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ABSTRACT

The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a
probability distribution more effectively than independent sampling by targeting
a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-
root kernel. Here we provide four improvements. First, we show that KT ap-
plied directly to the target RKHS yields tighter, dimension-free guarantees for
any kernel, any distribution, and any fixed function in the RKHS. Second, we
show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, tar-
get KT admits maximum mean discrepancy (MMD) guarantees comparable to or
better than those of square-root KT without making explicit use of a square-root
kernel. Third, we prove that KT with a fractional power kernel yields better-than-
Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Matérn,
that do not have square-roots. Fourth, we establish that KT applied to a sum of
the target and power kernels (a procedure we call KT+) simultaneously inherits
the improved MMD guarantees of power KT and the tighter individual function
guarantees of target KT. In our experiments with target KT and KT+, we witness
significant improvements in integration error even in 100 dimensions and when
compressing challenging differential equation posteriors.

1 INTRODUCTION

A core task in probabilistic inference is learning a compact representation of a probability dis-
tribution P. This problem is usually solved by sampling points x1, . . . , xn independently from
P or, if direct sampling is intractable, generating n points from a Markov chain converging to
P. The benefit of these approaches is that they provide asymptotically exact sample estimates
Pinf , 1

n

Pn
i=1 f(xi) for intractable expectations Pf , EX⇠P[f(X)]. However, they also suffer

from a serious drawback: the learned representations are unnecessarily large, requiring n points to
achieve |Pf � Pinf | = ⇥(n�

1
2 ) integration error. These inefficient representations quickly become

prohibitive for expensive downstream tasks and function evaluations: for example, in computational
cardiology, each function evaluation f(xi) initiates a heart or tissue simulation that consumes 1000s
of CPU hours (Niederer et al., 2011; Augustin et al., 2016; Strocchi et al., 2020).

To reduce the downstream computational burden, a standard practice is to thin the initial sample by
discarding every t-th sample point (Owen, 2017). Unfortunately, standard thinning often results in
a substantial loss of accuracy: for example, thinning an i.i.d. or fast-mixing Markov chain sample
from n points to n

1
2 points increases integration error from ⇥(n�

1
2 ) to ⇥(n�

1
4 ).

The recent kernel thinning (KT) algorithm of Dwivedi & Mackey (2021) addresses this issue by
producing thinned coresets with better-than-i.i.d. integration error in a reproducing kernel Hilbert
space (RKHS, Berlinet & Thomas-Agnan, 2011). Given a target kernel1 k and a suitable sequence
of input points Sin = (xi)ni=1 approximating P, KT returns a subsequence Sout of

p
n points with

better-than-i.i.d. maximum mean discrepancy (MMD, Gretton et al., 2012),2

MMDk(P,Pout) , sup
kfkk1|Pf � Poutf | for Pout , 1

p
n

P
x2Sout

�x, (1)

1A kernel k is any function that yields positive semi-definite matrices (k(zi, zj))li,j=1 for all inputs (zi)li=1.
2MMD is a metric for characteristic k, like those in Tab. 1, and controls integration error for all bounded

continuous f when k determines convergence, like each k in Tab. 1 except SINC (Simon-Gabriel et al., 2020).
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where k·kk denotes the norm for the RKHS H associated with k. That is, the KT output admits
o(n�

1
4 ) worst-case integration error across the unit ball of H.

KT achieves its improvement with high probability using non-uniform randomness and a less smooth
square-root kernel krt satisfying

k(x, y) =
R
Rd krt(x, z)krt(z, y)dz. (2)

When the input points are sampled i.i.d. or from a fast-mixing Markov chain on Rd, Dwivedi &
Mackey prove that the KT output has, with high probability, Od(n�

1
2
p
log n)-MMDk error for

P and krt with bounded support, Od(n�
1
2 (logd+1 n log log n)

1
2 )-MMDk error for P and krt with

light tails, and Od(n
�

1
2+

d
2⇢
p
log n log log n)-MMDk error for P and k2

rt with ⇢ > 2d moments.
Meanwhile, an i.i.d. coreset of the same size suffers ⌦(n�

1
4 ) MMDk. We refer to the original KT

algorithm as ROOT KT hereafter.

Our contributions In this work, we offer four improvements over the original KT algorithm.
First, we show in Sec. 2.1 that a generalization of KT that uses only the target kernel k provides a
tighter O(n�

1
2
p
log n) integration error guarantee for each function f in the RKHS. This TARGET

KT guarantee (a) applies to any kernel k on any domain (even kernels that do not admit a square-
root and kernels defined on non-Euclidean spaces), (b) applies to any target distribution P (even
heavy-tailed P not covered by ROOT KT guarantees), and (c) is dimension-free, eliminating the
exponential dimension dependence and (log n)d/2 factors of prior ROOT KT guarantees.

Second, we prove in Sec. 2.2 that, for analytic kernels, like Gaussian, inverse multiquadric (IMQ),
and sinc, TARGET KT admits MMD guarantees comparable to or better than those of Dwivedi &
Mackey (2021) without making explicit use of a square-root kernel. Third, we establish in Sec. 3
that generalized KT with a fractional ↵-power kernel k↵ yields improved MMD guarantees for
kernels that do not admit a square-root, like Laplace and non-smooth Matérn. Fourth, we show in
Sec. 3 that, remarkably, applying generalized KT to a sum of k and k↵—a procedure we call kernel

thinning+ (KT+)—simultaneously inherits the improved MMD of POWER KT and the dimension-
free individual function guarantees of TARGET KT.

In Sec. 4, we use our new tools to generate substantially compressed representations of both i.i.d.
samples in dimensions d = 2 through 100 and Markov chain Monte Carlo samples targeting chal-
lenging differential equation posteriors. In line with our theory, we find that TARGET KT and KT+
significantly improve both single function integration error and MMD, even for kernels without
fast-decaying square-roots.

� > 0
GAUSS(�)

� > 0
LAPLACE(�)

⌫ > d
2 , � > 0

MATÉRN(⌫, �)
⌫ > 0, � > 0
IMQ(⌫, �)

✓ 6= 0
SINC(✓)

� 2 N
B-SPLINE(2�+1, �)

exp
⇣
�kzk2

2
2�2

⌘
exp

⇣
�kzk2

�

⌘
·K⌫� d

2
(�kzk2)

c⌫� d
2
(�kzk2)⌫�

d
2 1

(1+kzk2
2/�

2)⌫

Qd
j=1

sin(✓zj)
✓zj B�d

2�+2

Qd
j=1 h�(�zj)

Table 1: Common kernels k(x, y) on Rd with z = x � y. In each case, kkk1 = 1. Here, ca , 21�a

�(a) , Ka

is the modified Bessel function of the third kind of order a (Wendland, 2004, Def. 5.10), h� is the
recursive convolution of 2� + 2 copies of 1[� 1

2 , 12 ], and B�, 1
(��1)!

Pb�/2c
j=0 (�1)j

�
�
j

�
(�2�j)

��1.

Related work For bounded k, both i.i.d. samples (Tolstikhin et al., 2017, Prop. A.1) and thinned
geometrically ergodic Markov chains (Dwivedi & Mackey, 2021, Prop. 1) deliver n 1

2 points with
O(n�

1
4 ) MMD with high probability. The online Haar strategy of Dwivedi et al. (2019) and low dis-

crepancy quasi-Monte Carlo methods (see, e.g., Hickernell, 1998; Novak & Wozniakowski, 2010;
Dick et al., 2013) provide improved Od(n�

1
2 logd n) MMD guarantees but are tailored specifically

to the uniform distribution on [0, 1]d. Alternative coreset constructions for more general P include
kernel herding (Chen et al., 2010), discrepancy herding (Harvey & Samadi, 2014), super-sampling

with a reservoir (Paige et al., 2016), support points convex-concave procedures (Mak & Joseph,
2018), greedy sign selection (Karnin & Liberty, 2019, Sec. 3.1), Stein point MCMC (Chen et al.,
2019), and Stein thinning (Riabiz et al., 2020a). While some admit better-than-i.i.d. MMD guar-
antees for finite-dimensional kernels on Rd (Chen et al., 2010; Harvey & Samadi, 2014), none
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apart from KT are known to provide better-than-i.i.d. MMD or integration error for the infinite-
dimensional kernels covered in this work. The lower bounds of Phillips & Tai (2020, Thm. 3.1) and
Tolstikhin et al. (2017, Thm. 1) respectively establish that any procedure outputting n

1
2 -sized core-

sets and any procedure estimating P based only on n i.i.d. sample points must incur ⌦(n�
1
2 ) MMD

in the worst case. Our guarantees in Sec. 2 match these lower bounds up to logarithmic factors.

Notation We define the norm kkk
1

= supx,y |k(x, y)| and the shorthand [n] , {1, . . . , n}, R+ ,
{x 2 R : x � 0}, N0 , N [ {0}, Bk , {f 2 H : kfkk  1}, and B2(r) ,

�
y 2 Rd : kyk2  r

 
.

We write a - b and a % b to mean a = O(b) and a = ⌦(b), use -d when masking constants
dependent on d, and write a = Op(b) to mean a/b is bounded in probability. For any distribu-
tion Q and point sequences S,S 0 with empirical distributions Qn,Q0

n, we define MMDk(Q,S) ,
MMDk(Q,Qn) and MMDk(S,S 0) , MMDk(Qn,Q0

n).

2 GENERALIZED KERNEL THINNING

Our generalized kernel thinning algorithm (Alg. 1) for compressing an input point sequence Sin =
(xi)ni=1 proceeds in two steps: KT-SPLIT and KT-SWAP detailed in App. A. First, given a thinning
parameter m and an auxiliary kernel ksplit, KT-SPLIT divides the input sequence into 2m candidate
coresets of size n/2m using non-uniform randomness. Next, given a target kernel k, KT-SWAP
selects a candidate coreset with smallest MMDk to Sin and iteratively improves that coreset by
exchanging coreset points for input points whenever the swap leads to reduced MMDk. When ksplit
is a square-root kernel krt (2) of k, generalized KT recovers the original ROOT KT algorithm of
Dwivedi & Mackey. In this section, we establish performance guarantees for more general ksplit
with special emphasis on the practical choice ksplit = k. Like ROOT KT, for any m, generalized
KT has time complexity dominated by O(n2) evaluations of ksplit and k and O(nmin(d, n)) space
complexity from storing either Sin or the kernel matrices (ksplit(xi, xj))ni,j=1 and (k(xi, xj))ni,j=1.

Algorithm 1: Generalized Kernel Thinning – Return coreset of size bn/2mc with small MMDk

Input: split kernel ksplit, target kernel k, point sequence Sin = (xi)
n
i=1, thinning parameter m 2 N,

probabilities (�i)bn/2c
i=1

(S(m,`))2
m

`=1  KT-SPLIT (ksplit,Sin,m, (�i)
bn/2c
i=1 ) // Split Sin into 2m candidate coresets of size b n

2m c

SKT  KT-SWAP (k,Sin, (S
(m,`))2

m

`=1) // Select best coreset and iteratively refine
return coreset SKT of size bn/2mc

2.1 SINGLE FUNCTION GUARANTEES FOR KT-SPLIT

We begin by analyzing the quality of the KT-SPLIT coresets. Our first main result, proved in App. B,
bounds the KT-SPLIT integration error for any fixed function in the RKHS Hsplit generated by ksplit.

Theorem 1 (Single function guarantees for KT-SPLIT) Consider KT-SPLIT (Alg. 1a) with oblivi-

ous
3 Sin and (�i)

n/2
i=1 and �? , mini �i. If

n
2m 2N, then, for any fixed f 2 Hsplit, index ` 2 [2m], and

scalar �02(0, 1), the output coreset S(m,`)
with P(`)

split , 1
n/2m

P
x2S(m,`) �x satisfies

|Pinf � P(`)
splitf |  kfkksplit

· �m

q
2 log( 2

�0 ) for �m , 2
p
3
2m

n

q
kksplitk1,in · log( 6m

2m�? )

with probability at least psg,1� �0�
Pm

j=1
2j�1

m

Pn/2j

i=1 �i. Here, kksplitk1,in,maxx2Sin ksplit(x,x).

