LTR, (2) how

to regularize classifier learning, (3) classifier weight norms

and marginal likelihood distribution, and (4) the evolution

of weight norms during training. We use CIFAR100-LT

(IF=100) for this study (unless stated otherwise).

Weight decay. We set a single constant λ for all net-

work parameters and focus on the first-stage training only,

i.e., we use the standard cross-entropy loss to train a sin-

gle network for classification. Fig. 4 draws the top-1 ac-

curacy as a function of λ on the validation sets of three

benchmarks. Clearly, tuning λ boosts accuracy, even out-

performing many state-of-the-art methods (cf. Tables 2 and

3)! Moreover, the optimal λ varies for different datasets –

larger datasets need a smaller weight decay, intuitively be-

cause learning over more data helps generalization and so

needs less regularization.

How to regularize classifier learning. To study how to

apply the balancing techniques in the second-stage learn-

ing for classifiers, we also include τ -normalization [38] be-

cause it is an effective non-learned technique that post-hoc

scales the classifier learned in the first stage. We present

salient conclusions based on the results in Fig. 6 (more in

the supplement). First, with an improved backbone (owing

to a properly tuned weight decay in the first stage), τ -norm

boosts from 42.00% to 51.31%! This demonstrates the im-

portance of learning a backbone that has balanced weights

(Fig. 3). Second, it is crucial to use a class-balanced (CB)

66902

loss [19] to learn the classifier. However, solely using the

CB loss without regularizers only slightly improves (from

46.08% to 47.09%); once regularized with weight decay,

it boosts to 52.42%. Third, applying both MaxNorm and

weight decay improves further (53.35%), and learning more

layers (as a non-linear MLP classifier) improves to 53.55%.

Classifier’s weight norms and marginal likelihood.

Inspired by [61], we examine the marginal likelihood based

on predictions on the (balanced) test-set, on which the ideal

marginal likelihood follows a uniform distribution [61].

We plot the marginal likelihood in Fig. 6, alongside the

norm distribution of different models. Interestingly, L2-

normalization that “perfectly” balances classifier weights

does not produce balanced marginal likelihood. In con-

trast, MaxNorm significantly helps learn balanced weights

and balanced marginal likelihood. Combining MaxNorm,

weight decay, and the CB loss, the model makes nearly

“perfect” marginal likelihood with a small bias toward rare-

classes in weight norms, presumably because it learns to

emphasize rare-class accuracy.

Weight norm evolution during training. Fig. 2 de-

picts how classifier’s weight norms evolve during train-

ing for different models. Briefly, without regularization,

weights in the naive model grow fast in norm. In contrast,

weight decay prevents weights from growing too large, and

MaxNorm quickly caps weights on a norm-ball surface and

allows small weights to grow within the ball.

4.3. Benchmark Results

Compared Methods. Considering the rapid evolution of

the LTR field [84], we compare against most relevant meth-

ods. We choose methods that are recently published and

representative of different types, such as Focal [47] for loss

reweighting, PaCo [17] for self-supervised pretraining and

aggressive data augmentation, RIDE [73] for ensembling

expert models, SSD [46] and DiVE [32] for transfer learn-

ing, etc. For comparison, we report our methods including

the naive model, the one trained with properly tuned weight

decay, and models that have the second-stage learning for

classifier with regularizers. Tables 2 and 3 list benchmark-

ing results on the CIFAR100-LT datasets, and ImageNet-LT

and iNaturalist, respectively.

Results. Without bells and whistles, simply tuning

weight decay (WD) in the first-stage training significantly

boosts LTR performance over naive training and outper-

forms many prior methods. For example, on CIFAR100-

LT (IF100) in Table 2, our WD model achieves 46.08%,

outperforming the naive model (38.38%) and most of the

compared methods including SSD (46.00%) [46] and DiVE

(45.35%) [32]. With the second stage (classifier learning),

simply post-hoc modifying (without learning) the classi-

fier (learned in the first stage) significantly improves per-

formance from 46.09% to 49.60% (by L2-normalization)

