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Morphisms on the set A, C gl, of unipotent upper-triangular n X n matrices are
transformations such that A — BABT € A,. For B = ¢, linearized transformations
5.A = gA + AgT are analogous to Krichever-Novikov transformations [4]. The quantization
of Bondal’s Poisson structure on A, [1] obtained using the symplectic groupoid construction
is the reflection equation with the trigonometric R-matrix

Ro(@)ARY (q)A = ARY (0)AR () (1)

Here A is an upper-triangular matrix with diagonal entries ¢—!/? and with self-adjoint
operator entries a; ; for i < j. The combination AA~™T := A[AT]_I then undergoes an
adjoint transformation AA~T — BAA~TB~! and we are to find its eigenvalues \; € C
determining [n/2] independent Casimir elements [1].

We express entries of A using quantum Fock—Goncharov variables Z, = Z; ; 1) paramete-
rized in terms of barycentric coordinates (i4j+k=n) of vertices of the b,-quiver [3] (left part
of Fig. 1): A solid arrow from « to 8 means that Z3zZ, = ¢ 2Z,Zs and a dashed arrow
gives ZgZo = q ' ZoZg. A directed network N dual to the b,-quiver is a directed graph of
double arrows in Fig. 1.

With any oriented path P : j ~ ¢ in any planar directed network A/ we associate the
quantum weight w(P), which is Weyl ordered (denoted by the symbol $- - -, see [2]) product
of variables Z,, of all faces of A lying to the right from the path.

In the case of the b,-quiver, we define three n x n quantum transport matrices

Mi)ij= Y. wP), Maij= >  wP), Msij= >  wP)
directed path P:j~»i’ directed path P:j~»¢"" directed path P:j/~>¢""
from right to left from right to bottom from left to bottom
where paths contributing to Mj are obtained by inverting all horizontal double arrows
in N. Note that M; and M3 are lower-triangular matrices and My is an upper-triangular
matrix. We define a diagonal matrix @ := > 1 (¢)~"*1/2¢; ;, an antidiagonal matrix S =
S (=1 e i1y, and let T; := ',H?;g Z(jn—j—i)e denote products of Fock-Goncharov
variables along SE-diagonals of the b,-quiver.

We have the groupoid condition 2] M3QSM; = Ms, and Theorem 4.1 of [2] states
that A := MT M3QSM; satisfies Eq. (1). Amalgamating variables Z(i,0,n—i) and Z n_i i)
pairwise we obtain new Casimirs ‘.Hizl Z(i—l,n—l,l—i-i—l)Z(le_l70) H;:ll Z(1j—1,n—i—j+1) used
to eliminate variables Z(; ,,_; ), and we obtain the A,-quiver (right part of Fig. 1) whose
Casimirs are [n/2] elements C; = (13T}, for 1 <i < n/2 and C,, /3 = Ty, /; for integer n/2.

Theorem 1 FEigenvalues \; € C, 1 < i < n, of the operator AA™T are

HLn:/f] Ck for 1 <i<|[n/2];
1 fori=(n+1)/2 for odd n;
2 — .
chn:/n]_i_l_i Ckl form—[n/2]+1<i<n
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Puc. 1: On the left is the Fock—Goncharov bg-quiver and the directed network N dual to it; M
transports from side {1 — 6} to side {1’ — 6’} and M from side {1 — 6} to side {1” — 6”}. On the
right is the A,-quiver with amalgamations indicated by dashed arrows.

Proof. For A = MT M3QSM;, since entries of all matrices M, are self-adjoint, MI =
MT, QF = Q71 and ST = (-1)"*1S, we have AT = MTSTQ*MIM;, and only the
block STQ ! M7 sandwiched between MT and M; is changed, A — AAT = MT(MgQS —
/\STQ71M3T)M1, so the singularity equation becomes (./\/ngS ASTQ- 1MT)1/J =0. The
matrix M3 is lower-triangular; its diagonal entries are m1 = Z(,, 0,0y, Mi = Z(n,0,0) H T,
2 < i < n, and the crucial observation is that the both matrices M3Q.S and STQ lMT
are upper-anti-diagonal. The anti-diagonal components of the corresponding matrices are
S (=) 2men 1 and Yo (1) g 2my, ey 140, and the singula-
rity equation has a nontrivial solution if their combination contains zero element, so the
admissible values are \; = (=1)""1¢~"m,,11_;/m;; these quotients are just expressions in
cases in Theorem 1. [

For all \; distinct, the Jordan form of AA~T is diagonal; an interesting case is when A" =
AT for all 4, j for some natural m > n since the whole form then trivializes, [AATT™ ~ T
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