Remark 1 (Guarantees for known and oblivious stopping times) By Dwivedi & Mackey (2021,

App. D), the success probability psg is at least 1�� if we set �0= �
2 and �i=

�
n for a stopping time n

known a priori or �i=
m�

2m+2(i+1) log2(i+1) for an arbitrary oblivious stopping time n.

When compressing heavily from n to
p
n points, Thm. 1 and Rem. 1 guarantee O(n�

1
2
p
log n) inte-

gration error with high probability for any fixed function f 2 Hsplit. This represents a near-quadratic
3Throughout, oblivious indicates that a sequence is generated independently of any randomness in KT.
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improvement over the ⌦(n�
1
4 ) integration error of

p
n i.i.d. points. Moreover, this guarantee ap-

plies to any kernel defined on any space including unbounded kernels on unbounded domains (e.g.,
energy distance (Sejdinovic et al., 2013) and Stein kernels (Oates et al., 2017; Chwialkowski et al.,
2016; Liu et al., 2016; Gorham & Mackey, 2017)); kernels with slowly decaying square roots (e.g.,
sinc kernels); and non-smooth kernels without square roots (e.g., Laplace, Matérn with � 2 (d2 , d]),
and the compactly supported kernels of Wendland (2004) with s < 1

2 (d+1)). In contrast, the MMD
guarantees of Dwivedi & Mackey covered only bounded, smooth k on Rd with bounded, Lipschitz,
and rapidly-decaying square-roots. In addition, for kkk

1
= 1 on Rd, the MMD bounds of Dwivedi

& Mackey feature exponential dimension dependence of the form cd or (log n)d/2 while the Thm. 1
guarantee is dimension-free and hence practically relevant even when d is large relative to n.

Thm. 1 also guarantees better-than-i.i.d. integration error for any target distribution with |Pf �
Pinf | = o(n�

1
4 ). In contrast, the MMD improvements of Dwivedi & Mackey (2021, cf. Tab. 2)

applied only to P with at least 2d moments. Finally, when KT-SPLIT is applied with a square-
root kernel ksplit = krt, Thm. 1 still yields integration error bounds for f 2 H, as H ✓ Hsplit.
However, relative to target KT-SPLIT guarantees with ksplit = k, the error bounds are inflated by a

multiplicative factor of
q

kkrtk1,in
kkk1,in

kfkkrt
kfkk

. In App. H, we show that this inflation factor is at least 1 for
each kernel explicitly analyzed in Dwivedi & Mackey (2021) and grows exponentially in dimension
for Gaussian and Matérn kernels, unlike the dimension-free target KT-SPLIT bounds.

Finally, if we run KT-SPLIT with the perturbed kernel k0

split defined in Cor. 1, then we simultaneously
obtain O(n�

1
2
p
log n) integration error for f 2 Hsplit, near-i.i.d. O(n�

1
4
p
log n) integration error

for arbitrary bounded f outside of Hsplit, and intermediate, better-than-i.i.d. o(n�
1
4 ) integration error

for smoother f outside of Hsplit (by interpolation). We prove this guarantee in App. C.

Corollary 1 (Guarantees for functions outside of Hsplit) Consider extending each input point xi

with the standard basis vector ei 2 Rn
and running KT-SPLIT (Alg. 1a) on S 0

in = (xi, ei)ni=1 with

k0

split((x,w), (y, v)) = ksplit(x,y)
kksplitk1

+ hw, vi for w, v,2 Rn
. Under the notation and assumptions

of Thm. 1, for any fixed index ` 2 [2m], scalar �0 2 (0, 1), and f defined on Sin, we have, with

probability at least psg,

|Pinf � P(`)
splitf |  min(

p
n
2m kfk1,in,

p
kksplitk1kfkksplit

) 2
m

n

q
8 log( 2

�0 ) · log(
8m

2m�? ). (3)

2.2 MMD GUARANTEE FOR TARGET KT

Our second main result bounds the MMDk (1)—the worst-case integration error across the unit ball
of H—for generalized KT applied to the target kernel, i.e., ksplit = k. The proof of this result in
App. D is based on Thm. 1 and an appropriate covering number for the unit ball Bk of the k RKHS.

Definition 1 (k covering number) For a set A and scalar " > 0, we define the k covering number
Nk(A, ") with Mk(A, ") , logNk(A, ") as the minimum cardinality of a set C ⇢ Bk satisfying

Bk ✓
S

h2C
{g 2 Bk : supx2A

|h(x)� g(x)|  "}. (4)

Theorem 2 (MMD guarantee for TARGET KT) Consider generalized KT (Alg. 1) with ksplit = k,

oblivious Sin and (�i)
bn/2c
i=1 , and �? , mini �i. If

n
2m 2N, then for any �02 (0, 1), the output coreset

SKT is of size
n
2m and satisfies

MMDk(Sin,SKT)  inf
"2(0,1), Sin⇢A

2"+ 2m

n ·
q

8
3kkk1,in log(

6m
2m�? ) ·

⇥
log( 4

�0 ) +Mk(A, ")
⇤

(5)

with probability at least psg, where kkk1,in and psg were defined in Thm. 1.

When compressing heavily from n to
p
n points, Thm. 2 and Rem. 1 with " =

q
kkk1,in

n and
A = B2(Rin) for Rin , maxx2Sinkxk2 guarantee

MMDk(Sin,SKT) -�

r
kkk1,in logn

n · Mk(B2(Rin),
q

kkk1,in
n ) (6)

4



Published as a conference paper at ICLR 2022

with high probability. Thus we immediately obtain an MMD guarantee for any kernel k with
a covering number bound. Furthermore, we readily obtain a comparable guarantee for P since
MMDk(P,SKT)MMDk(P,Sin)+MMDk(Sin,SKT). Any of a variety of existing algorithms can
be used to generate an input point sequence Sin with MMDk(P,Sin) no larger than the compression
bound (6), including i.i.d. sampling (Tolstikhin et al., 2017, Thm. A.1), geometric MCMC (Dwivedi
& Mackey, 2021, Prop. 1), kernel herding (Lacoste-Julien et al., 2015, Thm. G.1), Stein points (Chen
et al., 2018, Thm. 2), Stein point MCMC (Chen et al., 2019, Thm. 1), greedy sign selection (Karnin
& Liberty, 2019, Sec. 3.1), and Stein thinning (Riabiz et al., 2020a, Thm. 1).

2.3 CONSEQUENCES OF THM. 2

Tab. 2 summarizes the MMD guarantees of Thm. 2 under common growth conditions on the log
covering number Mk and the input point radius RSin , maxx2Sinkxk2. In Props. 2 and 3 of
App. J, we show that analytic kernels, like Gaussian, inverse multiquadric (IMQ), and sinc, have
LOGGROWTH Mk (i.e., Mk(B2(r), ") -d rd log!( 1" )) while finitely differentiable kernels (like
Matérn and B-spline) have POLYGROWTH Mk (i.e., Mk(B2(r), ") -d rd"�!).

Our conditions on RSin arise from four forms of target distribution tail decay: (1) COMPACT
(RSin -d 1), (2) SUBGAUSS (RSin -d

p
log n), (3) SUBEXP (RSin -d log n), and (4) HEAVYTAIL

(RSin -d n1/⇢). The first setting arises with a compactly supported P (e.g., on the unit cube [0, 1]d),
and the other three settings arise in expectation and with high probability when Sin is generated i.i.d.
from P with sub-Gaussian tails, sub-exponential tails, or ⇢ moments respectively.

Substituting these conditions into (6) yields the eight entries of Tab. 2. We find that, for LOG-
GROWTH Mk, TARGET KT MMD is within log factors of the ⌦(n�1/2) lower bounds of Sec. 1
for light-tailed P and is o(n�1/4) (i.e., better than i.i.d.) for any distribution with ⇢ > 4d moments.
Meanwhile, for POLYGROWTH Mk, TARGET KT MMD is o(n�1/4) whenever ! < 1

2 for light-
tailed P or whenever P has ⇢ > 2d/( 12 � !) moments.

Rin -d 1
COMPACT P

Rin -d
p
log n

SUBGAUSS P
Rin -d log n
SUBEXP P

Rin -d n1/⇢
HEAVYTAIL P

Mk(B2(r), ") -d rd log!( 1" )
LOGGROWTH Mk

q
(logn)!+1

n

q
(logn)d+!+1

n

q
(logn)2d+!+1

n

q
(logn)!+1

n1�2d/⇢

Mk(B2(r), ") -d rd"�!
POLYGROWTH Mk

q
logn
n1�!

q
(logn)d+1

n1�!

q
(logn)2d+1

n1�!

q
logn

n1�!�2d/⇢

Table 2: MMD guarantees for TARGET KT under Mk (4) growth and P tail decay. We report the
MMDk(Sin,SKT) bound (6) for target KT with n input points and

p
n output points, up to constants

depending on d and kkk1,in. Here Rin , maxx2Sinkxk2.

Next, for each of the popular convergence-determining kernels of Tab. 1, we compare the ROOT
KT MMD guarantees of Dwivedi & Mackey (2021) with the TARGET KT guarantees of Thm. 2
combined with covering number bounds derived in Apps. J and K. We see in Tab. 3 that Thm. 2
provides better-than-i.i.d. and better-than-ROOT KT guarantees for kernels with slowly decaying or
non-existent square-roots (e.g., IMQ with ⌫ < d

2 , sinc, and B-spline) and nearly matches known
ROOT KT guarantees for analytic kernels like Gauss and IMQ with ⌫ � d

2 , even though TARGET
KT makes no explicit use of a square-root kernel. See App. K for the proofs related to Tab. 3.

3 KERNEL THINNING+

We next introduce and analyze two new generalized KT variants: (i) POWER KT which leverages a
power kernel k↵ that interpolates between k and krt to improve upon the MMD guarantees of target
KT even when krt is not available and (ii) KT+ which uses a sum of k and k↵ to retain both the
improved MMD guarantee of k↵ and the superior single function guarantees of k.

Power kernel thinning First, we generalize the square-root kernel (2) definition for shift-invariant
k using the order 0 generalized Fourier transform (GFT, Wendland, 2004, Def. 8.9) bf of f : Rd ! R.

5
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Kernel k TARGET KT ROOT KT KT+

GAUSS(�) (logn)
3d
4

+1

p
n·cdn

(log n)
d
4 +1

2
p

cnp
n

(log n)
d
4 +1

2
p

cnp
n

LAPLACE(�) n� 1
4 N/A ( cn(log n)1+2d(1�↵)

n )
1

4↵

MATÉRN(⌫, �): ⌫ 2 ( d2 , d] n� 1
4 N/A ( cn(log n)1+2d(1�↵)

n )
1

4↵

MATÉRN(⌫, �): ⌫ > d min(n� 1
4 , (logn)

d+1
2

n(⌫�d)/(2⌫�d) )
(log n)

d+1
2

p
cnp

n

(log n)
d+1
2

p
cnp

n

IMQ(⌫, �): ⌫ < d
2

(log n)d+1
p

n
n� 1

4 (log n)d+1
p

n

IMQ(⌫, �): ⌫ � d
2

(logn)d+1
p

n
(log n)

d+1
2

p
cnp

n

(log n)
d+1
2

p
cnp

n

SINC(✓) (log n)2p
n

n� 1
4

(log n)2p
n

B-SPLINE(2� + 1, �): � 2 2N
q

logn
n2�/(2�+1)

N/A
q

log n
n

B-SPLINE(2� + 1, �): � 2 2N0 + 1
q

logn
n2�/(2�+1)

q
log n

n

q
log n

n

Table 3: MMDk(Sin,SKT) guarantees for commonly used kernels. For n input and
p
n output points, we

report the MMD bounds of Thm. 2 for TARGET KT, of Dwivedi & Mackey (2021, Thm. 1) for ROOT
KT, and of Thm. 4 for KT+ (with ↵ = 1

2 wherever feasible). We assume a SUBGAUSS P for the
GAUSS kernel, a COMPACT P for the B-SPLINE kernel, and a SUBEXP P for all other k (see Tab. 2
for a definition of each P class). Here, cn , log log n, �i = �

n , �0 = �
2 , and error is reported up to

constants depending on (k, d, �,↵). The KT+ guarantee for LAPLACE applies with ↵> d
d+1 and for

MATÉRN with ↵> d
2⌫ . The TARGET KT guarantee for MATÉRN with ⌫ > 3d/2 assumes ⌫�d/2 2 N

to simplify the presentation (see (53) for the general case). The best rate is highlighted in blue.