Table 1. Ablation study on CIFAR100-LT (IF=100) w.r.t top-

1 accuracy (%). “CE”: cross-entropy loss; “CB”: class-balanced

loss [19]; “WD”: weight decay; “Max”: MaxNorm constraint; “τ -

norm”: τ -normalization [38]; “+”: fine-tuning the last layer(s) as

the second-stage training. Here are salient conclusions. (1) Learn-

ing with a properly tuned WD boosts performance from 38.38%

to 46.08%, which is +8% increase. (2) Re-training the last layer

with CB and WD gives another boost (+6%) to 52.42%. (3) Based

on the above, applying additional MaxNorm yields a slight im-

provement +1% (53.35%); finetuning the last two layers achieves

53.55%. (4) Finetuning more layers performs worse (cf. the sup-

plement), presumably because CB induces modified gradients that

affect feature learning and so hurt the final LTR performance.

Model Many Medium Few All

on the last layer (classifier)

WD=0 (w/ CE) 64.05 35.80 11.43 38.38

+ τ -norm 59.54 38.23 25.93 42.00

WD tuned (w/ CE) 76.94 44.28 12.17 46.08

+ τ -norm 73.11 47.69 30.10 51.31

+ L2norm 76.09 47.74 20.87 49.60

+ CE & L2norm 76.37 48.11 21.00 49.87

+ CE & WD 76.97 45.94 14.00 47.22

+ CB 77.00 45.89 13.60 47.09

+ CB & L2norm 76.43 48.20 21.60 50.10

+ CB & WD 72.77 49.74 31.80 52.42

+ CB & Max 76.49 49.23 20.67 50.20

+ CB & WD & Max 72.60 51.86 32.63 53.35

on the last two layers

+ CB & WD & Max 71.37 51.17 35.53 53.55

and to 51.31% (by τ -normalization). By learning the clas-

sifier regularized with MaxNorm and/or weight decay, we

achieve the state of the art (53.35%). Such a conclusion

holds on all benchmarks. However, on the two large-scale

datasets ImageNet-LT and iNaturalists in Table 3, our meth-

ods rival prior art but underperform two types of methods

that have “bells and whistles”, including ensemble meth-

ods (RIDE [73] and ACE [46]) that learn and fuse mul-

tiple models, and self-supervised learning based methods

(PaCo [17] and SSD [46]) that adopt aggressive data aug-

mentation techniques [16, 30].

5. Conclusion
Long-tailed recognition (LTR) is a crucial challenge for

real-world data that tends to be imbalanced. Our work is

motivated by the empirical observation that a model naively

trained over long-tailed data has artificially large weights

for common classes (because they have more data to train

than rare classes). We propose to learn balanced weights

via parameter regularization, including weight decay and

MaxNorm regularizers. Our extensive study shows that

properly applying these regularizers greatly boosts LTR per-

formance. We introduce a simple approach that outperforms

prior art on five long-tailed benchmarks. Because these reg-

76903

Table 2. Benchmarking on CIFAR-100-LT with different imbal-

ance factors [100, 50, 10] w.r.t top-1 accuracy (%). Please refer to

the caption of Table 1 for abbreviations; “+” methods use CB loss.

WD makes a substantial impact on the training of LTR networks.

Finetuning the classifier with proper regularization improves much

further. This clearly shows the significance of parameter regu-

larization in balancing weights for LTR. Somewhat surprisingly,

properly tuning weight decay in the two-stage training paradigm

outperforms all existing methods on these three datasets.

imbalance factor 100 50 10

CE [19] 38.32 43.85 55.71

CE+CB [19] 39.60 45.32 57.99

KD [33] 40.36 45.49 59.22

LDAM-DRW [12] 42.04 46.62 58.71

BBN [88] 42.56 47.02 59.12

LogitAjust [54] 42.01 47.03 57.74

LDAM+SSP [78] 43.43 47.11 58.91

Focal [47] 38.41 44.32 55.78

Focal+CB [19] 39.60 45.17 57.99

De-confound [71] 44.10 50.30 59.60

τ -norm [38] 47.73 52.53 63.80

SSD [46] 46.00 50.50 62.30

DiVE [32] 45.35 51.13 62.00

DRO-LT [65] 47.31 57.57 63.41

PaCo [17] 52.00 56.00 64.20

ACE (4-expert) [10] 49.60 51.90 —

RIDE (4-expert) [73] 49.10 — —

Our methods (weight balancing)

