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Figure 1: Generated human grasp on in-domain and out-of-domain objects. Object and hand contact maps are shown in the last column.

The brighter the region is, the higher the contact values between the hand and object are. Best viewed in color.

Abstract

While predicting robot grasps with parallel jaw grippers
have been well studied and widely applied in robot manipula-
tion tasks, the study on natural human grasp generation with
a multi-finger hand remains a very challenging problem. In
this paper, we propose to generate human grasps given a 3D
object in the world. Our key observation is that it is crucial
to model the consistency between the hand contact points
and object contact regions. That is, we encourage the prior
hand contact points to be close to the object surface and the
object common contact regions to be touched by the hand at
the same time. Based on the hand-object contact consistency,
we design novel objectives in training the human grasp gen-
eration model and also a new self-supervised task which
allows the grasp generation network to be adjusted even dur-
ing test time. Our experiments show significant improvement
in human grasp generation over state-of-the-art approaches
by a large margin. More interestingly, by optimizing the
model during test time with the self-supervised task, it helps
achieve larger gain on unseen and out-of-domain objects.
Project page: https://hwjiang1510.github.io/GraspTTA/.

1. Introduction
Capturing hand-object interactions has been an active

field of study [48, 20, 30, 13, 2, 4, 47, 42, 57] and it has

wide applications in virtual reality [21, 55], human-computer

interaction [51] and imitation learning in robotics [59, 49,

39]. In this paper, we study the interactions via generation:

*Equal contribution.

As shown in Fig. 1, given only a 3D object in the world

coordinate, we generate the 3D human hand for grasping it.

Unlike predicting robot grasps with parallel jaw grippers [33,

56, 60, 5], predicting human grasps is substantially more

difficult because: (i) Human hands have a lot more degrees

of freedom, which leads to much more complex contact;

(ii) The generated grasp needs to be not only physically

plausible but also presented in a natural way, consistent with

how objects are usually grasped.

To synthesize physically plausible and natural grasp

poses, recent works propose to use generative models [9,

25, 47] supervised by large-scale datasets [20, 19, 16] with

grasp annotations and contact analysis on hands. Specifically,

the large-scale dataset allows the model to generate realistic

human grasps and the contact analysis encourages the hand

contact points to be close with the object but without inter-

penetration. While these methods put a lot of efforts into

modeling the hand and its contact points, they ignore that

the object itself also has more possible contact regions that

need to be reached (see contact map in Fig. 1). In fact, recent

work has studied the common contact regions on objects and

trained neural networks to directly predict the contact map

from the 3D object model [2, 4].

In this paper, we argue that it is critical for the hand

contact points and object contact regions to reach mutual

agreement and consistency for grasp generation. To achieve

this, we propose to unify two separate models for both the

hand grasp synthesis and object contact map estimation. We

show that the consistency constraint between hand contact

points and object contact map is not only useful for opti-

mizing better grasps during training time by designing new
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losses, but also provides a self-supervised task to adjust the

grasp when testing on a novel object. We introduce the two

components as follows.

First, we train a Conditional Variational Auto-

Encoder [44] (CVAE) based network which takes the 3D

object point clouds as inputs and predicts the hand grasp

parameterized by a MANO model [41], namely GraspCVAE.

During training the GraspCVAE, we design two novel losses

with one encouraging the hand to touch the object surface

and another forcing the object contact regions touched by

the ground truth hand close to the predicted hand. With

these two consistent losses, we observe more realistic and

physically plausible grasps.

Second, given the hand grasp pose and object point clouds

as inputs, we train another network that predicts the contact

map on the object. We name this model the ContactNet.

The key role of the ContactNet is to provide supervision

to finetune GraspCVAE during test time when no ground

truth is available. We design a self-supervised consistency

task, which requires the hand contact points produced by

the GraspCVAE to be consistent and overlapped with the

object contact map predicted by the ContactNet. We use this

self-supervised task to perform test-time adaptation which

finetunes the GraspCVAE to generate a better human grasp.

This adaptation approach can be applied on each single test

instance. We emphasize that this procedure does not require

any extra outside supervision and it can flexibly adapt to

different inputs by resuming to the model before adaptation.