Definition 2 (↵-power kernel) Define k1 , k. We say a kernel k 1
2

is a
1
2 -power kernel for k if

k(x, y) = (2⇡)�d/2
R
Rd k 1

2
(x, z)k 1

2
(z, y)dz. For ↵ 2 ( 12 , 1), a kernel k↵(x, y)=↵(x�y) on Rd

is an ↵-power kernel for k(x, y)=(x�y) if c↵ = b↵
.

By design, k 1
2

matches krt (2) up to an immaterial constant rescaling. Given a power kernel k↵

we define POWER KT as generalized KT with ksplit = k↵. Our next result (with proof in App. E)
provides an MMD guarantee for POWER KT.

Theorem 3 (MMD guarantee for POWER KT) Consider generalized KT (Alg. 1) with ksplit = k↵

for some ↵ 2 [ 12 , 1], oblivious sequences Sin and (�i)
bn/2c
i=1 , and �? , mini �i. If

n
2m 2N, then for

any �02(0, 1), the output coreset SKT is of size
n
2m and satisfies

MMDk(Sin,SKT) 
�
2m

n kk↵k1
� 1

2↵ (2 ·fM↵)1�
1
2↵

�
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

� 1
↵�1

, (7)

with probability at least psg (defined in Thm. 1). The parameters fM↵ and Rmax are defined in

App. E and satisfy fM↵ = Od(
p
log n) and Rmax = Od(1) for compactly supported P and k↵ and

fM↵ = Od(
p
log n log log n) and Rmax = Od(log n) for subexponential P and k↵, when �? = �0

n .

Thm. 3 reproduces the ROOT KT guarantee of Dwivedi & Mackey (2021, Thm. 1) when ↵ = 1
2 and

more generally accommodates any power kernel via an MMD interpolation result (Prop. 1) that may
be of independent interest. This generalization is especially valuable for less-smooth kernels like
LAPLACE and MATÉRN(⌫, �) with ⌫ 2 (d2 , d] that have no square-root kernel. Our TARGET KT
MMD guarantees are no better than i.i.d. for these kernels, but, as shown in App. K, these kernels
have MATÉRN kernels as ↵-power kernels, which yield o(n�

1
4 ) MMD in conjunction with Thm. 3.

Kernel thinning+ Our final KT variant, kernel thinning+, runs KT-SPLIT with a scaled sum of
the target and power kernels, k† , k/kkk

1
+ k↵/kk↵k1.4 Remarkably, this choice simultane-

ously provides the improved MMD guarantees of Thm. 3 and the dimension-free single function
guarantees of Thm. 1 (see App. F for the proof).

4When Sin is known in advance, one can alternatively choose k† , k/kkk1,in + k↵/kk↵k1,in.
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Figure 1: Generalized kernel thinning (KT) vs i.i.d. sampling for an 8-component mixture of Gaussians
target P. For kernels k without fast-decaying square-roots, KT+ offers visible and quantifiable im-
provements over i.i.d. sampling. For Gaussian k, TARGET KT closely mimics ROOT KT.

Theorem 4 (Single function & MMD guarantees for KT+) Consider generalized KT (Alg. 1)

with ksplit = k†
, oblivious Sin and (�i)

bn/2c
i=1 , �? , mini �i, and

n
2m 2 N. For any fixed function

f 2 H, index ` 2 [2m], and scalar �02(0, 1), the KT-SPLIT coreset S(m,`)
satisfies

|Pinf � P(`)
splitf |  2m

n ·
q

16
3 log( 6m

2m�? ) log(
2
�0 )kfkk

p
kkk1, (8)

with probability at least psg (for psg and P(`)
split defined in Thm. 1). Moreover,

MMDk(Sin,SKT)  min
⇥p

2 ·MtargetKT(k), 2
1
2↵ ·MpowerKT(k↵)

⇤
(9)

with probability at least psg, where MtargetKT(k) denotes the right hand side of (5) with kkk1,in

replaced by kkk1, and MpowerKT(k↵) denotes the right hand side of (7).

As shown in Tab. 3, KT+ provides better-than-i.i.d. MMD guarantees for every kernel in Tab. 1—
even the Laplace, non-smooth Matérn, and odd B-spline kernels neglected by prior analyses—while
matching or improving upon the guarantees of TARGET KT and ROOT KT in each case.

4 EXPERIMENTS

Dwivedi & Mackey (2021) illustrated the MMD benefits of ROOT KT over i.i.d. sampling and stan-
dard MCMC thinning with a series of vignettes focused on the Gaussian kernel. We revisit those
vignettes with the broader range of kernels covered by generalized KT and demonstrate significant
improvements in both MMD and single-function integration error. We focus on coresets of size

p
n

produced from n inputs with �i=
1
2n , let Pout denote the empirical distribution of each output core-

set, and report mean error (±1 standard error) over 10 independent replicates of each experiment.

Target distributions and kernel bandwidths We consider three classes of target distributions on
Rd: (i) mixture of Gaussians P = 1

M

PM
j=1 N (µj , I2) with M component means µj 2 R2 defined

in App. I, (ii) Gaussian P = N (0, Id), and (iii) the posteriors of four distinct coupled ordinary

7
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differential equation models: the Goodwin (1965) model of oscillatory enzymatic control (d = 4),
the Lotka (1925) model of oscillatory predator-prey evolution (d = 4), the Hinch et al. (2004) model

of calcium signalling in cardiac cells (d = 38), and a tempered Hinch posterior. For settings (i) and
(ii), we use an i.i.d. input sequence Sin from P and kernel bandwidths � = 1/� =

p
2d. For setting

(iii), we use MCMC input sequences Sin from 12 posterior inference experiments of Riabiz et al.
(2020a) and set the bandwidths � = 1/� as specified by Dwivedi & Mackey (2021, Sec. K.2).

Figure 2: MMD and single-function integration error for Gaussian k and standard Gaussian P in Rd.
Without using a square-root kernel, TARGET KT matches the MMD performance of ROOT KT and
improves upon i.i.d. MMD and single-function integration error, even in d = 100 dimensions.

Function testbed To evaluate the ability of generalized KT to improve integration both inside and
outside of H, we evaluate integration error for (a) a random element of the target kernel RKHS
(f(x) = k(X 0, x) described in App. I), (b) moments (f(x) = x1 and f(x) = x2

1), and (c) a standard
numerical integration benchmark test function from the continuous integrand family (CIF, Genz,
1984), fCIF(x) = exp(� 1

d

Pd
j=1|xj � uj |) for uj drawn i.i.d. and uniformly from [0, 1].

Generalized KT coresets For an 8-component mixture of Gaussians target P, the top row of Fig. 1
highlights the visual differences between i.i.d. coresets and coresets generated using generalized
KT. We consider ROOT KT with GAUSS k, TARGET KT with GAUSS k, and KT+ (↵ = 0.7) with
LAPLACE k, KT+ (↵ = 1

2 ) with IMQ k (⌫ = 0.5), and KT+(↵ = 2
3 ) with B-SPLINE(5) k, and

note that the B-SPLINE(5) and LAPLACE k do not admit square-root kernels. In each case, even
for small n, generalized KT provides a more even distribution of points across components with
fewer within-component gaps and clumps. Moreover, as suggested by our theory, TARGET KT
and ROOT KT coresets for GAUSS k have similar quality despite TARGET KT making no explicit
use of a square-root kernel. The MMD error plots in the bottom row of Fig. 1 provide a similar
conclusion quantitatively, where we observe that for both variants of KT, the MMD error decays
as n�

1
2 , a significant improvement over the n�

1
4 rate of i.i.d. sampling. We also observe that the

empirical MMD decay rates are in close agreement with the rates guaranteed by our theory in Tab. 3
(n�

1
2 for GAUSS, B-SPLINE, and IMQ and n�

1
4↵ = n�0.36 for LAPLACE). We provide additional

visualizations and results in Figs. 4 and 5 of App. I, including MMD errors for M = 4 and M = 6
component mixture targets. The conclusions remain consistent with those drawn from Fig. 1.

8
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TARGET KT vs. i.i.d. sampling For Gaussian P and Gaussian k, Fig. 2 quantifies the improve-
ments in distributional approximation obtained when using TARGET KT in place of a more typical
i.i.d. summary. Remarkably, TARGET KT significantly improves the rate of decay and order of
magnitude of mean MMDk(P,Pout), even in d = 100 dimensions with as few as 4 output points.
Moreover, in line with our theory, TARGET KT MMD closely tracks that of ROOT KT without using
krt. Finally, TARGET KT delivers improved single-function integration error, both of functions in
the RKHS (like k(X 0, ·)) and those outside (like the first moment and CIF benchmark function),
even with large d and relatively small sample sizes.

KT+ vs. standard MCMC thinning For the MCMC targets, we measure error with respect to
the input distribution Pin (consistent with our guarantees), as exact integration under each posterior
P is intractable. We employ KT+ (↵ = 0.81) with LAPLACE k for Goodwin and Lotka-Volterra
and KT+ (↵ = 0.5) with IMQ k (⌫ = 0.5) for Hinch. Notably, neither kernel has a square-
root with fast-decaying tails. In Fig. 3, we evaluate thinning results from one chain targeting each
of the Goodwin, Lotka-Volterra, and Hinch posteriors and observe that KT+ uniformly improves
upon the MMD error of standard thinning (ST), even when ST exhibits better-than-i.i.d. accuracy.
Furthermore, KT+ provides significantly smaller integration error for functions inside of the RKHS
(like k(X 0, ·)) and outside of the RKHS (like the first and second moments and the benchmark CIF
function) in nearly every setting. See Fig. 6 of App. I for plots of the other 9 MCMC settings.

Figure 3: Kernel thinning+ (KT+) vs. standard MCMC thinning (ST). For kernels without fast-decaying
square-roots, KT+ improves MMD and integration error decay rates in each posterior inference task.

5 DISCUSSION AND CONCLUSIONS

In this work, we introduced three new generalizations of the ROOT KT algorithm of Dwivedi &
Mackey (2021) with broader applicability and strengthened guarantees for generating compact rep-
resentations of a probability distribution. TARGET KT-SPLIT provides

p
n-point summaries with

O(
p
log n/n) integration error guarantees for any kernel, any target distribution, and any func-

tion in the RKHS; POWER KT yields improved better-than-i.i.d. MMD guarantees even when a
square-root kernel is unavailable; and KT+ simultaneously inherits the guarantees of TARGET KT
and POWER KT. While we have focused on unweighted coreset quality we highlight that the same
MMD guarantees extend to any improved reweighting of the coreset points. For example, for down-
stream tasks that support weights, one can optimally reweight Pout to approximate Pin in O(n

3
2 ) time

by directly minimizing MMDk. Finally, one can combine generalized KT with the COMPRESS++
meta-algorithm of Shetty et al. (2022) to obtain coresets of comparable quality in near-linear time.

