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ABSTRACT

In distribution compression, one aims to accurately summarize a probability dis-
tribution P using a small number of representative points. Near-optimal thinning
procedures achieve this goal by sampling n points from a Markov chain and iden-
tifying

p
n points with eO(1/

p
n) discrepancy to P. Unfortunately, these algo-

rithms suffer from quadratic or super-quadratic runtime in the sample size n. To
address this deficiency, we introduce Compress++, a simple meta-procedure for
speeding up any thinning algorithm while suffering at most a factor of 4 in er-
ror. When combined with the quadratic-time kernel halving and kernel thinning
algorithms of Dwivedi and Mackey (2021), Compress++ delivers

p
n points with

O(
p
log n/n) integration error and better-than-Monte-Carlo maximum mean dis-

crepancy in O(n log3 n) time and O(
p
n log2 n) space. Moreover, Compress++

enjoys the same near-linear runtime given any quadratic-time input and reduces
the runtime of super-quadratic algorithms by a square-root factor. In our bench-
marks with high-dimensional Monte Carlo samples and Markov chains target-
ing challenging differential equation posteriors, Compress++ matches or nearly
matches the accuracy of its input algorithm in orders of magnitude less time.

1 INTRODUCTION

Distribution compression—constructing a concise summary of a probability distribution—is at the
heart of many learning and inference tasks. For example, in Monte Carlo integration and Bayesian
inference, n representative points are sampled i.i.d. or from a Markov chain to approximate ex-
pectations and quantify uncertainty under an intractable (posterior) distribution (Robert & Casella,
1999). However, these standard sampling strategies are not especially concise. For instance, the
Monte Carlo estimate Pinf , 1

n

Pn
i=1

f(xi) of an unknown expectation Pf , EX⇠P[f(X)] based
on n i.i.d. points has ⇥(n�

1
2 ) integration error |Pf � Pinf |, requiring 10000 points for 1% rela-

tive error and 106 points for 0.1% error. Such bloated sample representations preclude downstream
applications with critically expensive function evaluations like computational cardiology, where a
1000-CPU-hour tissue or organ simulation is required for each sample point (Niederer et al., 2011;
Augustin et al., 2016; Strocchi et al., 2020).

To restore the feasibility of such critically expensive tasks, it is common to thin down the initial
point sequence to produce a much smaller coreset. The standard thinning approach, select every
t-th point (Owen, 2017), while being simple often leads to an substantial increase in error: e.g.,
standard thinning n points from a fast-mixing Markov chain yields ⌦(n�

1
4 ) error when n

1
2 points

are returned. Recently, Dwivedi & Mackey (2021) introduced a more effective alternative, kernel

thinning (KT), that provides near optimal eOd(n�
1
2 ) error when compressing n points in Rd down to

size n 1
2 . While practical for moderate sample sizes, the runtime of this algorithm scales quadratically

with the input size n, making its execution prohibitive for very large n. Our goal is to significantly
improve the runtime of such compression algorithms while providing comparable error guarantees.

Problem setup Given a sequence Sin of n input points summarizing a target distribution P, our
aim is to identify a high quality coreset Sout of size

p
n in time nearly linear in n. We measure

coreset quality via its integration error |Pf � PSoutf | , |Pf � 1

|Sout|

P
x2Sout

f(x)| for functions
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f in the reproducing kernel Hilbert space (RKHS) Hk induced by a given kernel k (Berlinet &
Thomas-Agnan, 2011). We consider both single function error and kernel maximum mean discrep-

ancy (MMD, Gretton et al., 2012), the worst-case integration error over the unit RKHS norm ball:
MMDk(P,PSout) , sup

kfkk1
|Pf � PSoutf |. (1)

Our contributions We introduce a new simple meta procedure—COMPRESS++—that significantly
speeds up a generic thinning algorithm while simultaneously inheriting the error guarantees of its
input up to a factor of 4. A direct application of COMPRESS++ to KT improves its quadratic ⇥(n2)
runtime to near linear O(n log3 n) time while preserving its error guarantees. Since the eOd(n�

1
2 )

KT MMD guarantees of Dwivedi & Mackey (2021) match the ⌦(n�
1
2 ) minimax lower bounds of

Tolstikhin et al. (2017); Phillips & Tai (2020) up to factors of
p
log n and constants depending on

d, KT-COMPRESS++ also provides near-optimal MMD compression for a wide range of k and P.
Moreover, the practical gains from applying COMPRESS++ are substantial: KT thins 65, 000 points
in 10 dimensions in 20m, while KT-COMPRESS++ needs only 1.5m; KT takes more than a day to
thin 250, 000 points in 100 dimensions, while KT-COMPRESS++ takes less than 1hr (a 32⇥ speed-
up). For larger n, the speed-ups are even greater due to the order n

log
3 n reduction in runtime.

COMPRESS++ can also be directly combined with any thinning algorithm, even those that have
suboptimal guarantees but often perform well in practice, like kernel herding (Chen et al., 2010),
MMD-critic (Kim et al., 2016), and Stein thinning (Riabiz et al., 2020a), all of which run in ⌦(n2)
time. As a demonstration, we combine COMPRESS++ with the popular kernel herding algorithm
and observe 45⇥ speed-ups when compressing 250, 000 input points. In all of our experiments,
COMPRESS++ leads to minimal loss in accuracy and, surprisingly, even improves upon herding
accuracy for lower-dimensional problems.

Most related to our work are the merge-reduce algorithms of Matousek (1995); Chazelle & Ma-
tousek (1996); Phillips (2008) which also speed up input thinning algorithms while controlling ap-
proximation error. In our setting, merge-reduce runs in time ⌦(n1.5) given an n2-time input and in
time ⌦(n(⌧+1)/2) for slower n⌧ -time inputs (see, e.g., Phillips, 2008, Thm. 3.1). In contrast, COM-
PRESS++ runs in near-linear O(n log3 n) time for any n2-time input and in O(n⌧/2 log⌧ n) time for
slower n⌧ -time inputs. After providing formal definitions in Sec. 2, we introduce and analyze COM-
PRESS++ and its primary subroutine COMPRESS in Secs. 3 and 4, demonstrate the empirical benefits
of COMPRESS++ in Sec. 5, and present conclusions and opportunities for future work in Sec. 6.

Notation We let PS denote the empirical distribution of S . For the output coreset SALG of an algo-
rithm ALG with input coreset Sin, we use the simpler notation PALG , PSALG and Pin , PSin . We
extend our MMD definition to point sequences (S1,S2) via MMDk(S1,S2) , MMDk(PS1 ,PS2)
and MMDk(P,S1) , MMDk(P,PS1). We use a - b to mean a = O(b), a % b to mean a = ⌦(b),
a = ⇥(b) to mean both a = O(b) and a = ⌦(b), and log to denote the natural logarithm.

2 THINNING AND HALVING ALGORITHMS
We begin by defining the thinning and halving algorithms that our meta-procedures take as input.

Definition 1 (Thinning and halving algorithms) A thinning algorithm ALG takes as input a point

sequence Sin of length n and returns a (possibly random) point sequence SALG of length nout. We

say ALG is ↵n-thinning if nout = bn/↵nc and root-thinning if ↵n =
p
n. Moreover, we call ALG a

halving algorithm if SALG always contains exactly bn
2
c of the input points.

Many thinning algorithms offer high-probability bounds on the integration error |PSinf � PSALGf |.
We capture such bounds abstractly using the following definition of a sub-Gaussian thinning

Definition 2 (Sub-Gaussian thinning algorithm) For a function f , we call a thinning algorithm

ALG f -sub-Gaussian with parameter ⌫ and write ALG 2 Gf (⌫) if

E[exp(�(PSinf � PSALGf)) | Sin]  exp
⇣

�2⌫2
(n)

2

⌘
for all � 2 R.

Def. 2 is equivalent to a sub-Gaussian tail bound for the integration error, and, by Boucheron et al.
(2013, Section 2.3), if ALG 2 Gf (⌫) then E[PSALGf | Sin] = PSinf and, for all � 2 (0, 1),

|PSinf�PSALGf |  ⌫(n)
q
2 log( 2� ), with probability at least 1� � given Sin.
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Hence the integration error of ALG is dominated by the sub-Gaussian parameter ⌫(n).

Example 1 (KT-SPLIT) Given a kernel k and n input points Sin, the KT-SPLIT(�) algorithm1 of
Dwivedi & Mackey (2022; 2021, Alg. 1a) takes ⇥(n2) kernel evaluations to output a coreset of size
nout with better-than-i.i.d. integration error. Specifically, Dwivedi & Mackey (2022, Thm. 1) prove
that, on an event with probability 1� �

2
, KT-SPLIT(�) 2 Gf (⌫) with

⌫(n) = 2

nout

p
3

q
log( 6nout log2(n/nout)

� )kkk
1

(2)

for all f with kfkk = 1. ⌅

Many algorithms also offer high-probability bounds on the kernel MMD (1), the worst-case inte-
gration error across the unit ball of the RKHS. We again capture these bounds abstractly using the
following definition of a k-sub-Gaussian thinning algorithm.

Definition 3 (k-sub-Gaussian thinning algorithm) For a kernel k, we call a thinning algorithm

ALG k-sub-Gaussian with parameter v and shift a and write ALG 2 Gk(v, a) if

P[MMDk(Sin,SALG) � an + vn
p
t
��Sin]  e�t

for all t � 0. (3)

We also call "k,ALG(n) , max(vn, an) the k-sub-Gaussian error of ALG.

