CEREBRO: A Layered Data Platform for Scalable Deep Learning

Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and Kabir Nagrecha
University of California, San Diego
{arunkk,snakanda,yuz870,s7li}@eng.ucsd.edu,{agemawat,knagrech}@ucsd.edu

ABSTRACT

Deep learning (DL) is gaining popularity across many domains
thanks to tools such as TensorFlow and easier access to GPUs. But
building large-scale DL applications is still too resource-intensive
and painful for all but the big tech firms. A key reason for this pain is
the expensive model selection process needed to get DL to work well.
Existing DL systems treat this process as an afterthought, leading
to massive resource wastage and a usability mess. To tackle these
issues, we present our vision of a first-of-its-kind data platform
for scalable DL, Cerebro, inspired by lessons from the database
world. We elevate the DL model selection process with higher-
level APIs already inherent in practice and devise a series of novel
multi-query optimization techniques to substantially raise resource
efficiency. This vision paper presents our system design philosophy
and architecture, our recent research and open research questions,
initial results, and a discussion of tangible paths to practical impact.

1 DEEP LEARNING: THE PROMISE, THE PAIN

Deep learning (DL) has revolutionized machine learning (ML), pow-
ering modern speech recognition, machine translation, e-commerce,
radiology, and more. The successes of DL, primarily at Web gi-
ants, has led to high interest among domain scientists, enterprises,
smaller Web companies, and even healthcare firms in trying DL for
their analytics tasks. The excitement is mainly due to DL’s power
to unlock valuable unstructured data, e.g., sensor time series in
public health, satellite images in agriculture, and text corpora in
finance. While tools such as Spark and Flink tame the “Volume”
and “Velocity” aspects of “Big Data” analytics, the “Variety” issue
is still largely open. DL is key to taming this third V for analytics.
Naturally, new tools such as TensorFlow aim to make DL easier to
use. Cloud computing is also making GPUs more accessible.

In spite of all this progress, DL is still too hard to use at scale,
resource-intensive, and costly. While off-the-shelf pre-trained mod-
els mitigate this issue for a few well-defined prediction tasks, most
ML users still need to build custom models for bespoke datasets
and applications, either manually or with AutoML procedures. This
process is painful in large part due to DL’s flexibility, which is
unprecedented in ML: the input/output can be almost any data
structure and internal layers can be built in many ways [27]. Such
end-to-end learning makes DL more accurate but it also makes DL
training unusually resistant to software commodification. Even the
cloud “whales” do not offer much beyond basic IaaS support for DL
training (although Saa$ exists for some inference tasks).

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2021.

11th Annual Conference on Innovative Data Systems Research (CIDR 21), January 10-13,
2021, Chaminade, CA, USA

DL’s flexibility also underlies a key reason for its cost: model
selection, an empirical process comparing alternate training config-
urations with varying input/output representations, neural archi-
tectures, and/or hyperparameters [37]. This process is unavoidable
due to fundamental theoretical reasons on the bias-variance-noise
tradeoff in ML accuracy [57] and the bespoke nature of many tasks.
Without proper model selection, users will just squander the power
of their labeled data, hurting the application.

Alas, there exist no reliable ways to tell the accuracy of a config-
uration on a given dataset without actually running it, leading to
mass empiricism. If one tuned, say, 3 hyperparameters with, say,
4 possible values each, the number of configurations is 64 already.
Multiply that with more trials for varying input/output representa-
tions and neural architectures. No wonder practitioners routinely
build 10s to even 1000s of models to pick just one [6]. Overall, model
selection is critical for effective use of DL but it massively amplifies
DL’s cost and energy footprints and impedes usability.

1.1 What do Existing Tools Lack? Why?

DL systems such as TensorFlow meet a rather low-level need: spec-
ify a neural architecture, train it with stochastic gradient descent
(SGD) or its variants, and run inference [12]. They do this rather
well, at least on a single node. But the user must also specify the
model selection process somehow, which is mainly why APIs such
as Keras [21], AutoKeras [31], and Hyperband [42] arose. Model
selection is an afterthought in DL systems, a burden dumped on the
user to be handled with ad hoc outer loops and libraries, not as the
mission-critical process it is. This design has led to two issues:

(1) Usability mess: Without first-class support for model selection,
users handle extra code and metadata in ad hoc ways. This often re-
sults in unreproducible executions and stymies cross-organizational
collaboration. While some cloud vendors and ML platforms are start-
ing to support this process better, it is still largely piecemeal and
often limited to only basic tasks such as hyperparameter tuning.

(2) High resource wastage: Different configurations tried in model
selection often overlap substantially on data and/or computations.
Ignoring this structure leads to high wastage of compute, stor-
age/memory, and/or network resources, especially at scale. This
issue is orthogonal to both making single-model training faster and
to devising better AutoML procedures to navigate the search space.

While the Googles, Facebooks, and Amazons of the world may
gluttonously throw 100s of GPUs/TPUs and engineers at their DL
tasks with low regard for overall resource efficiency, most other DL
users cannot afford that, especially on pay-as-you-go clouds. And
while some Web giants may ignore reproducibility for some ML
tasks, it is a showstopper issue for most enterprises and domain
scientists. There is a pressing need to meet these concerns of the
fast-growing user base of DL outside Web giants and cloud whales.

Relational DB Systems Deep Learning Systems

-

CLI ter GUI!
s pr\.y;' g TensorBoard mlfl"'JW
OO ComoteyTheory OptimiationTheory | CEREBRO 3 e
P 4 Y P Y . Transfer Learning Ablation Analysis Sequence and Graph Analysis s &
High-level TR
-) Model Buildin T8
Program Formalism: Relational Algebra Tensor Algebra + SGD APIs s ‘ Hyperparameter Tuning | | Architecture Search | | Feature Transfer ‘ ML over Groups 2=
Program Specification: sQL Neural Computational Graphs ,5 °
Optimization ‘ Model Hopper Parallelism (MOP) ‘ ‘ MOP Hybrids ‘ ‘Materialization & Memory Manager‘ E £
e on
Program Modification: QUETY Optimization Compilation and Scheduling 55
8! * and Compilation No query optimization analog? Layer ‘ AutoDiff and SGD Execution Scheduler 1F TensorFlow O PyTorch ‘ X

Parallel Relational

Execution Primitives: Operator Dataflows

CuDNN, BLAS, Eigen, etc. Execution
and Storage

Hardware: CPU, GPU, TPU, FPGA, SSD, NVM, RDMA, etc. Layer

Direct \m Dataflow Engines Cliud Native
Filesystem ‘ . u ‘

Access EC2 EBS lambda S3

Fault Toler.
& Elasticity

Figure 1: (A) Intellectual stack analogy of RDBMS and DL systems. (B) Our envisioned model selection-first architecture.

1.2 Our Vision

To tackle the resource efficiency and usability issues in one go,
we envision a first-of-its-kind DL platform that puts model selec-
tion front and center: Cerebro. We draw upon three system design
philosophies from the database world: higher-level specification,
layered system design, and query optimization.

High-level APIs for Model Selection. Cerebro is rooted in a
key ML observation: the model selection process is not ad hoc but
has rich structures due to ML-theoretical and/or data type-specific
reasons. We identify such structures from our conversations with
30+ ML practitioners in various settings, key ML papers, and our
own experiences building DL applications. We distill our lessons
into design patterns codified as higher-level model building APIs
that enable us to decouple the what of model selection (“logical”
level) from the how of its execution (“physical” level).

