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I. INTRODUCTION

Hyperdimensional (HD) computing is an emerging paradigm

for machine learning based on biologically plausible models of

memory. HD computing represents data as random points with

i.i.d. components in a high-dimensional, low-precision, space.

These points are then used as input to learning algorithms.

The i.i.d. and low-precision nature of HD representations

accord naturally with highly parallel hardware like FPGAs

and PIM architectures and HD computing has recently gained

significant popularity in the hardware community [1]–[3].

Existing work on HD computing has focused primarily

on learning linear functions over the encodings. However,

much data of practical interest is nonlinear, meaning that

linear methods may fail to capture important structure in

the data. Our goal is to assess the utility of using nonlin-

ear learning algorithms on HD representations of data. A

complication arises because nonlinear models are generally

more complex computationally than simple linear methods

which are traditionally used with HD computing. In this

work, we show how nonlinear learning on HD representations

can be formulated as a sparse convex optimization problem

using the Boolean Fourier transform. We additionally present

results from a preliminary empirical study motivated by this

formulation designed to assess the possible practical benefits

of this approach.

II. BACKGROUND AND RELATED WORK

In [2], the authors use an HD encoded vector as input to

a simple multilayer-perceptron with a single hidden layer.

Neural network based methods may be unappealing as they

introduce a multitude of new tunable hyperparameters and

require non-convex optimization methods. By contrast, our

approach introduces only a single hyperparameter and can

be solved using efficient convex methods. Work in [4] pre-

sented simple heuristics for learning sparse classifiers on HD

representations but did not consider the theoretically optimal

L1 based methods considered here. Most closely related to

our work is [5] who examines connections between HD

computing and compressed sensing. Like ours, their approach

can be formulated as an L1-penalized regression problem on a

random design matrix. However, our formalism is based on the

Boolean Fourier transform which has a rich theory outside of

compressed sensing and explicitly addresses learning arbitrary

Boolean functions over the HD representations. To the best of

our knowledge, we are the first to explore the connections

between HD computing and Boolean spectral learning.

A. Boolean Fourier Transform and Spectral Learning

The following reviews the bare essentials of the Boolean

Fourier transform (hereafter referred to simply as the Fourier

transform). Let g(z) be a function g : {±1}d → R and

let S be a subset of [d] = 1, ..., d. The Fourier transform

of g can be defined to be its unique representation as [6]:

g(z) =
∑

S⊆[d] ĝ(S)χS(z), where χS(z) =
∏

j∈S zj is

the parity function for S. We can rewrite the above more

compactly in matrix form as: g = Ψĝ, where Ψ is the 2d×2d

matrix formed by stacking up all parity functions. The Fourier

coefficients–ĝ(S)– can be computed as:

ĝ(S) = E
z∼Unif({±1}d)

[g(z)χS(z)] =
1

2d

2d∑

i=1

g(zi)χS(zi) (1)

The Fourier transform is important in learning theory because

its invertibility implies learning the spectrum ĝ and the func-

tion g are equivalent. Per Equation 1, given 2d unique samples,

we may simply compute ĝ exactly, but this is not feasible in

general. For many functions of interest the spectrum is sparse

in the sense that only some k � 2d coefficients are nonzero

so that that one may accurately estimate the spectrum from

far fewer samples (see: [6] Thm. 3.29).

III. FORMAL MODEL

We assume our data is generated by some unknown and

possibly nonlinear function f : X → {±1}. Our goal is

to learn f . We assume we have access to a set of samples

S = {(xi, f(xi))}Ni=1 where xi ∈ X ⊂ R
n and yi ∈ {±1}.

We first map each sample x to a binary HD representation

under an encoding function φ : R
n → {±1}d. Then, we

posit the existence of some function g : {±1}d → R, such

that f(x) = sign(g(φ(x))) and seek to learn g by estimating

its Fourier spectrum. Our approach is motivated by [7] who

formulate learning as a similar convex problem, but assume

the binary representation is already given, unlike our setting

where the input data is Euclidean.

More formally, we assume f(x) = sign(Ψ̃ĝ) where g ∈
R

2d , Ψ̃ is an N × 2b matrix such that Ψ̃ij = χSj
(xi). Thus,

this problem amounts to the recovery of a sparse vector of

coefficients using an over-complete measurement matrix (Ψ)

which can be formulated as the following convex problem:

ĝ� = argmax
ĝ∈R2d

yTΨĝ − λ‖ĝ‖1 (2)

Solving this problem exactly is still difficult since Ψ̃ contains

2d columns (vast in the context of HD). To obtain an inkling



of the practical benefits from this formulation of HD learning,

we here exploit a well known connection between the Boolean

Fourier transform and decision tree learning for which there

are numerous well known algorithms. Since our interest is

simply in obtaining a low-complexity representation of g–

we do not care about the spectrum itself–this enables us to

approximate the difficult problem above by simply learning a

decision tree. The Fourier transform has well known relation-

ship with decision trees, where the spectral and tree complexity

are related by the following proposition from [6].

