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Figure 1: The proposed semi-supervised learning framework and results. We train an initial model on an annotated dataset, and deploy it

on a large-scale video dataset to collect pseudo-labels. We leverage spatial-temporal consistency to select pseudo-labels for self-training.

After the semi-supervised learning, both the performance of hand-object pose estimation and hand pose generalization are improved.

Abstract

Estimating 3D hand and object pose from a single im-

age is an extremely challenging problem: hands and objects

are often self-occluded during interactions, and the 3D an-

notations are scarce as even humans cannot directly label

the ground-truths from a single image perfectly. To tackle

these challenges, we propose a unified framework for esti-

mating the 3D hand and object poses with semi-supervised

learning. We build a joint learning framework where we per-

form explicit contextual reasoning between hand and object

representations. Going beyond limited 3D annotations in a

single image, we leverage the spatial-temporal consistency

in large-scale hand-object videos as a constraint for generat-

ing pseudo labels in semi-supervised learning. Our method

not only improves hand pose estimation in challenging real-

world dataset, but also substantially improve the object pose

which has fewer ground-truths per instance. By training with

large-scale diverse videos, our model also generalizes better

across multiple out-of-domain datasets. Project page and

code: https://stevenlsw.github.io/Semi-Hand-Object

1. Introduction

Hands are humans’ primary means of interacting with

the physical world. Capturing the 3D pose of the hands

and the objects interacted by hands is a crucial step in un-

*Equal contribution.

derstanding human actions. It is also the central part for a

variety of applications including augmented reality [44, 25],

third-person imitation learning [17, 10], and human-machine

interaction [58]. While 3D pose estimation on hands and

objects have been studied for a long time in computer vision

captured with depth cameras [72, 36, 34, 69, 32] or RGB-D

sensors [70, 49, 38, 54, 11] in controlled environments, re-

cent research has also achieved encouraging results on pose

estimation from a single monocular RGB image [75, 37, 66].

Despite the efforts, current approaches still highly rely on

human annotations for 3D poses, which are extremely diffi-

cult to obtain: Researchers have been collecting data with

motion capture [50, 13, 74], or aligning mesh models to the

real images [19, 30, 16, 4]. Given insufficient annotations

for supervised learning, it limits the trained model from gen-

eralizing to novel scenes and out-of-domain environments.

To enable better estimation performance and generalization

ability, we look into video data of hands and objects in the

wild, without using the 3D annotations.

Specifically, we propose to exploit hand-object interac-

tions over time. The poses of the hands and objects are

usually highly correlated: The 3D pose of the hand when

it is grasping the object often indicates the orientation of

the object; the object pose also provides constraints on how

the hand can approach and interact with the object. When

observing from the videos, the 3D poses for both hands and

objects should change smoothly and continuously. This con-

tinuity provides a cue for selecting coherent and accurate

3D hand and object pose estimation results when human
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annotations are not available.

In this paper, we introduce a semi-supervised learning

approach for 3D hand and object pose estimation with videos.

We first train a joint model for both 3D hand pose and 6-Dof

object pose estimation with supervised learning using fully

annotated data. Then we deploy the model for hand pose

estimation in large-scale videos without 3D annotations. We

collect the estimation results as novel pseudo-labels for self-

training. Specifically, to utilize the interaction information

between hand and object, we design a unified framework

that extracts the representation from the whole input image,

and uses RoIAlign [20] to further obtain the object and hand

region representations. Building on these representations,

we apply two different branches of sub-networks to estimate

the 3D poses for hand and object, respectively. We use a

relational module [61] which bridges the two branches for

encoding the mutual context between hand and object.

To perform semi-supervised learning with hand-object

videos, we deploy our unified model on each frame for

pseudo-label generation, as illustrated in Figure 1. Given

the 3D hand pose results from our model, we design spatial-

temporal consistency constraints to filter unstable and inac-

curate estimations. Intuitively, we only keep the results as

pseudo-labels if they change continuously over time, which

indicates the robustness of the estimation. We then perform

self-training with the newly collected data and labels.