Layering with the Neural Query Model. We reimagine DL exe-
cutions (both training and inference) as “queries” in what we call
the neural query model. It is more coarse-grained than the neural
computational graph abstraction of DL tools such as TensorFlow
but more fine-grained than APIs such as Keras. This in-betweenness
lets us reuse existing DL tools as is (without modifying their inter-
nal code) for the purposes they serve well, while supplanting other
functionalities. Specifically, we believe the weakest link in today’s
DL tools is how inefficiently they manage data at scale during query
execution, which needlessly bloats DL’s resource footprint.

Multi-Query Optimization. The high-level APIs enable Cerebro
to look across training configurations during model selection and
cross-optimize them, inspired by multi-query optimization (MQO) in
the database world [55]. We devise a suite of novel MQO techniques
based on the access patterns and computational properties of neural
queries. All this substantially raises resource efficiency (often by
over 10x). Our MQO techniques are also applicable to multiple DL
tools, storage backends, and execution environments in a unified
manner, thus making Cerebro highly portable.

1.3 Case Study: UCSD Public Health Data

We have first-hand experience of both the pains of scalable DL and
Cerebro’s potential for impact thanks to an ongoing collaboration

with UC San Diego public health researchers. Our collaborators
wanted to try DL for identifying activities of human subjects (e.g.,
sitting, standing, stepping, etc.) from body-worn accelerometers.
They have labeled data for 600 people, about 864 GB. No off-the-
shelf models suit their task semantics. So, based on the literature on
DL-based time series classification, we tried many DL models with
TensorFlow, including deep CNNs, LSTMs, and composite CNN-
LSTMs. This required repeated model selection on a shared GPU
cluster at UCSD. We systematized our neural architecture selection
and hyperparameter tuning with Keras-style APIs. TensorFlow
worked well on one node but scaled poorly on the cluster because
its parallel SGD execution schemes are slow. Thus, we devised a
novel execution scheme for SGD on sharded data (Section 4.1).

Our collaborators also kept changing the prediction windows
(e.g., 5s vs. 15s) and label semantics (e.g., sitting vs. not sitting),
requiring us to rerun model selection over and over. This under-
scores the importance of resource efficiency and the throughput of
this process. This was a key motivation for building Cerebro and
migrating this workload to it. We were then able to easily explore
dozens of models; they had accuracies between 62% and 93% for a
binarized task. This underscores the importance of rigorous model
selection. The best DL models gave a large lift of 10% over their
prior well-tuned RandomForest model built on hand-engineered
features. The models built with Cerebro on their data now offer the
highest accuracy for this task in their field.

2 OUR LAYERED ARCHITECTURE

By comparing the intellectual stack of RDBMSs and DL systems
as shown in Figure 1(A), we see a major gap in the DL systems
landscape: no query optimization. We seek a system that makes it
easy to infuse novel DL-focused query optimization techniques for
model selection. Our design philosophy is three-pronged:

(1) Integrationist: Integrate seamlessly with production ML en-
vironments without changing the DL tool’s internal source code.
Enable retention of auxiliary ML tools for visualization and gov-
ernance such as TensorBoard [10], TFX [14], and MLFlow [19].
This design decision makes it easier for DL practitioners to adopt
Cerebro. Such decoupling also lets us piggyback on complementary
advances by other communities, e.g., better DL compilers or new
hardware accelerators, without changing Cerebro.

(2) Modular: Enable users to adopt different functionalities and
optimizations on a need-to basis instead of a monolithic RDBMS-
style all-or-nothing stack. Not all users may need to use all of
the model building APIs in Cerebro. This design decision enables
Cerebro to support new capabilities and optimizations over time
without losing backward compatibility.

(3) Ecumenical: Support multiple DL tools and storage/execution
environments in a unified way so that users can pick whatever suits
their application setting. This design decision enables Cerebro to
benefit a wider range of DL users without needing to take sides in
industry wars, e.g., TensorFlow vs PyTorch, in-DBMS vs filesystem-
based, and cloud vs on-premise clusters.

Figure 1(B) illustrates Cerebro’s architecture that conforms to
the above design philosophy. Next we briefly explain each layer.

2.1 High-Level Model Building APIs

We need not reinvent higher-level APIs for DL model building: such
design patterns are already ubiquitous in ML/DL practice [37]. We
just hijack them to enable MQO underneath. Such APIs are popular
because they allow bulk specification of many training configura-
tions (configs) instead of one by one, improving usability. Some APIs
are well-known: hyperparameter tuning and architecture search;
we overload Keras-style grid/random search APIs for these. These
sufficed for our public health use case. Some APIs are emerging,
e.g., transfer learning, especially from CNNs and transformers; we
devise intuitive APIs for these. Finally, we also devise new APIs for
batching configs across subsets of the data, features, or model parts
to enable better debugging and sharing of work across users within
an organization. We structure the APIs in a hierarchy with hyper-
parameter tuning being reused by each. By supporting different
workloads this way, we meet our design goal of modularity.

2.2 Optimization and Scheduling Layer

Our vision’s key technical novelty lies in this layer. We rewrite the
execution of a set of training configs given in bulk at both logical
and physical levels. So, we supplant a DL tool’s distributed exe-
cution layer, a key source of their resource inefficiency at scale,
with our novel decoupled and optimized approach. To this end, we
define our central query execution abstraction: a unit query for
training, which is node-local SGD for one epoch on one shard. A
full training neural query then is a sequence of unit queries across
shards and that sequence is repeated every epoch. By decomposing
a training config’s execution into unit queries, we obtain the fol-
lowing template for infusing our optimizations in a way that meets
our design goals of being integrationist and ecumenical.

(1) We retain the DL tool (e.g., TensorFlow or PyTorch) as is
for a unit query to the extent possible. That is, we use it for its
most important and complex capability: run mini-batch SGD with
backpropagation based on automatic differentiation, specifically,
on only one data shard on one local worker.

(2) We automatically inject directives to the DL tool for check-
pointing and restoring model state in between unit queries. All of
the popular DL tools offer APIs for checkpointing and restoring DL
training state, e.g., [9].

(3) We are now free to devise and infuse our MQO-style optimiza-
tion techniques around and across unit queries between workers in
myriad ways: rescheduling and reordering, staging materializations
of inputs/outputs/intermediates, batching unit queries, and so on.

Using the above template, the heart of Cerebro’s orchestration of
unit queries is a new form of parallel SGD execution we call model
hopper parallelism (Section 4.1). It is a hybrid of task parallelism
and data parallelism. We also devise other model selection-oriented
MQO techniques (Section 4.2) and identify many open opportuni-
ties for new MQO techniques (Section 4.3). All of our techniques
exploit the data access patterns of unit queries and/or reduce com-
putational redundancy to raise GPU utilization, reduce distributed
memory/storage footprints, and/or reduce network costs.

2.3 Execution and Storage Layer

This includes datasets and hardware for compute, storage/memory,
and networking along with their APIs. In line with our design
philosophy, we support multiple types of backends: go directly
to the filesystem (e.g., EXT + NFS or HDFS) and OS to schedule
unit queries; use the mediated APIs of Dask, parallel RDBMSs (e.g.,
Greenplum), or parallel dataflow systems (e.g., Spark); or use IaaS
APIs for cloud-native execution. The UCSD public health use case
described in Section 1.3 used the first type of backend: EXT + NFS
on a shared GPU cluster at UCSD operated with Kubernetes.

