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Morphisms on the set An ⊆ gln of unipotent upper-triangular n × n matrices are
transformations such that A �→ BABT ∈ An. For B = eεg, linearized transformations
δεA = gA+AgT are analogous to Krichever–Novikov transformations [4]. The quantization
of Bondal’s Poisson structure on An [1] obtained using the symplectic groupoid construction
is the reflection equation with the trigonometric R-matrix
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Here A is an upper-triangular matrix with diagonal entries q−1/2 and with self-adjoint

operator entries ai,j for i < j. The combination AA−† := A
�

A†
�−1

then undergoes an
adjoint transformation AA−† → BAA−†B−1, and we are to find its eigenvalues λi ∈ C

determining [n/2] independent Casimir elements [1].
We express entries of A using quantum Fock–Goncharov variables Zα = Z(i,j,k) paramete-

rized in terms of barycentric coordinates (i+j+k=n) of vertices of the bn-quiver [3] (left part
of Fig. 1): A solid arrow from α to β means that ZβZα = q−2ZαZβ and a dashed arrow
gives ZβZα = q−1ZαZβ . A directed network N dual to the bn-quiver is a directed graph of
double arrows in Fig. 1.

With any oriented path P : j � i in any planar directed network N we associate the
quantum weight w(P ), which is Weyl ordered (denoted by the symbol

•

•· · ·
•

•, see [2]) product
of variables Zα of all faces of N lying to the right from the path.

In the case of the bn-quiver, we define three n× n quantum transport matrices

(M1)i,j =
�

directed pathP :j�i′

from right to left

w(P ), (M2)i,j =
�

directed pathP :j�i′′

from right to bottom

w(P ), (M3)i,j =
�

directed pathP :j′�i′′

from left to bottom

w(P ),

where paths contributing to M3 are obtained by inverting all horizontal double arrows
in N . Note that M1 and M3 are lower-triangular matrices and M2 is an upper-triangular
matrix. We define a diagonal matrix Q :=

�n
i=1(q)

−i+1/2ei,i, an antidiagonal matrix S =
�n

i=1(−1)i+1ei,n+1−i, and let Ti := •

•
�n−i

j=0 Z(j,n−j−i,i)•
• denote products of Fock–Goncharov

variables along SE-diagonals of the bn-quiver.
We have the groupoid condition [2] M3QSM1 = M2, and Theorem 4.1 of [2] states

that A := MT
1 M3QSM1 satisfies Eq. (1). Amalgamating variables Z(i,0,n−i) and Z(0,n−i,i)

pairwise we obtain new Casimirs
•

•
�l

i=1 Z(i−1,n−l,l−i+1)Z
2
(l,n−l,0)

�n−l
j=1 Z(l,j−1,n−l−j+1)•

• used

to eliminate variables Z(l,n−l,0), and we obtain the An-quiver (right part of Fig. 1) whose
Casimirs are [n/2] elements Ci = •

•TiTn−i•
• for 1 ≤ i < n/2 and Cn/2 = Tn/2 for integer n/2.

Theorem 1 Eigenvalues λi ∈ C, 1 ≤ i ≤ n, of the operator AA−† are

λi = (−1)n−1q−n ×


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�[n/2]
k=i Ck for 1 ≤ i ≤ [n/2];

1 for i = (n+ 1)/2 for odd n;
�[n/2]

k=n+1−i C
−1
k for n− [n/2] + 1 ≤ i ≤ n
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Рис. 1: On the left is the Fock–Goncharov b6-quiver and the directed network N dual to it; M1

transports from side {1− 6} to side {1′ − 6
′} and M2 from side {1− 6} to side {1′′ − 6

′′}. On the
right is the An-quiver with amalgamations indicated by dashed arrows.

Proof. For A = MT
1 M3QSM1, since entries of all matrices Mi are self-adjoint, M†

i =
MT

i , Q
† = Q−1 and S† = (−1)n+1S, we have A† = MT

1 S
TQ−1MT

3 M1, and only the
block STQ−1MT

3 sandwiched between MT
1 and M1 is changed, A− λA† = MT
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M1, so the singularity equation becomes
�

M3QS − λSTQ−1MT
3

�

ψ = 0. The

matrixM3 is lower-triangular; its diagonal entries arem1 = Z(n,0,0),mi = •

•Z(n,0,0)

�i−1
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2 ≤ i ≤ n, and the crucial observation is that the both matrices M3QS and STQ−1MT
3

are upper-anti-diagonal. The anti-diagonal components of the corresponding matrices are
�n

i=1(−1)i+1qi−1/2mien+1−i,i and
�n

i=1(−1)n−iq−n+i−1/2mn+1−ien+1−i,i, and the singula-
rity equation has a nontrivial solution if their combination contains zero element, so the
admissible values are λi = (−1)n−1q−nmn+1−i/mi; these quotients are just expressions in
cases in Theorem 1. �

For all λi distinct, the Jordan form of AA−† is diagonal; an interesting case is when λm
i =

λm
j for all i, j for some natural m ≥ n since the whole form then trivializes, [AA−†]m ∼ I.
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