We experiment by training the initial model on the HO-

3D dataset [16], and perform semi-supervised learning with

the Something-Something video dataset [14]. By learning

from the pseudo-labels from large-scale videos using our

approach, we achieve a large gain over state-of-the-art ap-

proaches in the HO-3D benchmark. We also show significant

improvements in 3D hand pose estimation which generalizes

to the out-of-domain datasets including FPHA [11] and Frei-

Hand [76] datasets. More surprisingly, even though we only

use pseudo-labels for hands, our joint self-training improves

the object pose estimation by a large margin (more than 10%
in some objects).

Our contributions include: (i) An unified framework

for joint 3D hand and object pose estimation; (ii) A semi-

supervised learning pipeline which exploits large-scale un-

labeled hand-object interaction videos; (iii) Substantial per-

formance improvement on hand and object pose estimation,

and generalization to out-of-domain data.

2. Related Work

Hand pose estimation. Research in RGB-based hand

pose estimation can be generally categorized into two

paradigms, model-free approaches [5, 75, 26, 57, 37, 12] and

model-based approaches [2, 4, 30, 73, 19]. Model-free ap-

proaches estimate pose by learning joint coordinates [75, 57]

or joint heatmaps [26, 37, 5]. For example, Zimmermann

et al. [75] proposed to detect 2D hand joints and lift them

into 3D with the articulation prior. Differently, model-based

approaches utilize the differentiable MANO model [50] to

capture hand pose and shape. For example, Boukhayma et

al. [4] collected synthetic data for pre-training to increase

the hand pose accuracy. In our work, instead of relying on

either synthetic data or 3D ground-truths, we leverage the

spatial-temporal information in the large-scale real-world

videos to achieve better hand pose estimation performance

and generalization ability in a semi-supervised manner.

Object pose estimation. There are also two main

paradigms to perform object 6-Dof pose estimation, with

one directly regressing the pose as network outputs [28, 67]

and another regressing the projected 3D object control points

location in the image and recovering the pose with 2D-to-3D

correspondence [45, 60, 43, 24]. Due to the non-linearity of

the rotation space, direct regression of the 6-D pose suffers

from the generalization problem [24, 65]. For the 2D-to-3D

genre, as an example, Hu et al. [24] performed inference by

generating pixel-wise structural outputs, containing multi-

ple proposals for computing the pose, which demonstrates

strong robustness to unseen data. Our method is inspired by

this approach, but further extends to consider the hand-object

interaction for object pose estimation. We propose a joint

framework using contextual reasoning to improve both hand

and object pose estimations.

Hand-object interaction. Simultaneously estimating

hand and object poses [59, 8, 40, 41, 18, 9, 7] during in-

teraction is a challenging task due to self-occlusion. To

tackle this problem, Hasson et al. [19] leveraged physical

constraints for regressing hand and object mesh at the same

time using two separate networks. Differently, we observe

that sharing the feature backbone in learning between two

pose estimation tasks can implicitly encode the context in-

formation. And this contextual information becomes very

useful when applied to the semi-supervised learning setting.

Similar to our approach, Chen et al. [7] proposed to fuse

hand-object representations to get interaction-aware features

for joint pose estimation using LSTM [15]. However, this

feature fusion method cannot model the spatial dependency

between hand and object. Instead, our method utilizes a

spatial contextual reasoning module between hand-object

representations to get interaction-aware feature maps explic-

itly, which benefits both hand and object pose estimation.

Semi-supervised Learning. Semi-supervised learning

plays a key role in improving model performance when

the labeled data is limited [46, 35, 68, 55, 71, 48, 51, 6].

Given a trained model on human-annotated datasets, we

can apply it on unlabeled data to collect pseudo-labels for

further training [31, 27, 1, 56]. For example, Hinton et

al. [22] have proposed to perform model ensembles in testing

to improve the estimation performance. Instead of using

multiple models, Radosavovic et al. [46] proposed to deploy

the trained model with test-time augmentations to increase
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Figure 2: Overview of the framework for hand-object 3D poses joint estimation. The model consists of the shared encoder, the contextual

reasoning module for modeling hand-object interaction and two decoders for estimating hand-object poses.

the confidence of the pseudo-labels. While related to our

method, most of the previous approaches have not considered

the spatial and temporal constraints in videos for selecting

the pseudo-labels, which is one of our innovations.