naive 38.38 43.99 57.31

WD 46.08 52.71 66.03

+ L2norm 49.60 56.33 67.16

+ τ -norm 51.31 57.65 67.79

+ WD 52.42 57.47 67.96

+ Max 50.24 56.06 67.10

+ WD & Max 53.35 57.71 68.67

ularizers are underexplored in the long-tailed literature, we

hope our study draws attention from the practitioners that

parameter regularization should be the first method to con-

sider, when addressing real-world problems related to the

long-tailed distribution.

Limitations. While we focus on the orthogonal di-

rection of parameter regularization to address LTR, we

have not studied how our approaches complement exist-

ing techniques. For example, how to balance weights in

training each of the expert models, or how to balance the

weights alongside sophisticated data augmentation and self-

supervised pretraining. We also point out that other regular-

ization techniques might be better at balancing weights, for

example using Lp-norm weight decay where p
=2 [3]. We

leave them to future work.

Societal Impact. Because real-world data tends to fol-

low long-tailed distributions, our work has multiple posi-

tive societal impacts. For example, addressing the long-tail

Table 3. Benchmarking on ImageNet-LT and iNaturalists in

top-1 accuracy (%). Please refer to Table 2 for methods’ names

and salient conclusions. We list the numbers of compared methods

reported in their respective papers. Overall, our simple approach

achieves competitive results with the prior methods particularly

when they train a “single (expert)” model, although underperforms

a few recent state-of-the-art methods which train and ensemble

expert models (RIDE [73] and ACE [10]), or adopt self-supervised

pretraining (e.g., PaCo [17] and SSD [46]) with aggressive data

augmentation techniques [16, 30].

ImageNet-LT iNaturalist

Many Med. Few All Many Med. Few All

CE [38] 65.9 37.5 7.7 44.4 72.2 63.0 57.2 61.7

CE+CB [19] 39.6 32.7 16.8 33.2 53.4 54.8 53.2 54.0

KD [33] 58.8 26.6 3.4 35.8 72.6 63.8 57.4 62.2

Focal [19] 36.4 29.9 16.0 30.5 — — — 61.1

OLTR [49] 43.2 35.1 18.5 35.6 59.0 64.1 64.9 63.9

LFME [76] 47.1 35.0 17.5 37.2 — — — —

BBN [88] — — — — 49.4 70.8 65.3 66.3

cRT [38] 61.8 46.2 27.3 49.6 69.0 66.0 63.2 65.2

τ -norm [38] 59.1 46.9 30.7 49.4 65.6 65.3 65.5 65.6

De-confound [71] 62.7 48.8 31.6 51.8 — — — —

DiVE [32] 64.1 50.4 31.5 53.1 70.6 70.0 67.6 69.1

DRO-LT [65] 64.0 49.8 33.1 53.5 — — — 69.7

DisAlign [83] 61.3 52.2 31.4 52.9 69.0 71.1 70.2 70.6
Our methods (weight balancing)

naive 55.3 31.4 12.5 38.0 54.7 46.0 43.9 46.1

WD 68.5 42.4 14.2 48.6 74.5 66.5 61.5 65.4

+ L2norm 61.2 48.9 42.6 52.8 11.2 47.4 66.9 51.3

+ τ -norm 64.0 49.0 36.3 53.1 71.3 69.8 68.9 69.6

+ WD 62.0 49.7 41.0 53.3 71.0 70.3 69.4 70.0

+ Max 62.2 50.1 37.5 53.0 71.4 68.9 69.1 69.2

+ WD & Max 62.5 50.4 41.5 53.9 71.2 70.4 69.7 70.2

SOTA with “bells and whistles”: ensembles,

data augmentation, and self-supervised pretraining

RIDE [73] 67.9 52.3 36.0 56.1 66.5 72.1 71.5 71.3

ACE [10] — — — 56.6 — — — 72.9

SSD [46] 66.8 53.1 35.4 56.0 — — — 71.5

PaCo [17] 63.2 51.6 39.2 54.4 69.5 72.3 73.1 72.3

proves an important direction for studying bias and fairness

in recognition [15]. However, any system that makes it eas-

ier to train a fair classifier on long-tailed classes also makes

it possible for a malicious agent to train a system that auto-

matically discriminates against a certain subgroup for which

only little training data is available. This is potentially a

negative societal impact.