9
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REPRODUCIBILITY STATEMENT

See App. I for supplementary experimental details and results and the goodpoints Python pack-
age

https://github.com/microsoft/goodpoints

for Python code reproducing all experiments.
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A DETAILS OF KT-SPLIT AND KT-SWAP

Algorithm 1a: KT-SPLIT – Divide points into candidate coresets of size bn/2mc

Input: kernel ksplit, point sequence Sin = (xi)
n
i=1, thinning parameter m 2 N, probabilities (�i)

bn
2 c

i=1

S
(j,`)
 {} for 0  j  m and 1  `  2j // Empty coresets: S(j,`) has size b i

2j
c after round i

�j,`  0 for 1  j  m and 1  `  2j�1 // Swapping parameters
for i = 1, . . . , bn/2c do

S
(0,1).append(xi);S

(0,1).append(x2i)

// Every 2j rounds, add one point from parent coreset S(j�1,`) to each child coreset S(j,2 �̀1), S(j,2`)

for (j = 1; j  m and i/2j�1
2 N; j = j + 1) do

for ` = 1, . . . , 2j�1 do
(S,S 0) (S(j�1,`),S(j,2`�1)); (x, x̃) get last two points(S)
// Compute swapping threshold a

a,�j,`  get swap params(�j,`, b, �|S|/2
2j�1

m ) for b2=ksplit(x, x)+ksplit(x̃, x̃)�2ksplit(x, x̃)

// Assign one point to each child after probabilistic swapping
↵  ksplit(x̃, x̃)�ksplit(x, x)+⌃y2S(ksplit(y, x)�ksplit(y, x̃))�2⌃z2S0(ksplit(z, x)�ksplit(z, x̃))

(x, x̃) (x̃, x) with probability min(1, 1
2 (1�

↵
a )+)

S
(j,2`�1).append(x); S

(j,2`).append(x̃)
end

end
end
return (S(m,`))2

m

`=1, candidate coresets of size bn/2mc

function get swap params(�, b, �):

a  max(b�
p

2 log(2/�), b2)
�2
 �2+b2(1+(b2�2a)�2/a2)+

return (a,�)
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Algorithm 1b: KT-SWAP – Identify and refine the best candidate coreset
Input: kernel k, point sequence Sin = (xi)

n
i=1, candidate coresets (S(m,`))2

m

`=1

S
(m,0)

 baseline thinning(Sin,size = bn/2mc) // Compare to baseline (e.g., standard thinning)

SKT  S
(m,`?) for `?  argmin`2{0,1,...,2m} MMDk(Sin,S

(m,`)) // Select best candidate coreset
// Swap out each point in SKT for best alternative in Sin

for i = 1, . . . , bn/2mc do
SKT[i] argminz2Sin

MMDk(Sin,SKT with SKT[i] = z)
end
return SKT, refined coreset of size bn/2mc

B PROOF OF THM. 1: SINGLE FUNCTION GUARANTEES FOR KT-SPLIT

The proof is identical for each index `, so, without loss of generality, we prove the result for the case
` = 1. Define
fWm , W1,m = Pinksplit � P(1)

out ksplit =
1
n

P
x2Sin

ksplit(x, ·)� 1
n/2m

P
x2S(m,1) ksplit(x, ·).

Next, we use the results about an intermediate algorithm, kernel halving (Dwivedi & Mackey, 2021,
Alg. 3) that was introduced for the analysis of kernel thinning. Using the arguments from Dwivedi
& Mackey (2021, Sec. 5.2), we conclude that KT-SPLIT with ksplit and thinning parameter m, is
equivalent to repeated kernel halving with kernel ksplit for m rounds (with no Failure in any
rounds of kernel halving). On this event of equivalence, denoted by Eequi, Dwivedi & Mackey
(2021, Eqns. (50, 51)) imply that the function fWm 2 Hsplit is equal in distribution to another random
function Wm, where Wm is unconditionally sub-Gaussian with parameter

�m = 2
p
3
2m

n

q
kksplitk1 log( 6m

2m�? ),

that is,

E[exp(hWm, fiksplit)]  exp( 12�
2
mkfk

2
ksplit

) for all f 2 Hsplit, (10)

where we note that the analysis of Dwivedi & Mackey (2021) remains unaffected when we replace
kksplitk1 by kksplitk1,in in all the arguments. Applying the sub-Gaussian Hoeffding inequality
(Wainwright, 2019, Prop. 2.5) along with (10), we obtain that

P[
��hWm, fiksplit

�� > t]  2 exp(� 1
2 t

2/(�2
mkfk

2
ksplit

))  �0 for t , �mkfkksplit

q
2 log( 2

�0 ).

Call this event Esg. As noted above, conditional to the event Eequi, we also have

Wm
d
= fWm =) hWm, fiksplit

d
= Pinf � P(1)

out f,

where d
= denotes equality in distribution. Furthermore, Dwivedi & Mackey (2021, Eqn. 48) implies

that

P(Eequi) � 1�
Pm

j=1
2j�1

m

Pn/2j

i=1 �i.

Putting the pieces together, we have

P[|Pinf � P(1)
out f |  t] � P(Eequi \ Ec

sg) � P(Eequi)� P(Esg) � 1�
Pm

j=1
2j�1

m

Pn/2j

i=1 �i��0 = psg,

as claimed. The proof is now complete.

C PROOF OF COR. 1: GUARANTEES FOR FUNCTIONS OUTSIDE OF HSPLIT

Fix any index ` 2 [2m], scalar �0 2 (0, 1), and f defined on Sin, and consider the associated vector
g 2 Rn with gi = f(xi) for each i 2 [n]. We define two extended functions by appending the
domain by Rn as follows: For any w 2 Rn, define f1((x,w)) = f(x) and f2((x,w)) = hg, wi
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(the Euclidean inner product). Then we note that these functions replicate the values of f on Sin,
since f1((xi, w)) = f(xi) for arbitrary w 2 Rn, and f2((xi, ei)) = hg, eii = gi = f(xi), where ei
denotes the i-th basis vector in Rn. Thus we can write

Pinf � P(`)
splitf = P0

inf1 � P0(`)
splitf1 = P0

inf2 � P0(`)
splitf2 (11)

for the extended empirical distributions P0

in = 1
n

Pn
i=1 �xi,ei and P0(`)

split, defined analogously. No-
tably, any function of the form f̃((x,w)) = hg̃, wi belongs to the RKHS of k0

split with

kf̃kk0
split
 kg̃k2 (12)

by Berlinet & Thomas-Agnan (2011, Thm. 5).

By the repeated halving interpretation of kernel thinning (Dwivedi & Mackey, 2021, Sec. 5.2), on
an event E of probability at least psg + �0 we may write

P0

inf2 � P0(`)
splitf2 =

Pm
j=1hWj , f2ik0

split
=
Pm

j=1hWj , f2,jik0
split

where Wj denotes suitable random functions in the RKHS of k0

split, and each f2,j((x,w)) =

hg(j), wi for g(j) 2 Rn a sparsification of g with at most n
2j�1 non-zero entries that satisfy

E[exp(hWj , f2,jik0
split
) | Wj�1]  exp(

�2
j

2 kf2,jk
2
k0

split
)

(12)
 exp(

�2
j

2

��g(j)
��2
2
)  exp(

�2
j

2
n

2j�1 kfk21,in)

for W0 , 0 and

�2
j = 4( 2

j�1

n )2kk0

splitk1,in log(
4m
2j�? )  2 · 4j

n2 log(
4m
2j�? ),

since by definition kk0

splitk1,in  2. Hence, by sub-Gaussian additivity (see, e.g., Dwivedi &
Mackey, 2021, Lem. 8), Pinf2 � P(`)

splitf2 is e�2 sub-Gaussian with

e�2
2  4

nkfk
2
1,in ·

Pm
j=1 2

j log( 4m
2j�? )

(i)
= 4

nkfk
2
1,in · 2

�
(2m � 1) log( 4m�? )� ((2m � 1)(m� 1) +m) log 2

�

= 4
nkfk

2
1,in · 2

�
(2m � 1) log( 4m·2

2m�? )�m log 2
�

 8 · 2m

n kfk
2
1,in · log( 8m

2m�? ),

i.e.,

e�2 
q

2m

n · kfk1,in ·
q
8 log( 8m

2m�? ) (13)

on the event E, where step (i) makes use of the following expressions:
Pm

j=1 2
j = 2(2m � 1) and

Pm
j=1 j2

j = 2((m� 1)(2m � 1) +m).

Moreover, when f 2 Hsplit, we additionally have f1 in the RKHS of k0

split with

kf1kk0
split
 kfkksplit

p
kksplitk1,

as argued in the proof of (23). The proof of Thm. 1 then implies that P0

inf1 � P0(`)
splitf1 is e�1 sub-

Gaussian with

e�1  kfakk0
split

2
p
3
2m

n

q
kk0

splitk1,in · log( 6m
2m�? ) 

2m

n · kfkksplit

p
kksplitk1 ·

q
8
3 log(

6m
2m�? ), (14)

on the very same event E.

Recalling (11) and putting the pieces together with the definitions (13) and (14), we conclude that
on the event E, the random variable Pinf � P(`)

splitf is e� sub-Gaussian for

e� , min(e�1, e�2)
(13),(14)
 min

�p
n
2m kfk1,in, kfkksplit

p
kksplitk1

�
· 2m

n

q
8 log( 8m

2m�? ).

The advertised high-probability bound (3) now follows from the e� sub-Gaussianity on E exactly as
in the proof of Thm. 1.
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D PROOF OF THM. 2: MMD GUARANTEE FOR TARGET KT

First, we note that by design, KT-SWAP ensures
MMDk(Sin,SKT)  MMDk(Sin,S(m,1)),

where S(m,1) denotes the first coreset returned by KT-SPLIT. Thus it suffices to show that
MMDk(Sin,S(m,1)) is bounded by the term stated on the right hand side of (5). Let P(1)

out ,
1

n/2m
P

x2S(m,1) �x. By design of KT-SPLIT, supp(P(1)
out ) ✓ supp(Pin). Recall the set A is such

that supp(Pin) ✓ A.

Proof of (5) Let C , Ck,"(A) denote the cover of minimum cardinality satisfying (4). Fix any
f 2 Bk . By the triangle inequality and the covering property (4) of C, we have���(Pin � P(1)

out )f
���  infg2C

���(Pin � P(1)
out )(f � g)

���+
���(Pin � P(1)

out )(g)
���

 infg2C |Pin(f � g)|+
���P(1)

out (f � g)
���+ supg2C

���(Pin � P(1)
out )(g)

���

 infg2C 2 supx2A
|f(x)� g(x)|+ supg2C

���(Pin � P(1)
out )(g)

���

 2"+ supg2C

���(Pin � P(1)
out )(g)

���. (15)

Applying Thm. 1, we have
���(Pin � P(1)

out )(g)
���  2m

n kgkk
q

8
3kkk1,in · log( 4

�? ) log(
4
�0 ) (16)

with probability at least 1��0�
Pm

j=1
2j�1

m

Pn/2j

i=1 �i = psg� �0. A standard union bound then yields
that

supg2C

���(Pin � P(1)
out )(g)

���  2m

n supg2C
kgkk

q
8
3kkk1,in · log( 4

�? )
⇥
log |C|+ log( 4

�0 )
⇤

probability at least psg � �0. Since f 2 Bk was arbitrary, and C ⇢ Bk and thus supg2C
kgkk  1,

we therefore have

MMDk(Sin,S(m,1)) = sup
kfkk1

���(Pin�P(1)
out )f

���
(15)
 2"+supg2C

���(Pin�P(1)
out )(g)

���

 2"+
q

8kkk1
3 · 2m

n

q
log( 4

�? )
⇥
log |C|+ log( 4

�0 )
⇤
,

with probability at least psg � �0 as claimed.