We evaluate our approach on multiple datasets include

Obman [20], HO-3D [19] and FPHA [16] datasets. We show

that by utilizing the novel objectives based on the contact con-

sistency constraints in training time, we achieve significant

improvements on human grasps generation against state-of-

the-art approaches. More interestingly, by optimizing with

the proposed self-supervised task during test time, it gener-

alizes and adapts our model to unseen and out-of-domain

objects, leading to the large performance gain.

Our contributions of this paper include: (i) Novel hand-

object contact consistency constraints for learning human

grasp generation; (ii) A new self-supervised task based on the

consistency constraints which allows the generation model

to be adjusted even during test time; (iii) Significant im-

provement on grasp generation for both in-domain and out-

of-domain objects.

2. Related Works
Hand-object interaction. Modeling and analysing hand-

object interaction is an active field of study with two

main paradigms: estimating hand-object poses during in-

teraction [16, 48, 20, 13, 36, 40, 22, 30, 18] and study-

ing from multi-modal hand-object interaction representa-

tions [17, 37, 2, 4, 47, 46, 14]. To perform hand-object

pose estimation, Tekin et al. [48] proposed a 3D detection

framework, where the hand-object poses are predicted by

two output grids without explicit interaction between them.

Grady et al. [18] performed optimization on estimated hand

meshes with contact prediction to get physically plausible

hand pose estimation.

Another paradigm of study is to analyze the forces on

hand and contact regions on objects from the multi-modal

data. For example, Sundaram et al. [46] introduced a scal-

able tactile glove, and utilized the touching information for

object classification, while Glauser et al. [17] leveraged it

for a more difficult hand pose estimation task. Instead of

using the tactile sensors on hand, Brahmbhatt et al. [2, 4]

proposed to use thermal cameras to capture object contact

maps, which reflects the object common contact regions after

grasping. Inspired by this work, Taheri et al. [47] further

built a GRAB dataset, which not only captures the contact

map from hand, but also takes the whole human body into

consideration. This line of research motivates us to go be-

yond modeling hand-centric grasp generation, and explore

the object-centric contact map by designing an object-centric

loss to encourage the common contact regions on object to

be touched by the hand.

Grasp generation. Generating human grasp is very chal-

lenging due to the higher degree-of-freedom of the human

hand [25, 9, 47, 3, 22]. To generate a realistic grasp, Karun-

ratanakul et al. [25] proposed an implicit representation for

modeling the joint distribution of hand-object shape. In-

stead of implicit representation, our work is more related

to work by Brahmbhatt et al. [3] which made use of the

object contact maps to filter multiple generated grasps from

GraspIt! [32]. However, the contact maps are taken as a

constraint rather than a learning target in this grasp genera-

tion framework. In our work, we leverage the consistency

between hand-object contact regions as training targets with

the use of object contact map. Moreover, a self-supervised

task is also designed for adjusting generated grasps using

the contact maps at test-time.

Affordance prediction. Predicting scene and object

affordance plays an important role in visual understand-

ing [28, 53, 6, 10, 54, 12, 26, 15, 52, 58]. For example,

Corona et al. [10] proposed a novel dataset and a gener-

ative network for learning grasps of multiple on-table ob-

jects. Zhang et al. [58] proposed a novel representation of

human-scene contact for generating natural scene affordance.

Inspired by these works, our goal is to generate grasps by

learning the object affordance with ensuring the perceptual

naturalness and physical plausibility at the same time. Dif-

ferent from the previous works, our method allows better

generalization of grasping out-of-domain objects with the

help of the proposed self-supervised task on predicting the

target contact.

Learning on test instances. Improving the generaliza-

tion ability of neural networks is one of the most important
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Figure 2: The different usage of proposed networks in training and testing. Left: During training, the two networks learn generating human

grasps and predicting object contact map separately on ground truth data. Right: At test-time, the two networks are unified in a cascade

manner. A initial grasp is predicted by the GraspCVAE decoder, and it is inputted together with the object into ContactNet for predicting a

target contact map. We then leverage the contact consistency between outputs of the two networks for adjusting the initial grasp, where the

target contact map serves as a self-supervision signal.