Our goal is not generic resource/cluster management but rather
building a resource-efficient data platform for DL model selection.
Thus, we do not aim for innovations at this layer but rather focus
on the layer above.

3 ONGOING SYSTEM IMPLEMENTATION

3.1 Approach and Status

We are implementing Cerebro as a deliberately lightweight Python
module with APIs in Python and connectors for the backends. Our
layering lets us outsource most heavy-duty storage and resource
handling. We currently support hyperparameter tuning and archi-
tecture selection (both manual and automatic) over the following
backends: filesystem, Spark, and Greenplum. We recently published
a full research paper on the current capabilities of Cerebro [52].
Next we explain the role of two core components that matter for
MQO. Section 5 will present the other components in Figure 1(B).

Optimizing Scheduler: This component produces an optimized
execution plan for a given model selection workload. It stages out
and rearranges unit queries to place them on workers as per the
plan along with related computations (e.g., for validation errors).

Materialization and Memory Manager: This component caches
preprocessed data shards and other local intermediate materialized
data based on the the Scheduler’s decisions. It is aware of all levels
of the memory hierarchy: DRAM, local disk, and remote storage.

On the filesystem backend, we use XML-RPC client-server pack-
age for inter-node communication. The Scheduler runs in the client;
each worker runs a lightweight agent which also runs a service
for communication. We use push-based scheduling to assign work.

Unit query execution and data loading on a local worker is done by
the DL tool itself.

3.2 Usage Walkthrough

Cerebro is easy to install with pip. Its APIs resemble popular DL
training APIs like Keras with minimal extensions for our system
setting. Listing 1 shows a full usage example in our APL The user
performs 4 steps:

(1) Specify the execution backend (e.g., Spark) and the storage
area (e.g., HDFS path).

(2) Define a function to generate a ModelTrainer object given
a specific hyperparameter combination. The ModelTrainer
object encapsulates the neural architecture and the SGD-
based training procedure (e.g., Adam).

(3) Specify the input dataset file or source. It could be pre-
processed for DL model training. This code is skipped for
brevity.

(4) Launch the model selection workload by specifying the hy-
perparameter search space and a canned model selection
procedure of their choice, e.g., grid search (shown).

After the model selection process ends, the best model based on
the user-provided criteria is returned. Our APIs also let the user
specify locations to optionally log all model artifacts (not just final
results) and execution metadata for detailed post-hoc inspection,
debugging, governance, etc. Although the usage example shows a
simple grid search, Cerebro already supports several other model
selection procedures, including random search and some state-
of-the-art AutoML procedures such as Hyperband, ASHA, and
TPE [52]. More details and examples of Cerebro’s APIs are available
on our system documentation webpage [2].

3.3 Extensibility

Cerebro is designed to be easily extensible along two aspects: (1)
DL tools and (2) model selection procedures. We briefly explain
each next.

We use a handler-based approach for our components to talk to
DL tools. This makes it relatively simple for Cerebro to support new
DL tools. The contract is that the DL tool must support a sequential
data access pattern and have APIs for checkpointing and restoring
model state. Cerebro uses those APIs to stage out unit queries. This
also means Cerebro can technically be extended to support any ML
model trainable with any SGD-based method.

Our components talk to the model selection procedure via a
per-epoch scheduling template. The contract for a model selection
procedure is as follows: give our Scheduler a set of training configs
that will all be run for one epoch at a time. Cerebro (re)schedules
unit queries at every epoch to enable the model selection procedure
to kill and/or add configs on the fly. This enables Cerebro to support
both one-shot specification of all configs (e.g., grid/random search)
and adaptive creation/killing of configs (e.g., like in Hyperband or
HyperOpt) in a unified manner. ML developers can easily plug in
any future AutoML procedure into our scheduling template and
expand our model building APIs. An obvious limitation here is that
if the AutoML procedure is sequential and explores only one config
at a time, it will not benefit much from Cerebro.

Listing 1: Example Usage of Cerebro’s APIs
from cerebro.backend import SparkBackend
from cerebro.storage import HDFSStore
from cerebro.keras import ModelTrainer
from cerebro.tune import GridSearch

Step 1: Execution and storage backends
execution = SparkBackend(num_workers=3)
storage = HDFSStore(path='hdfs://...")

######4444 Step 2: Input dataset ##########
train_df =

Step 3: ModelTrainer generating function
Input: Parameter instance
Output: ModelTrainer
def trainer_gen_fn(params):
Initialize a Keras model

model =
optimizer = Adam(lr=params['lr'])
loss = 'binary_crossentropy'

estimator = ModelTrainer (
model=model,
optimizer=optimizer,
loss=1loss,
metrics=['acc'],
batch_size=params['batch_size '])
return estimator

Step 4: Launch model selection
Define parameter search space
search_space = {
‘Ir': [0.01, 0.001, 0.0001]7,
'batch_size': [16, 256, 16]

Instantiate a model selection object

model_selection = GridSearch(
execution=execution,
storage=storage,
trainer_gen_fn=trainer_gen_fn,
search_space=search_space,
num_epochs=10,
validation=0.25,
evaluation_metric="'loss ')

Launch model selection
Output: Best model
best_model = model_selection.fit(train_df)

Sync. comm. steps (per shard) Sync./async. comm. steps (per mini-batch)
! !

R
a—,‘ B c 51 H <
2[A]|[B ||c £2 B
=3 B ©) Bl cilc e
—r e . . M
t t t ct ct ct

Bulk Sync. Data Parallelism

l—l—Model hops, i.e.,
“ - async.comm. steps

(per shard)

Fine-grained Data Parallelism

Copy full
dataset to
all workers

Worker
w N =

3t

Task Parallelism Model Hopper Parallelism

Figure 2: Gantt charts for a simple example with 3 training
configs (A/B/C) and 3 workers (manager nodes not shown).
Each config’s single-node runtime is 3¢. Data-parallelism
and MOP run on sharded data, unlike task parallelism. The
overhead factor ¢ > 1 depends on the network; in [52], we
saw it was up to 3.

4 OUR EXECUTION OPTIMIZATIONS
4.1 Execution Core: Model Hopper Parallelism

At the heart of Cerebro is a new form of parallel SGD execution
we call model hopper parallelism (MOP). It is a hybrid of task
parallelism and data parallelism, representing a physical level of
multi-query optimization tailored to SGD’s data access patterns. We
briefly recap the prior approaches before explaining MOP. Later we
explain their cons against MOP. Figure 2 illustrates the approaches

Background on Prior Approaches. Given multiple training con-
figs in one go, task-parallel tools (e.g., Dask, Celery, and Ray [47])
train a config entirely on one worker, with different configs placed
on different workers in parallel. The entire dataset is copied to
every worker (full replication) or read from remote storage (e.g.,
S3) at each epoch for each config. In contrast, data-parallel tools
operate on sharded data and train one model at a time on the whole
cluster. Bulk synchronous parallel (BSP) tools perform SGD model
averaging, which communicates model updates once per shard after
each epoch. But because BSP has poor SGD convergence behavior
for non-convex losses, it is a poor fit for DL [52]. Horovod [56]
and Parameter Server [43] mitigate that issue by communicating
model updates more frequently, usually once per mini-batch. This
improves convergence efficiency but their communication costs
also go up dramatically because a single shard may contain 100s to
even millions of mini-batches depending on the batch size.