Example 2 (Kernel thinning) Given a kernel k and n input points Sin, the generalized kernel thin-
ning (KT(�)) algorithm1 of Dwivedi & Mackey (2022; 2021, Alg. 1) takes ⇥(n2) kernel evaluations
to output a coreset of size nout with near-optimal MMD error. In particular, by leveraging an appro-
priate auxiliary kernel ksplit, Dwivedi & Mackey (2022, Thms. 2-4) establish that, on an event with
probability 1� �

2
, KT(�) 2 Gk(a, v) with

an = Ca
nout

p
kksplitk1, and vn = Cv

nout

q
kksplitk1 log( 6nout log2(n/nout)

� ) MSin,ksplit , (4)

where kksplitk1 = supx ksplit(x, x), Ca and Cv are explicit constants, and MSin,ksplit � 1 is non-
decreasing in n and varies based on the tails of ksplit and the radius of the ball containing Sin. ⌅

3 COMPRESS
The core subroutine of COMPRESS++ is a new meta-procedure called COMPRESS that, given a halv-
ing algorithm HALVE, an oversampling parameter g, and n input points, outputs a thinned coreset of
size 2g

p
n. The COMPRESS algorithm (Alg. 1) is very simple to implement: first, divide the input

points into four subsequences of size n
4

(in any manner the user chooses); second, recursively call
COMPRESS on each subsequence to produce four coresets of size 2g�1

p
n; finally, call HALVE on

the concatenation of those coresets to produce the final output of size 2g
p
n. As we show in App. H,

COMPRESS can also be implemented in a streaming fashion to consume at most O(4g
p
n) memory.

3.1 INTEGRATION ERROR AND RUNTIME GUARANTEES FOR COMPRESS

Our first result relates the runtime and single-function integration error of COMPRESS to the runtime
and error of HALVE. We measure integration error for each function f probabilistically in terms of
the sub-Gaussian parameter ⌫ of Def. 2 and measure runtime by the number of dominant operations
performed by HALVE (e.g., the number of kernel evaluations performed by kernel thinning).

Theorem 1 (Runtime and integration error of COMPRESS) If HALVE has runtime rH(n) for in-

puts of size n, then COMPRESS has runtime

rC(n) =
P�n

i=0
4i · rH(`n2�i), (5)

where `n , 2g+1
p
n (twice the output size of COMPRESS), and �n , log

2
( n
`n
) = log

4
n�g�1.

Furthermore, if, for some function f , HALVE 2 Gf (⌫H), then COMPRESS 2 Gf (⌫C) with

⌫2C(n) =
P�n

i=0
4�i · ⌫2H(`n2�i). (6)

1The � argument of KT-SPLIT(�) or KT(�) indicates that each parameter �i = �
` in Dwivedi & Mackey

(2022, Alg. 1a), where ` is the size of the input point sequence compressed by KT-SPLIT(�) or KT(�).
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Algorithm 1: COMPRESS

Input: halving algorithm HALVE, oversampling parameter g, point sequence Sin of size n
if n = 4g then return Sin

Partition Sin into four arbitrary subsequences {Si}4i=1 each of size n/4
for i = 1, 2, 3, 4 do

eSi  COMPRESS(Si, HALVE, g) // return coresets of size 2g ·
p

n
4

end
eS  CONCATENATE( eS1, eS2, eS3, eS4) // coreset of size 2 · 2g ·

p
n

return HALVE( eS) // coreset of size 2g
p
n

As we prove in App. B, the runtime guarantee (5) is immediate once we unroll the COMPRESS
recursion and identify that COMPRESS makes 4i calls to HALVE with input size `n2�i. The er-
ror guarantee (6) is more subtle: here, COMPRESS benefits significantly from random cancellations
among the conditionally independent and mean-zero HALVE errors. Without these properties, the
errors from each HALVE call could compound without cancellation leading to a significant degrada-
tion in COMPRESS quality. Let us now unpack the most important implications of Thm. 1.

Remark 1 (Near-linear runtime and quadratic speed-ups for COMPRESS) Thm. 1 implies that
a quadratic-time HALVE with rH(n) = n2 yields a near-linear time COMPRESS with rC(n) 
4g+1 n(log

4
(n)�g). If HALVE instead has super-quadratic runtime rH(n) = n⌧ , COMPRESS enjoys

a quadratic speed-up: rC(n)  c0⌧ n
⌧/2 for c0⌧ , 2

⌧(g+2)

2⌧�4
. More generally, whenever HALVE has

superlinear runtime rH(n) = n⌧ ⇢(n) for some ⌧ � 1 and non-decreasing ⇢, COMPRESS satisfies

rC(n) 
(

c⌧ · n (log
4
(n)� g) ⇢(`n) for ⌧  2

c0⌧ · n⌧/2 ⇢(`n) for ⌧ > 2
where c⌧ , 4(⌧�1)(g+1).

Remark 2 (COMPRESS inflates sub-Gaussian error by at most
p
log4 n) Thm. 1 also implies

⌫C(n) 
p
�n + 1 ⌫H(`n) =

p
log

4
n� g ⌫H(`n)

in the usual case that n ⌫H(n) is non-decreasing in n. Hence the sub-Gaussian error of COMPRESS
is at most

p
log

4
n larger than that of halving an input of size `n. This is an especially strong

benchmark, as `n is twice the output size of COMPRESS, and thinning from n to `n
2

points should
incur at least as much approximation error as halving from `n to `n

2
points.

Example 3 (KT-SPLIT-COMPRESS) Consider running COMPRESS with, for each HALVE input
of size `, HALVE = KT-SPLIT( `2

n4g+1(�n+1)
�) from Ex. 1. Since KT-SPLIT runs in time ⇥(n2),

COMPRESS runs in near-linear O(n log n) time by Rem. 1. In addition, as we detail in App. F.1, on
an event of probability 1� �

2
, every HALVE call invoked by COMPRESS is f -sub-Gaussian with

⌫H(`) =
4

`
p
3

q
log( 12n4

g(�n+1)

`� )kkk
1

for all f with kfkk = 1. (7)

Hence, Rem. 2 implies that COMPRESS is f -sub-Gaussian on the same event with ⌫C(n) p
log

4
n�g ⌫H(`n), a guarantee within

p
log

4
n of the original KT-SPLIT(�) error (2). ⌅

3.2 MMD GUARANTEES FOR COMPRESS

Next, we bound the MMD error of COMPRESS in terms of the MMD error of HALVE. Recall that
MMDk (1) represents the worst-case integration error across the unit ball of the RKHS of k. Its
proof, based on the concentration of subexponential matrix martingales, is provided in App. C.

Theorem 2 (MMD guarantees for COMPRESS) Suppose HALVE 2 Gk(a, v) for nan and n vn
non-decreasing and E

⇥
PHALVEk | Sin

⇤
= Pink. Then COMPRESS 2 Gk(ea, ev) with

evn , 4(a`n+v`n)
p

2(log
4
n�g), and ean , evn

p
log(n+1), (8)

where `n = 2g+1
p
n as in Thm. 1.
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Remark 3 (Symmetrization) We can convert any halving algorithm into one that satisfies the un-
biasedness condition E

⇥
PHALVEk | Sin

⇤
= Pink without impacting integration error by symmetriza-

tion, i.e., by returning either the outputted half or its complement with equal probability.

Remark 4 (COMPRESS inflates MMD guarantee by at most 10 log(n+1)) Thm. 2 implies
that the k-sub-Gaussian error of COMPRESS is always at most 10 log(n+1) times that of HALVE
with input size `n=2g+1

p
n since

"k,COMPRESS(n)
Def. 3
= max(ean, evn)

(8)
 10 log(n+ 1)max(a`n , v`n) = 10 log(n+ 1) · "k,HALVE(`n).

As in Rem. 2, HALVE applied to an input of size `n is a particularly strong benchmark, as thinning
from n to `n

2
points should incur at least as much MMD error as halving from `n to `n

2
.

Example 4 (KT-COMPRESS) Consider running COMPRESS with, for each HALVE input of size `,
HALVE = KT( `2

n4g+1(�n+1)
�) from Ex. 2 after symmetrizing as in Rem. 3. Since KT has ⇥(n2)

runtime, COMPRESS yields near-linear O(n log n) runtime by Rem. 1. Moreover, as we detail in
App. F.2, using the notation of Ex. 2, on an event E of probability at least 1� �

2
, every HALVE call

invoked by COMPRESS is k-sub-Gaussian with

a` =
2Ca
`

p
kkk1, and v` =

2Cv
`

q
kkk1 log( 12n4

g(�n+1)

`� ) MSin,k.

Thus, Rem. 4 implies that, on E , KT-COMPRESS has k-sub-Gaussian error "k,COMPRESS(n) 
10 log(n+1)"k,HALVE(`n), a guarantee within 10 log(n+1) of the original KT(�) MMD error (4). ⌅

4 COMPRESS++

To offset any excess error due to COMPRESS while maintaining its near-linear runtime, we next in-
troduce COMPRESS++ (Alg. 2), a simple two-stage meta-procedure for faster root-thinning. COM-
PRESS++ takes as input an oversampling parameter g, a halving algorithm HALVE, and a 2g-thinning
algorithm THIN (see Def. 1). In our applications, HALVE and THIN are derived from the same base
algorithm (e.g., from KT with different thinning factors), but this is not required. COMPRESS++ first
runs the faster but slightly more erroneous COMPRESS(HALVE, g) algorithm to produce an interme-
diate coreset of size 2g

p
n. Next, the slower but more accurate THIN algorithm is run on the greatly

compressed intermediate coreset to produce a final output of size
p
n. In the sequel, we demonstrate

how to set g to offset error inflation due to COMPRESS while maintaining its fast runtime.

