ROOTS OF CHARACTERISTIC EQUATION FOR SYMPLECTIC GROUPOID

L.O. Chekhov, M. Shapiro, and H. Shibo

Morphisms on the set $\mathcal{A}_n \subseteq gl_n$ of unipotent upper-triangular $n \times n$ matrices are transformations such that $\mathbb{A} \mapsto B\mathbb{A}B^{\mathrm{T}} \in \mathcal{A}_n$. For $B = e^{\varepsilon g}$, linearized transformations $\delta_{\varepsilon}\mathbb{A} = g\mathbb{A} + \mathbb{A}g^{\mathrm{T}}$ are analogous to Krichever–Novikov transformations [4]. The quantization of Bondal's Poisson structure on \mathcal{A}_n [1] obtained using the symplectic groupoid construction is the reflection equation with the trigonometric R-matrix

$$\mathcal{R}_n(q) \stackrel{1}{\mathbb{A}} \mathcal{R}_n^{\mathfrak{t}_1}(q) \stackrel{2}{\mathbb{A}} = \stackrel{2}{\mathbb{A}} \mathcal{R}_n^{\mathfrak{t}_1}(q) \stackrel{1}{\mathbb{A}} \mathcal{R}_n(q) \tag{1}$$

Here \mathbb{A} is an upper-triangular matrix with diagonal entries $q^{-1/2}$ and with self-adjoint operator entries $a_{i,j}$ for i < j. The combination $\mathbb{A}\mathbb{A}^{-\dagger} := \mathbb{A}[\mathbb{A}^{\dagger}]^{-1}$ then undergoes an adjoint transformation $\mathbb{A}\mathbb{A}^{-\dagger} \to B\mathbb{A}\mathbb{A}^{-\dagger}B^{-1}$, and we are to find its eigenvalues $\lambda_i \in \mathbb{C}$ determining [n/2] independent Casimir elements [1].

We express entries of \mathbb{A} using quantum Fock–Goncharov variables $Z_{\alpha} = Z_{(i,j,k)}$ parameterized in terms of barycentric coordinates (i+j+k=n) of vertices of the b_n -quiver [3] (left part of Fig. 1): A solid arrow from α to β means that $Z_{\beta}Z_{\alpha} = q^{-2}Z_{\alpha}Z_{\beta}$ and a dashed arrow gives $Z_{\beta}Z_{\alpha} = q^{-1}Z_{\alpha}Z_{\beta}$. A directed network N dual to the b_n -quiver is a directed graph of double arrows in Fig. 1.

With any oriented path $P: j \leadsto i$ in any planar directed network \mathcal{N} we associate the quantum weight w(P), which is Weyl ordered (denoted by the symbol $\cdot \cdot \cdot \cdot \cdot$, see [2]) product of variables Z_{α} of all faces of \mathcal{N} lying to the right from the path.

In the case of the b_n -quiver, we define three $n \times n$ quantum transport matrices

$$(\mathcal{M}_1)_{i,j} = \sum_{\substack{\text{directed path } P: j \leadsto i'\\ \text{from right to left}}} w(P), \quad (\mathcal{M}_2)_{i,j} = \sum_{\substack{\text{directed path } P: j \leadsto i''\\ \text{from right to bottom}}} w(P), \quad (\mathcal{M}_3)_{i,j} = \sum_{\substack{\text{directed path } P: j' \leadsto i''\\ \text{from left to bottom}}} w(P),$$

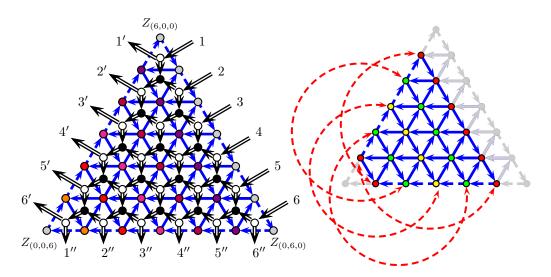
where paths contributing to \mathcal{M}_3 are obtained by inverting all horizontal double arrows in N. Note that \mathcal{M}_1 and \mathcal{M}_3 are lower-triangular matrices and \mathcal{M}_2 is an upper-triangular matrix. We define a diagonal matrix $Q:=\sum_{i=1}^n(q)^{-i+1/2}e_{i,i}$, an antidiagonal matrix $S=\sum_{i=1}^n(-1)^{i+1}e_{i,n+1-i}$, and let $T_i:= \prod_{j=0}^{n-i}Z_{(j,n-j-i,i)}$ denote products of Fock–Goncharov variables along SE-diagonals of the b_n -quiver.

We have the groupoid condition [2] $\mathcal{M}_3QS\mathcal{M}_1 = \mathcal{M}_2$, and Theorem 4.1 of [2] states that $\mathbb{A} := \mathcal{M}_1^T \mathcal{M}_3QS\mathcal{M}_1$ satisfies Eq. (1). Amalgamating variables $Z_{(i,0,n-i)}$ and $Z_{(0,n-i,i)}$ pairwise we obtain new Casimirs $\prod_{i=1}^l Z_{(i-1,n-l,l-i+1)} Z_{(l,n-l,0)}^2 \prod_{j=1}^{n-l} Z_{(l,j-1,n-l-j+1)}$ used to eliminate variables $Z_{(l,n-l,0)}$, and we obtain the \mathcal{A}_n -quiver (right part of Fig. 1) whose Casimirs are [n/2] elements $C_i = T_i T_{n-i}$ for $1 \le i < n/2$ and $C_{n/2} = T_{n/2}$ for integer n/2.