Basic Idea of MOP. MOP is rooted in two ML insights: (1) Model
selection typically has a high degree of parallelism (multiple configs
given at once); and (2) SGD is robust to the randomness in data
ordering [24]. It is also rooted in a system insight: sharding is the
most scalable way to parallelize computations on large data.
Based on the above insights, MOP works as follows. Given a
dataset, randomly shuffle the dataset, shard it, and give each worker
a single shard. Divide the training epoch of each config (training
neural query) into its unit queries, i.e., sub-epochs on shards. The
Scheduler then places unit queries on workers. After a sub-epoch

Data-Parallel Systems

v

Asynchronous
Parameter Server

Task-Parallel Systems

L

: Dask, Celery,

= Vizier, Spark-

= HyperOpt, Ray

Asynchronous

sasssssssssmmns

No Partitioning

(Full replication) Synchronous

Bulk Fine-grained

(Shard level) (Mini-batch level)

Figure 3: MOP is the first known form of bulk asynchronous
parallelism in data systems (based on [52]).

5 3 § Parameter
2 33 Server Task-Parallel w/ full remote reads*
w Zir H@C
g ©F
a . RIS
g . i| Horovod “*-.._(Controllable: Caching rate)
S &
§ 29T .. Task-Parallel w/
=1 “~.._full replication
g2 L MOP/Cerebro RREIN
S 89 (@< >
E g=& (Controllable: Replication rate)
E §° BSP Higher
S , - ,
(] T T
No replication Memory/storage Wastage Full replication

Figure 4: Comparing two key aspects of resource efficiency
(from [52]). Dashed line represents a controllable parameter.
*Task-parallelism with remote reads has varying communi-
cation costs based on dataset size.

completes, that model is checkpointed, “hops” to another worker,
and resumes training the next sub-epoch. A config visits every
worker exactly once to finish one whole epoch. Different models
hop across workers asynchronously in parallel as determined by the
Scheduler. Figure 2 illustrates the hopping for one epoch. Overall,
all configs are trained using pure sequential SGD, albeit in parallel.
Repeat this whole process for every epoch. Optionally, the dataset
can be reshuffled in between epochs just like in other approaches.

Comparative Analysis. Conceptually, MOP is the first known
form of bulk asynchronous parallelism as Figure 3 shows. It is in-
spired by “process migration” in multiprocessing OS, albeit adapted
to SGD on sharded data. As we formally show in [52], MOP’s com-
munication complexity is the same as BSP and much lower than
Horovod or Parameter Server, translating to up to 10,000x network
cost reductions in practice. Figure 4 conceptually illustrates MOP’s
benefits. Like task parallelism, MOP offers high throughput for
model selection but unlike MOP, task parallelism with replication is
highly wasteful of memory/storage. For instance, our 0.9 TB dataset
in Section 1.3 will bloat to a massive 7 TB on an 8-node cluster, un-
ethically hogging a shared academic resource. While remote reads
can mitigate this issue for task parallelism, it bloats network costs
massively, between 100x and 1000x based on the number of configs
and epochs. Finally, BSP has poor convergence but MOP and task
parallelism have ideal convergence behavior due to their use of
sequential SGD. Finally, due to the coarser shard-level scheduling
in MOP, its entire training process is trivially reproducible, unlike,

O TF Model Averaging ‘A Cerebro Horovod

O TF Parameter Server - Async. < Celery System Runtime GPU Space

(Hours) Util. (%) Footprint
100
TF PS-

S A 19.00 86 250GB
= 85 sync
g
I} 70 Horovod 5.42 92.1 250 GB
3
= TF Model
2 s Averagng 97 724 250 GB
°
20 Celery 1.72 82.4 2000GB
Cerebro 1.77 798 250GB

Epoch

Figure 5: (Based on [52]): Learning curves and per-epoch
time/space efficiency for model selection on ImageNet.

say, asynchronous Parameter Server. Overall, MOP holistically opti-
mizes for all 3 resources—compute, storage/memory, and network—to
offer near-optimal overall resource efficiency for distributed DL model
selection.

Empirical Validation. To validate MOP’s benefits, Figure 5 shows
a key result on the ImageNet dataset from our recent full research
paper [52]. We ran a model selection workload with 16 configs,
including 2 different neural architectures and standard hyperpa-
rameter tuning on an 8-node GPU cluster. Cerebro and task-parallel
Celery are the fastest and have best convergence but note Celery’s
8x larger space footprint. TF model averaging (BSP-style) has poor
convergence, while Parameter Server and Horovod are respectively
10x and 3x slower than Cerebro due to their mini-batch-level com-
munication costs. Overall, our above points on MOP’s benefits on
both resource efficiency and accuracy are validated.

Cerebro’s Scheduling Problem. MOP is highly general because it
has no synchronization barrier between configs or shards within an
epoch. Cerebro’s Scheduler thus enforces only two invariants: (1) A
config is trained at most one sub-epoch at any given time; and (2) A
config visits each worker exactly once within an epoch. In full gener-
ality, Cerebro’s scheduling formulation minimizes makespan given
the above constraints. It is NP-Hard in the number of configs (which
can even be 100s) via a reduction from open shop scheduling [52].
But we find that a simple randomized scheduler is effective, efficient,
and easy to implement. At an epoch boundary for the model selec-
tion workload, our randomized scheduler randomly places a unit
query (that is yet to be run) on an idle worker, while respecting
the constraints. It is also highly flexible and enables Cerebro to eas-
ily support heterogeneous resources, heterogeneous configs (say,
disparate neural architectures), partial replication of data shards
(say, for more parallelism), fault tolerance, and elasticity—all in a
unified manner. Basically, we can map them all to constraints in
our Scheduler for handling unit queries.

4.2 Recent and Ongoing Research

We briefly discuss some recent work by us on more MQO techniques
for DL model selection that are being integrated into Cerebro.

4.2.1 Feature Transfer and Transfer Learning. A major rea-
son for the success of DL is transfer learning, a model selection
methodology that is now ubiquitous for image/video analytics [59].
The basic ideas is to transfer “knowledge” from a prior source task

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
+ + + 1 4 t
L} L} L}
t ot
Independent §[@ ﬁ;‘ @;

transfer query (]
per CNN layer

tobetied 1

} Materialized { iy Y ry
feature layers . .
L—e—7
@ Fuse all transfer queries

Reuse materialized layers
ﬁ No redundant computations

~Redundant
computations

. .
Naive prior approach Our MQO approach

Figure 6: Comparing the naive prior approach with separate
CNN feature transfer queries against our MQO approach.

to a new downstream target task. A specific form of transfer learn-
ing called feature transfer has made CNNs especially popular. It
works as follows: use a pre-trained CNN (say, trained on ImageNet),
remove its “head” up to a specific layer, and use the rest of it to
featurize images. This reduces both the amount of labeled data and
resources needed for the downstream task, since it avoids training
a large model from scratch.