E PROOF OF THM. 3: MMD GUARANTEE FOR POWER KT

Definition of fM↵ and Rmax Define the k↵ tail radii,

R†

k↵,n,min{r : ⌧k↵(r)
kk↵k1

n }, where ⌧k↵(R) , (supx
R
kyk2�R k2

↵(x, x� y)dy)
1
2 ,

Rk↵,n,min{r : sup
kx�yk2�r|k↵(x, y)| kk↵k1

n }, (17)
and the Sin tail radii

RSin ,maxx2Sinkxk2, and RSin,k↵,n,min
�
RSin , n

1+ 1
dRk↵,n + n

1
d kk↵k1/Lk↵

�
. (18)

Furthermore, define the inflation factor

Mk↵(n,m, d,�,�0,R) , 37
q
log

�
6m
2m�

�hq
log

�
4
�0

�
+ 5

q
d log(2 + 2 Lk↵

kk↵k1

�
Rk↵,n +R

�
)
i
,

where Lk↵ denotes a Lipschitz constant satisfying |k↵(x, y)� k↵(x, z)|  Lk↵ky � zk2 for all
x, y, z 2 Rd. With the notations in place, we can define the quantities appearing in Thm. 3:

fM↵ , Mk↵(n,m, d,�?,�0,RSin,k↵,n) and Rmax , max(RSin ,R
†

k↵,n/2m). (19)

The scaling of these two parameters depends on the tail behavior of k↵ and the growth of the radii
RSin (which in turn would typically depend on the tail behavior of P). The scaling of fM↵ and Rmax

stated in Thm. 3 under the compactly supported or subexponential tail conditions follows directly
from Dwivedi & Mackey (2021, Tab. 2, App. I).
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Proof of Thm. 3 The KT-SWAP step ensures that

MMDk(Sin,S↵KT)  MMDk(Sin,S(m,1)
↵ ),

where S(m,1)
↵ denotes the first coreset output by KT-SPLIT with ksplit = k↵. Next, we state a key

interpolation result for MMDk that relates it to the MMD of its power kernels (Def. 2) (see App. G
for the proof).

Proposition 1 (An interpolation result for MMD) Consider a shift-invariant kernel k that admits

valid ↵ and 2↵-power kernels k↵ and k2↵ respectively for some ↵ 2 [ 12 , 1]. Then for any two

discrete measures P and Q supported on finitely many points, we have

MMDk(P,Q)  (MMDk↵(P,Q))2�
1
↵ · (MMDk2↵(P,Q))

1
↵�1. (20)

Given Prop. 1, it remains to establish suitable upper bounds on MMDs of k↵ and k2↵. To this
end, first we note that for any reproducing kernel k and any two distributions P and Q, Hölder’s
inequality implies that

MMD2
k(P,Q) = k(P�Q)kk2k = (P�Q)(P�Q)k  kP�Qk1k(P�Q)kk1

 2k(P�Q)kk1.

Now, let Pin and P(m,1)
↵ denote the empirical distributions of Sin and S(m,1)

↵ . Now applying Dwivedi
& Mackey (2021, Thm. 4(b)), we find that

MMDk↵(Sin,S(m,1)
↵ ) 

q
2k(Pin � P(m,1)

↵ )k↵k1,in 
q
2 · 2m

n kk↵k1,infMk↵ (21)

with probability psg � �0, where fMk↵ was defined in (19). We note that while Dwivedi & Mackey
(2021, Thm. 4(b)) uses kk↵k1 in their bounds, we can replace it by kk↵k1,in, and verifying that
all the steps of the proof continue to be valid (noting that kk↵k1,in is deterministic given Sin).
Furthermore, Dwivedi & Mackey (2021, Thm. 4(b)) yields that

MMDk2↵(Sin,S(m,1)
↵ )  2m

n kk↵k1,in

✓
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

◆
, (22)

with probability psg � �0, where we have once again replaced the term kk↵k1 with kk↵k1,in for
the same reasons as stated above. We note that the two bounds (21) and (22) apply under the same
high probability event as noted in Dwivedi & Mackey (2021, proof of Thm. 1, eqn. (18)). Putting
together the pieces, we find that

MMDk(Sin,S(m,1)
↵ )

(20)
 (MMDk↵(Sin,S(m,1)

↵ )2�
1
↵ · (MMDk2↵(Sin,S(m,1)

↵ ))
1
↵�1

(21,22)


h
2 · 2m

n kk↵k1,infM↵

i1� 1
2↵


2m

n kk↵k1,in

✓
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

◆� 1
↵�1

=
�
2m

n kk↵k1,in
� 1

2↵ (2 ·fM↵)1�
1
2↵

✓
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

◆ 1
↵�1

,

as claimed. The proof is now complete.

F PROOF OF THM. 4: SINGLE FUNCTION & MMD GUARANTEES FOR KT+

Proof of (8) First, we note that the RKHS H of k is contained in the RKHS H† of k† Berlinet
& Thomas-Agnan (2011, Thm. 5). Now, applying Thm. 1 with ksplit = k† for any fixed function
f 2 H ⇢ H† and �0 2 (0, 1), we obtain that

���Pinf � P(`)
splitf

���  kfkk† · 2
p
3
2m

n

q
kk†k1,in · log( 6m

2m�? )
q
2 log( 2

�0 )

(i)
 kfkk† · 2m

n

q
16
3 log( 6m

2m�? ) log(
2
�0 ),

(ii)
 kfkk · 2m

n

q
16
3 kkk1 log( 6m

2m�? ) log(
2
�0 ),
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with probability at least psg. Here step (i) follows from the inequality kk†k1  2, and step (ii)
follows from the inequality kfkk† 

p
kkk1kfkk, which in turn follows from the standard facts

that

kfk�k
(iii)
= kfkk

p

�
, and kfk�k+k↵

(iv)
 kfk�k for � > 0, f 2 H, (23)

see, e.g., Zhang & Zhao (2013, Proof of Prop. 2.5) for a proof of step (iii), Berlinet & Thomas-
Agnan (2011, Thm. 5) for step (iv). The proof for the bound (8) is now complete. ⇤

Proof of (9) Repeating the proof of Thm. 2 with the bound (16) replaced by (8) yields that

MMDk(Sin,SKT+)  inf",Sin⇢A 2"+ 2m

n

q
16
3 kkk1 log( 6m

2m�? ) ·
⇥
log( 4

�0 )+Mk(A, ")
⇤


p
2 ·MtargetKT(k) (24)

with probability at least psg. Let us denote this event by E1.

To establish the other bound, first we note that KT-SWAP step ensures that

MMDk(Sin,SKT+)  MMDk(Sin,S(m,1)
KT+ ), (25)

where S(m,1)
KT+ denotes the first coreset output by KT-SPLIT with ksplit = k†. We can now repeat

the proof of Thm. 3, using the sub-Gaussian tail bound (8), and with a minor substitution, namely,
kk↵k1,in replaced by 2kk↵k1. Putting it together with (25), we conclude that

MMDk(Sin,SKT+) 
�
2m

n 2kk↵k1,in
� 1

2↵ (2fM↵)1�
1
2↵

✓
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

◆ 1
↵�1

= 2
1
2↵ ·MpowerKT(k↵), (26)

with probability at least psg. Let us denote this event by E2.

Note that the quantities on the right hand side of the bounds (24) and (26) are deterministic given
Sin, and thus can be computed apriori. Consequently, we apply the high probability bound only for
one of the two events E1 or E2 depending on which of the two quantities (deterministically) attains
the minimum. Thus, the bound (9) holds with probability at least psg as claimed. ⇤

G PROOF OF PROP. 1: AN INTERPOLATION RESULT FOR MMD

For two arbitrary distributions P and Q, and any reproducing kernel k, Gretton et al. (2012, Lem. 4)
yields that

MMD2
k(P,Q) = k(P�Q)kk2k. (27)

Let F denote the generalized Fourier transform (GFT) operator (Wendland (2004, Def. 8.9)). Since
k(x, y) = (x� y), Wendland (2004, Thm. 10.21) yields that

kfk2k = 1
(2⇡)d/2

R
Rd

(F(f)(!))2

F()(!) d!, for f 2 H. (28)

Let b , F(), and consider a discrete measure D =
Pn

i=1 wi�xi supported on finitely many points,
and let Dk(x) , P

wik(x, xi) =
P

wi(x� xi). Now using the linearity of the GFT operator F ,
we find that for any ! 2 Rd,

F(Dk)(!) = F(
Pn

i=1 wi(·�xi)) =
Pn

i=1 wiF((·�xi) = (
Pn

i=1 wie�h!,xii) · b(!)
= bD(!)b(!) (29)

where we used the time-shifting property of GFT that F((·�xi))(!) = e�h!,xiib(!) (proven
for completeness in Lem. 1), and used the shorthand bD(!) , (

Pn
i=1 wie�h!,xii) in the last step.
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Putting together (27) to (29) with D = P�Q, we find that

MMD2
k(P,Q) = 1

(2⇡)d/2

R
Rd

bD2(!)b(!)d! (30)

= 1
(2⇡)d/2

R
Rd

bD2(!)b↵(!)(b↵(!))
1�↵
↵ d!

= 1
(2⇡)d/2

R
Rd

bD2(!0)b↵(!0)d!0
R
Rd

bD2(!)b↵(!)R
Rd

bD2(!0)b↵(!0)d!0 (b↵(!))
1�↵
↵ d!

(i)
 1

(2⇡)d/2

R
Rd

bD2(!0)b↵(!0)d!0

✓R
Rd

bD2(!)b↵(!)R
Rd

bD2(!0)b↵(!0)d!0 b↵(!)d!

◆ 1�↵
↵

= 1
(2⇡)d/2

⇣R
Rd

bD2(!0)b↵(!0)d!0

⌘2� 1
↵
⇣R

Rd

bD2(!)b2↵(!)
d !

⌘ 1�↵
↵

=
⇣

1
(2⇡)d/2

R
Rd

bD2(!0)b↵(!0)d!0

⌘2� 1
↵
⇣

1
(2⇡)d/2

R
Rd

bD2(!)b2↵(!)
d !

⌘ 1�↵
↵

(ii)
= (MMD2

k↵
(P,Q))2�

1
↵ · (MMD2

k2↵
(P,Q))

1
↵�1,

where step (i) makes use of Jensen’s inequality and the fact that the function t 7! t
1�↵
↵ for t � 0

is concave for ↵ 2 [ 12 , 1], and step (ii) follows by applying (30) for kernels k↵ and k2↵ and noting
that by definition F(k↵) = b↵, and F(k2↵) = b2↵. Noting MMD is a non-negative quantity, and
taking square-root establishes the claim (20).

Lemma 1 (Shifting property of the generalized Fourier transform) If b denotes the generalized

Fourier transform (GFT) (Wendland, 2004, Def. 8.9) of the function  : Rd ! R, then e�h·,xiib
denotes the GFT of the shifted function (·� xi), for any xi 2 Rd

.

Proof Note that by definition of the GFT b (Wendland, 2004, Def. 8.9), we have
R
(x)b�(x)dx =

R
b(!)�(!)d!, (31)

for all suitable Schwartz functions � (Wendland, 2004, Def. 5.17), where b� denotes the Fourier
transform (Wendland, 2004, Def. 5.15) of � since GFT and FT coincide for these functions (as
noted in the discussion after Wendland (2004, Def. 8.9)). Thus to prove the lemma, we need to
verify that

R
(x� xi)b�(x)dx =

R
e�h!,xiib(!)�(!)d!, (32)

for all suitable Schwartz functions �. Starting with the right hand side of the display (32), we have
R
e�h!,xiib(!)�(!)d! =

R
b(!)(e�h!,xii�(!))d!