Interaction Reasoning. Interaction reasoning [61, 53,

63, 62, 64, 52, 3, 23] aims to model the interactions among

objects. For example, Santoro et al. [53] inferred relations

across all pairs of objects to solve the visual question answer-

ing task. Wang et al. [61] captured long-range dependencies

via the non-local module in spacetime for video classifica-

tion. The goal of our work is to exploit the visual correlation

between hand and object to improve pose estimation perfor-

mance under occlusion. The contextual reasoning module

we proposed exploits only the relevant pair of cells between

hand-object instead of the whole image.

3. Overview

Our method on 3D hand and object pose estimation con-

tains two main components: (i) a joint learning framework

with contextual reasoning between the hand and the object;

(ii) a semi-supervised pipeline which explores extra labels

in videos for training.

First, we present the hand-object joint learning framework

in Section 4. The model contains a shared encoder and two

separate decoders for hand and object, as well as a contextual

reasoning module 4.1 to better exploit their relations. The

model is trained under fully-supervised learning.

Then, we propose the semi-supervised learning pipeline

in Section 5, Constrained by the spatial-temporal consistency,

we generate high-quality pseudo-labels of hand on a large-

scale video dataset [14] and re-train our model on the union

of fully annotated dataset [16] and those confident pseudo-

labels. Because of the diversity in the hand pseudo-labels,

the model could both increase the accuracy of hand pose

estimation and generalization. With better hand features as

context via the contextual reasoning module, the object pose

performance of the model could also be improved.

4. Hand-Object Joint Learning Framework

Our hand-object joint learning framework is presented in

Figure 2. We use FPN [33] with ResNet-50 [21] as the back-

bone and extract hand and object features Fh and Fo into

R
H×W×C with the RoIAlign [20], given their corresponding

Figure 3: The contextual reasoning (CR) module: The key (fea-

tures extracted from the region of hand intersecting with object) is

taken as context to enhance the query (object features). First, we

compute a synergy map as the spatial similarity between query and

key. Then we use this map for fusing the key into the query.

bounding boxes. Then we apply the contextual reasoning be-

tween the two features and send the enhanced feature maps

with strengthened interactive context information into the

hand and the object decoders respectively, which output the

3D hand mesh and 6-Dof object pose. The total loss func-

tion of the system is the sum from two decoder branches

L = Lhand + Lobject. The contextual reasoning module,

hand and object decoders, and training losses Lhand,Lobject

will be discussed in the following sections.

4.1. Contextual Reasoning

We exploit the synergy between hand and object features

via the contextual reasoning (CR) module as shown in Fig-

ure 3, where the query positions in object features could be

enhanced by fusing information from the interaction region.

In the module, we take object features Fo as query and

hand-object intersecting regions Fho as key to model their

pairwise relations on the top of RoIAlign [20]. With Fo+

representing the output enhanced object features and sub-

script i representing the given position i of the features, we

have

Fo+

i =
∑
j∈Ω

w(i, j) · V (Fho
j ) + Fo

i , (1)

where Ω denotes the set of all positions on the key with size
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H ×W . V is the value transformation function parameter-

ized by Wv shown in the left side of Figure 3, w(i, j) is the

pairwise spatial similarity score between query position i

and key position j. w(i, j) is computed as

w(i, j) =
exp(qTi kj)∑
s∈Ω

exp(qTi ks)
, (2)

where qi = WqF
o
i and kj = WkF

ho
j denote the query and

key embedding at position i and j respectively. Wq and Wk,

shown in the right side of Figure 3, are the parameters of

two separate 1-D convolution that applied on the query and

key to get the embeddings.

Besides, we also ablate on using different features as the

query of CR module in Section 6.5.1, where we alternatively

choose to use the features of hand or both hand-object as the

query.

4.2. Hand Decoder

The hand decoder consists of a 2D joints localization

network and a mesh regression network. The 2D joints

localization network is an hourglass [39] module which takes

the hand features after RoIAlign [20] as input and outputs

2D heatmaps for each joint j ∈ J 2D, where J 2D ∈ R
Nh×2

and Nh = 21 is the number of joints. The heatmaps have

the resolution 32 × 32. The loss function of the 2D joints

localization network LH is the distance between ground-

truth heatmaps Hj and predictions Ĥj of each joint j, as

LH =
∑

j∈Nh ||Hj − Ĥj ||
2
2.