Alas, feature transfer faces a bottleneck at scale that hurts ef-
ficiency, reliability, and usability: no single layer of a pre-trained
CNN is always best for downstream accuracy. DL users usually com-
pare alternate layers, which is yet another form of model selection,
specifically for feature engineering [37]. For each layer of interest,
CNN inference is run till that layer for all images and a downstream
model is trained on those materialized output features. This is re-
peated from scratch for every other layer of interest, yielding many
downstream models. But this process has high computational re-
dundancy because CNN computations to obtain a higher layer are
a superset of those to obtain a lower layer. Figure 6(A) illustrates
the process and the redundancy. Naturally, one may ask why not
materialize and cache all layers of interest in one go. CNN features
can be even 100x larger than base images. So, caching all layers
of interest in one go could raise memory pressure and cause sys-
tem crashes, unless the user manages memory carefully. Overall,
scalable feature transfer is a tedious and slow process.

To tackle the above issues, we recently built the Vista system [48].
It raises the specification of feature transfer to a higher level and
automatically optimizes execution, just like Cerebro. We avoid com-
putational redundancy by devising a novel MQO-oriented plan that
stages out the materialization of feature layers, as Figure 6(B) illus-
trates. Essentially, Vista chops up the CNN inference neural query
into sub-queries based on the layers to transfer, automatically cre-
ates a materialized view of a lower layer, and automatically reuses
that view for the next higher layer. Prototyped on top of Spark
and TensorFlow, Vista carefully apportions distributed memory
to maximize efficiency and avoid memory-related system crashes.
Empirically, we found that Vista’s MQO-based approach to feature
transfer is more seamless and faster than baselines by between 2x
to 10x on real workloads.

In ongoing work, we are folding Vista into Cerebro, fusing it with
MOP and adding support for more general transfer learning in DL.
Transfer learning has recently exploded in popularity for text data
in natural language processing (NLP) too thanks to giant pre-trained
transformer models such as BERT and GPT [16, 23]. Such models
present new challenges because NLP users often stitch multiple
feature layers from transformers in ad hoc ways, unlike with CNNs.

The memory blowups are also larger, e.g., BERT features can be
4000x the size of base text! How to abstract this general problem in
our neural query model? How to generalize memory management
and materialized views in Cerebro without losing MOP’s benefits?
Building on our experience with Vista, we are actively working on
evolving these components of Cerebro to enable comprehensive
support for resource-efficient deep transfer learning on arbitrary
data types with arbitrary DL models.

4.2.2 Integration with Data Systems. The DB community has
worked on adding support for ML in DBMSs and dataflow systems
for over 20 years [18, 34]. MADIib [29] and MLIib [46] are perhaps
the most well-known and widely used among such tools. While
research on ML over data systems has waxed and waned over the
years, a sizable chunk of enterprise ML users, especially business
analysts, still prefer to access ML from the data system environment.
For instance, our conversations with VMware revealed that at least
20% of Greenplum’s customers still use MADIib. Cloud DBMSs
such as BigQuery and Redshift have also been adding more ML
integration [3, 11].

Motivated by the above, we have also been integrating MOP/Cere-
bro with data systems, in particular, Greenplum and Spark. Such
tools are natively data-parallel, which suits Cerebro. Such tools
also natively support distributed data shuffling, e.g., via ORDER
BY RANDOM in SQL [24]. But the challenge is their BSP paradigm
may not gel with MOP’s asynchrony (see Figure 3). Coincidentally,
Spark recently added native support for asynchronous tasks on
Spark workers [22]. We quickly leveraged that capability to inte-
grate Cerebro with Spark without needing to change Cerebro’s
Scheduler. This integration is open sourced [2]; we recommended
this version over the filesystem-based version for general use of
Cerebro. This is due to Spark’s complementary strengths—efficient
data shuffling, low-level resource provisioning, and ML governance
with MLFlow-all of which can help DL users adopt Cerebro-Spark.

As for Greenplum, MADIib already had in-RDBMS DL sup-
port for invoking Keras and TensorFlow via special user-defined
functions that marshall mini-batches from the database to Tensor-
Flow [7]. But that approach was tied to model averaging, which
as Figure 5 shows, converges poorly for DL. Thus, the MADIib
team collaborated with us to explore new variants of MOP’s ba-
sic randomized scheduling to suit the BSP restriction. We have
developed 3 canonical approaches that make different tradeoffs
on runtime efficiency, storage wastage, and ease of governance: a
fully in-DBMS approach (data is in DB and Keras is invoked from
SQL), a partially in-DBMS approach (data is in DB and Keras is in-
voked from outside), and a novel in-DB but not in-DBMS approach,
apart from the standard out-of-DBMS approach by exporting data
to Cerebro-Spark. Our comparative empirical analyses show that
it is non-trivial to meet all practical desiderata well and a Pareto
frontier exists [66]. One of our integration approaches (fully in-
DBMS) has been adopted by VMware and released as part of Apache
MADIib [1].

4.3 Open Research Questions

We now briefly discuss several new open research questions that
we plan to tackle in the near future in the context of Cerebro.

4.3.1 Model Parallelism and Batching. A cliche in DL is that
GPU memory keeps trailing DL model sizes [25]. The common
way to resolve this issue is “model parallelism”: shard the large DL
model across devices and communicate updates frequently. Alas,
this approach has poor scalability behavior: the runtime speedup
trends are often quite sub-linear or worse [30]. Of course, MOP per
se does not resolve this issue. However, we observe that Cerebro’s
model selection context offers new avenues to stage out computa-
tions due to the higher degree of parallelism. At the other extreme,
small DL models are also common (e.g., for IoT), and they substan-
tially under-utilize GPU capacity. Batching models on the GPU can
raise resource efficiency. While there is some recent work in this
space [53], they modify the internals of the DL tool. We believe new
approaches that avoid such modifications can help. Overall, how
to generalize Cerebro to support flexible hybridization of model-,
data-, and task-parallelism? How to unify it with model batching
and integrate MOP with staged backpropagation for unit queries
without modifying the DL tool?

4.3.2 More MOP Hybrids. MOP inherits a con of task paral-
lelism: if the degree of parallelism of the model building task is less
than the number of workers, some workers will go idle. To mitigate
this, we hybridized MOP with data-parallel Horovod. Interestingly,
our early results showed that Cerebro is actually faster with only
half as many workers as Horovod-this is due to the latter’s inherent
communication overheads [52]. More careful data repartitioning
can help mitigate this issue in the MOP-Horovod hybrid. Another
hybrid we are pursuing is MOP with BSP model averaging but
only for the latter epochs. The intuition is that model averaging
works fine for SGD on convex loss surfaces [67]. Although DL is
highly non-convex at the outset, some models could behave more
convex-like near a local minimum in the latter epochs.

4.3.3 More High-Level APIs. The model building APIs we have
discussed so far are not exhaustive—we think it is impossible to make
a complete list. But as adoption of DL grows, newer applications
will emerge and new design patterns for model building will appear.
These patterns may be twists on prior model selection patterns
and/or contain new forms of sub-tasks that overlap in data and/or
computation. Regardless, we believe the general system template
we laid out for Cerebro will be a fruitful and impactful direction
for devising new DL-specific MQO techniques to raise resource
efficiency in DL applications. We offer a few more key examples
of emerging model building APIs that fit our template. We believe
MQO can benefit all of these settings.

Ablation Analyses. The goal here is model diagnostics—understand
what parts of the model really mattered for accuracy. It can be seen

as a post-hoc twist on architecture selection. Nevertheless, it too

can be cast as a form of model selection, combining architecture

and hyperparameter search in a new way.