(i)
=
R
(x)b�(x+ xi)dx

(ii)
=

R
(z � xi)b�(z)dz,

where step (i) follows from the shifting property of the FT (Wendland, 2004, Thm. 5.16(4)), and
the fact that the GFT condition (31) holds for the shifted function �(·+ xi) function as well since it
is still a Schwartz function (recall that b� is the FT), and step (ii) follows from a change of variable.
We have thus established (32), and the proof is complete. ⇤

H SUB-OPTIMALITY OF SINGLE FUNCTION GUARANTEES WITH ROOT KT

Define ekrt as the scaled version of krt, i.e., ekrt , krt/kkrtk1 that is bounded by 1. Then Zhang &
Zhao (2013, Proof of Prop. 2.3) implies that

kfkkrt =
1p

kkrtk1
kfkekrt

. (33)

And thus we also have Hrt = eHrt where Hrt and eHrt respectively denote the RKHSs of krt and ekrt.

Next, we note that for any two kernels k1 and k2 with corresponding RKHSs H1 and H2 with
H1 ⇢ H2, in the convention of Zhang & Zhao (2013, Lem. 2.2, Prop. 2.3), we have

kfkk2
kfkk1

 �(H1,H2) 
p

�(H1,H2) for f 2 H. (34)
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Consequently, we have
p
maxx2Sin krt(x, x)

kfkkrt
kfkk


p
kkrtk1

kfkkrt
kfkk

(33)
=

kfkekrt
kfkk


q
�(H, eHrt), (35)

where in the last step, we have applied the bound (34) with (k1,H1)  (k,H) and (k2,H2)  
(ekrt, ekrt) since H ⇢ Hrt = ekrt.

Next, we use (35) to the kernels studied in Dwivedi & Mackey (2021) where we note that all the
kernels in that work were scaled to ensure kkk1 = 1 and in fact satisfied k(x, x) = 1. Conse-
quently, the multiplicative factor stated in the discussion after Thm. 1, namely,

q
kkrtk1,in
kkk1,in

kfkkrt
kfkk

can

be bounded by
q
�(H, eHrt) given the arguments above.

For k = Gauss(�) kernels, Zhang & Zhao (2013, Prop. 3.5(1)) yields that

�(H, eHrt) = 2d/2.

For k = B-spline(2� + 1, �) with � 2 2N+ 1, Zhang & Zhao (2013, Prop. 3.5(1)) yields that

�(H, eHrt) = 1.

For k =Matérn(⌫, �) with ⌫ > d, some algebra along with Zhang & Zhao (2013, Prop 3.1) yields
that

�(H, eHrt) =
�(⌫)�((⌫�d)/2)
�(⌫�d/2)�(⌫/2) � 1.

I ADDITIONAL EXPERIMENTAL RESULTS

This section provides additional experimental details and results deferred from Sec. 4.

Common settings and error computation To obtain an output coreset of size n
1
2 with n input

points, we (a) take every n
1
2 -th point for standard thinning (ST) and (b) run KT with m = 1

2 log2 n
using an ST coreset as the base coreset in KT-SWAP. For Gaussian and MoG target we use i.i.d.
points as input, and for MCMC targets we use an ST coreset after burn-in as the input (see App. I for
more details). We compute errors with respect to P whenever available in closed form and otherwise
use Pin. For each input sample size n 2

�
24, 26, . . . , 214

 
with �i =

1
2n , we report the mean MMD

or function integration error ±1 standard error across 10 independent replications of the experiment
(the standard errors are too small to be visible in all experiments). We also plot the ordinary least
squares fit (for log mean error vs log coreset size), with the slope of the fit denoted as the empirical
decay rate, e.g., for an OLS fit with slope �0.25, we display the decay rate of n�0.25.

Details of test functions We note the following: (a) For Gaussian targets, the error with CIF
function and i.i.d. input is measured across the sample mean over the n input points and

p
n output

points obtained by standard thinning the input sequence, since PfCIF does not admit a closed form.
(b) To define the function f : x 7! k(X 0, x), first we draw a sample X ⇠ P, independent of the
input, and then set X 0 = 2X . For the MCMC targets, we draw a point uniformly from a held out
data point not used as input for KT. For each target, the sample is drawn exactly once and then fixed
throughout all sample sizes and repetions.

I.1 MIXTURE OF GAUSSIANS EXPERIMENTS

Our mixture of Gaussians target is given by P = 1
M

PM
j=1 N (µj , Id) for M 2 {4, 6, 8} where

µ1 = [�3, 3]>, µ2 = [�3, 3]>, µ3 = [�3,�3]>, µ4 = [3,�3]>,
µ5 = [0, 6]>, µ6 = [�6, 0]>, µ7 = [6, 0]>, µ8 = [0,�6]>.

Two independent replicates of Fig. 1 can be found in Fig. 4. Finally,we display mean MMD (±1
standard error across ten independent experiment replicates) as a function of coreset size in Fig. 5
for M = 4, 6 component MoG targets. The conclusions from Fig. 5 are identical to those from the
bottom row of Fig. 1: TARGET KT and ROOT KT provide similar MMD errors with GAUSS k, and
all variants of KT provide a significant improvement over i.i.d. sampling both in terms of magnitude
and decay rate with input size. Morever the observed decay rates for KT+ closely match the rates
guaranteed by our theory in Tab. 3.
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Figure 4: Generalized kernel thinning (KT) and i.i.d. coresets for various kernels k (in parentheses) and
an 8-component mixture of Gaussian target P with equidensity contours underlaid. These plots are
independent replicates of Fig. 1. See Sec. 4 for more details.

I.2 MCMC EXPERIMENTS

Our set-up for MCMC experiments follows closely that of Dwivedi & Mackey (2021). For complete
details on the targets and sampling algorithms we refer the reader to Riabiz et al. (2020a, Sec. 4).

Goodwin and Lotka-Volterra experiments From Riabiz et al. (2020b), we use the output of four
distinct MCMC procedures targeting each of two d = 4-dimensional posterior distributions P: (1)
a posterior over the parameters of the Goodwin model of oscillatory enzymatic control (Goodwin,
1965) and (2) a posterior over the parameters of the Lotka-Volterra model of oscillatory predator-
prey evolution (Lotka, 1925; Volterra, 1926). For each of these targets, Riabiz et al. (2020b) provide
2 ⇥ 106 sample points from the following four MCMC algorithms: Gaussian random walk (RW),
adaptive Gaussian random walk (adaRW, Haario et al., 1999), Metropolis-adjusted Langevin al-
gorithm (MALA, Roberts & Tweedie, 1996), and pre-conditioned MALA (pMALA, Girolami &
Calderhead, 2011).

Hinch experiments Riabiz et al. (2020b) also provide the output of two independent Gaussian
random walk MCMC chains targeting each of two d = 38-dimensional posterior distributions P:
(1) a posterior over the parameters of the Hinch model of calcium signalling in cardiac cells (Hinch
et al., 2004) and (2) a tempered version of the same posterior, as defined by Riabiz et al. (2020a,
App. S5.4).

Burn-in and standard thinning We discard the initial burn-in points of each chain using the
maximum burn-in period reported in Riabiz et al. (2020a, Tabs. S4 & S6, App. S5.4). Furthermore,
we also normalize each Hinch chain by subtracting the post-burn-in sample mean and dividing each
coordinate by its post-burn-in sample standard deviation. To obtain an input sequence Sin of length
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Figure 5: Kernel thinning versus i.i.d. sampling. For mixture of Gaussians P with M 2 {4, 6} com-
ponents and the kernel choices of Sec. 4, the TARGET KT with GAUSS k provides comparable
MMDk(P,Pout) error to the ROOT KT, and both provide an n� 1

2 decay rate improving significantly
over the n� 1

4 decay rate from i.i.d. sampling. For the other kernels, KT+ provides a decay rate close
to n� 1

2 for IMQ and B-SPLINE k, and n�0.35 for LAPLACE k, providing an excellent agreement
with the MMD guarantees provided by our theory. See Sec. 4 for further discussion.

n to be fed into a thinning algorithm, we downsample the remaining even indices of points using
standard thinning (odd indices are held out). When applying standard thinning to any Markov chain
output, we adopt the convention of keeping the final sample point.

The selected burn-in periods for the Goodwin task were 820,000 for RW; 824,000 for adaRW;
1,615,000 for MALA; and 1,475,000 for pMALA. The respective numbers for the Lotka-Volterra
task were 1,512,000 for RW; 1,797,000 for adaRW; 1,573,000 for MALA; and 1,251,000 for
pMALA.

Additional remarks on Fig. 3 When a Markov chain is fast mixing (as in the Goodwin and Lotka-
Volterra examples), we expect standard thinning to have ⌦(n�

1
4 ) error. However, when the chain is

slow mixing, standard thinning can enjoy a faster rate of decay due to a certain degeneracy of the
chain that leads it to lie close to a one-dimensional curve. In the Hinch figures, we observe these
better-than-i.i.d. rates of decay for standard thinning, but, remarkably, KT+ still offers improvements
in both MMD and integration error. Moreover, in this setting, every additional point discarded via
improved compression translates into thousands of CPU hours saved in downstream heart-model
simulations.

J UPPER BOUNDS ON RKHS COVERING NUMBERS

In this section, we state several results on covering bounds for RKHSes for both generic and specific
kernels. We then use these bounds with Thm. 2 (or Tab. 2) to establish MMD guarantees for the
output of generalized kernel thinning as summarized in Tab. 3.

We first state covering number bounds for RKHS associated with generic kernels, that are either (a)
analytic, or (b) finitely many times differentiable. These results follow essentially from Sun & Zhou
(2008); Steinwart & Christmann (2008), but we provide a proof in App. J.2 for completeness.

Proposition 2 (Covering numbers for analytic and differentiable kernels) The following results

hold true.
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Figure 6: Kernel thinning+ (KT+) vs. standard MCMC thinning (ST). For kernels without fast-decaying
square-roots, KT+ improves MMD and integration error decay rates in each posterior inference task.
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(a) Analytic kernels: Suppose that k(x, y) = (kx� yk22) for  : R+ ! R real-analytic with

convergence radius R, that is,
��� 1j!

(j)
+ (0)

���  C(2/R)
j

for all j 2 N0 (36)

for some constant C, where (j)
+ denotes the right-sided j-th derivative of . Then for any set

A ⇢ Rd
and any " 2 (0, 1

2 ), we have

Mk(A, ")  N2(A, r†/2) ·
�
4 log(1/") + 2 + 4 log(16

p
C + 1)

�d+1
, (37)

where r† , min
⇣p

R

2d ,
p
R +D2

A
�DA

⌘
, and DA , maxx,y2Akx� yk2. (38)

(b) Differentiable kernels: Suppose that for X ⇢ Rd
, the kernel k : X ⇥ X ! R is s-times

continuously differentiable, i.e., all partial derivatives @↵,↵k : X ⇥ X ! R exist and are

continuous for all multi-indices ↵ 2 Nd
0 with |↵|  s. Then, for any closed Euclidean ball

B̄2(r) contained in X and any " > 0, we have

Mk(B̄2(r), ")  cs,d,k · rd · (1/")d/s, (39)
for some constant cs,d,k that depends only on on s, d and k.

Next, we state several explicit bounds on covering numbers for several popular kernels. See App. J.3
for the proof.

Proposition 3 (Covering numbers for specific kernels) The following statements hold true.