Algorithm 2: COMPRESS++
Input: oversampling parameter g, halving alg. HALVE, 2g-thinning alg. THIN, point sequence Sin of size n
SC  COMPRESS(HALVE, g,Sin) // coreset of size 2g

p
n

SC++  THIN(SC) // coreset of size
p
n

return SC++

4.1 INTEGRATION ERROR AND RUNTIME GUARANTEES FOR COMPRESS++

The following result, proved in App. D, relates the runtime and single-function integration error of
COMPRESS++ to the runtime and error of HALVE and THIN.

Theorem 3 (Runtime and integration error of COMPRESS++) If HALVE and THIN have run-

times rH(n) and rT(n) respectively for inputs of size n, then COMPRESS++ has runtime

rC++(n) = rC(n) + rT(`n/2) where rC(n)
(5)
=
P�n

i=0
4i · rH(`n2�i), (9)

`n = 2g+1
p
n, and �n = log

4
n� g� 1 as in Thm. 1. Furthermore, if for some function f ,

HALVE 2 Gf (⌫H) and THIN 2 Gf (⌫T), then COMPRESS++ 2 Gf (⌫C++) with

⌫2C++(n) = ⌫2C(n) + ⌫2T(`n/2) where ⌫2C(n)
(6)
=
P�n

i=0
4�i · ⌫2H(`n2�i).
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Remark 5 (Near-linear runtime and near-quadratic speed-ups for COMPRESS++) When
HALVE and THIN have quadratic runtimes with max(rH(n), rT(n)) = n2, Thm. 3 and Rem. 1 yield
that rC++(n)  4g+1 n(log

4
(n)� g) + 4gn. Hence, COMPRESS++ maintains a near-linear runtime

rC++(n) = O(n logc+1

4
(n)) whenever 4g = O(logc

4
n). (10)

If HALVE and THIN instead have super-quadratic runtimes with max(rH(n), rT(n)) = n⌧ , then by
Rem. 1 we have rC++(n)  ( 4

⌧

2⌧�4
+ 1) 2g⌧n⌧/2, so that COMPRESS++ provides a near-quadratic

speed up rC++(n) = O(n⌧/2 logc⌧/2
4

(n)) whenever 4g = O(logc
4
n).

Remark 6 (COMPRESS++ inflates sub-Gaussian error by at most
p
2) In the usual case that

n ⌫H(n) is non-decreasing in n, Thm. 3 and Rem. 2 imply that

⌫2C++(n)  (log
4
n� g)⌫2H(`n) + ⌫2T(

`n
2
) = ⌫2T(

`n
2
) ·
⇣
1 + log4 n�g

4g
· ( ⇣H(`n)

⇣T(`n/2)
)2
⌘

where we have introduced the rescaled quantities ⇣H(`n) , `n
2
⌫H(`n) and ⇣T(

`n
2
) , pn ⌫T(

`n
2
).

Therefore, COMPRESS++ satisfies

⌫C++(n) 
p
2⌫T(

`n
2
) whenever g � log

4
log

4
n+ log

2
( ⇣H(`n)
⇣T(`n/2)

). (11)

That is, whenever COMPRESS++ is run with an oversampling parameter g satisfying (11) its sub-
Gaussian error is never more than

p
2 times the second-stage THIN error. Here, THIN represents a

strong baseline for comparison as thinning from `n/2 to
p
n points should incur at least as much

error as thinning from n to
p
n points.

As we illustrate in the next example, when THIN and HALVE are derived from the same thin-
ning algorithm, the ratio ⇣H(`n)

⇣T(`n/2)
is typically bounded by a constant C so that the choice g =

dlog
4
log

4
n+ log

2
Ce suffices to simultaneously obtain the

p
2 relative error guarantee (11) of

Rem. 6 and the substantial speed-ups (10) of Rem. 5.

Example 5 (KT-SPLIT-COMPRESS++) In the notation of Ex. 1, consider running COMPRESS++
with HALVE = KT-SPLIT( `2

4n2g(g+2g(�n+1))
�) when applied to an input of size ` and THIN =

KT-SPLIT( g
g+2g(�n+1)

�). As detailed in App. F.3, on an event of probability 1 � �
2

, all COM-
PRESS++ invocations of HALVE and THIN are simultaneously f -sub-Gaussian with parameters sat-
isfying

⇣H(`)=⇣T(`)=
2
p
3

q
log( 6

p
n(g+2g(�n+1))

� )kkk
1

=) ⇣H(`n)

⇣T(
`n
2 )

=1 for all f with kfkk= 1. (12)

Since KT-SPLIT runs in ⇥(n2) time, Rems. 5 and 6 imply that KT-SPLIT-COMPRESS++ with g=
dlog

4
log

4
ne runs in near-linear O(n log2 n) time and inflates sub-Gaussian error by at most

p
2. ⌅

4.2 MMD GUARANTEES FOR COMPRESS++

Next, we bound the MMD error of COMPRESS++ in terms of the MMD error of HALVE and THIN.
The proof of the following result can be found in App. E.

Theorem 4 (MMD guarantees for COMPRESS++) If THIN 2 Gk(a0,v0), HALVE 2 Gk(a,v) for

nan and n vn non-decreasing, and E
⇥
PHALVEk | Sin

⇤
= Pink, then COMPRESS++ 2 Gk(ba, bv) with

bvn , evn + v0`n/2 and ban , ean + a0`n/2 + bvn
p
log 2

for evn and ean defined in Thm. 2 and `n = 2g+1
p
n as in Thm. 1.

Remark 7 (COMPRESS++ inflates MMD guarantee by at most 4) Thm. 4 implies that the
COMPRESS++ k-sub-Gaussian error "k,COMPRESS++(n) = max(ban, bvn) satisfies

"k,COMPRESS++(n)  (10 log(n+ 1) "k,HALVE(`n) + "k,THIN(
`n
2
)) (1 +

p
log 2)

 "k,THIN(
`n
2
)( 10 log(n+1)

2g

e⇣H(`n)
e⇣T(

`n
2 )

+ 1)(1 +
p
log 2),

6



where we have introduced the rescaled quantities e⇣H(`n) , `n
2
"k,HALVE(`n) and e⇣T(

`n
2
) ,p

n "k,THIN(
`n
2
). Therefore, COMPRESS++ satisfies

"k,COMPRESS++(n)  4 "k,THIN(
`n
2
) whenever g � log

2
log(n+ 1) + log

2
(8.5

e⇣H(`n)
e⇣T(

`n
2 )

). (13)

In other words, relative to a strong baseline of thinning from `n
2

to
p
n points, COMPRESS++ inflates

k-sub-Gaussian error by at most a factor of 4 whenever g satisfies (13). For example, when the ratio
e⇣H(`n)/e⇣T(

`n
2
) is bounded by C, it suffices to choose g = dlog

2
log(n+1)+log

2
(8.5C)e.

Example 6 (KT-COMPRESS++) In the notation of Ex. 2 and Rem. 3, consider running COM-
PRESS++ with HALVE = symmetrized KT( `2

4n2g(g+2g(�n+1))
�) when applied to an input of size

` and THIN = KT( g
g+2g(�n+1)

�). As we detail in App. F.4, on an event of probability 1 � �
2

, all
COMPRESS++ invocations of HALVE and THIN are simultaneously k-sub-Gaussian with

e⇣H(`n) = e⇣T(
`n
2
) = Cv

q
kkk1 log( 6

p
n(g+2g(�n+1))

� ) MSin,k =) e⇣H(`n)
e⇣T(

`n
2 )

= 1.

As KT runs in ⇥(n2) time, Rems. 5 and 7 imply that KT-COMPRESS++ with g= dlog
2
log n+3.1e

runs in near-linear O(n log3 n) time and inflates k-sub-Gaussian error by at most 4. ⌅

5 EXPERIMENTS

We now turn to an empirical evaluation of the speed-ups and error of COMPRESS++. We begin by
describing the thinning algorithms, compression tasks, evaluation metrics, and kernels used in our
experiments. Supplementary experimental details and results can be found in App. G.

Thinning algorithms Each experiment compares a high-accuracy, quadratic time thinning
algorithm—either target kernel thinning (Dwivedi & Mackey, 2022) or kernel herding (Chen et al.,
2010)—with our near-linear time COMPRESS and COMPRESS++ variants that use the same input
algorithm to HALVE and THIN. In each case, we perform root thinning, compressing n input points
down to

p
n points, so that COMPRESS is run with g = 0. For COMPRESS++, we use g = 4 through-

out to satisfy the small relative error criterion (11) in all experiments. When halving we restrict each
input algorithm to return distinct points and symmetrize the output as discussed in Rem. 3.

Compressing i.i.d. summaries To demonstrate the advantages of COMPRESS++ over equal-sized
i.i.d. summaries we compress input point sequences Sin drawn i.i.d. from either (a) Gaussian targets
P = N (0, Id) with d 2 {2, 4, 10, 100} or (b) M -component mixture of Gaussian targets P =
1

M

PM
j=1

N (µj , I2) with M 2 {4, 6, 8, 32} and component means µj 2 R2 defined in App. G.

Compressing MCMC summaries To demonstrate the advantages of COMPRESS++ over standard
MCMC thinning, we also compress input point sequences Sin generated by a variety of popular
MCMC algorithms (denoted by RW, ADA-RW, MALA, and pMALA) targeting four challenging
Bayesian posterior distributions P. In particular, we adopt the four posterior targets of Riabiz et al.
(2020a) based on the Goodwin (1965) model of oscillatory enzymatic control (d = 4), the Lotka

(1925); Volterra (1926) model of oscillatory predator-prey evolution (d = 4), the Hinch et al. (2004)

model of calcium signalling in cardiac cells (d = 38), and a tempered Hinch model posterior (d =
38). Notably, for the Hinch experiments, each summary point discarded via an accurate thinning
procedure saves 1000s of downstream CPU hours by avoiding an additional critically expensive
whole-heart simulation (Riabiz et al., 2020a). See App. G for MCMC algorithm and target details.