Learning over Groups. The goal here is to build separate models
for separate groups within the dataset, e.g., different models for
different states in a product recommendation workflow. This could
help boost accuracy or could even be mandatory due to business
rules. Such group-oriented training tasks also overlap on the data,
representing yet another avenue to better optimize model selection
over groups.

Sequence and Graph Data. Time series and video data are now
killer use cases for DL. Likewise, graph neural networks (GNNs),
and their fusion with CNNs, are exploding in popularity for various
geospatial and domain science applications [60]. Such applications
have non-traditional data access patterns and manipulations to run
SGD, e.g,. configuring and chunking time windows in time series
or retrieving features of a node’s neighbors in a graph. We believe
these access patterns can be exploited better in the model selection
context to improve overall resource efficiency and usability.

4.3.4 Cloud-Native Execution. Finally, as analytics workloads
increasingly move to the cloud, we plan to enable cloud-native
execution for Cerebro in all major renting paradigms: On-Demand,
Spot, and Serverless. Each paradigm poses new challenges due to
its different kind of elasticity and resource constraints, e.g., inter-
ruptions in Spot instances and memory constraints in Serverless.
But we observe that MOP/Cerebro is perfectly suited for all kinds
of interruption-heavy and delay-tolerant settings because fault tol-
erance is in its very DNA: checkpoint-hop-resume. In contrast,
approaches like Horovod are notoriously difficult to port to such
settings due to their tight coupling of workers [5]. Overall, we be-
lieve Cerebro can offer near-optimal resource efficiency for DL in
the cloud too and help cut its cost and energy footprints. Looking
further out, we will also revisit Cerebro’s design to factor in microe-
conomics of cloud resource pricing. Ultimately, we seek to enable
DL users to easily traverse the entire Pareto surface of runtime, total
cost, and accuracy based on their application-specific constraints.

5 CROSS-LAYER AND OTHER COMPONENTS

Apart from the components handling model building, we also envi-
sion three key cross-layer and other components in Cerebro.

(1) Fault Tolerance and Elasticity Manager. This will monitor
workers during execution and restart a unit query if its worker fails.
It will also enable elastic adding/removing of workers. These are
all possible thanks to the coarser granularity of MOP, which incurs
negligible overhead for checkpointing between unit queries. This
component will be especially critical for cloud-native execution.

(2) Metadata Manager. This will transparently track and log all
execution-related metadata: specification details, per-epoch metrics,
per-model metrics, and overall results and artifacts for all training
configurations executed via our model building APIs. These will
be stored as standard tables. This component will connect with
auxiliary ML usability tools such as MLFlow, TFX, and TensorBoard
as mentioned before.

(3) Explanation Engine. This will offer “explanation” methods to
help debug the model building process and validate selected models.
We will include both popular per-example perturbation-based ap-
proaches and training set-based debugging. Such inference-focused
computations will also be sped up with MQO techniques. For in-
stance, we showed recently that a perturbation-based approach
called occlusion-based explanation (OBE) for CNN predictions could
be cast as multi-query execution [49]. We devised new incremental
view maintenance and MQO techniques to reduce computations
and runtimes of OBE. In future work, we will support such func-
tionality for more data types and DL architectures.

6 COLLABORATIONS AND IMPACT PATHS

Back to UCSD Public Health. The DL models built with Cerebro
are being applied to more cohorts, including people in assisted
living facilities and people with obesity, to help them live healthier
lives. More workloads on this front are moving to the cloud, making
Cerebro more crucial. We are delighted to be a part of this impactful
collaboration between computer scientists and domain scientists
that is advancing both fields and also helps broader society.

More Domain Sciences. We are also speaking with more domain
scientists at UCSD and a few other universities who are interested
in exploring DL for their large-scale analytics tasks. So far, we
have identified the following applications for scalable DL: high-
resolution satellite imagery to study gentrification in economics, as
well as wildfire evolution; time series representation learning in IoT-
based mHealth; multimodal social media analytics fusing graph,
text, and tabular data for political science; and high-resolution
mouse brain videos to study brain evolution in neuroscience. We
believe Cerebro can help all these applications and hopefully over
time also help standardize the very practice of DL model selection
in these fields.

Open Source and Industry Collaboration. As mentioned earlier,
Cerebro is fully open-sourced to enable community adoption, ex-
tensions, and feedback [2]. Pivotal/VMware collaborated with us to
adopt MOP for DL model selection in Apache MADIib with Tensor-
Flow being run on Greenplum [1]. Their enterprise customers are
interested in this integration for image analytics, fraud detection,
and NLP use cases. We have also released Cerebro’s integration
with Apache Spark. Both of these integrations have already been
presented at major industrial conferences: MOP-in-MADIib was
presented by our MADIib collaborators at FOSDEM [4]; we pre-
sented Cerebro-Spark at the Spark+AI Summit [8]. We are also
collaborating with VMware and also speaking with other cloud and
DBMS vendors to help broaden our impact on industry.

More Vertical APIs. Our core design philosophy is to bring DL
APIs closer to the levels at which DL users think. We plan to take
this all the way with more vertical-specific APIs on top of Cerebro’s
APIs and eventually add more GUI support and application lifecy-
cle oversight. Although our work does not address all aspects of
commodifying DL, we believe our cross-stack usability-efficiency
integrated approach is a crucial part of enhancing accessibility to
DL in a wide swathe of scalable data analytics applications.

7 RELATED WORK

There is a spurt of recent work on cluster scheduling and resource
management for DL. Examples include Gandiva [61], Tiresias [28],
SLAQ [64], and [33]. However, they all focus on lower-level primi-
tives such as hardware allocation and intra-server locality to reduce
completion times. Cerebro’s model selection-first approach is novel,
complementary, and exists at a higher abstraction level, enabling
us to devise novel cross-config MQO techniques such as MOP and
materialized views for transfer learning. Cerebro can be combined
with such lower-level cluster handling frameworks. There is also
a long line of work on job scheduling in the operations research

and systems literatures [17]. Our goal is not to innovate on schedul-
ing algorithms but to adapt known algorithms to realize our MQO
techniques in our new DL systems setting.

There is also much work in the ML world on AutoML procedures,
including new heuristics for hyperparameter tuning and neural
architecture search. Cerebro is complementary to all of them because
our goal is not to create new AutoML procedures but rather offer a
unified and scalable data platform to execute them and to improve
resource efficiency using MQO.

Many vendors offer hosted DL training or self-service tools with
support for model selection workloads. Prominent examples include
AWS SageMaker, GCP AutoML, Microsoft AzureML, DataRobot,
H20, and Determined AL Tools such as Ray [47] and Vizier [26]
also help scale hyperparameter tuning. But to the best of our knowl-
edge, all of these tool follow the paradigm of pure task parallelism:
naively copying and caching the entire dataset on all workers or
naive remote reads for every epoch for every model. As Section
4.1 shows, such task parallelism is highly wasteful of resources:
memory/storage or network or both. Cerebro departs from that
paradigm by breaking the false dichotomy between task parallelism
and data parallelism (Figure 3). Cerebro’s novel layered architecture
also enables us to support many more model building APIs than
these other platforms in a unified stack, inspired by [37]. Finally,
our architecture enables us to devise and infuse new MQO tech-
niques to raise overall resource efficiency. That said, we believe it
is possible for these other platforms to adopt MOP without deep
code changes because MOP too is a form of task parallelism.