problem in machine learning [8, 31, 11, 29, 34]. Recent

research has started tackling the problem by leveraging self-

supervision at test-time [23, 43, 1, 45, 24, 35]. For exam-

ple, Shocher et al. [43] proposed a self-supervised super-

resolution framework where the network is only trained at

test-time by up and downscaling a single test example. Sun

et al. [45] extended the test-time adaptation idea to more gen-

eral applications with a joint training framework of an image

recognition task and a self-supervised task. At test-time, the

network can be adjusted to a single test image by tuning the

self-supervised objective. While this approach is intriguing,

it is still unclear how the self-supervised objective can affect

the main task objective. Inspired by this work, our approach

also leverage self-supervision on a single instance for test-

time adaptation. Different from [45], our self-supervised

task is directly optimizing the main goal of generating better

human grasps, which ensures the performance gain.

3. Approach
Our goal is generating hand meshes as human grasps

given object point clouds as inputs. The generated hand

mesh not only needs to be presented in a natural and realistic

way, but it should also hold the object tightly in a physically

plausible manner. We emphasize that ensuring reasonable

contact between the object and synthesized hand is the key

to get high-quality and stable human grasps.

To deal with this problem, we utilize both hands and

object contact information and make sure they are consistent

with each other, as summarized in Fig. 2. We propose two

networks, a generative GraspCVAE to synthesize grasping

hand mesh, and a deterministic ContactNet for modeling the

contact regions on the object.

Training Stage. As shown on the left side of Fig. 2, we

optimize these two networks using ground-truth supervision

separately to learn grasp generation and predicting object

contact maps. In this stage, the inputs of GraspCVAE are

both of hand and object, and GraspCVAE learns to synthesiz-

ing grasps in the hand reconstruction paradigm, where both
of the its encoder and decoder will be used. Note that this

follows the standard procedure in Conditional Variational

Auto-Encoder (CVAE) [44]. To train the GraspCVAE, we

propose two novel losses to ensure the hand-object contact

consistency: one loss forcing the prior hand contact vertices

to be close to the object surface, and another loss encour-

aging the object common contact regions to be touched by

hand at the same time. The object and generated hand will

find mutual agreement on the form of contact with the two

losses during training.

Testing Stage. As shown on the right side of Fig. 2,

we unify the two networks and design a self-supervised

task by leveraging the consistency between their outputs.

Given a test object, we first generate an initial grasp from

the GraspCVAE decoder (without the encoder). Different

from the training stage, the reconstruction target – grasp

is not provided in testing [44]. Then, the generated grasp

is forwarded together with the object to the ContactNet to

predict a target contact map. Since ContactNet is trained

with ground truth data, where penetration between hand-

object does not exist and hand fingers are touching the object

surface closely, it will model the pattern of the ideal hand-

object contact. During testing, the predicted contact map

from ContactNet will tend to contain the ideal contact pattern.

We use the predicted contact map from the ContactNet as

a target for finetuning and optimizing the grasps generated

by GraspCVAE. If the grasp is predicted correctly from

GraspCVAE, the object contact region from the predicted

grasp should be consistent with the target object contact map.

We use this consistency as a self-supervision signal to adapt

grasps generated by GraspCVAE during test-time.

In the following, we will first introduce the individual

framework for GraspCVAE and ContactNet, and then the

test-time contact reasoning with both networks for better

adaptation to the new objects.

3.1. Learning GraspCVAE
Usage and architecture The GraspCVAE is a Conditional

Variational Auto-Encoder (CVAE) [44] based generative net-

work, which uses conditional information to control gener-

ation. For GraspCVAE, the conditional information is the
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contact map, brighter re-

gions have larger scores. Be-

cause the MANO model
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the underformable finger-

tips usually penetrate into

object surface slightly.

object. We follow [27, 44] to use the GraspCVAE: In train-

ing, both of encoder and decoder of GraspCVAE is used to

learn the grasp generation task in a hand reconstruction man-

ner by taking in both of hand-object as input; At test-time,

only its decoder is used to generate human grasp of a object

with only the 3D object as the input (without using the grasp

for input). The network architecture is shown in Fig. 3.