(a) When k = GAUSS(�), we have

Mk(B2(r), ")  CGauss,d ·
⇣

log(4/")
log log(4/")

⌘d
log(1/") ·

(
1 when r  1

p
2�

,

(3
p
2r�)d otherwise,

(40)

where CGAUSS,d ,
�4e+d

d

�
e�d 

⇢
4.3679 for d = 1
0.05 · d4ee�d

for d � 2
 30 for all d � 1. (41)

(b) When k = MATÉRN(⌫, �), ⌫ � d
2 + 1, then for some constant CMATÉRN,⌫,�,d, we have

Mk(B2(r), ")  CMATÉRN,⌫,�,d · rd · (1/")d/b⌫�
d
2 c. (42)

(c) When k = IMQ(⌫, �), we have

Mk(B2(r), ")  (1 + 4r
er )

d · (4 log(1/") + 2 + CIMQ,⌫,�)
d+1, (43)

where CIMQ,⌫,� , 4 log
⇣
16 (2⌫+1)⌫+1

�2⌫ +1
⌘
, and er , min

⇣
�
2d ,

p
�2 + 4r2�2r

⌘
. (44)

(d) When k = SINC(✓), then for " 2 (0, 1
2 ), we have

Mk([�r, r]d, ")  d · (1 + 4r
er✓ ) · (4 log(d/") + 2 + 4 log 17)2, (45)

where er✓ , min
⇣p

3
|✓| ,

q
12
✓2 + 4r2 � 2r

⌘
. (46)

(e) When k = B-SPLINE(2� + 1, �), then for some universal constant CB-SPLINE, we have

Mk([� 1
2 ,

1
2 ]

d, ")  d ·max(�, 1) · CB-SPLINE · (d/")
1

�+1
2 . (47)

J.1 AUXILIARY RESULTS ABOUT RKHS AND EUCLIDEAN COVERING NUMBERS

In this section, we collect several results regarding the covering numbers of Euclidean and RKHS
spaces that come in handy for our proofs. These results can also be of independent interest.

We start by defining the notion of restricted kernel and its unit ball (Rudi et al. (2020, Prop. 8)). For
X ⇢ Rd, let |X denotes the restriction operator. That is, for any function f : Rd ! R, we have
f |X : X ! R such that f |A(x) = f(x) for x 2 X .
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Definition 3 (Restricted kernel and its RKHS) Consider a kernel k defined on Rd ⇥ Rd
with the

corresponding RKHS H, any set X ⇢ Rd
. The restricted kernel k|X is defined as

k|X : X ⇥ X ! R such that k|X (x, y) , k|X⇥X (x, y) = k(x, y) for all x, y 2 X ,

and H|X denotes its RKHS. For f 2 H|X , the restricted RKHS norm is defined as follows:

kfkk|X = infh2H khkk such that h|X = f.

Furthermore, we use Bk|X , {f 2 H|X : kfkk|X  1} to denote the unit ball of the RKHS

corresponding to this restricted kernel.

In this notation, the unit ball of unrestricted kernel satisfies Bk , Bk|Rd . Now, recall the RKHS
covering number definition from Def. 1. In the sequel, we also use the covering number of the
restricted kernel defined as follows:

N †

k(X , ") = Nk|X (X , "), (48)

that is N †

k(X , ") denotes the minimum cardinality over all possible covers C ⇢ Bk|X that satisfy

Bk|X ⇢
S

h2C

�
g2Bk|X : supx2X

|h(x)�g(x)|"
 
.

With this notation in place, we now state a result that relates the covering numbers N † (48) and
N Def. 1.

Lemma 2 (Relation between restricted and unrestricted RKHS covering numbers) We have

Nk,"(X )  N †

k,"(X )

Proof Rudi et al. (2020, Prop. 8(d,f)) imply that there exists a bounded linear extension operator
E : H|X ! H with operator norm bounded by 1, which when combined with Steinwart &
Christmann (2008, eqns. (A.38), (A.39)) yields the claim. ⇤

Next, we state results that relate RKHS covering numbers for a change of domain for a shift-invariant
kernel. We use Bk·k(x; r) ,

�
y 2 Rd : kx� yk  r

 
to denote the r radius ball in Rd defined by

the metric induced by a norm k·k.

Definition 4 (Euclidean covering numbers) Given a set X ⇢ Rd
, a norm k·k, and a scalar " >

0, we use Nk·k(X , ") to denote the "-covering number of X with respect to k·k-norm. That is,

Nk·k(X , ") denotes the minimum cardinality over all possible covers C ⇢ X that satisfy

X ⇢ [z2CBk·k(z; ").

When k·k = k·kq for some q 2 [1,1], we use the shorthand Nq , Nk·kq
.

Lemma 3 (Relation between RKHS covering numbers on different domains) Given a shift-

invariant kernel k, a norm k·k on Rd
, and any set X ⇢ Rd

, we have

N †

k(X , ") 
h
N †

k(Bk·k, ")
iNk·k(X ,1)

.

Proof Let C ⇢ X denote the cover of minimum cardinality such that

X ✓
S

z2C
Bk·k(z, 1).

We then have

N †

k(X , ")
(i)

Q

z2C
N †

k(Bk·k(z, 1), ")
(ii)


Q
z2C

N †

k(Bk·k, ") 
h
N †

k(Bk·k, ")
i|C|

,
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where step (i) follows by applying Steinwart & Fischer (2021, Lem. 3.11),5 and step (ii) follows
by applying Steinwart & Fischer (2021, Lem. 3.10). The claim follows by noting that C denotes a
cover of minimum cardinality, and hence by definition |C| = Nk·k(X , 1). ⇤

Lemma 4 (Covering number for product kernel) Given X ⇢ R and a reproducing kernel  :
X ⇥ X ! R, consider the product kernel k , ⌦d : X⌦2d ! R defined as

k(x, y) =
Qd

i=1 (xi, yi) for x, y 2 X⌦d , X ⇥ X . . .⇥ X| {z }
d times

⇢ Rd.

Then the covering numbers of the two kernels are related as follows:

N †

k(X⌦d, ") 
h
N †

(X , "/(dkk
d�1
2

1
))
id
. (49)

Proof Let H denote the RKHS corresponding to . Then the RKHS corresponding to the kernel k
is given by the tensor product Hk , H⇥H⇥ . . .⇥H Berlinet & Thomas-Agnan (2011, Sec. 4.6),
i.e., for any f 2 Hk, there exists f1, f2, . . . , fd 2 H such that

f(x) =
Qd

i=1 fi(xi) for all x 2 X⌦d. (50)

Let C(X , ") ⇢ B denote an "-cover of B in L1-norm (Def. 1). Then for each fi 2 H, we have
efi 2 C(X , ") such that

supz2X

���fi(z)� efi(z)
���  ". (51)

Now, we claim that for every f 2 Bk, there exists g 2 Ck , (C(X , "))⌦d such that

supx2X⌦d |f(x)� g(x)|  d"kk
d�1
2

1
, (52)

which immediately implies the claimed bound (49) on the covering number. We now prove the
claim (52). For any fixed f 2 Hk, let fi, efi denote the functions satisfying (50) and (51) respectively.
Then, we prove our claim (52) with g =

Qd
i=1

efi 2 Ck. Using the convention
Q0

k=1
efk(xk) = 1,

we find that

|f(x)� g(x)| =
���
Qd

i=1 fi(xi)�
Qd

i=1
efi(xi)

���


Pd

i=1

���fi(xi)� efi(xi)
���
���
Qd

j=i+1 fj(xj)
Qi�1

k=1
efk(xk)

���
(51)
 d" · suph2B

khkd�1
1
 d"kk

d�1
2

1
,

where in the last step we have used the following argument:

supz2X
h(x) = supz2X

˙h,(z, ·)  khk
p
(z, z) 

p
kk1 for any h 2 B.

The proof is now complete. ⇤

Lemma 5 (Relation between Euclidean covering numbers) We have

N1(B2(r), 1)  1
p

⇡d
·
h
(1 + 2r

p

d
)
p
2⇡e

id
for all d � 1.

5Steinwart & Fischer (2021, Lem. 3.11) is stated for disjoint partition of X in two sets, but the argument
can be repeated for any finite cover of X .
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Proof We apply Wainwright (2019, Lem. 5.7) with B = B2(r) and B0 = B1(1) to conclude that

N1(B2(r), 1)  Vol(2B2(r)+B1(1))
Vol(B1(1))  Vol(B2(2r +

p
d))  ⇡d/2

�( d
2+1)

· (2r +
p
d)d,

where Vol(X ) denotes the d-dimensional Euclidean volume of X ⇢ Rd, and �(a) denotes the
Gamma function. Next, we apply the following bounds on the Gamma function from Batir (2017,
Thm. 2.2):

�(b+ 1) � (b/e)b
p
2⇡b for any b � 1, and �(b+ 1)  (b/e)b

p
e2b for any b � 1.1.

Thus, we have

N1(B2(r), 1)  ⇡d/2
p

2⇡d( d
2e )

d/2
· (2r +

p
d)d  1

p

⇡d
·
h
(1 + 2r

p

d
)
p
2e⇡

id
,

as claimed, and we are done. ⇤

J.2 PROOF OF PROP. 2: COVERING NUMBERS FOR ANALYTIC AND DIFFERENTIABLE
KERNELS

First we apply Lem. 2 so that it remains to establish the stated bounds simply on logN †

k(X , ").

Proof of bound (37) in part (a) The bound (37) for the real-analytic kernel is a restatement of
Sun & Zhou (2008, Thm. 2) in our notation (in particular, after making the following substitutions
in their notation: R 1, C0  C, r  R,X  A, er  r†, ⌘  ", D  D2

A
, n d). ⇤

Proof of bound (39) for part (b): Under these assumptions, Steinwart & Christmann (2008,
Thm. 6.26) states that the i-th dyadic entropy number Steinwart & Christmann (2008, Def. 6.20)
of the identity inclusion mapping from H|B̄2(r) to L1

B̄2(r)
is bounded by c0s,d,k · rsi�s/d for

some constant c0s,d,k independent of " and r. Given this bound on the entropy number, and
applying Steinwart & Christmann (2008, Lem. 6.21), we conclude that the log-covering number
logN †

k(B̄2(r), ") is bounded by ln 4 · (c0s,d,krs/")d/s = cs,d,krd · (1/")d/s as claimed. ⇤

J.3 PROOF OF PROP. 3: COVERING NUMBERS FOR SPECIFIC KERNELS

First we apply Lem. 2 so that it remains to establish the stated bounds in each part on the corre-
sponding logNk.

Proof for GAUSS kernel: Part (a) The bound (40) for the Gaussian kernel follows directly from
Steinwart & Fischer (2021, Eqn. 11) along with the discussion stated just before it. Furthermore, the
bound (41) for CGauss,d are established in Steinwart & Fischer (2021, Eqn. 6), and in the discussion
around it. ⇤

Proof for MATÉRN kernel: Part (b) We claim that MATÉRN(⌫, �) is b⌫ � d
2c-times continuously

differentiable which immediately implies the bound (42) using Prop. 2(b).

To prove the differentiability, we use Fourier transform of Matérn kernels. For k = MATÉRN(⌫, �),
let  : Rd ! R denote the function such that noting that k(x, y) = (x�y). Then using the Fourier
transform of  from Wendland (2004, Thm 8.15), and noting that  is real-valued, we can write

k(x, y) = ck,d
R
cos(!>(x� y))(�2 + k!k22)�⌫d!

for some constant ck,d depending only on the kernel parameter, and d (due to the normalization of
the kernel, and the Fourier transform convention). Next, for any multi-index a 2 Nd

0, we have
���@a,a cos(!>(x� y))(�2 + k!k22)�⌫

��� 
Qd

j=1 !
2aj

j (�2 + k!k22)�⌫  k!k
2
Pd

j=1 aj
2

(�2+k!k
2
2)

⌫ ,
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where @a,a denotes the partial derivative of order a. Moreover, we have

R
k!k

2
Pd

j=1 aj
2

(�2+k!k
2
2)

⌫ d! = cd
R
r>0 r

d�1 r
2
Pd

j=1 aj

(�2+r2)⌫ dr  cd
R
r>0 r

d�1+2
Pd

j=1 aj�2⌫
(i)
< 1,

where step (i) holds whenever

d� 1 + 2
Pd

j=1 aj � 2⌫ < �1 ()
Pd

j=1 aj < ⌫ � d
2 .