Acknowledgement. This work was supported by the

CMU Argo AI Center for Autonomous Vehicle Research.

SA was supported in part by the KAUST Gifted Student’s

Program (KGSP) and the CMU Robotics Institute Summer

Scholars program. YXW was supported in part by NSF

Grant 2106825 and the Jump ARCHES endowment.

86904

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv:1607.06450, 2019. 3

[2] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Network dissection: Quantifying inter-

pretability of deep visual representations. In CVPR, 2017. 3,

4

[3] Agnes Benedek and Rafael Panzone. The space lp, with

mixed norm. Duke Mathematical Journal, 28(3):301–324,

1961. 8

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo

Larochelle. Greedy layer-wise training of deep networks. In

NeurIPS, 2007. 3

[5] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. Journal of Machine Learn-
ing Research, 13(2), 2012. 5

[6] Dimitri P Bertsekas. Multiplier methods: A survey. Auto-
matica, 12(2):133–145, 1976. 4

[7] Christopher M Bishop. Pattern recognition and machine
learning. springer, 2006. 3

[8] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A

systematic study of the class imbalance problem in convo-

lutional neural networks. Neural Networks, 106:249–259,

2018. 2

[9] Peter Bühlmann and Sara Van De Geer. Statistics for
high-dimensional data: methods, theory and applications.

Springer Science & Business Media, 2011. 3

[10] Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. Ace: Ally

complementary experts for solving long-tailed recognition in

one-shot. In ICCV, 2021. 1, 2, 8

[11] Kaidi Cao. https : / / github .
com / kaidic / LDAM - DRW / blob /
3193f05c1e6e8c4798c5419e97c5a479d991e3e9/
cifar_train.py#L54. commit 6feb304, 2019. 4, 5

[12] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,

and Tengyu Ma. Learning imbalanced datasets with label-

distribution-aware margin loss. In NeurIPS, 2019. 1, 2, 5,

8

[13] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and

Qingfu Wen. Deep quantization network for efficient image

retrieval. In AAAI, 2016. 5

[14] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and

W Philip Kegelmeyer. Smote: synthetic minority over-

sampling technique. Journal of Artificial Intelligence Re-
search, 16:321–357, 2002. 2

[15] Irene Chen, Fredrik D Johansson, and David Sontag. Why is

my classifier discriminatory? In NeurIPS, 2018. 8

[16] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmentation

with a reduced search space. In NeurIPS, 2020. 7, 8

[17] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya

Jia. Parametric contrastive learning. In ICCV, 2021. 1, 2, 7,

8

[18] Yin Cui. https : / / github . com /
richardaecn / class - balanced - loss / blob /
1d7857208a2abc03d84e35a9d5383af8225d4b4d/

src/cifar_main.py#L581. commit 0ab6eb7, 2019.

4, 5

[19] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge

Belongie. Class-balanced loss based on effective number of

samples. In CVPR, 2019. 2, 3, 4, 5, 6, 7, 8

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 5, 6

[21] Chris Drummond, Robert C Holte, et al. C4. 5, class im-

balance, and cost sensitivity: why under-sampling beats

over-sampling. In Workshop on learning from imbalanced
datasets II, volume 11, pages 1–8. Citeseer, 2003. 2

[22] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A

multiple resampling method for learning from imbalanced

data sets. Computational intelligence, 20(1):18–36, 2004. 2

[23] Chengjian Feng, Yujie Zhong, and Weilin Huang. Exploring

classification equilibrium in long-tailed object detection. In

ICCV, 2021. 2

[24] Ian Goodfellow, Y Bengio, and A Courville. Regularization

for deep learning. Deep learning, pages 216–261, 2016. 3

[25] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and

Yoshua Bengio. Deep learning, volume 1. MIT press Cam-

bridge, 2016. 3, 4

[26] Hao Guo and Song Wang. Long-tailed multi-label visual

recognition by collaborative training on uniform and re-

balanced samplings. In CVPR, 2021. 2

[27] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A

dataset for large vocabulary instance segmentation. In CVPR,

2019. 2

[28] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao.