During training, as shown in top row of Fig. 3, given

two point clouds of the hand Ph ∈ R
778×3 and the object

Po ∈ R
N×3 (where N is the number of points) as inputs, we

use two separate PointNets [38] to extract their features re-

spectively, denoted as Fh,Fo ∈ R
1024. These two features

are then concatenated as Fho for the GraspCVAE encoder

inputs. The outputs of the encoder are the mean μ ∈ R
64

and variance σ2 ∈ R
64 of the posterior Gaussian distribution

Q(z|μ, σ2) [27]. To reconstruct the hand, we first sample a

latent code z from the distribution and the posterior distribu-

tion ensures the sampled latent code z is in correspondence

with the input hand-object.

The decoder takes the concatenation of latent code z and

the object feature Fo as input to reconstruct a hand mesh,

which is represented by a differentiable MANO model [41].

The MANO model is parameterized by the shape parameter

β ∈ R
10 for person-specific hand shape, as well as the pose

parameter θ ∈ R
51 for the joint axis-angles rotation and

root joint translation. Given the predicted parameters (β̂, θ̂)
from the decoder, the MANO model forms a differentiable

layer which outputs the shape of the hand with M̂ = (V̂ ∈
R778×3, F̂ ), where V̂, F̂ denotes the mesh vertices and faces.

Both the encoder and decoder in GraspCVAE are Multi-

Layer Perceptrons (MLP).

During testing, as shown in the bottom row of Fig. 3, we

only utilize the decoder from the GraspCVAE for inference.

Given only the extracted object point cloud feature Fo and a

latent code z randomly sampled from a Gaussian distribution

as inputs, the decoder will generate the parameters for the

MANO model which leads to the hand mesh output.

Given this architecture, we then introduce the training

objectives as follows. We will first introduce the baseline

objectives and then two novel losses which encourage the

hand-object contact consistency.

Baseline The first objective for the baseline model is mesh

reconstruction error, which is defined on both the vertices

of the mesh as well as the parameters of the MANO model.

We adopt the L2 distance to compute the error. We denote

the reconstruction loss between the predicted vertices and

the ground-truths as LV = ||V̂ − Ph||22. The losses on

MANO parameters are defined in a similar way with Lθ and

Lβ . The reconstruction error can be represented asLR =
λV · LV + λθ · Lθ + λβ · Lβ , where λV , λθ and λβ are

constants balancing the losses.

Following the training of VAE [27], we define a

loss enforcing the latent code distribution Q(z|μ, σ2) to

be close to a standard Gaussian distribution, which is

achieved by maximizing the KL-Divergence as LKLD =
−KL(Q(z|μ, σ2)||N (0, I)) .

We also encourage the grasp to be physically plausible,

which means the object and hand should not penetrate into

each other. We denote the object point subset that is in-

side the hand as Po
in, then the penetration loss is defined

as minimizing their distances to their closest hand vertices

Lpenetr = 1
|Po

in|
∑

p∈Po
in
mini ||p − V̂i||22 . In a short sum-

mary, the loss for training the baseline is:

Lbase = LR + λKLD · LKLD + λp · Lpenetr , (1)

where λKLD and λp are constants balancing the losses.

Reasoning Contact in Training There are two potential

challenges in the baseline framework: First, the losses in the

baseline model ignore physical contact between the hand-

object, which cannot ensure the stability of the grasp; Sec-

ond, grasp generation is multi-modal and the ground-truth

hand pose is not the only answer. To tackle these challenges,

we design two novel losses from both the hand and the object

aspects to reason plausible hand-object contact and find the

mutual agreement between them.
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Figure 6: Architecture of ContactNet. It extracts local per-point feature of object point cloud, and

concatenate it with global hand-object feature for predicting contact map.

Object-centric Loss. From the object perspective, there

are regions that are often contacted by human hand. We en-

courage the human hand to get close to these regions using

the object-centric loss. Specifically, from the ground-truth

hand-object interaction, we can derive the object contact map

Ω ∈ R
N by normalizing the distance D(Po) between all ob-

ject points and their nearest hand prior vertice with function

f(·), where f(D(Po)) = 1− 2 · (Sigmoid(2D(Po))− 0.5).
An example is shown in Fig. 4. The distances are in center-

meter and contact map scores are in [0, 1]. This normaliza-

tion helps the network focus on object regions close to the

hand. Then we force the object contact map Ω̂ computed

from the generated hand to be close to the ground truth Ω,

using loss

LO = ||Ω̂− Ω||22, Ω = f(D(Po)). (2)

Hand-centric Loss. We define the prior hand contact

vertices Vp as shown in Fig. 5, motivated by [20, 2]. Given

the predicted locations of the hand contact vertices, we then

take the object points nearby as possible points to contact.