The mesh regression network combines the hand features

with the 2D heatmaps as input and predicts the parameters of

the hand mesh parameterized by the MANO model [50]. The

MANO model maps the pose parameters θ ∈ R
48 and shape

parameters β ∈ R
10 to hand mesh vertices V ∈ R

778×3 and

3D joints J 3D ∈ R
Nh×3. The inputs of the mesh regres-

sion network are forwarded to a ConvNet with four residual

blocks [21] and vectorized into a 2048-D feature vector.

The output are the predicted MANO parameters θ̂ and β̂

using three fully-connected layers. We compute the loss

on both the MANO model parameters and outputs. Specif-

ically, we compute the L2 distance between the prediction

(θ̂, β̂, ˆJ 3D, V̂) and ground-truth (θ, β,J 3D,V) as the loss

LM in mesh regression network. The total loss of the hand

decoder is the sum of heatmap loss LH and LM

Lhand = λH · LH + LM . (3)

where λH = 0.1 is used for balancing losses.

4.3. Object Decoder

The object decoder consists of two streams, which has 4

shared convolution layers and 2 separate convolution layers

for each stream. The first stream predicts the 2D location of

Figure 4: Examples of hand mesh pseudo-labels generated from

the video dataset [14].

pre-defined 3D control points on the object from image grid

proposals, and the second stream regresses the corresponding

confidence scores of each proposal. After obtaining the 2D

positions of control points, the object 6-Dof pose can be

computed by the PnP algorithm using the correspondence

between 2D control points and original 3D control points on

the object mesh. In this work, we utilize No = 21 control

points, including 8 corners, 12 edge midpoints and 1 center-

point of the object mesh 3D bounding box.

In the first stream, we adopt the grid-based method [47] to

better handle self-occlusion, where each grid g in the object

feature map gives a prediction for every control point i ∈ No.

We use δg,i to denote the geometric distance between the

grid prediction and the target control point. The loss function

of the first stream is the loss sum over all the grids g and

control points i, denote as Lp2d =
∑

g

∑No

i=1
||δg,i||1.

The second stream regresses a confidence score cg,i for

each grid g and control point i, where the confidence ground-

truth cg,i = exp(−||δg,i||2), which indicates the proximity

of the prediction to the ground-truth 2D point locations.

During test time, we pick 10 most confident proposals as the

input of the PnP algorithm to solve for the object pose. The

loss function of the second stream is denoted as Lconf =∑
g

∑No

i=1
||ĉg,i − cg,i||

2
2, where cg,i and ĉg,i are the ground-

truth and predictions.

The total loss of the object decoder is

Lobject = λp · Lp2d + λc · Lconf . (4)

where λp = 0.5 and λc = 0.1 are hyperparameters.

5. Semi-Supervised Learning

After we trained the model of hand-object pose estimation

on the fully annotated dataset, we deploy it on a large-scale

unlabeled video dataset [14] for 3D hand pseudo-label gener-

ation. We leverage spatial-temporal consistency to filter out

unreliable pseudo hand labels. The obtained pseudo-label

examples on the video dataset [14] can be seen in Figure 4.
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Note that we do not generate pseudo-labels for objects be-

cause of the need for object 3D models at inference time

and the poor generalization of object pose due to the limited

instances on the annotated dataset. By enlarging the fully an-

notated dataset with the selected pseudo-labels, we conduct

self-training for both hand and object pose estimation.

5.1. Pseudo-Label Generation

We first deploy our model on video frames from a large-

scale video dataset [14] for 3D hand pose estimation. To

improve the estimation robustness, we do test-time data

augmentation and ensemble the predictions similar to [46].

In our experiment, we perform 8 different augmentations of

each instance and average the results. The outputs of each

frame include 2D joints J 2D, 3D joints J 3D, 3D hand mesh

vertices V , and corresponding MANO parameters (θ, β).