There is much work pure data parallelism to scale the training
of a single model, including Parameter Server [43], Horovod [56],
PyTorch DDP [45] and their many derivatives. MOP/Cerebro is com-
plementary to all of them because our focus is on model selection
workloads, not single-model training. ML theory teaches us that
rigorous model selection is crucial for accuracy [57]. Anecdotally,
however, some DL practitioners sometimes ignore that lesson and
make do with training just one model due to time or cost pressures.
Pure data parallelism can help in such cases. That said, we showed
how MOP can easily be hybridized with such data-parallel ML sys-
tems to bridge the gap on the degree of parallelism because MOP
too is a form of data parallelism.

We recently published full papers on MOP and our first version
of Cerebro [52], as well as Vista [48]. The key novelty in this paper
is: (1) Our holistic long-term vision for Cerebro’s generalized model
selection-first architecture; and (2) Showing how (multi-)query
optimization is a promising new research direction in the context
of DL systems. Our vision is based on synthesizing and building
upon the lessons from our conversations with 30+ ML/DL users and
developers across different settings: domain sciences, healthcare,
enterprises, Web companies, cloud and DBMS vendors, and ML
platform vendors. Our technical agenda is based on extrapolating
from our decade-long experience with building, optimizing, and
deploying multiples kinds of ML/DL systems [15, 35, 37], spanning
multiple relevant topics: MQO for other DL workloads [49-51, 54],
MQO for classical ML [13, 32, 62, 63], other query optimizations for
classical ML [20, 36, 38, 44], new query execution techniques for
ML/DL [41, 65], benchmarking the scalability of ML systems [58],
and integrating ML into data systems [24, 29, 39, 40]

8 CONCLUDING REMARKS

The systems canon of the DB world is vast and deep. But the DB
community must stop deluding itself that RDBMSs, dataflow sys-
tems, or mere cloud IaaS suffice for scalable ML and instead be
more imaginative by innovating in settings that actually matter to
ML users. We need to get out of our comfort zones to understand
DL/ML in depth, work with real users, and navigate the whole
system stack appropriately. Likewise, the emerging ML systems
community must learn from the DB systems community’s decades-
long experience with commodifying scalable data software. Failing
to achieve such cross-pollination will be a huge missed opportunity
for both worlds, resulting in wasteful reinventions of the wheel by
the research community, industry, and/or open source community,
as well as massive wastage of resources, time, money, and energy
by DL users. We presented Cerebro, our vision for a novel holistic
DL platform based on these insights. It is a vehicle for marrying
DB ideas and DL systems. We also discussed tangible routes to
impact on DL practice. We hope our work inspires the DB commu-
nity to partner with ML users and developers to help democratize
DL-based data analytics.

Acknowledgments. This work was supported in part by a Hell-
man Fellowship, the NIDDK of the NIH under award number
R01DK114945, an NSF CAREER Award under award number 1942724,
and a gift from VMware. The content is solely the responsibility
of the authors and does not necessarily represent the views of any
of these organizations. We thank the members of UC San Diego’s
Database Lab and Center for Networked Systems, Loki Natarajan
and our public health collaborators at UC San Diego, Frank Mc-
Quillan and the Apache MADIib/Greenplum team at VMware, Joe
Hellerstein, Chris Jermaine, Sam Madden, Sebastian Schelter, and
Dan Suciu for their feedback on this work and/or this paper.

REFERENCES

[1] Apache MADIib DL Model Selection with MOP, Accessed December 16,
2020. http://madlib.apache.org/docs/latest/group__grp__keras__run__model
_selection.html.

[2] Cerebro Documentation, Accessed December 16, 2020. https://adalabucsd.github.
io/cerebro-system/.

[3] Create, Train, and Deploy Machine Learning Models in Amazon Red-
shift Using SQL with Amazon Redshift ML, Accessed December 16,
2020. https://aws.amazon.com/blogs/big-data/create- train-and- deploy-machine-
learning-models-in-amazon-redshift-using-sql-with-amazon-redshift-ml/.

[4] Efficient Model Selection for Deep Neural Networks on Massively Parallel Pro-
cessing Databases, Accessed December 16, 2020. https://archive.fosdem.org/2020/
schedule/event/mppdb/.

[5] Elastic Horovod, Accessed December 16, 2020. https://horovod.readthedocs.io/
en/latest/elastic_include html.

[6] Facebook FBLearnerFlow blog post, Accessed December 16, 2020.
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-
facebook-s-ai-backbone/.

[7] MADIib Deep Learning, Accessed December 16, 2020. https://madlib.apache.org/
docs/latest/group__grp__dLhtml.

[8] Resource-Efficient Deep Learning Model Selection on Apache Spark, Accessed
December 16, 2020. https://databricks.com/session_na20/resource-efficient-deep-
learning-model-selection-on-apache- spark.

[9] TensorFlow Checkpointing, Accessed December 16, 2020. https://www.
tensorflow.org/guide/checkpoint.

[10] TensorFlow TensorBoard, Accessed December 16, 2020. https://www.tensorflow.
org/tensorboard.

[11] The CREATE MODEL Statement for Deep Neural Network (DNN) Models, Ac-
cessed December 16, 2020. https://cloud.google.com/bigquery-ml/docs/reference/
standard-sql/bigqueryml-syntax-create-dnn-models.

[12] M. Abadi et al. TensorFlow: A System for Large-scale Machine Learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16),

[13]

[14]

[15]

[16]
[17]
[18

[19

[20]
[21]

[22

[23]

[24]

[25

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]
[34]

[35]

[36

[37]

[38]

[40]

[41]

pages 265-283, 2016.

M. R. Anderson et al. Brainwash: A Data System for Feature Engineering. In 6th
Biennial Conference on Innovative Data Systems Research (CIDR). www.cidrdb.org,
2013.

D. Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pages 1387-1395. Association
for Computing Machinery, 2017.

M. Boehm, A. Kumar, and J. Yang. Data Management in Machine Learning Systems.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2019.
T. B. Brown et al. Language Models are Few-Shot Learners. In NeurIPS, 2020.

P. Brucker. Scheduling Algorithms. Springer-Verlag, 3rd edition, 2001.

S. Chaudhuri. Data Mining and Database Systems: Where is the Intersection?
IEEE Data Engineering Bulletin, 21, 1998.

A. Chen et al. Developments in MLflow: A System to Accelerate the Machine
Learning Lifecycle. In Proceedings of the Fourth International Workshop on Data
Management for End-to-End Machine Learning, DEEM’20. Association for Com-
puting Machinery, 2020.

L. Chen, A. Kumar, J. F. Naughton, and J. M. Patel. Towards Linear Algebra over
Normalized Data. Proc. VLDB Endow., 10(11):1214-1225, 2017.

F. Chollet et al. Keras, Accessed December 16, 2020. https://github.com/fchollet/
keras.

Databricks. Introducing Apache Spark 2.4, Accessed December 16, 2020. https:
//databricks.com/blog/2018/11/08/introducing-apache-spark-2-4.html.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In NAACL-HLT (1),
pages 4171-4186. Association for Computational Linguistics, 2019.

X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a Unified Architecture for
In-RDBMS Analytics. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 325-336. Association for
Computing Machinery, 2012.