Specifically, for each object point Po
i , we compute the dis-

tance D(Po
i ) = minj ||Vp

j −Po
i ||22, and if it is smaller than a

threshold, we take it as the possible contact point on the ob-

ject. Our hand-centric objective is to push the hand contact

vertices close to the object as,

LH =
∑

i D(Po
i ), for all D(Po

i ) ≤ T (3)

for all the possible contact points on the object, where T =
1 cm is the threshold. The final loss combining the two novel

losses above is,

Lgrasp = Lbaseline + λH · LH + λO · LO , (4)

where λH and λO are constants balancing the losses. In-

tuitively, the LO generally answers the question Where to
grasp? and does not specify which hand part should be close

to the object contact regions. And LH is used to find the

answer of Which finger should contact? dynamically. Dur-

ing training, with the two proposed losses, the hand contact

points and object contact region will reach mutual agreement

and be consistent to each other for generating stable grasps.

3.2. Learning ContactNet

We propose another network, the ContactNet, to model

the contact information between the hand-object as shown

in Fig. 6. The inputs are hand and object point cloud, and

the output is the object contact map denoted as Ωc ∈ R
N for

N object points. We use two PointNet encoders to extract

hand and object feature maps. Since we need to predict the

contact score for each point (Ωc
i should be the score for Po

i ),

we utilize the per-point object local feature Fs ∈ R
N×64

of the PointNet encoder to ensure this correspondence. We

also make use of hand and object global feature by first

summing them then duplicate N times and concatenate it

with the object local feature for a to dimension R
N×1024

feature maps. Given these features, we apply four layers

of 1-D convolution on top to regress the object contact map

activated by the sigmoid function. The loss for training is

the L2 distance between the predicted contact map Ωc and

ground-truth Ω as, Lcont = ||Ωc − Ω||22.

During training time, the inputs for the ContactNet are

directly obtained from the ground-truths.

3.3. Contact Reasoning for Test-Time Adaptation

During testing, we unify the GraspCVAE and ContactNet

in a cascade manner as shown on the right side of Fig. 2.

Given the object point clouds as inputs, the GraspCVAE will

first generate a hand mesh M̂ as the initial grasp. We com-

pute its object contact map ΩM̂ correspondingly. Taking

both the predicted hand mesh and object as inputs, the Con-

tactNet will predict another contact map Ωc. If the grasp is

predicted correctly, the two contact map ΩM̂ and Ωc should

be consistent. Based on this observation, we define a self-

supervised consistency loss as Lrefine = ||ΩM̂ − Ωc||22 for

fine-tuning the GraspCVAE. Besides this consistency loss,

we also incorporate the hand-centric loss LH and penetration

loss Lpenetr to ensure the grasp is physically plausible. We

apply the joint optimization with all three losses on a single
test example as,

LTTA = Lrefine + λH · LH + λp · Lpenetr. (5)

We use this loss to update the GraspCVAE decoder, and

freeze other parts of the two networks.

4. Experiment
We show qualitative results of generated grasps from our

methods, and compare the qualitative performance with other

methods in Sec. 4.4. Then, we give ablation studies on the
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Figure 7: Visualization of generated grasps on in-domain objects from Obman dataset [20], and out-of-domain objects from HO-3D

dataset [19]. See Supplementary for more visualization on qualitative results and diversity of generated grasps.