While ensemble predictions reduce the noise in generated

samples, we still need to identify confident ones. To this end,

we establish a pipeline for filtering by innovatively utilizing

the spatial and temporal consistency constraints in the video

dataset, as shown in Figure 5.

5.1.1 Spatial Consistency Constraints

Filtering with spatial consistency requires the corresponding

camera pose of each frame. However, it is infeasible to infer

the camera pose directly on the video dataset like [14] which

has a large variety of viewpoint changes. Our solution to

this problem is to leverage the correspondence between the

estimated 3D joints J 3D and 2D joints J 2D and solve for

the optimal camera parameters Π that projects the 3D joints

to 2D, as shown in Figure 5a. We use the weak-perspective

camera model and use the SMPLify [42] for the optimization.

The objective is the following:

Π∗ = argmin
Π

||ΠJ 3D − J 2D||22 , (5)

where Π∗ is the optimal camera parameters.

IoU Constraint. With the camera pose, we can re-project

the estimated 3D mesh V to the image plane and calculate the

Intersection-over-Union (IoU) between the provided ground

bounding box Bg and the re-projected mesh bounding box

Bd, as shown in the left side of Figure 5b. Note that al-

though we do not have 3D ground-truths, we leverage the

2D bounding box annotations provided by [14]. A confident

prediction should always tend to be consistent between these

two boxes and has a large IoU. We set the IoU threshold as

0.6 for confident prediction.

Pose Re-projection Constraint. The re-projected 3D

hand joints ΠJ 3D and estimated 2D hand joints J 2D should

be consistent. We first normalize these two set of joints

independent of input sizes and compute the L2 distance

between them as ||J 2D − ΠJ 3D||2. When the distance is

(a) Solve the camera projection by utilizing correspondence between

estimated 3D hand joints and 2D hand joints. Then project the predicted

3D mesh to 2D.

(b) Leverage spatial-temporal consistency for pseudo-label selection.

First apply spatial constraints in both 2D and 3D, then perform temporal

filtering between consecutive frames.

Figure 5: Pipeline of pseudo-label selection for video frames in

the wild.

larger than the threshold tp, then the prediction would be

filtered out. We set tp = 0.65

Biomedical Constraint. The predicted hand pose should

be natural human hands. Thus, we exploit the minimal

normalized bone length of 0.1 and physically plausible joint

angle ranges within (0, 90) as two additional constraints to

help remove those unnatural predicted hand poses.

For each instance in the dataset, if it does not violate the

three spatial consistency constraints mentioned above, we

move forward to the temporal consistency constraints.

5.1.2 Temporal Consistency Constraints

Smoothness Constraint. We consider the temporal consis-

tency constraints as the smoothness of both the 2D joint

predictions and the 3D mesh predictions between two con-

secutive frames t − 1 and t. As shown in the right side

of Figure 5b, since the frames are continuous, the model

outputs should be smooth over time. Concretely, the dis-

tance of the 2D pose estimation results between these two

frames ||J 2D
t − J 2D

t−1||2 should be less than a threshold

tj . Similarly, for the MANO pose parameter θ, we have

||θt − θt−1||2 ≤ tθ to ensure 3D mesh smoothness, where

tj = 0.5 and tθ = 0.01 are two constant thresholds.

Shape Constraint. In each video sequence, the shape

of the hands belongs to the same person should be in-

variant over time. Given the confident prediction subset

C which is the collection of frames satisfying the above

constraints in each video sequence, we compute the mean

hand shape as β̄ = 1

|C|

∑
t∈C βt and its standard deviation

σC =
√

1

|C|

∑
t∈C ||βt − β̄||22). We filter out the frames in

C whose shape deviation from β̄ is 2 times larger than σC .
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Figure 6: Qualitative results of predicted hand-object pose estimation on the HO-3D dataset. For each example, the first two columns show

the recovered hand mesh and estimated 6-Dof object pose, the third row shows the estimated hand-object in 3D, the color of the object

indicates the 3D object mesh error. Red indicated larger estimation error.