Kernel settings Throughout we use a Gaussian kernel k(x, y) = exp(� 1

2�2 kx� yk2
2
) with �2 as

specified by Dwivedi & Mackey (2021, Sec. K.2) for the MCMC targets and �2 = 2d otherwise.

Evaluation metrics For each thinning procedure we report mean runtime across 3 runs and mean
MMD error across 10 independent runs ± 1 standard error (the error bars are often too small to be
visible). All runtimes were measured on a single core of an Intel Xeon CPU. For the i.i.d. targets,
we report MMDk(P,Pout) which can be exactly computed in closed-form. For the MCMC targets,
we report the thinning error MMDk(Pin,Pout) analyzed directly by our theory (Thms. 2 and 4).

Kernel thinning results We first apply COMPRESS++ to the near-optimal KT algorithm to obtain
comparable summaries at a fraction of the cost. Figs. 1 and 2 reveal that, in line with our guarantees,

7



Figure 1: For Gaussian targets P in Rd, KT-COMPRESS++ and Herd-COMPRESS++ improve upon the MMD
of i.i.d. sampling (ST), closely track the error of their respective quadratic-time input algorithms KT
and kernel herding (Herd), and substantially reduce the runtime.

KT-COMPRESS++ matches or nearly matches the MMD error of KT in all experiments while also
substantially reducing runtime. For example, KT thins 65000 points in 10 dimensions in 20m,
while KT-COMPRESS++ needs only 1.5m; KT takes more than a day to thin 250000 points in 100
dimensions, while KT-COMPRESS++ takes less than an hour (a 32⇥ speed-up). For reference we
also display the error of standard thinning (ST) to highlight that KT-COMPRESS++ significantly
improves approximation quality relative to the standard practice of i.i.d. summarization or standard
MCMC thinning. See Fig. 4 in App. G.1 for analogous results with mixture of Gaussian targets.

Kernel herding results A strength of COMPRESS++ is that it can be applied to any thinning
algorithm, including those with suboptimal or unknown performance guarantees that often perform
well in practical. In such cases, Rems. 4 and 6 still ensure that COMPRESS++ error is never much
larger than that of the input algorithm. As an illustration, we apply COMPRESS++ to the popular
quadratic-time kernel herding algorithm (Herd). Fig. 1 shows that Herd-COMPRESS++ matches or
nearly matches the MMD error of Herd in all experiments while also substantially reducing runtime.
For example, Herd requires more than 11 hours to compress 250000 points in 100 dimensions,
while Herd-COMPRESS++ takes only 14 minutes (a 45⇥ speed-up). Moreover, surprisingly, Herd-
COMPRESS++ is consistently more accurate than the original kernel herding algorithm for lower
dimensional problems. See Fig. 4 in App. G.1 for comparable results with mixture of Gaussian P.

Visualizing coresets For a 32-component mixture of Gaussians target, Fig. 3 visualizes the core-
sets produced by i.i.d. sampling, KT, kernel herding, and their COMPRESS++ variants. The COM-
PRESS++ coresets closely resemble those of their input algorithms and, compared with i.i.d. sam-
pling, yield visibly improved stratification across the mixture components.

8



Figure 2: Given MCMC sequences summarizing challenging differential equation posteriors P, KT-
COMPRESS++ consistently improves upon the MMD of standard thinning (ST) and matches or
nearly matches the error of of its quadratic-time input algorithm KT.

Figure 3: Coresets of size 32 (top) or 64 (bottom) with equidensity contours of the target underlaid.

6 DISCUSSION AND CONCLUSIONS

We introduced a new general meta-procedure, COMPRESS++, for speeding up thinning algorithms
while preserving their error guarantees up to a factor of 4. When combined with the quadratic-time
KT-SPLIT and kernel thinning algorithms of Dwivedi & Mackey (2021; 2022), the result is near-
optimal distribution compression in near-linear time. Moreover, the same simple approach can be
combined with any slow thinning algorithm to obtain comparable summaries in a fraction of the
time. Two open questions recommend themselves for future investigation. First, why does Herd-
COMPRESS++ improve upon the original kernel herding algorithm in lower dimensions, and can this
improvement be extended to higher dimensions and to other algorithms? Second, is it possible to thin
significantly faster than COMPRESS++ without significantly sacrificing approximation error? Lower
bounds tracing out the computational-statistical trade-offs in distribution compression would provide
a precise benchmark for optimality and point to any remaining opportunities for improvement.
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A ADDITIONAL DEFINITIONS AND NOTATION

This section provides additional definitions and notation used throughout the appendices.

We associate with each algorithm ALG and input Sin the measure difference

�ALG(Sin) , PSin � PSALG = 1

n

P
x2Sin

�x � 1

nout

P
x2SALG

�x (14)

that characterizes how well the output empirical distribution approximates the input. We will often
write �ALG instead of �ALG(Sin) for brevity if Sin is clear from the context.

We also make use of the following standard definition of a sub-Gaussian random variable (see, e.g.,
Boucheron et al., 2013, Sec. 2.3).

Definition 4 (Sub-Gaussian random variable) We say that a random variable G is sub-Gaussian

with parameter ⌫ and write G 2 G(⌫) if

E
⇥
exp(�G)

⇤
 exp

⇣
�2⌫2

2

⌘
for all � 2 R.

Given Def. 4, it follows that ALG 2 Gf (⌫) for a function f as in Def. 2 if and only if the random
variable �ALG(f) , PSinf � PSALGf is sub-Gaussian with parameter ⌫ conditional on the input Sin.

In our proofs, it is often more convenient to work with an unnormalized measure discrepancy

 ALG(Sin) , n · �ALG(Sin)
(14)
=
P

x2Sin
�x � n

nout

P
SALG

�x. (15)

By definition (15), we have the following useful equivalence:

 ALG(f) , n · �ALG(f) 2 G(�ALG)() �ALG(f) 2 G(⌫ALG) for �ALG =n · ⌫ALG. (16)

The following standard lemma establishes that the sub-Gaussian property is closed under scaling
and summation.

Lemma 1 (Summation and scaling preserve sub-Gaussianity) Suppose G1 2 G(�1). Then, for

all � 2 R, we have � · G1 2 G(��1). Furthermore, if G1 is F-measurable and G2 2 G(�2) given

F , then G1 +G2 2 G(
p
�2

1
+ �2

2
).
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Proof Fix any � 2 R. Since G1 2 G(�1), for each � 2 R,

E
⇥
exp(� · � ·G1)

⇤
 exp

⇣
�2

(��1)
2

2

⌘
,

so that �G1 2 G(��1) as advertised.

Furthermore, if G1 is F-measurable and G2 2 G(�2) given F , then, for each � 2 R,

E
h
exp
�
� · (G1 +G2)

�i
= E

⇥
exp(� ·G1 + � ·G2)

⇤
= E

h
exp(� ·G1) · E

⇥
exp(� ·G2) | F

⇤i

 exp
⇣

�2�2
2

2

⌘
· E
h
exp
�
� · f(G2)

�i

= exp
⇣

�2�2
1

2

⌘
· exp

⇣
�2�2

2
2

⌘
= exp

✓
�2(�2

1+�2
2)

2

◆
,

so that G1 +G2 2 G(
p
�2

1
+ �2

2
) as claimed. ⇤

B PROOF OF THM. 1: RUNTIME AND INTEGRATION ERROR OF COMPRESS

First, we bound the running time of COMPRESS. By definition, COMPRESS makes four recursive
calls to COMPRESS on inputs of size n/4. Then, HALVE is run on an input of size 2g+1

p
n. Thus,

rC satisfies the recursion

rC(n) = 4rC
�
n
4

�
+ rH(

p
n2g+1).

Since rC(4g) = 0, we may unroll the recursion to find that

rC(n) =
P�n

i=0
4irH(2g+1

p
n4�i),

as claimed in (5).

Next, we bound the sub-Gaussian error for a fixed function f . In the measure discrepancy (15)
notation of App. A we have

 C(Sin) =
P

4

i=1
 C(Si) +

p
n2�g�1 H( eS) (17)

where Si and eS are defined as in Alg. 1. Unrolling this recursion, we find that running COMPRESS
on an input of size n with oversampling parameter g leads to applying HALVE on 4i coresets of size
ni = 2g+1�ipn for 0  i  �n. Denoting these HALVE inputs by (S in

i,j)j2[4i], we have

 C(Sin) =
p
n2�g�1

P�n

i=0

P
4
i

j=1
2�i H(S in

i,j). (18)

Now define �H(n) = n⌫H(n). Since  H(S in

i,j)(f) are �H(ni) sub-Gaussian given (S in

i0,j0)i0>i,j0�1

and (S in

i,j0)j0j , Lem. 1 implies that  C(Sin)(f) is �C sub-Gaussian given Sin for

�2

C(n) = n4�g�1
P�n

i=0
�2

H(ni).

Recalling the relation (16) between � and ⌫ from App. A, we conclude that

⌫2C(n) =
P�n

i=0
4�i⌫2H(ni).

as claimed in (6).

C PROOF OF THM. 2: MMD GUARANTEES FOR COMPRESS

Our proof proceeds in several steps. To control the MMD (1), we will control the Hilbert norm of
the measure discrepancy of COMPRESS (15), which we first write as a weighted sum of measure
discrepancies from different (conditionally independent) runs of HALVE. To effectively leverage
the MMD tail bound assumption for this weighted sum, we reduce the problem to establishing a
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concentration inequality for the operator norm of an associated matrix. We carry out this plan in
four steps summarized below.