Obman HO-3D FPHA

GT GF [25] Ours GT GF [25] Ours GT GF [25] Ours

Penetration Depth (cm) ↓ 0.01 0.56 0.46 2.94 1.46 1.05 1.17 2.37 1.58

Volume (cm3) ↓ 1.70 6.05 5.12 6.08 14.90 4.58 5.02 21.9 6.37

Grasp Displace. Mean (cm) ↓ 1.66 2.07 1.52 4.31 3.45 3.21 5.54 4.62 2.55
Variance (cm) ↓ ± 2.44 ± 2.81 ± 2.29 ± 4.42 ± 3.92 ±3.79 ± 4.38 ± 4.48 ± 2.22

Perceptual Score {1, ..., 5} ↑ 3.24 3.02 3.54 3.18 3.29 3.50 3.49 3.33 3.57
Contact Ratio (%) ↑ 100 89.40 99.97 91.60 90.10 99.61 91.40 97.00 100

Table 1: Results on Obman [20], HO-3D [19] and FPHA datasets [16] compared with ground truth (GT) and GF [25]. Best ones are in bold.

effectiveness of proposed novel losses during training and

different Test-Time Adaptation (TTA) paradigms in Sec. 4.5.

4.1. Implementation Details

We sample N = 3000 points on the object mesh as the in-

put object point clouds. In training, we use Adam optimizer

and LR = 1e−4 with 100 epochs, where the LR is reduced

half when model trained 30, 60, 80, 90 epochs. Batch size

is 128. The loss weights are λβ = 0.1, λθ = 0.1, λp = 5,

λH = 1500 and λO = 100. For Test-Time Adaptation, we

use optimizer SGD with Momentum 0.8, LR = 6.25×10−6,

same as last epochs in training. For each sample, we use

batch augmentations with batch size 32. The loss weights

are λp = 5, λH = 1 and λO = 5.

4.2. Datasets

Obman Dataset [20] is a synthetic dataset includes hand-

object mesh pairs. The hands are generated by a non-learning

based method GraspIt! [32]. 2772 object meshes covering

8 classes of everyday objects from ShapeNet [7] dataset are

included. The model trained on this dataset will benefit from

the diversified object models and grasp types. We train the

two networks on this dataset as the initial model.

HO-3D and FPHA Dataset [16, 19] are used for evalu-

ating the generalization ability of our proposed framework.

Because only a dozen of objects are included in these two

datasets, they are not suitable for training the model. These

two datasets collect video sequences annotated with object-

hand poses. We use the same split and data filtering of the

two datasets with [25].

4.3. Evaluation Metrics
Penetration is measured by penetration depth and vol-

ume between objects and generated grasps following [20].

Grasp displacement is used to measure the stability of

the grasp. We put the object and generated grasp in a simu-

lator following [50, 20]. In general, the simulator calculates

the motion of the object under the grasp. Specifically, the

simulator calculates forces on fingertips, which are has a

positive correlation with the penetration volume on finger-

tips. Then, it applies the calculated forces to hold the object

against its gravity. The grasp stability is measured by the

displacement of the object’s center of mass during a period

in the simulation. In this period, the pose and location of

hand is fixed. We measure the mean and variance of the

simulation displacement for all test samples. Examples with

smaller simulation displacement have better grasp stability.

Perceptual score is utilized for evaluating the natural-

ness of generated grasps. We perform the perceptual study

following [25] with Amazon Mechanical Turk.

Hand-object contact metrics are used for analyzing con-

tact between hand-object. We calculate the sample-level

hand-object contact ratio, individual object and hand contact

points ratio, and the number of hand fingers contacting the

object. We classify the contact status of a point by judging

whether its distance to its nearest neighbor in the other point

cloud is smaller than 0.5 cm. We also calculate the object

contact map score, as s = 100 ·
∑

Ω
N ∈ [0, 100], which re-

flects the coverage area of grasps. Generally, larger contact

areas can imply a better grasp, but this is not strictly correct.

4.4. Grasp Generation Performance

Qualitative results. We first visualize generated grasps

for different objects. Fig. 7 shows that our framework is able

to generate stable grasps with natural hand poses on both

in-domain and out-of-domain objects.

Quantitative results. The evaluation results on the three

datasets are shown in Table 1. We train the models on the
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Penetration ↓ Grasp Displace. ↓ Contact ↑
Loss Depth Volume Mean ± Variance Ratio (%) Obj Verts (%) Hand Verts (%) # Finger CMap Score

Lbase 0.40 3.00 3.51 ± 3.70 97.69 3.58 8.20 2.97 6.42

+LH(gt) 0.64 4.90 1.97 ± 2.83 99.89 6.07 11.32 3.67 10.20

+LH 0.48 4.85 1.72 ± 2.44 99.90 6.98 12.17 3.90 11.11

+LH+LO(dist) 0.47 4.72 1.77 ± 2.65 99.83 6.80 11.92 3.82 10.89

+LH+LO 0.48 4.92 1.63 ± 2.43 99.94 7.16 12.17 3.87 11.24

Table 2: Ablation study for proposed losses of GraspCVAE on the Obman [20]. To verify the effectiveness of each loss, we also compared

each of them with a modified version shown in gray additionaly.