5.2. Re-training with Pseudo-Labels

We conduct self-training on the union set of the human-

annotated dataset and those pseudo-labels. The diversity

of the hand pseudo-labels not only improves the hand pre-

diction, but also provides a richer context for hand-object

interaction reasoning via the CR module, leading to better

object pose estimation. During the retraining, since we do

not have the pseudo-labels of objects, we use a binary mask

to ensure only computing the loss of the hand on the pseudo-

labeled dataset. The total loss function in the retraining stage

is the following

L = Lhand + B · Lobject . (6)

where B is the mask which equals 1 on the fully-annotated

dataset and 0 otherwise.

6. Experiment

First, we test hand-object pose estimation performance

on the HO-3D [16] dataset and visualize the prediction in

Section 6.4. In Section 6.5, we conduct abundant ablation

studies on the designs of the CR module and explore the

effectiveness of semi-supervised learning. In section 6.6,

we test our model’s generalization before and after semi-

supervised learning on Freihand [76] and FPHA [11] dataset.

6.1. Implementation Details

Our model is trained in an end-to-end manner from

scratch both in the supervised learning phase and semi-

supervised learning phase. The shared encoder in the joint

learning framework is initialized with ResNet-50 pre-trained

on ImageNet. We use a batch size of 24, initial learning rate

1e−4, and Adam optimizer for the training. The training lasts

for 50 epochs and the learning rate is scaled by a factor of 0.7

every 10 epochs. We crop the input image to 512× 512 and

do data augmentation including scaling (±20%), rotation

(±180◦), translation (±10%) and color jittering (±10%).

6.2. Datasets

HO-3D Dataset [16] is used to train our model in super-

vised learning. The dataset contains more than 65 sequences

captured with 10 different subjects and 10 objects with both

3D pose annotations of hand and object. It has 66, 034 and

11, 524 hand-object interaction images from a third-person

view for training and testing. The test results are evaluated

by the official online submission system.

Something-Something Dataset [14] is a large-scale

hand-object interaction video dataset where we conduct

semi-supervised learning with only hand and object bound-

ing boxes provided. It covers a variety of hand instances

and most daily objects. We finally select 84063 frames with

pseudo hand labels.

FPHA, Freihand Dataset [11, 76] are used for validat-

ing cross-domain generalization. FPHA is an egocentric

video dataset with hand-object interactions. The dataset is

captured by using magnetic sensors strapped on hands. The

first-person viewpoint and sensors on the hand introduce

great challenges for the model’s generalization. We use the

same subset as previous work [59, 19, 18] for testing. The

test set of the Freihand dataset contains 3960 samples with

hands in both indoor and outdoor environments. Hands in

half of the samples are interacting with the objects, while

in the other half objects are absent. It is also a challenging

benchmark for models trained only on hand-object interac-

tions. The evaluation is also performed at the online server.

6.3. Evaluation Metrics

For hand pose estimation, We report the standard met-

ric returned from the submission system, i.e. mean joint

error and mesh error in mm after Procrustes alignment and
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Figure 7: Visualization of the CR module. The top row shows

the synergy maps (red indicates higher response), the bottom row

shows corresponding object query positions (red points). Hand,

object and intersection boxes are in yellow, green, and blue.

Hand Error(↓) F-score(↑) Object

methods Joint Mesh F@5 F@15 Estimation

Hasson et al. [19] 11.1 11.0 46.0 93.0 �

Hampali et al. [16] 10.7 10.6 50.6 94.2 �

Ours 9.8 9.4 53.0 95.7 �

Table 1: Hand pose estimation performance compared with state-

of-the-art methods on HO-3D [16] dataset. The joint and mesh

errors are in mm. The checkmark denotes whether the method also

estimates the object pose.

F-scores. To further evaluate cross-dataset generalization,

we report the area under the curve (AUC) of the percentage

of correct vertices (PCV) and keypoints (PCK) follow [76].

For object pose estimation, we report the percentage of aver-

age object 3D vertices error within 10% of object diameter

(ADD-0.1D).

6.4. Pose Estimation Performance

Qualitative Results. The qualitative results on the HO-

3D dataset [16] are shown in Figure 6. We visualize the

predicted hand-object in both 2D and 3D. It demonstrates our

method can well handle the occlusion in the interaction and

recover the accurate 3D hand mesh and object 6-Dof pose.