Y. Gao et al. Estimating GPU Memory Consumption of Deep Learning Models.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, pages 1342-1352. Association for Computing Machinery, 2020.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google
vizier: A Service for Black-box Optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1487-1495. ACM, 2017.

1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

J. Gu et al. Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In
NSDI, 2019.

J. M. Hellerstein et al. The MADIib Analytics Library or MAD Skills, the SQL.
Proc. VLDB Endow., 5(12):1700-1711, 2012.

Z. Jia, M. Zaharia, and A. Aiken. Beyond Data and Model Parallelism for Deep
Neural Networks. In MLSys. mlsys.org, 2019.

H. Jin, Q. Song, and X. Hu. Auto-Keras: An Efficient Neural Architecture Search
System. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’19, pages 1946-1956. Association
for Computing Machinery, 2019.

P. Konda, A. Kumar, C. Ré, and V. Sashikanth. Feature Selection in Enterprise
Analytics: A Demonstration using an R-based Data Analytics System. Proc. VLDB
Endow., 6(12):1306-1309, 2013.

S. Krishnan et al. Artificial Intelligence in Resource-Constrained and Shared
Environments. SIGOPS Oper. Syst. Rev., 53(1), July 2019.

A. Kumar. ML/AI Systems and Applications: Is the SIGMOD/VLDB Community
Losing Relevance?, Accessed December 16, 2020. https://wp.sigmod.org/?p=2454.
A. Kumar, M. Boehm, and J. Yang. Data Management in Machine Learning:
Challenges, Techniques, and Systems. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, pages 1717-1722.
ACM, 2017.

A. Kumar, M. Jalal, B. Yan, J. F. Naughton, and J. M. Patel. Demonstration of
Santoku: Optimizing Machine Learning over Normalized Data. Proc. VLDB Endow.,
8(12):1864-1867, 2015.

A. Kumar, R. McCann, J. Naughton, and J. M. Patel. Model Selection Management
Systems: The Next Frontier of Advanced Analytics. SIGMOD Rec., 44(4):17-22,
May 2016.

A. Kumar, J. F. Naughton, and J. M. Patel. Learning Generalized Linear Models
Over Normalized Data. In SIGMOD Conference, pages 1969-1984. ACM, 2015.
A. Kumar, F. Niu, and C. Ré. Hazy: Making it Easier to Build and Maintain
Big-data Analytics. ACM Queue, 11(1):30, 2013.

A. Kumar and C. Ré. Probabilistic Management of OCR Data using an RDBMS.
Proc. VLDB Endow., 5(4):322-333, 2011.

F.Li, L. Chen, Y. Zeng, A. Kumar, X. Wu, J. F. Naughton, and J. M. Patel. Tuple-
oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent.
In SIGMOD Conference, pages 1517-1534. ACM, 2019.

[42]

[43

[44]

[49

[50

(51

[52

[63

[64

o
2

[66

[67]

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A
Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn.
Res., 18(1):6765-6816, Jan. 2017.

M. Li et al. Scaling Distributed Machine Learning with the Parameter Server. In
11th USENIX Symposium on Operating Systems Design and Implementation, OSDI
’14, pages 583-598. USENIX Association, 2014.

S. Li, L. Chen, and A. Kumar. Enabling and Optimizing Non-Linear Feature
Interactions in Factorized Linear Algebra. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 1571-1588. Association
for Computing Machinery, 2019.

S. Li et al. PyTorch Distributed: Experiences on Accelerating Data Parallel
Training. Proc. VLDB Endow., 13(12):3005-3018, Aug. 2020.

X. Meng et al. MLIib: Machine Learning in Apache Spark. . Mach. Learn. Res.,
17:34:1-34:7, 2016.

P. Moritz et al. Ray: A Distributed Framework for Emerging AI Applications.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI'18, pages 561-577. USENIX Association, 2018.

S. Nakandala and A. Kumar. Vista: Optimized System for Declarative Feature
Transfer from Deep CNNs at Scale. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD 20, pages 1685-1700.
Association for Computing Machinery, 2020.

S. Nakandala, A. Kumar, and Y. Papakonstantinou. Incremental and Approximate
Inference for Faster Occlusion-Based Deep CNN Explanations. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD 4AZ19, pages
1589-1606. Association for Computing Machinery, 2019.

S.Nakandala, A. Kumar, and Y. Papakonstantinou. Query Optimization for Faster
Deep CNN Explanations. SIGMOD Rec., 49(1):61-68, 2020.

S. Nakandala, K. Nagrecha, A. Kumar, and Y. Papakonstantinou. Incremental and
Approximate Computations for Accelerating Deep CNN Inference. ACM Trans.
Database Syst., 45(4), Dec. 2020.

S. Nakandala, Y. Zhang, and A. Kumar. Cerebro: A Data System for Optimized
Deep Learning Model Selection. volume 13, pages 2159-2173. VLDB Endowment,
July 2020.

D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia. Accelerating
Deep Learning Workloads Through Efficient Multi-Model Execution. In NeurIPS
Workshop on Systems for Machine Learning, December 2018.

A. Ordookhanians, X. Li, S. Nakandala, and A. Kumar. Demonstration of Krypton:
Optimized CNN Inference for Occlusion-based Deep CNN Explanations. Proc.
VLDB Endow., 12(12):1894-1897, 2019.

T. K. Sellis. Multiple-query Optimization. ACM TODS, 13(1), Mar. 1988.

A. Sergeev and M. D. Balso. Horovod: Fast and Easy Distributed Deep Learning
in TF. CoRR, abs/1802.05799, 2018.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: from
Theory to Algorithms. Cambridge University Press, 2014.

A. Thomas and A. Kumar. A Comparative Evaluation of Systems for Scalable
Linear Algebra-based Analytics. Proc. VLDB Endow., 11(13):2168-2182, 2018.

K. R. Weiss, T. M. Khoshgoftaar, and D. Wang. A Survey of Transfer Learning. 7.
Big Data, 3:9, 2016.

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive Survey
on Graph Neural Networks. CoRR, abs/1901.00596, 2019.

W. Xiao et al. Gandiva: Introspective Cluster Scheduling for Deep Learning.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI'18, pages 595-610. USENIX Association, 2018.

C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for Feature Selec-
tion Workloads. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages 265-276. Association for Computing
Machinery, 2014.

C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for Feature Selec-
tion Workloads. ACM Trans. Database Syst., 41(1):2:1-2:32, 2016.

H. Zhang, L. Stafman, A. Or, and M. J. Freedman. SLAQ: Quality-Driven Schedul-
ing for Distributed Machine Learning. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, pages 390-404. Association for Computing Machin-
ery, 2017.

Y. Zhang and A. Kumar. Panorama: A Data System for Unbounded Vocabulary
Querying over Video. Proc. VLDB Endow., 13(4):477-491, 2019.

Y. Zhang, A. Kumar, F. McQuillan, N. Jayaram, N. Kak, E. Khanna, O. Kislal, and
D. Valdano. Distributed Deep Learning on Data Systems: A Comparative Analysis
of Approaches. https://adalabucsd.github.io/papers/TR_2021_Cerebro-DS.pdf,
2020. [Tech report].

M. Zinkevich, M. Weimer, A. J. Smola, and L. Li. Parallelized Stochastic Gradient
Descent. In NIPS, pages 2595-2603. Curran Associates, Inc., 2010.