Model

object-only h-o global h-o global-local

Error 0.161 0.148 0.090

Table 3: Ablation study of different ContactNet designs. The error

is average contact map score absolute error of all object points

between predictions and ground truth.

Obman training set, and test on Obman testset. We also test

the model trained from the Obman training set extensively on

HO-3D and FPHA to demonstrate the generalization ability

of our method. All results are evaluated after Test-Time

Adaptation (TTA). The objects in the Obman test set may

overlap with its training set, while objects (with different

poses) from HO-3D and FPHA are never seen in training.

On all of the three datasets, our framework shows signif-

icant improvement over the state-of-the-art approach [25]

in both of physical plausibility, grasp stability and percep-

tual score. And results on HO-3D and FPHA dataset imply

that our model has a much stronger cross-domain general-

ization ability. For instance, [25] achieves reasonably good

stability on HO-3D and FPHA but suffers from huge pene-

tration (they are correlated). However, our model performs

much better on both of the two metrics with a great balance.

Moreover, the perceptual scores of our framework on the

three datasets are similar: 3.54 for in domain objects in Ob-

man, 3.50 and 3.57 for out-of-domain data in HO-3D and

FPHA. This shows the quality of generated grasps on out-of-

domain objects are close to the in-domain objects. Besides,

our results are close to or even outperform the ground truth,

especially for the stability and perceptual score.

4.5. Ablation Study
We first perform ablation studies on Obman dataset [20]

for evaluating the two proposed losses LH and LO. We

then analyse different designs of ContactNet. Finally, we

compare different Test-Time Adaptation (TTA) paradigms

on out-of-distribution HO-3D and FPHA [16, 19] dataset.

4.5.1 GraspCVAE Training Objectives

The results are shown in Table 2. With the hand-centric loss

LH, the simulation displacement decreases and contact met-

rics grows significantly while the penetration grows slightly.

After adding the object-centric loss LO, only object-related

metrics, e.g. contact object vertices ratio and contact map

score, and stability grows (displacement decreases). This

implies that with LH, the LO acts as a regularizer on the

object contact regions to improves the grasp stability, which

matches the design of this loss function.

We also verify the effectiveness of two losses by compar-

ing each with a modified version. First, we can force the

fingers to touch the ground truth contact regions rather than

finding them dynamically with LH. This loss is denoted as

LH(gt). Experiments demonstrate that LH is better in all

metrics than LH(gt). This implies that fitting the ground

truth in the multi-solution grasp generation task may not be

optimal. Second, in the loss LO, we verify the effectiveness

of using the contact map as the representation of hand-object

distance. We experiment with directly minimize the residual

between predicted and ground truth object-hand distances D̂
and D without normalizing them into contact maps. We call

this loss as LO(dist). Experiments show that with LO(dist),
the performance even degenerates. The reason is that the

LO(dist) is contributed almost by hand-object point pairs

with large distance, while LO focus more on hand vertices

close to object surface with the help of normalization.

4.5.2 ContactNet Designs

We compare three different kinds of ContactNet designs, as

shown in Table 3. The first model (object-only) takes solely

the object as input, while the second (h-o global) and third

(h-o global-local) model take in both of hand and object. The

difference between the latter two is to experiment whether

using object local features helps predict the contact map by

maintaining point permutation information.

Without the hand as an input, predicting object contact

map is a very difficult one-to-many mapping. Considering

only a small part of object points are in contact, the 0.161
absolute error is actually huge. Experiments also show that

without object local features, the gain from adding the hand

as one of the input is trivial. With object local features, the

error reduces 0.07 as a significant improvement of 50%.