First, in App. C.1 we express the MMD associated with each HALVE measure discrepancy as the
Euclidean norm of a suitable vector (Lem. 2). Second, in App. C.2 we define a matrix dilation
operator for a vector that allows us to control vector norms using matrix spectral norms (Lem. 3).
Third, in App. C.3 we prove and apply a sub-Gaussian matrix Freedman concentration inequality
(Lem. 4) to control the MMD error for the COMPRESS output, which in turn requires us to establish
moment bounds for these matrices by leveraging tail bounds for the MMD error (Lem. 5). Finally,
we put together the pieces in App. C.4 to complete the proof.

We now begin our formal argument. We will make use of the unrolled representation (17) for
the COMPRESS measure discrepancy  C(Sin) in terms of the HALVE inputs (S in

k,j)j2[4k] of size
nk = 2g+1�kpn for 0  k  log

4
n�g�1. For brevity, we will use the shorthand  C ,  C(Sin),

 H

k,j ,  H(S in

k,j), and  T ,  T(SC) hereafter.

C.1 REDUCING MMD TO VECTOR EUCLIDEAN NORM

Number the elements of Sin as (x1, . . . , xn), define the n⇥ n kernel matrix K , (k(xi, xj))ni,j=1
,

and let K 1
2 denote a matrix square-root such that K = K

1
2 ·K 1

2 (which exists since K is a positive
semidefinite matrix for any kernel k). Next, let Sout

k,j denote the output sequence corresponding
to  H

k,j (i.e., running HALVE on S in

k,j), and let {ei}ni=1
denote the canonical basis of Rn. The

next lemma (with proof in App. C.5) relates the Hilbert norms to Euclidean norms of carefully
constructed vectors.

Lemma 2 (MMD as a vector norm) Define the vectors

uk,j,K
1
2
Pn

i=1
ei
⇣
1(xi2S in

k,j)�2·1(xi2Sout

k,j )
⌘
, and uC ,

Plog4 n�g�1
k=0

P
4
k

j=1
wk,juk,j , (19)

where wk,j,
p
n

2g+1+k . Then, we have

n2 ·MMD2

k(Sin,SC) = kuCk22, and (20)

E[uk,j |(uk0,j0 : j0 2 [4k
0
], k0 > k)] = 0 for k = 0, . . . , log

4
n�g�2, (21)

and uk,j for j 2 [4k] are conditionally independent given (uk0,j0 : j0 2 [4k
0
], k0 > k).

Applying (20), we effectively reduce the task of controlling the MMD errors to controlling the
Euclidean norm of suitably defined vectors. Next, we reduce the problem to controlling the spectral
norm of a suitable matrix.

C.2 REDUCING VECTOR EUCLIDEAN NORM TO MATRIX SPECTRAL NORM

To this end, we define a symmetric dilation matrix operator: given a vector u 2 Rn, define the
matrix Mu as

Mu,
✓
0 u>

u 0n⇥n

◆
2 R(n+1)⇥(n+1). (22)

It is straightforward to see that u 7!Mu is a linear map. In addition, the matrix Mu also satisfies a
few important properties (established in App. C.6) that we use in our proofs.

Lemma 3 (Properties of the dilation operator) For any u 2 Rn
, the matrix Mu (22) satisfies

kMukop
(a)
= kuk

2

(b)
= �max(Mu), and Mq

u

(c)
� kukq

2
In+1 for all q 2 N. (23)

Define the shorthand Mk,j , Mwk,juk,j (defined in Lem. 2). Applying Lems. 2 and 3, we find that

nMMDk(Sin,SC)
(20)
= kuCk2

(23)
= �max(MuC)

(i)
= �max(

Plog4 n�g�1
k=0

P
4
k

j=1
Mk,j), (24)

where step (i) follows from the linearity of the dilation operator. Thus to control the MMD error, it
suffices to control the maximum eigenvalue of the sum of matrices appearing in (24).
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C.3 CONTROLLING THE SPECTRAL NORM VIA A SUB-GAUSSIAN MATRIX FREEDMAN
INEQUALITY

To control the maximum eigenvalue of the matrix MuC , we make use of (24) and the following sub-
Gaussian generalization of the matrix Freedman inequality of Tropp (2012, Thm. 7.1). The proof of
Lem. 4 can be found in App. C.7. For two matrices A and B of the same size, we write A � B if
B �A is positive semidefinite.

Lemma 4 (Sub-Gaussian matrix Freedman inequality) Consider a sequence (Yi)
N
i=1

of self-

adjoint random matrices in Rm⇥m
and a fixed sequence of scalars (Ri)

N
i=1

satisfying

E
h
Yi|
�
Yj

�i�1

j=1

i
(A)

= 0 and E
h
Yq

i |
�
Yj

�i�1

j=1

i (B)

� ( q
2
)!Rq

i I, for all i 2 [N ] and q 2 2N. (25)

Define the variance parameter �2 ,PN
i=1

R2

i . Then,

P[�max(
PN

i=1
Yi) � �

p
8(t+ logm)]  e�t

for all t > 0,

and equivalently

P[�max(
PN

i=1
Yi)  �

p
8 log(m/�)] � 1� � for all � 2 (0, 1].

To apply Lem. 4 with the matrices Mk,j , we need to establish the zero-mean and moment bound
conditions for suitable Rk,j in (25).

C.3.1 VERIFYING THE ZERO MEAN CONDITION (25)(A) FOR Mk,j

To this end, first we note that the conditional independence and zero-mean property of  H

k,j implies
that the random vectors uk,j and the matrices Mk,j also satisfy a similar property, and in particular
that

E

Mk,j |

⇣
Mk0,j0 : k0 > k, j0 2 [4k

0
]
⌘�

= 0 for j 2 [4k], k 2 {0, 1, . . . , log
4
n� g� 1}.

(26)

C.3.2 ESTABLISHING MOMENT BOUND CONDITIONS (25)(B) FOR Mk,j IN TERMS OF Rk,j

VIA MMD TAIL BOUNDS FOR HALVE

To establish the moment bounds on Mk,j , note that Lems. 2 and 3 imply that

Mq
k,j = Mq

wk,juk,j

(23)
�
��wk,juk,j

��q
2
· In+1

(20)
= wq

k,j

��uk,j

��q
2
· In+1 (27)

where wk,j was defined in Lem. 2. Thus it suffices to establish the moment bounds on
��uk,j

��q
2
. To

this end, we first state a lemma that converts tail bounds to moment bounds. See App. C.8 for the
proof inspired by Boucheron et al. (2013, Thm. 2.3).

Lemma 5 (Tail bounds imply moment bounds) For a non-negative random variable Z,

P[Z>a+v
p
t]e�t

for all t � 0 =) E[Zq]  (2a+2v)q( q
2
)! for all q 2 2N.

To obtain a moment bound for
��uk,j

��
2
, we first state some notation. For each n, define the quantities

a0n , nan, v0n , nvn (28)

where an and vn are the parameters such that HALVE 2 Gk(an, vn) on inputs of size n. Using an
argument similar to Lem. 2, we have

��uk,j

��
2
= nk,j MMDk(S in

k,j ,Sout

k,j ) for nk,j = |S in

k,j | =
p
n2g+1�k.

Thereby, using the Gk assumption on HALVE implies that

P[
��uk,j

��
2
� a0`0k

+ v0`0k
p
t | (uk0,j0 : j0 2 [4k

0
], k0 > k)]  e�t for all t � 0, (29)
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where

`0k , nk,j =
p
n2g+1�k (30)

and, notably, `n = `0
0
. Combining the bound (29) with Lem. 5 yields that

E[
��uk,j

��q
2
| (uk0,j0 : j0 2 [4k

0
], k0 > k)]  ( q

2
)!(2a0`0k

+ 2v0`0k
)q, (31)

for all q 2 2N, where `k is defined in (29). Now, putting together (27) and (31), and using the
conditional independence of Mk,j , we obtain the following control on the q-th moments of Mk,j

for q 2 2N:

E

Mq

k,j

��
⇣
Mk0,j0 , k0 > k, j0 2 [4k

0
]
⌘� (27)
� wq

k,j ·E
��uk,j

��q
2

��
n
uk0,j0 , k0 > k, j0 2 [4k

0
]
o�

·In+1

(31)
� wq

k,j ·
⇣
(2a0`0k

+ 2v0`0k
)q( q

2
)!
⌘
·In+1

= ( q
2
)!Rq

k,jIn+1 where Rk,j , 2wk,j(a0`0k
+ v0`0k

) (32)

where `k is defined in (30). In summary, the computation above establishes the condition (B) from
the display (25) for the matrices Mk,j in terms of the sequence Rk,j defined in (32).

C.4 PUTTING THE PIECES TOGETHER FOR PROVING THM. 2

Define

e� ,
p

log
4
n� g · 2(apn2g+1 + vpn2g+1) (33)

Now, putting (26) and (32) together, we conclude that with a suitable ordering of
the indices (k, j), the assumptions of Lem. 4 are satisfied by the random matrices�
Mk,j , j 2 [4k], k 2 {0, 1, . . . , log

4
n� g� 1}

�
with the sequence

�
Rk,j

�
. Now, since `0k =

p
n2g+1�k (29) is decreasing in k, wk,j = `0k

4g+1 (as defined in Lem. 2), and a0n and v0n (28) are
assumed non-decreasing in n, we find that

n2 · e�2
(33)
= n2(log

4
n� g)(2(apn2g+1 + vpn2g+1))2

(29)
= (log

4
n� g) n

4g+1 (2(a0`00
+ v0`00

))2

�
Plog4 n�g�1

k=0

n
4g+1 (2(a0`0k

+ v0`0k
))2

=
Plog4 n�g�1

k=0

P
4
k

j=1

n
4g+1+k (2(a0`0k

+ v0`0k
))2

=
Plog4 n�g�1

k=0

P
4
k

j=1
(2wk,j(a0`0k

+ v0`0k
))2

(32)
=
Plog4 n�g�1

k=0

P
4
k

j=1
R2

k,j .