Theorem 1 Eigenvalues $\lambda_i \in \mathbb{C}$, $1 \leq i \leq n$, of the operator $\mathbb{A}\mathbb{A}^{-\dagger}$ are

$$\lambda_i = (-1)^{n-1} q^{-n} \times \begin{cases} \prod_{k=i}^{[n/2]} C_k & \text{for } 1 \le i \le [n/2]; \\ 1 & \text{for } i = (n+1)/2 \text{ for odd } n; \\ \prod_{k=n+1-i}^{[n/2]} C_k^{-1} & \text{for } n - [n/2] + 1 \le i \le n \end{cases}$$

M.S. was supported by NSF grant DMS-1702115; L.Ch. and M.S. were partially supported by International Laboratory of Cluster Geometry NRU HSE, RF Government grant, ag. № 075-15-2021-608 dated 08.06.2021. H.Sh. thanks Department of Mathematics, Michigan State University and the exchange program "Discover America" for support and stimulating research atmosphere during his visit to MSU where the main part of the work was accomplished.



Puc. 1: On the left is the Fock–Goncharov b_6 -quiver and the directed network N dual to it; \mathcal{M}_1 transports from side $\{1-6\}$ to side $\{1'-6'\}$ and \mathcal{M}_2 from side $\{1-6\}$ to side $\{1''-6''\}$. On the right is the \mathcal{A}_n -quiver with amalgamations indicated by dashed arrows.

Proof. For $\mathbb{A} = \mathcal{M}_1^T \mathcal{M}_3 QS \mathcal{M}_1$, since entries of all matrices \mathcal{M}_i are self-adjoint, $\mathcal{M}_i^{\dagger} = \mathcal{M}_i^T$, $Q^{\dagger} = Q^{-1}$ and $S^{\dagger} = (-1)^{n+1}S$, we have $\mathbb{A}^{\dagger} = \mathcal{M}_1^T S^T Q^{-1} \mathcal{M}_3^T \mathcal{M}_1$, and only the block $S^T Q^{-1} \mathcal{M}_3^T$ sandwiched between \mathcal{M}_1^T and \mathcal{M}_1 is changed, $\mathbb{A} - \lambda \mathbb{A}^{\dagger} = \mathcal{M}_1^T (\mathcal{M}_3 QS - \lambda S^T Q^{-1} \mathcal{M}_3^T) \mathcal{M}_1$, so the singularity equation becomes $(\mathcal{M}_3 QS - \lambda S^T Q^{-1} \mathcal{M}_3^T) \psi = 0$. The matrix \mathcal{M}_3 is lower-triangular; its diagonal entries are $m_1 = Z_{(n,0,0)}$, $m_i = \mathcal{Z}_{(n,0,0)} \prod_{j=1}^{i-1} T_i \mathcal{M}_1 \mathcal{M}_2 \mathcal{M}_3$ are upper-anti-diagonal. The anti-diagonal components of the corresponding matrices are $\sum_{i=1}^n (-1)^{i+1} q^{i-1/2} m_i e_{n+1-i,i}$ and $\sum_{i=1}^n (-1)^{n-i} q^{-n+i-1/2} m_{n+1-i} e_{n+1-i,i}$, and the singularity equation has a nontrivial solution if their combination contains zero element, so the admissible values are $\lambda_i = (-1)^{n-1} q^{-n} m_{n+1-i} / m_i$; these quotients are just expressions in cases in Theorem 1. \square

For all λ_i distinct, the Jordan form of $\mathbb{AA}^{-\dagger}$ is diagonal; an interesting case is when $\lambda_i^m = \lambda_j^m$ for all i, j for some natural $m \geq n$ since the whole form then trivializes, $[\mathbb{AA}^{-\dagger}]^m \sim \mathbf{I}$.

Список литературы

[1] A. Bondal, Izv. Math. 68:4 (2004) 659–708. [2] L.O. Chekhov and M. Shapiro, Darboux coordinates for symplectic groupoid and cluster algebras, ArXiv:2003.07499v2, 43pp [3] V. V. Fock and A. B. Goncharov, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211. [4] I. M. Krichever and S. P. Novikov, Russian Math. Surv., 54:6 (1999) 1248–1249.

(L.O. Chekhov)

Steklov Mathematical Institute, Moscow, Russia,

National Research University Higher School of Economics, Moscow, Russia,

Michigan State University, East Lansing, USA.

(M. Shapiro)

Michigan State University, East Lansing, USA

National Research University Higher School of Economics, Moscow, Russia.

(H. Shibo)

Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China

E-mail: chekhov@mi-ras.ru, mshapiro@msu.edu