Moreover, we visualize the synergy maps of different object

query positions in the CR module in Figure 7. We observe

the CR module gives high responses to contact regions and

tends to use the contact pattern for relational reasoning.

Comparison with State-of-the-Art. We compare

our hand pose estimation results with state-of-the-art-

methods [19, 16] on the HO-3D dataset [16] as shown in

the Table 1 and Figure 8. As can be seen from the figure,

our method achieves the highest mesh-AUC at 81.2%, 2.2%,

and 3.9% higher than [16] and [19] respectively. Our model

also has the lowest hand mesh error of 9.4mm. Besides the

better hand pose performance, compared with[19, 16], our

method could also give a much accurate object estimation

simultaneously.

6.5. Ablation Study

We perform the ablation study on HO-3D dataset [16].

We first compare different designs of the CR module. Then,

Hand Error(↓) F-score(↑) Object ADD-0.1D(↑)

model Joint Mesh F@5 F@15 cleanser bottle can ave

w/o CR 10.2 9.7 53.7 94.9 75.3 59.1 52.1 62.2

h
+ 10.6 10.1 52.6 94.5 75.5 62.0 57.6 65.0

h
+
o
+ 10.3 9.9 52.6 94.8 86.5 61.6 46.4 64.8

o
+ 10.1 9.7 52.9 95.2 87.6 60.1 54.8 67.5

Table 2: Comparison of different queries in CR module on HO-3D

dataset [16]. h
+, h+

o
+ and o

+ are to take hand features, both

hand-object features, and object features as the query respectively.

The key feature, which is extracted from the hand-object intersec-

tion region, is fused into the query feature. In detail, for h+
o
+, we

use two separate CR modules for fusing the key into both the hand

and object query. Ave means average.

Hand Error(↓) F-score(↑) Object ADD-0.1D(↑)

model Joint Mesh F@5 F@15 cleanser bottle can ave

sup-w/o CR 10.2 9.7 53.7 94.9 75.3 59.1 52.1 62.2

semi-w/o CR 10.1 9.6 53.7 95.2 88.8 68.9 49.8 69.2

sup- w/ CR 10.1 9.7 52.9 95.2 87.6 60.1 54.8 67.5

semi- w/ CR 9.8 9.4 53.0 95.7 89.7 72.7 57.0 73.2

Table 3: Ablation analysis of semi-supervised learning on HO-3D

dataset [16]. sup and semi means under the supervised and semi-

supervised phase. Best numbers of supervised learning results

and semi-supervised learning results are shown in blue and red

respectively. w/o CR is the baseline without CR module, and w/

CR is the proposed one with CR module. Ave means average.

we investigate the effect of different filtering constraints and

fractions of pseudo-labels contributed to hand and object

pose estimation respectively.

6.5.1 Ablation on CR Module

We study the effect of different query design choices in the

CR module under supervised learning. We compare three

types of queries, while the key remains the same as the fea-

ture from the intersection region between hand-object. The

first choice is to take the hand features as query and the CR

module output is only fed into the hand decoder, denoted as

h
+. The second choice is to take both the hand and object

features as queries using two separate CR modules and the

output is fed into both decoders, denoted as h+
o
+. While

the third one is what we proposed in Section 4.1 where we

take object features as query, denoted as o+. As shown in

Table 2, performing contextual reasoning to enhance object

representation (o+) can improve the object pose estimation

significantly. The average object ADD-0.1D has a 5.3%
improvement against the baseline without the CR module.

However, using the hand features as a query (h+ and h
+
o
+)

does not contribute to better hand pose estimation. It even

degrades the performance slightly against the baseline. This

might be due to the CR module degenerates and the occlu-

sion regions even distract the network attention.

6.5.2 Ablation on Semi-supervised Learning

Semi-supervised Learning Performance. As shown in Ta-

ble 3, semi-supervised learning improves both hand and
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Num Hand Error(↓) F-score(↑)

model Pseudo Joint Mesh F@5 F@15

sup 0 10.1 9.7 52.9 95.2

w/o spatial 84,063 10.0 9.7 51.8 95.4

w/o temporal 84,063 10.1 9.7 52.0 95.3

proposed 84,063 9.8 9.4 53.0 95.7

Table 4: Ablation analysis of using different filtering constraints

in semi-supervised learning on the HO-3D dataset.