Finally, applying (24) and invoking Lem. 4 with �  ne� and m n+ 1, we conclude that

P[MMD(Sin,SC) � e�
p
8(log(n+ 1) + t)]

(24)
= P[�max(

Plog4 n�g�1
k=0

P
4
k

j=1
Mk,j) � ne�

p
8(log(n+ 1) + t)]

 e�t for all t > 0,

which in turn implies

P[MMD(Sin,SC) � ean + evn
p
t]  e�t for t � 0,

since the parameters evn,ean (8) satisfy

evn
(8)
= 4(a`n+v`n)

p
2(log

4
n�g) (33)

= e�
p
8, and ean

(8)
= evn

p
log(n+1) = e�

p
8 log(n+ 1).

Comparing with Def. 3, Thm. 2 follows.
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C.5 PROOF OF LEM. 2: MMD AS A VECTOR NORM

Let vk,j,
Pn

i=1
ei
⇣
1(xi 2 S in

k,j)�2·1(xi 2 Sout

k,j )
⌘

. By the reproducing property of k we have

k H

k,j(k)k2k =
���
P

x2S
in
k,j

k(x, ·)�2
P

x2S
out
k,j

k(x, ·)
���
2

k

=
P

x2S
in
k,j ,y2S

in
k,j

k(x, y)� 2
P

x2S
out
k,j ,y2S

in
k,j

k(x, y) +
P

x2S
out
k,j ,y2S

out
k,j

k(x, y)

= v>k,jKvk,j
(19)
=
��uk,j

��2
2
. (34)

Using (18), (19), and (22), and mimicking the derivation above (34), we can also conclude that

k C(k)k2k = kuCk22.
Additionally, we note that

MMDk(Sin,SC) = sup
kfkk=1

1

n

⌦
f, C(k)

↵
Hk

= 1

nk C(k)kk.

Finally the conditional independence and zero mean property (21) follows from (18) by noting that
conditioned on (S in

k0,j0)k0>k,j0�1, the sets (S in

k,j)j�1 are independent.

C.6 PROOF OF LEM. 3: PROPERTIES OF THE DILATION OPERATOR

For claim (a) in the display (23), we have

M2

u =

 
kuk2

2
0>

n

0n uu>

!
(i)
� kuk2

2
In+1 =) kMukop

(ii)
= kuk

2
,

where step (i) follows from the standard fact that uu> � kuk2
2
In and step (ii) from the facts M2

uee1 =

kuk2
2
ee1 for ee1 the first canonical basis vector of Rn+1 and kMuk2op =

��M2

u

��
op

. Claim (b) follows

directly by verifying that the vector v = [1, u>

kuk2
]> is an eigenvector of Mu with eigenvalue kuk

2
.

Finally, claim (c) follows directly from the claim (a) and the fact that kMq
ukop = kMukqop for all

integers q � 1.

C.7 PROOF OF LEM. 4: SUB-GAUSSIAN MATRIX FREEDMAN INEQUALITY

We first note the following two lemmas about the tail bounds and symmetrized moment generating
functions (MGFs) for matrix valued random variables (see Apps. C.9 and C.10 respectively for the
proofs of Lems. 6 and 7).

Lemma 6 (Sub-Gaussian matrix tail bounds) Let
�
Xk 2 Rm⇥m

�
k�1

be a sequence of self-

adjoint matrices adapted to a filtration Fk, and let
�
Ak 2 Rm⇥m

�
k�1

be a sequence of determin-

istic self-adjoint matrices. Define the variance parameter �2 ,
��P

k Ak

��
op

. If, for a Rademacher

random variable " independent of (Xk,Fk)k�1
, we have

logE
⇥
exp(2"✓Xk)|Fk�1

⇤
� 2✓2Ak for all ✓ 2 R, (35)

then we also have

P
h
�max

�P
k Xk

�
� t)

i
 me�t2/(8�2

)
for all t � 0.

Lemma 7 (Symmetrized sub-Gaussian matrix MGF) For a fixed scalar R, let X be a self-

adjoint matrix satisfying

EX = 0 and EXq � ( q
2
)!RqI for q 2 2N. (36)

If " is a Rademacher random variable independent of X, then

E exp(2"✓X) � exp
�
2✓2R2I

�
for all ✓ 2 R.
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The assumed conditions (25) allow us to apply Lem. 7 conditional on (Yi)i<k along with the oper-
ator monotonicity of log to find that

logE
h
exp("✓Yk)|{Yi}i<k

i
� 2✓2R2

kI for all ✓ 2 R,

for a Rademacher random variable " independent of (Yk)k�1
. Moreover,

��P
k Ak

��
op

=��P
k R

2

kI
��
op

=
P

k R
2

k = �2. Thus, applying Lem. 6, we find that

P[�max(
P

iYi) � t]  me�t2/(8�2
) for all t � 0.

As an immediate consequence, we also find that

P[�max(
P

iYi) �
p
8�2(t+ logm)]  e�t for all t � 0,

as claimed.

C.8 PROOF OF LEM. 5: TAIL BOUNDS IMPLY MOMENT BOUNDS

We begin by bounding the moments of the shifted random variable X = Z�a. Note that Z � 0, so
that X � �a. Next, note that X = X+�X� where X± = max(±X, 0) and that |X|q = Xq

+
+Xq

�
.

Furthermore, Xq
�
 aq by the nonnegativity of Z, so that |X|q  aq +Xq

+
. For any u > 0, since

P[X+ > u] = P[X > u] = P[Z > a + u] for any u > 0, we apply the tail bounds on Z to control
the moments of X+. In particular, we have

E
⇥
Xq

+

⇤
]
(i)
= q

R
1

0
uq�1P[X+ > u]du

(ii)
= q

R
1

0
(v
p
t)q�1P[X+ > v

p
t] · v

2
p
t
dt

(iii)
 qvq

R
1

0
tq/2�1e�tdt

(iv)
= qvq�( q

2
),

where we have applied (i) integration by parts, (ii) the substitution u = v
p
t, and (iii) the assumed

tail bound for Z.

Since Z = X + a, the convexity of the function t 7! tq for q � 1, and Jensen’s inequality imply
that for each q 2 2N, we have

EZq  2q�1(aq + E|X|q)  2q�1(2aq + EXq
+
)  (2a)q + 2q�1qvq�( q

2
)

= (2a)q + 2q�1qvq( q
2
� 1)!

 (2a+ 2v)q( q
2
)!

where the last step follows since xq + yq  (x+ y)q for all q 2 N and x, y � 0. The proof is now
complete.

C.9 PROOF OF LEM. 6: SUB-GAUSSIAN MATRIX TAIL BOUNDS

The proof of this result is identical to that of Tropp (2012, Proof of Thm. 7.1) as the same steps are
justified under our weaker assumption (35). Specifically, applying the arguments from Tropp (2012,
Proof of Thm. 7.1), we find that

E
⇥
tr exp(

Pn
k=1

✓Xk)
⇤
 E


tr exp

⇣Pn�1

k=1
✓Xk + logE

⇥
exp(2"✓Xn)|Fn�1

⇤⌘�

(35)
 E


tr exp

⇣Pn�1

k=1
✓Xk + 2✓2An

⌘�

(i)
 tr exp

�
2✓2

Pn
k=1

Ak

� (ii)
 m exp

�
2✓2�2

�
, (37)

where step (i) follows by iterating the arguments over k = n�1, . . . , 1 and step (ii) from the standard
fact that tr(exp(A))  m

��exp(A)
��
op

= m exp(kAk
op
) for an m⇥m self-adjoint matrix A. Next,
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applying the matrix Laplace transform method Tropp (2012, Prop. 3.1), for all t > 0, we have

P
h
�max

�P
k Xk

�
� t)

i
 inf✓>0

n
e�✓t · E

⇥
tr exp(

Pn
k=1

✓Xk)
⇤o

(37)
 m inf✓>0

n
e�✓t · e2✓2�2

o
= me�t2/(8�2

),

where the last step follows from the choice ✓ = t
4�2 . The proof is now complete.

C.10 PROOF OF LEM. 7: SYMMETRIZED SUB-GAUSSIAN MATRIX MGF

We have

E[exp(2"✓X)] = I+
P

1

q=1

2
q✓q

q! E["qXq]
(i)
= I+

P
1

k=1

2
2k✓2k

(2k)! E[X
2k]

(ii)
� I+

P
1

k=1

2
2k✓2k k!R2k

(2k)! I

(iii)
� I+

P
1

k=1

(2✓2R2
)
k

k! I = exp(2✓2R2I),

where step (i) uses the facts that (a) E["q] = 1(q 2 2N) and (b) E["qXq] = E["q]E[Xq] since " is
independent of X, step (ii) follows from the assumed condition (36), and step (iii) from the fact that
2
kk!

(2k)! 
1

k! (Boucheron et al., 2013, Proof of Thm. 2.1).

D PROOF OF THM. 3: RUNTIME AND INTEGRATION ERROR OF COMPRESS++

First, the runtime bound (9) follows directly by adding the runtime of COMPRESS(HALVE, g) as
given by (5) in Thm. 1 and the runtime of THIN.