Borderline-smote: a new over-sampling method in im-

balanced data sets learning. In International Conference on
Intelligent Computing, pages 878–887. Springer, 2005. 2

[29] Stephen Hanson and Lorien Pratt. Comparing biases for min-

imal network construction with back-propagation. NeurIPS,

1988. 2, 3

[30] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, 2020. 7, 8

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3, 6

[32] Yin-Yin He, Jianxin Wu, and Xiu-Shen Wei. Distilling vir-

tual examples for long-tailed recognition. In ICCV, 2021. 5,

7, 8

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. arXiv:1503.02531, 2015. 8

[34] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A

fast learning algorithm for deep belief nets. Neural compu-
tation, 18(7):1527–1554, 2006. 3

[35] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan R Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors.

arXiv:1207.0580, 2012. 2, 3, 4

[36] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou

Tang. Deep imbalanced learning for face recognition and

attribute prediction. PAMI, 42(11):2781–2794, 2019. 2

96905

[37] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan

Yang, Liqiang Wang, and Boqing Gong. Rethinking class-

balanced methods for long-tailed visual recognition from a

domain adaptation perspective. In CVPR, 2020. 2, 6

[38] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,

Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-

pling representation and classifier for long-tailed recogni-

tion. In ICLR, 2020. 2, 3, 4, 5, 6, 7, 8

[39] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing

Shen, and Ling Shao. Striking the right balance with uncer-

tainty. In CVPR, 2019. 2

[40] Salman H Khan, Munawar Hayat, Mohammed Bennamoun,

Ferdous A Sohel, and Roberto Togneri. Cost-sensitive learn-

ing of deep feature representations from imbalanced data.

IEEE transactions on neural networks and learning systems,

29(8):3573–3587, 2017. 2

[41] Shu Kong and Deva Ramanan. Opengan: Open-set recogni-

tion via open data generation. In ICCV, 2021. 2

[42] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. NeurIPS, 2012. 3

[44] Anders Krogh and John A Hertz. A simple weight decay can

improve generalization. In NeurIPS, 1992. 2, 3, 4

[45] Jan Kukavcka, Vladimir Golkov, and Daniel Cremers. Regu-

larization for deep learning: A taxonomy. arXiv:1710.10686,

2017. 3

[46] Tianhao Li, Limin Wang, and Gangshan Wu. Self super-

vision to distillation for long-tailed visual recognition. In

ICCV, 2021. 5, 7, 8

[47] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017. 2, 7, 8

[48] Si Liu, Risheek Garrepalli, Thomas G Dietterich, Alan Fern,

and Dan Hendrycks. Open category detection with pac guar-

antees. In ICML, 2018. 2, 6

[49] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, and Stella X Yu. Large-scale long-tailed

recognition in an open world. In CVPR, 2019. 2, 5, 6, 8

[50] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with warm restarts. In ICLR, 2017. 3

[51] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In ICLR, 2017. 6

[52] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In ICLR, 2019. 3

[53] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens Van Der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, 2018. 2

[54] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh

Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.

Long-tail learning via logit adjustment. In ICLR, 2021. 8

[55] John E Moody. Note on generalization, regularization and ar-

chitecture selection in nonlinear learning systems. In Neural
Networks for Signal Processing Proceedings of IEEE Work-
shop. IEEE, 1991. 4

[56] Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. MIT press, 2012. 3

[57] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization,

and rotational invariance. In ICML, 2004. 3

[58] Fernando Nogueira. Bayesian Optimization: Open source

constrained global optimization tool for Python, 2014. 5

[59] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[60] William J Reed. The pareto, zipf and other power laws. Eco-
nomics letters, 74(1):15–19, 2001. 2

[61] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Zhao, Shuai Yi, and Hongsheng Li. Balanced meta-softmax

for long-tailed visual recognition. In NeurIPS, 2020. 3, 6, 7

[62] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-

sun. Learning to reweight examples for robust deep learning.