FPHA [19] Freihand [76]

AUC (↑) F-Score (↑) AUC (↑) F-Score (↑)

model

eval
Joint Mesh F@5 F@15 Joint Mesh F@5 F@15

supervised 73.9 75.0 43.8 92.0 68.5 68.0 34.2 84.8

semi-supervised 74.8 75.9 45.3 92.9 69.7 69.1 35.4 86.3

Table 5: Cross-dataset generalization performance measured as

joint AUC, mesh AUC, and F-scores between model trained with

supervised learning and semi-supervised learning.

object pose estimation with or without using the CR module.

Even though only hand pseudo-label are collected, the object

pose estimation is benefited. We conjecture there are two rea-

sons: First, better hand representation acts as a better context

and could improve the object pose estimation via contextual

reasoning; Second, the diversity of the hand pseudo-hand

labels contribute to a much more robust shared backbone,

which extracts base features for obtaining both hand and

object representations via RoI Align. With semi-supervised

learning, the object ADD-0.1D of cleanser, bottle, and can

are improved by 2.1%, 12.6%, 2.2% respectively, as a 5.7%
improvement in average.

Pseudo-labels Filtering Constraints. We evaluate how

the different filtering constraints contribute to the semi-

supervised learning in Table 4. We compare against the

method with only supervised learning and methods that re-

move the spatial or temporal filtering constraints. From the

table, We can see each constraint plays an important role.

Without either spatial or temporal constraints, it even de-

grades the hand pose estimation accuracy. Therefore, both

constraints are critical for selecting high-quality pseudo-

labels and improving hand pose estimation performance.

Amount of Pseudo-label. We analyze the effect of us-

ing different fractions of pseudo-labels in semi-supervised

learning on the object ADD-0.1D performance on HO-

3D dataset [16]. We uniformly sample 20%, 40%, 60%,

and 80% fraction of the collected pseudo-labels for semi-

supervised learning. As shown in Figure 9, the more pseudo

hand labels used in training, the better object performance

the model could achieve. Even though the amount of an-

notated object pose keeps the same in training, the object

performance could also be improved for two reasons: First,

the better hand performance can help the object pose estima-

tion via contextual reasoning explicitly; Second, the shared

encoder is strengthened after semi-supervised learning and

boosts object pose implicitly.

Figure 8: The hand mesh 3D

PCV performance on the HO-

3D dataset. Our method outper-

forms previous work [19, 16] by

a large margin.

Figure 9: Ablation study of dif-

ferent fractions of pseudo labels

contributes to object pose per-

formance gain on the HO-3D

dataset.

6.6. Cross-domain Generalization Ability

We evaluate the generalization performance of our model

on FPHA [11] and Freihand [76] dataset before and after

semi-supervised learning. Follow the protocol of [73, 76],

we report the joint AUC and mesh AUC after Procrustes

alignment and F-scores [29]. To evaluate the hand mesh

performance on the FPHA dataset, we fit the MANO model

to the provided ground-truth hand joints following [18]. The

generalization results are shown in Table 5. Our model

trained with semi-supervised learning has a much more ac-

curate hand joints and mesh estimation compared with the

baseline that only trained with supervised learning. In semi-

supervised learning, we utilize more training data from the

Something-Something video dataset [14] that covers diverse

hand poses interacting with objects and subjects in the wild.

The model could thus benefit from those data sources in the

semi-supervised training stage and yield much better results

on generalization across different out-of-domain datasets.

7. Conclusion

In this work, we propose a semi-supervised learning

framework for estimating the 3D hand pose and 6-Dof ob-

ject pose simultaneously, where the hand-object interaction

regions are taken as the context for reasoning the object pose.

After training the model on the annotated dataset, we deploy

it on a large-scale video dataset to generate pseudo hand

labels, and then perform spatial-temporal filtering to obtain

high-quality ones. Finally, the model is retrained on the

union set of real- and pseudo-labels under semi-supervised

learning. Experimental results show that our method sub-

stantially improves the hand and object pose performance as

well as has better cross-domain generalization.
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