Recalling the notation (14) and (15) from App. A and noting the definition of the point sequences SC
and SC++ in Alg. 2, we obtain the following relationship between the different discrepancy vectors:

�C(Sin) =
1

n

P
x2Sin

�x � 1

2g
p
n

P
x2SC

�x,

�T(SC) =
1

2g
p
n

P
x2SC

�x � 1
p
n

P
x2SC++

�x, and

�C++(Sin) =
1

n

P
x2Sin

�x � 1
p
n

P
x2SC++

�x

= �C(Sin) + �T(SC).

Noting the Gf property of HALVE and applying Thm. 1, we find that �C(Sin)(f) is sub-Gaussian
with parameter ⌫C(n) defined in (6). Furthermore, by assumption on THIN, given SC, the variable
�T(SC)(f) is ⌫C(

`n
2
) sub-Gaussian. The claim now follows directly from Lem. 1.

E PROOF OF THM. 4: MMD GUARANTEES FOR COMPRESS++

Noting that MMD is a metric, and applying triangle inequality, we have
MMDk(Sin,SC++)  MMDk(Sin,SC) +MMDk(SC,SC++).

Since SC++ is the output of THIN(2g) with SC as the input, applying the MMD tail bound assump-
tion (38) with |SC| =

p
n2g substituted in place of n, we find that

P
h
MMD(SC,SC++)�a02gpn+v02gpn

p
t
i
 e�t for all t � 0.

Recall that `n/2 = 2g
p
n. Next, we apply Thm. 2 with HALVE to conclude that

P[MMDk(Sin,SC) � ean + evn ·
p
t]  e�t for all t � 0.

Thus, we have

P
h
MMDk(Sin,SC++) � a0`n/2 + ean + (v0`n/2 + evn)

p
t
i
 2 · e�t for all t � 0,

which in turn implies that

P
h
MMDk(Sin,SC++) � a0`n/2 + ean + (v0`n/2 + evn)

p
log 2 + (v0`n/2 + evn)

p
t
i
 e�t for all t � 0,

thereby yielding the claimed result.
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F PROOFS OF EXS. 3, 4, 5, AND 6

We begin by defining the notions of sub-Gaussianity and k-sub-Gaussianity on an event.

Definition 5 (Sub-Gaussian on an event) We say that a random variable G is sub-Gaussian on an
event E with parameter � if

E[1[E] · exp(� ·G)]  exp(�
2�2

2
) for all � 2 R.

Definition 6 (k-sub-Gaussian on an event) For a kernel k, we call a thinning algorithm ALG k-
sub-Gaussian on an event E with parameter v and shift a if

P[E,MMDk(Sin,SALG) � an + vn
p
t | Sin]  e�t

for all t � 0. (38)

We will also make regular use of the unrolled representation (17) for the COMPRESS measure dis-
crepancy  C(Sin) in terms of the HALVE inputs (S in

k,j)j2[4k] of size

nk = 2g+1�kpn for 0  k  �n. (39)

For brevity, we will use the shorthand  C ,  C(Sin),  H

k,j ,  H(S in

k,j), and  T ,  T(SC) hereafter.

F.1 PROOF OF EX. 3: KT-SPLIT-COMPRESS

For HALVE = KT-SPLIT( `2

n4g+1(�n+1)
�) when applied to an input of size `, the proof of Thm. 1 in

Dwivedi & Mackey (2022) identifies a sequence of events Ek,j and random signed measures  ̃k,j

such that, for each 0  k  �n, j 2 [4k], and f with kfkk = 1,

(a) P[Ec
k,j ]

(i)
 n2

k
n4g+1(�n+1)

�
2

(ii)
= 1

2

�
4k(�n+1)

,

(b) 1[Ek,j ] H

k,j = 1[Ek,j ] ̃k,j , and

(c)  ̃k,j(f) is nk ⌫H(nk) sub-Gaussian (7) given ( ̃k0,j0)k0>k,j0�1 and ( ̃k,j0)j0<j ,

where step (ii) follows from substituting the definition nk = 2g+1�kpn (39). To establish step (ii)
in property (a), we use the definition1 of KT-SPLIT( n2

k
n4g+1(�n+1)

�) for an input of size nk, which
implies that �i = nk

n4g+1(�n+1)
� in the notation of Dwivedi & Mackey (2022). The proof of Thm. 1

in Dwivedi & Mackey (2022) then implies that

P[Ec
k,j ] 

Pnk/2
i=1

�i =
nk
2

nk
n4g+1(�n+1)

� = n2
k

n4g+1(�n+1)

�
2
.

Hence, on the event E =
T

k,j Ek,j , these properties hold simultaneously for all HALVE calls made
by COMPRESS, and, by the union bound,

P[Ec] 
P�n

k=0

P
4
k

j=1
P[Ec

k,j ] 
P�n

k=0
4k 1

2

�
4k(�n+1)

= �
2
. (40)

Now fix any f with kfkk = 1. We invoke the measure discrepancy representation (17), the equiva-
lence of  H

k,j and  ̃k,j on E, the nonnegativity of the exponential, and Lem. 1 in turn to find

E[1[E] · exp(� · �C(f))] = E[1[E] · exp(� · 1

n C(f))]

= E[1[E] · exp(� · 1

n

p
n2�g�1

P�n

k=0

P
4
k

j=1
2�k H

k,j(f))]

= E[1[E] · exp(� · 1

n

p
n2�g�1

P�n

k=0

P
4
k

j=1
2�k ̃k,j(f))]

 E[exp(� · 1

n

p
n2�g�1

P�n

k=0

P
4
k

j=1
2�k ̃k,j(f))]

 exp(�
2⌫2

C(n)
2

) for ⌫2C(n) =
P�n

k=0
4�k⌫2H(nk)

so that �C(f) is ⌫C sub-Gaussian on E.
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F.2 PROOF OF EX. 4: KT-COMPRESS

For HALVE = symmetrized KT( `2

n4g+1(�n+1)
�) when applied to an input of size `, the proofs of

Thms. 1–4 in Dwivedi & Mackey (2022) identify a sequence of events Ek,j and random signed
measures  ̃k,j such that, for each 0  k  �n and j 2 [4k],

(a) P[Ec
k,j ]  1

2

�
4k(�n+1)

,

(b) 1[Ek,j ] H

k,j = 1[Ek,j ] ̃k,j ,

(c) P[ 1

nk
k ̃k,j(k)kk � ank +vnk

p
t | ( ̃k0,j0)k0>k,j0�1, ( ̃k,j0)j0<j ]  e�t for all t � 0, and

(d) E[ ̃k,j(k) | ( ̃k0,j0)k0>k,j0�1, ( ̃k,j0)j0<j ] = 0,

where nk = 2g+1�kpn was defined in (39). We derive property (a) exactly as in App. F.1.

Hence, on the event E =
T

k,j Ek,j , these properties hold simultaneously for all HALVE calls made
by COMPRESS, and, by the union bound (40), P[Ec]  �

2
.

Furthermore, we may invoke the measure discrepancy representation (17), the equivalence of  H

k,j

and  ̃k,j on E, the nonnegativity of the exponential, and the proof of Thm. 2 in turn to find

P[E,MMD(Sin,SC) � ãn + ṽn
p
t | Sin] = P[E, 1

nk C(k)kk � ãn + ṽn
p
t | Sin]

= P[E, 1

nk
p
n2�g�1

P�n

k=0

P
4
k

j=1
2�k ̃k,j(k)kk � ãn + ṽn

p
t | Sin]

 P[ 1nk
p
n2�g�1

P�n

k=0

P
4
k

j=1
2�k ̃k,j(k)kk � ãn + ṽn

p
t | Sin]  e�t for all t � 0,

so that COMPRESS is k-sub-Gaussian on E with parameters (ṽ, ã).

F.3 PROOF OF EX. 5: KT-SPLIT-COMPRESS++

For THIN = KT-SPLIT( g
g+2g(�n+1)

�) and HALVE = KT-SPLIT( `2

4n2g(g+2g(�n+1))
�) when applied

to an input of size `, the proof of Thm. 1 in Dwivedi & Mackey (2022) identifies a sequence of events
Ek,j and ET and random signed measures  ̃k,j and  ̃T such that, for each 0  k  �n, j 2 [4k], and
f with kfkk = 1,

(a) P[Ec
k,j ]

(i)
 n2

k
4n2g(g+2g(�n+1))

�
2

(ii)
= 2

g

4k(g+2g(�n+1))

�
2

and P[Ec
T]

(iii)
 g

g+2g(�n+1)

�
2

,

(b) 1[Ek,j ] H

k,j = 1[Ek,j ] ̃k,j and 1[ET] T = 1[ET] ̃T, and

(c)  ̃k,j(f) is nk ⌫H(nk) sub-Gaussian (12) given ( ̃k0,j0)k0>k,j0�1 and ( ̃k,j0)j0<j and  ̃T is
`n
2
⌫T(

`n
2
) sub-Gaussian (12) given SC.

Here, step (i) and (ii) follow exactly as in steps (i) and (ii) of property (a) in App. F.1. For step (iii),
we use the definition1 of KT-SPLIT( g

g+2g(�n+1)
�) for an input of size 2g

p
n, which implies that

�i = g
p
n2g(g+2g(�n+1))

� in the notation of Dwivedi & Mackey (2022). The proof of Thm. 1 in
Dwivedi & Mackey (2022) then implies that

P[Ec
T] 

Pg
j=1

2
j�1

g

P
2
g�jpn

i=1
�i =

Pg
j=1

2
j�1

g 2g�jpn 1
p
n2g

· g
g+2g(�n+1)

� = g
g+2g(�n+1)

�
2
,

as claimed.