In ICML, 2018. 2

[63] Ingrid C Romero, Shu Kong, Charless C Fowlkes, Carlos

Jaramillo, Michael A Urban, Francisca Oboh-Ikuenobe, Car-

los D’Apolito, and Surangi W Punyasena. Improving the tax-

onomy of fossil pollen using convolutional neural networks

and superresolution microscopy. Proceedings of the National
Academy of Sciences, 117(45):28496–28505, 2020. 2

[64] Tim Salimans and Diederik P Kingma. Weight normaliza-

tion: A simple reparameterization to accelerate training of

deep neural networks. In NeurIPS, 2016. 3

[65] Dvir Samuel and Gal Chechik. Distributional robustness loss

for long-tail learning. In ICCV, 2021. 8

[66] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and An-

drew Cotter. Pegasos: Primal estimated sub-gradient solver

for svm. Mathematical programming, 127(1):3–30, 2011. 2,

3, 4

[67] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-

propagation for effective learning of deep convolutional neu-

ral networks. In ECCV, 2016. 2

[68] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,

Zongben Xu, and Deyu Meng. Meta-weight-net: Learning

an explicit mapping for sample weighting. In NeurIPS, 2019.

2

[69] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-

tical bayesian optimization of machine learning algorithms.

NeurIPS, 2012. 5

[70] Kaihua Tang. https://github.com/KaihuaTang/
Long - Tailed - Recognition . pytorch / blob /
90c8b2c0b66d17f78b67263861bc9d858fe20128/
classification/config/CIFAR100_LT/feat_
unifrom.yaml#L22. commit 54c07cf, 2020. 4

[71] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-

tailed classification by keeping the good and removing the

bad momentum causal effect. In NeurIPS, 2020. 2, 3, 4, 8

[72] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,

Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and

Serge Belongie. The inaturalist species classification and de-

tection dataset. In CVPR, 2018. 2, 5, 6

[73] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and

Stella X Yu. Long-tailed recognition by routing diverse

distribution-aware experts. In ICLR, 2020. 1, 2, 7, 8

106906

[74] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-

ing to model the tail. In NeurIPS, 2017. 2

[75] Stephen J Wright. Coordinate descent algorithms. Mathe-
matical Programming, 151(1):3–34, 2015. 4

[76] Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning

from multiple experts: Self-paced knowledge distillation for

long-tailed classification. In ECCV, 2020. 2, 8

[77] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 6

[78] Yuzhe Yang and Zhi Xu. Rethinking the value of labels for

improving class-imbalanced learning. In NeurIPS, 2020. 2,

6, 8

[79] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-

mohan Chandraker. Feature transfer learning for face recog-

nition with under-represented data. In CVPR, 2019. 2

[80] Zhuoning Yuan, Yan Yan, Rong Jin, and Tianbao Yang.

Stagewise training accelerates convergence of testing error

over sgd. arXiv:1812.03934, 2018. 3

[81] Matthew D Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In ECCV, 2014. 3, 4

[82] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 3

[83] Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and

Jian Sun. Distribution alignment: A unified framework for

long-tail visual recognition. In CVPR, 2021. 2, 8

[84] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan,

and Jiashi Feng. Deep long-tailed learning: A survey.

arXiv:2110.04596, 2021. 2, 7

[85] Yunhan Zhao, Shu Kong, and Charless Fowlkes. Camera

pose matters: Improving depth prediction by mitigating pose

distribution bias. In CVPR, 2021. 2

[86] Yunhan Zhao, Shu Kong, Daeyun Shin, and Charless

Fowlkes. Domain decluttering: Simplifying images to mit-

igate synthetic-real domain shift and improve depth estima-

tion. In CVPR, 2020. 3

[87] Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu,

Jianteng Peng, Xunqiang Tao, and Yaohai Huang. Unequal-

training for deep face recognition with long-tailed noisy data.

In CVPR, 2019. 2

[88] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen.

Bbn: Bilateral-branch network with cumulative learning for

long-tailed visual recognition. In CVPR, 2020. 2, 8

116907