Prop Let g : {±1}d → R be represented by an �-leaf,
depth-k decision tree, and define the spectral sparsity of g
by sparsity(g) � |{S ∈ [d] | ĝ(S) �= 0}|. Then, the spectral
sparsity of g is bound by

sparsity(g) ≤ �2k ≤ 4k (3)

To obtain the binary representation of our data, we use the

method of random half-spaces, which partitions X using a

grid formed by d random hyperplanes and encodes each point

using a binary string uniquely identifying each grid cell [8].

More formally: φ(x) = sign(Φx + b), where Φ ∈ R
d×n is

a matrix whose rows are sampled uniformly at random from

the n-dimensional unit sphere and b is an intercept chosen

uniformly at random from the support of X .

IV. EMPIRICAL RESULTS

We evaluate sparse recovery by models fit on low-dimensional

data and HD encoded representations. We compare the ac-

curacy and model complexity of decision trees with an L1-

regularized linear SVM as a baseline, similar to an approach

considered in [5]. The L1-regularized SVM is a computa-

tionally simpler model, but cannot learn as rich a space of

functions. SVMs and decision trees are fit several times to

select regularization constants and tree structures—number of

leaves and depth—that yield sparse models whose accuracy

remains within 5% of the highest observed accuracy. The

sparsity captured by models is measured in terms of support

size, defined as the number of nonzero coefficients of an SVM,

or as �2k for a depth-k, �-leaf decision tree, per equation (3).

To study sparse and approximated spectral learning with HD,

we consider five datasets in UCI’s Machine Learning Repos-

itory: UCI HAR, ISOLET, Buzz/Tom’s Hardware (Buzz/TH),

Buzz/Twitter (Buzz/TW), and Adult.
As in [5], we find HD representations enjoy significant

sparsity. On our data, HD SVMs preserve sparsity at the

same level as low-dimensional models and have a constant

support size independent of encoding dimension. Figure 1
shows decision trees are capable of capturing more sparsity in

HD representations than in the low-dimensional data (relative

support size is < 1) despite the significantly larger HD

dimension. Additionally, the support size of HD decision trees

is constant w.r.t. the encoding dimension. Accounting for both

accuracy and sparsity, sparse recovery with the HD decision

trees requires a minimum dimension of ≈ 2-4, 000 on “simple”

(e.g. linear) datasets but of only ≈ 1-2, 000 otherwise. In

absolute terms, the support size of decision trees is larger than

Fig. 1. Sparsity (left) and accuracy (right) of HD decision trees (DTs) (top)
and HD SVMs (bottom), where the sparsity of decision trees is shown as HD
support size relative to low-dimensional support size; and where the sparsity
of SVMs is shown as normalized HD support size (HD support size scaled
by a factor of 1/(total number of coefficients)).

SVMs; however, we emphasize that this model is able to learn

a broader class of functions than the SVM.

Although HD decision trees exploit more sparsity than their

low-dimensional counterparts, they may suffer from a greater

propensity to overfit, particularly when data is “simple” and

linearly learnable. This is evident in Figure 1 with ISOLET,

where an SVM attains high test-time accuracy on the HD

encoded data while the decision tree yields a significantly

lower test-time accuracy. However, for data poorly represented

by low-dimensional, linear models, such as Adult, our decision

tree approach offers modest improvements in accuracy, e.g.

by δ ∈ [1%, 4%], over the baseline HD linear SVM by

approximating nonlinear “spectral learning.”

Approximating spectral learning with decision trees is

promising in suggesting that HD representations are sparse

in the Fourier domain and that HD may be able to exploit

sparse spectral learning techniques in more efficient nonlinear

learning. While L1-regularized linear SVMs recover equal

sparsity in low-dimensional and HD data, spectral learning

techniques may enhance sparsity in the HD Fourier domain.

This sparsity is recoverable with encoding dimensions between

1-4000, allowing spare HD learning without the extremely

large dimensions (e.g. 10, 000) common in HD literature.

We note that the literature has proposed several efficient

algorithms for computing the expensive product Ψĝ when ĝ
is sparse [9], [10]. In follow up work, we plan to compare

our heuristic approach based on decision tree learning to

the formal problem posed above and explore solving the

sparse recovery problem exactly in HD representations which

may alleviate the issues surrounding overfitting with decision

trees. We are additionally interested in studying different

embedding methods, especially in their ability to preserve or

induce sparsity in HD representations and in the relationship

between the geometry of the original data and the level of

sparsity achievable with different embedding methods. We

would be interested to study embedding methods in the context

of approximate and exact solutions of the sparse recovery

problem.
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