Hence, on the event E =
T

k,j Ek,j \ ET, these properties hold simultaneously for all HALVE calls
made by COMPRESS, and, repeating an argument similar to the union bound (40),

P[Ec]  P[Ec
T] +

P�n

k=0

P
4
k

j=1
P[Ec

k,j ] 
g

g+2g(�n+1)

�
2
+
P�n

k=0
4k 2

g

4k(g+2g(�n+1))

�
2
= �

2
. (41)

Moreover, since �C++ = 1

n ( C +  T), Lem. 1 and the argument of App. F.1 together imply that
�C(f) is ⌫C++ sub-Gaussian on E for each f with kfkk = 1.
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F.4 PROOF OF EX. 6: KT-COMPRESS++

In the notation of Ex. 2, define
`n
2
a`n =

p
na0`n/2 = Ca

p
kkk1, and

`n
2
v`n =

p
nv0`n/2 = Cv

q
kkk1 log( 6(n�

p
n(2g�g))
� ) MSin,k.

Since HALVE = symmetrized KT( `2

4n2g(g+2g(�n+1))
�) for inputs of size ` and THIN =

KT( g
g+2g(�n+1)

�), the proofs of Thms. 1–4 in Dwivedi & Mackey (2022) identify a sequence of
events Ek,j and ET and random signed measures  ̃k,j and  ̃T such that, for each 0  k  �n and
j 2 [4k],

(a) P[Ec
k,j ]  2

g

4k(g+2g(�n+1))

�
2

and P[Ec
T] 

g
g+2g(�n+1)

�
2

,

(b) 1[Ek,j ] H

k,j = 1[Ek,j ] ̃k,j and 1[ET] T = 1[ET] ̃T,

(c) P[ 1

nk
k ̃k,j(k)kk � ank + vnk

p
t | ( ̃k0,j0)k0>k,j0�1, ( ̃k,j0)j0<j ]  e�t and

P[ 2

`n
k ̃T(k)kk � a0`n/2 + v0`n/2

p
t | SC]  e�t for all t � 0, and

(d) E[ ̃k,j(k) | ( ̃k0,j0)k0>k,j0�1, ( ̃k,j0)j0<j ] = 0.

We derive property (a) exactly as in App. F.3. Hence, on the event E =
T

k,j Ek,j \ ET, these
properties hold simultaneously for all HALVE calls made by COMPRESS and

e⇣H(`n) = e⇣T(
`n
2
) = Cv

q
kkk1 log( 6(n�

p
n(2g�g))
� ) MSin,k.

Moreover, by the union bound (41), P[Ec]  �
2
.

Finally, since �C++ = 1

n ( C +  T) and the argument of App. F.2 implies that COMPRESS is k-
sub-Gaussian on E with parameters (ṽ, ã), the triangle inequality implies that COMPRESS++ is
k-sub-Gaussian on E with parameters (v̂, â) as in App. E.

G SUPPLEMENTARY DETAILS FOR EXPERIMENTS

In this section, we provide supplementary experiment details deferred from Sec. 5, as well as some
additional results.

In the legend of each MMD plot, we display an empirical rate of decay. In all experiments involving
kernel thinning, we set the algorithm failure probability parameter � = 1

2
and compare KT(�) to

COMPRESS and COMPRESS++ with HALVE and THIN set as in Exs. 4 and 6 respectively.

G.1 MIXTURE OF GAUSSIAN TARGET DETAILS AND MMD PLOTS

For the target used for coreset visualization in Fig. 3, the mean locations are on two concentric
circles of radii 10 and 20, and are given by

µj = ↵j


sin(j)
cos(j)

�
where ↵j = 10 · 1(j  16) + 20 · 1(j > 16) for j = 1, 2, . . . , 32.

Here we also provide additional results with mixture of Gaussian targets given by P =
1

M

PM
j=1

N (µj , Id) for M 2 {4, 6, 8}. The mean locations for these are given by

µ1 = [�3, 3]>, µ2 = [�3, 3]>, µ3 = [�3,�3]>, µ4 = [3,�3]>,
µ5 = [0, 6]>, µ6 = [�6, 0]>, µ7 = [6, 0]>, µ8 = [0,�6]>.

Fig. 4 plots the MMD errors of KT and herding experiments for the mixture of Gaussians targets
with 4, 6 and 8 centers, and notice again that COMPRESS++ provides a competitive performance to
the original algorithm, in fact suprisingly, improves upon herding.
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Figure 4: For M -component mixture of Gaussian targets, KT-COMPRESS++ and Herd-COMPRESS++ im-
prove upon the MMD of i.i.d. sampling (ST) and closely track or improve upon the error of their
quadratic-time input algorithms, KT and kernel herding (Herd). See App. G.1 for more details.

G.2 DETAILS OF MCMC TARGETS

Our set-up for the MCMC experiments is identical to that of Dwivedi & Mackey (2021, Sec. 6),
except that we use all post-burn-in points to generate our Goodwin and Lotka-Volterra input point
sequences Sin instead of only the odd indices. In particular, we use the MCMC output of Riabiz et al.
(2020b) described in (Riabiz et al., 2020a, Sec. 4) and perform thinning experiments after discarding
the burn-in points. To generate an input Sin of size n for a thinning algorithm, we downsample
the post-burn-in points using standard thinning. For Hinch, we additionally do coordinate-wise
normalization by subtracting the sample mean and dividing by sample standard deviation of the
post-burn-in-points.

In Sec. 5, RW and ADA-RW respectively refer to Gaussian random walk and adaptive Gaussian
random walk Metropolis algorithms (Haario et al., 1999) and MALA and pMALA respectively
refer to the Metropolis-adjusted Langevin algorithm (Roberts & Tweedie, 1996) and pre-conditioned
MALA (Girolami & Calderhead, 2011). For Hinch experiments, RW 1 and RW 2 refer to two
independent runs of Gaussian random walk, and “Tempered” denotes the runs targeting a tempered
Hinch posterior. For more details on the set-up, we refer the reader to Dwivedi & Mackey (2021,
Sec. 6.3, App. J.2).

H STREAMING VERSION OF COMPRESS

COMPRESS can be efficiently implemented in a streaming fashion (Alg. 3) by viewing the recursive
steps in Alg. 1 as different levels of processing, with the bottom level denoting the input points and
the top level denoting the output points. The streaming variant of the algorithm efficiently maintains
memory at several levels and processes inputs in batches of size 4g+1. At any level i (with i = 0
denoting the level of the input points), whenever there are 2i4g+1 points, the algorithm runs HALVE
on the points in this level, appends the output of size 2i�14g+1 to the points at level i+1, and empties
the memory at level i (and thereby level i never stores more than 2i4g+1 points). In this fashion, just
after processing n = 4k+g+1 points, the highest level is k+1, which contains a compressed coreset
of size 2k�14g+1 = 2k+g+12g =

p
n2g (outputted by running HALVE at level k for the first time),

which is the desired size for the output of COMPRESS.
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Algorithm 3: COMPRESS (Streaming) – Outputs stream of coresets of size 2g
p
n for n = 4k+g+1 and k 2 N

Input: halving algorithm HALVE, oversampling parameter g, stream of input points x1, x2, . . .

S0  {} // Initialize empty level 0 coreset
for t = 1, 2, . . . , do

S0  S0 [ (xj)
t·4g+1

j=1+(t�1)·4g+1 // Process input in batches of size 4g+1

if t == 4j for j 2 N then
Sj+1  {} // Initialize level j + 1 coreset after processing 4j+g+1 input points

end
for i = 0, . . . , dlog4 te+ 1 do

if |Si| == 2i4g+1 then
S  HALVE(Si) // Halve level i coreset to size 2i�14g+1

Si+1  Si+1 [ S // Update level i+ 1 coreset: has size 2 {1, 2, 3, 4} · 2i�14g+1

Si  {} // Empty coreset at level i
end

end
if t == 4j for j 2 N then

output Sj+1 // Coreset of size
p
n2g with n , t4g+1 and t = 4j for j 2 N

end
end

Our next result analyzes the space complexity of the streaming variant (Alg. 3) of COMPRESS.
The intuition for gains in memory requirements is very similar to that for running time, as we now
maintain (and run HALVE) on subsets of points with size much smaller than the input sequence. We
count the number of data points stored as our measure of memory.

Proposition 1 (COMPRESS Streaming Memory Bound) Let HALVE store sH(n) data points on

inputs of size n. Then, after completing iteration t, the streaming implementation of COMPRESS
(Alg. 3) has used at most sC(t) = 4g+3

p
t+ sH(2g+1

p
t) data points of memory.

Proof At time t, we would like to estimate the space usage of the algorithm. At the ith level of
memory, we can have at most 2i+24g data points. Since we are maintaining a data set of size at mostp
t4g at time t, there are at most log t

2
levels. Thus, the maximum number of points stored at time t

is bounded by
P

0.5 log t
i=0

2i+24g  4g+3
p
t.

Furthermore, at any time up to time t, we have run HALVE on a point sequence of size at mostp
t2g+1 which requires storing at most sH(

p
t2g+1) additional points. ⇤

Example 7 (KT-COMPRESS and KT-COMPRESS++) First consider the streaming variant of
COMPRESS with HALVE = symmetrized KT( `

2n�`n
�) for HALVE inputs of size ` as in Ex. 4. Since

sKT(n)  n (Dwivedi & Mackey, 2021, Sec. 3), Prop. 1 implies that sC(n)  4g+4
p
n.

Next consider COMPRESS++ with the streaming variant of COMPRESS, with HALVE =
symmetrized KT( `

2n�`n+2g
p
n
�) when applied to an input of size `, and THIN = KT( g

p
n�2g+g

�)

as in Ex. 6. The space complexity sC++(n) = sC(n)+sKT(`n)=4g+4
p
n+ `n  4g+5

p
n. Setting

g as in Ex. 6, we get sC++(n) = O(
p
n log2 n). ⌅
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