4.5.3 Test-Time Adaptation (TTA) for Generalization

We compare four different TTA paradigms:

• TTA (offline): Learning-based TTA same as illustrated

in Sec. 3.3, and network parameters are re-initialized

before adapting each sample;

• TTA-optm (offline): Optimization-based TTA, where

the MANO parameters are directly optimized;
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Penetration ↓ Grasp Displace. ↓ Contact ↑
Depth Volume Mean ± Variance Ratio (%) Obj Verts (%) Hand Verts (%) # Finger CMap Score

HO-3D [19] w/o TTA 0.94 4.21 4.98 ± 4.48 86.63 3.41 8.78 3.11 5.65

TTA 1.09 4.88 3.80 ± 4.20 92.31 4.37 10.83 3.58 7.13

TTA-optm 1.07 4.59 4.14 ± 4.31 91.45 4.32 10.97 3.68 6.78

TTA-noise 1.12 4.98 4.22 ± 4.34 91.17 4.14 10.40 3.32 6.81

TTA-online 1.05 4.58 3.21 ± 3.79 99.61 4.66 11.55 3.88 7.80
FPHA [16] w/o TTA 6.19 1.56 2.93 ± 2.70 100 4.71 13.78 4.47 7.67

TTA 6.37 1.58 2.55 ± 2.22 100 4.64 13.95 4.56 7.67

TTA-online 6.31 1.69 2.77 ± 2.47 100 4.83 14.44 4.73 7.83

Table 4: Results of different Test-Time Adaptation (TTA) methods on out-of-domain HO-3D and FPHA dataset [19, 16].

View 1 View 2View 1 View 2

Before After

Figure 8: Visualization of grasp before and after TTA. The pene-

tration decreases on fingertips.

• TTA-noise (offline): Learning-based TTA. When train-

ing ContactNet, the hand parameters are injected with

random noise. The method is used to compare different

methods to obtain the target contact map;
• TTA-online: Learning-based TTA, the network parame-

ters are re-initialized only once for each video sequence.

As shown in Table 4, on the two datasets, all TTA meth-

ods can improve the results. There are three comparisons

between the different methods. First, on the HO-3D dataset,

the TTA and TTA-optm achieve comparable results because

they are both offline methods using the same objective func-

tion. The results of the learning-based TTA are slightly

better, which can be explained by that the network param-

eters serve as a prior and make the adaptation more steady.

Second, training with injected noise, we expect the Contact-

Net can learn to predict ideal contact maps as target in TTA

by "correting" the noise. However, the results deteriorate

compared with the one trained on perfect ground truth data.

This can be explained by: (i) Injecting noise hurts learning

contact maps; (ii) It is hard to match the injected noise with

the noise pattern in initially predicted grasps. Third, the on-

line version of TTA is stronger than offline versions. Inspired

by [45, 23, 35], for the online TTA, the target of the TTA can

be optimized continually with the help of network parame-

ters, and the model can fit the test distribution better. With

online updating, the stability grows and penetration depth

decreases simultaneously, indicating that the network leans

better hand-object contact. A huge improvement in contact

ratio also verifies the point. The improvement of online TTA

on the FPHA dataset is not as big as on HO-3D dataset be-

cause the average video sequence length is 1
20 of HO-3D, so

the learning target cannot be optimized continually.

Be
fo

re
A

fte
r

Figure 9: After TTA, object contact regions become larger, where

the yellow circles on contact maps reflect the intersection rings

between hand-object.

To show the effectiveness of TTA for improving both

the naturalness and stability of generated grasps, we fur-

ther visualize the grasps and object contact maps before and

after TTA. As shown Fig. 8, after TTA, the hand penetra-

tion decreases with fingers closely contacting object surface.

In Fig. 9, the object contact regions become larger, which

indicates the grasps are more stable.

5. Conclusion

In this work, we propose a framework for generating

human grasps given an object. To get natural and stable

grasps, We reason the consistency of contact information

between object and generated hand from two aspects: First,

we design two novel training targets from the view of hand

and object respectively, which helps them to find a mutual

agreement on the form of contact. Second, we design two

networks for grasp generation and predicting contact map

respectively. We leverage the consistency between outputs

of the two networks for designing a self-supervised task,

which can be used at test-time for adapting generated grasps

on novel objects. With the proposed method, we not only

observe more natural and stable generated grasps, but also a

strong generalization capability on cross-domain test inputs.
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