Then applying Newey & McFadden (1994, Lemma 3.6), we conclude that for all multi-indices a
such that

Pd
j=1 aj  b⌫ � d

2c, the partial derivative @a,ak exists and is given by

ck,d
R
@a,a cos(!>(x� y))(�2 + k!k22)�⌫d!,

and we are done. ⇤

Proof for IMQ kernel: Part (c) The bounds (43) and (44) follow from Sun & Zhou (2008,
Ex. 3), and noting that N2(B2(r), er/2) is bounded by (1 + 4r

er )
d (Wainwright, 2019, Lem. 5.7). ⇤

Proof for SINC kernel: Part (d) For k = SINC(✓), we can write k(x, y) =
Qd

i=1 ✓(xi � yi)

for ✓ : R ! R defined as ✓(t) = sin(✓t)
✓t

(i)
= sin(|✓t|)

|✓t| , where step (i) follows from the fact that
t 7! sin t/t is an even function. Thus, we can apply Lem. 4. Given the bound (49), and noting that
k✓k1 = 1, it suffices to establish the univariate version of the bound (45), namely,

Mk([�r, r], ")  (1 + 4r
er✓ ) · (4 log(1/") + 2 + 4 log 17)2.

To do so, we claim that univariate SINC kernel is an analytic kernel that satisfies the condition (36)
of Prop. 2(a) with (t) = SINC(✓

p
t), R = 12

✓2 , and C = 1; and thus applying the bounds (37)
and (38) from Prop. 2(a) with A = Bd

2(r) yields the claimed bound (45) and (46). To verify the
condition (36) with the stated parameters, we note that

(t) = SINC(✓
p
t) = 1

|✓|
p
t

P
1

j=0
1

(2j+1)! · (✓
p
t)2j+1 =

P
1

j=0
1

(2j+1)! · (✓
p
t)2j

=
P

1

j=0
1

(2j+1)! · ✓
2j · tj

which implies
���(j)

+ (0)
��� = 1

(2j+1)! · ✓
2jj!  (2/R)jj! for R , 2

✓2 · infj�1((2j + 1)!)1/j = 12
✓2 ,

and we are done. ⇤

Proof for B-SPLINE kernel: Part (e) For k = B-SPLINE(2� + 1, �), we can write k(x, y) =Qd
i=1 �,�((xi � yi)) for � : R! R defined as �,�(t) = B�1

2�+2 ~2�+2 1[� 1
2 ,

1
2 ]
(� · t), and thus

we can apply Lem. 4. Given the bound (49), and noting that k�,�k1  1 (Dwivedi & Mackey
(2021, Eqn. 107)), it suffices to establish the univariate version of the bound (47). Abusing notation
and using �,� to denote the univariate B-SPLINE(2� + 1, �) kernel, we find that

logN †

�,�
([� 1

2 ,
1
2 ], ")

(i)
 N1([0, �], 1) · logN †

�,1
([� 1

2 ,
1
2 ], ")

(ii)
 max(�, 1) · CB-SPLINE · (1/")

1
�+1

2 ,

where step (i) follows from Steinwart & Fischer (2021, Thm. 2.4, Sec. 3.3), and for step (ii)
we use the fact that the unit-covering number of [0, �] is bounded by max(�, 1), and apply the
covering number bound for the univariate B-SPLINEkernel from Zhou (2003, Ex. 4) (by substituting
m = 2� + 2 in their notation) along with the fact that logN †

�,1
([� 1

2 ,
1
2 ], ") = logN †

�,1
([0, 1], ")

since � is shift-invariant. ⇤
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K PROOF OF TAB. 3 RESULTS

In Tab. 3, the stated results for all the entries in the TARGET KT column follow directly by substi-
tuting the covering number bounds from Prop. 3 in the corresponding entry along with the stated
radii growth conditions for the target P. (We substitute m = 1

2 log2 n since we thin to
p
n output

size.) For the KT+ column, the stated result follows by either taking the minimum of the first two
columns (whenever the ROOT KT guarantee applies) or using the POWER KT guarantee. First we
remark how to always ensure a rate of at least O(n�

1
4 ) even when the guarantee from our theorems

are larger, using a suitable baseline procedure and then proceed with our proofs.

Remark 2 (Improvement over baseline thinning) First we note that the KT-SWAP step en-

sures that, deterministically, MMDk(Sin,SKT)  MMDk(Sin,Sbase) and MMDk(P,SKT) 
2MMDk(P,Sin) + MMDk(P,Sbase) for Sbase a baseline thinned coreset of size

n
2m and any tar-

get P. For example if the input and baseline coresets are drawn i.i.d. and k is bounded, then

MMDk(Sin,SKT) and MMDk(P,SKT) are O(
p

2m/n) with high probability (Tolstikhin et al.,

2017, Thm. A.1), even if the guarantee of Thm. 2 is larger. As a consequence, in all well-defined KT

variants, we can guarantee a rate of n�
1
4 for MMDk(Sin,SKT) when the output size is

p
n simply

by using baseline as i.i.d. thinning in the KT-SWAP step.

GAUSS kernel The TARGET KT guarantee follows by substituting the covering number bound
for the Gaussian kernel from Prop. 3(a) in (6), and the ROOT KT guarantee follows directly from
Dwivedi & Mackey (2021, Tab. 2). Putting the guarantees for the ROOT KT and TARGET KT
together (and taking the minimum of the two) yields the guarantee for KT+.

IMQ kernel The TARGET KT guarantee follows by putting together the covering bound Prop. 3(c)
and the MMD bounds (6).

For the ROOT KT guarantee, we use a square-root dominating kernel ekrt IMQ(⌫0, �0) Dwivedi &
Mackey (2021, Def.2) as suggested by Dwivedi & Mackey (2021). Dwivedi & Mackey (2021,
Eqn.(117)) shows that ekrt is always defined for appropriate choices of ⌫0, �0. The best ROOT KT
guarantees are obtained by choosing largest possible ⌫0 (to allow the most rapid decay of tails), and
Dwivedi & Mackey (2021, Eqn.(117)) implies with ⌫ < d

2 , the best possible parameter satisfies
⌫0  d

4 +
⌫
2 . For this parameter, some algebra shows that max(R†

ekrt,n
Rekrt,n

) -d,⌫,� n1/2⌫ , leading

to a guarantee worse than n�
1
4 , so that the guarantee degenerates to n�

1
4 using Rem. 2 for ROOT

KT. When ⌫ � d
2 , we can use a MATÉRN kernel as a square-root dominating kernel from Dwivedi

& Mackey (2021, Prop. 3), and then applying the bounds for the kernel radii (17), and the inflation
factor (19) for a generic Matérn kernel from Dwivedi & Mackey (2021, Tab. 3) leads to the entry for
the ROOT KT stated in Tab. 2. The guarantee for KT+ follows by taking the minimum of the two.

MATÉRN kernel For TARGET KT, substituting the covering number bound from Prop. 3(b) in (6)
with R = log n yields the MMD bound of order

r
logn·(logn)d·n2b⌫� d

2
c

n , (53)

which is better than n�
1
4 only when ⌫ > 3d/2, and simplified to the entry in the Tab. 3 when we

assume ⌫ � d
2 is an integer. When ⌫  3d/2, we can simply use baseline as i.i.d. thinning to obtain

an order n�
1
4 MMD error as in Rem. 2.

The ROOT KT (and thereby KT+) guarantees for ⌫ > d follow from Dwivedi & Mackey (2021,
Tab. 2).

When ⌫ 2 (d2 , d], we use POWER KT with a suitable ↵ to establish the KT+ guarantee. For
MATÉRN(⌫, �) kernel, the ↵-power kernel is given by MATÉRN(↵⌫, �) if ↵⌫ > d

2 (a proof of
this follows from Def. 2 and Dwivedi & Mackey (2021, Eqns (71-72))). Since LAPLACE(�) =
MATÉRN(d+1

2 ,��1), we conclude that its ↵-power kernel is defined for ↵ > d
d+1 . And us-

ing the various tail radii (17), and the inflation factor (19) for a generic Matérn kernel from
Dwivedi & Mackey (2021, Tab. 3), we conclude that fM↵ -d,k↵,�

p
log n log log n, and
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max(R†

k↵,nRk↵,n) -d,k↵ log n, so that Rmax = Od,k↵(log n) (18) for SUBEXP P setting. Thus
for this case, the MMD guarantee for

p
n thinning with POWER KT (tracking only scaling with n)

is

�
2m

n kk↵k1
� 1

2↵ (2 ·fM↵)1�
1
2↵

✓
2+

r
(4⇡)d/2

�( d
2+1)

·R
d
2
max ·fM↵

◆ 1
↵�1

-d,k↵,� ( 1
p
n
)

1
2↵ (
p
cn log n)1�

1
2↵ · ((log n) d

2+
1
2
p
cn)

1
↵�1 = ( cn(logn)1+2d(1�↵)

n )
1
4↵

where cn = log log n; and we thus obtain the corresponding entry (for KT+) stated in Tab. 3.

SINC kernel The guarantee for TARGET KT follows directly from substituting the covering num-
ber bounds from Prop. 3(d) in (6).

For the ROOT KT guarantee, we note that the square-root kernel construction of Dwivedi & Mackey
(2021, Prop.2) implies that SINC(✓) itself is a square-root of SINC(✓) since the Fourier transform
of SINC is a rectangle function on a bounded domain. However, the tail of the SINC kernel does
not decay fast enough for the guarantee of Dwivedi & Mackey (2021, Thm. 1) to improve beyond
the n�

1
4 bound of Dwivedi & Mackey (2021, Rem. 2) obtained when running ROOT KT with i.i.d.

baseline thinning.

In this case, TARGET KT and KT+ are identical since krt = k.

B-SPLINE kernel The guarantee for TARGET KT follows directly from substituting the covering
number bounds from Prop. 3(d) in (6).

For B-SPLINE(2� + 1, �) kernel, using arguments similar to that in Dwivedi & Mackey (2021,
Tab.4), we conclude that (up to a constant scaling) the ↵-power kernel is defined to be B-SPLINE(A+
1, �) whenever A , 2↵�+2↵�2 2 2N0. For odd � we can always take ↵ = 1

2 and B-SPLINE(�+
1, �) is a valid (up to a constant scaling) square-root kernel (Dwivedi & Mackey, 2021). For even
�, we have to choose ↵ , p+1

�+1 2 ( 12 , 1) by taking p 2 N suitably, and the smallest suitable choice
is p = d��1

2 e = �
2 2 N, which is feasible as long as � � 2. And, thus B-SPLINE(� + 1, �)

is a suitable k↵ for B-SPLINE(2� + 1) for even � � 2 with ↵ = �+2
2�+2 2 ( 12 , 1). Whenever the

↵-power kernel is defined, we can then apply the various tail radii (17), and the inflation factor (19)
for the power B-SPLINE kernel from Dwivedi & Mackey (2021, Tab. 3) to obtain the MMD rates
for POWER KT from Dwivedi & Mackey (2021, Tab. 2) (which remains the same as ROOT KT upto
factors depending on ↵ and �).

The guarantee for KT+ follows by taking the minimum MMD error for TARGET KT and ROOT KT
for even �, and ↵-POWER KT for odd �.
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