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1 | INTRODUCTION

| Michael Shapiro*® |

Alek Vainshtein*

Abstract

We prove that the regular generalized cluster structure
on the Drinfeld double of GL, constructed in Gekht-
man, Shapiro, and Vainshtein (Int. Math. Res. Notes,
2022, to appear, arXiv:1912.00453) is complete and com-
patible with the standard Poisson-Lie structure on the
double. Moreover, we show that for n = 4 this struc-
ture is distinct from a previously known regular gen-
eralized cluster structure on the Drinfeld double, even
though they have the same compatible Poisson struc-
ture and the same collection of frozen variables. Further,
we prove that the regular generalized cluster structure
on band periodic matrices constructed in Gekhtman,
Shapiro, and Vainshtein (Int. Math. Res. Notes, 2022, to
appear, arXiv:1912.00453) possesses similar compatibil-
ity and completeness properties.

MSC (2020)
13F60, 53D17 (primary)

It is by now well known that many important algebraic varieties arising in Lie theory, representa-
tion theory and theory of integrable systems support a cluster structure. The first example of this
kind is already present in the foundational paper [6] where it was shown that the homogeneous
coordinate ring of the Grassmannian of 2-planes in C"*3 is naturally isomorphic to the cluster
algebra of finite type A,,. Among the examples that followed were Grassmannians [9, 19], dou-
ble Bruhat cells [1] and strata in flag varieties [17]. All of these examples share two key features:
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(i) the variety in question is equipped with a Poisson brackets compatible with the cluster struc-
ture in a sense reviewed in Section 2.1, and (ii) cluster transformations that connect distinguished
coordinate charts within a ring of regular functions are modeled on three-term relations such as
short Pliicker relations, Desnanot-Jacobi identities and their Lie-theoretic generalizations. The
first feature led us to development of an approach for constructing a cluster structure in Pois-
son varieties possessing a particular nice coordinate chart (see, for example, [9]). However, there
are situations when reliance on three-term relations (equivalently, usual cluster transformations)
turns out to be too restrictive and when certain multinomial versions of cluster transformation
are needed. These were first considered in [4] and termed generalized cluster transformations.
The first geometric example of this sort was studied in [10, 12] where we used a more general
form of transformations defined in [4] to construct an initial seed X, for a complete generalized
cluster structure QCE in the standard Drinfeld double D(GL,) and proved that this structure is
compatible with the standard Poisson-Lie structure on D(GL,,).

In [13, Section 4], we presented a rich source of identities that can serve as generalized clus-
ter transformation and, as one of the applications, constructed a different seed £, for a reg-

ular generalized cluster structure Q_Cf on D(GL,). In this paper, we prove that Q_CiJ shares
all the properties of QCE: it is complete and compatible with the standard Poisson-Lie struc-
ture on D(GL,). Moreover, we prove that the seeds £,(X,Y) and Z,(Y”,X") are not mutation-
ally equivalent. This answers the question posed by Keel: ‘Do there exist two different regu-
lar cluster structures on the same variety with the same compatible Poisson bracket and the
same collection of frozen variables?” by providing an explicit example of two different regu-
lar complete generalized cluster structures on D(GL,) with the same compatible Poisson struc-

ture and the same collection of frozen variables. Further, from the above properties of Q_Cf we
derive that the generalized cluster structure in the ring of regular functions on band periodic
matrices built in [13, Section 5] is complete and compatible with the restriction of the stan-
dard Poisson-Lie structure. Apart from possible applications to cluster integrable systems, the
latter generalized cluster structure is closely related to the conjectural ones in cyclic symme-
try loci in Grassmannians considered in the recent preprint [8] that appeared while this paper
was under review, and in the Grothendieck rings of the quantum affine algebras Uqﬁ/I\k at roots
of unity [14]. These connections will be explored in a joint work of Gekhtman with Fraser and
Trampel.

Section 2 below contains all necessary information about generalized cluster structures bor-

rowed mainly from [13] to make this text self-contained. Section 3 is devoted to the study of Q_Cfl)
The initial seed is described in Section 3.1. The main result of this section is Theorem 3.1 which
claims that Q_Cn is compatible with the standard Poisson-Lie structure on D(GL,,) and complete.
The former statement is proved in Sections 3.2 and 3.3, and the latter in Section 3.4. In Section 4,

we compare two generalized cluster structures on D(GL,): Ef and QC4D (YT,XT) described in
[12]. These two structures have the same set of frozen variables, and we prove that they are dis-
tinct, that is, the two seeds are not mutationally equivalent. Finally, Section 5 treats the case of
periodic band matrices. The initial seed X, for the generalized cluster structure on the space £,
of (k + 1)-diagonal n-periodic band matrices is described in Section 5.1. The main result of this
section is Theorem 5.1 which claims that GC(Z,,,) is compatible with the restriction of the standard
Poisson-Lie structure on D(Mat,) and complete. The former statement is proved in Section 5.2,
and the latter in Section 5.3.
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2 | PRELIMINARIES

Following [12], we remind the definition of a generalized cluster structure represented by a quiver
with multiplicities. Let (Q, dy, ..., dy ) be aquiver on N mutable and M frozen vertices with positive
integer multiplicities d; at mutable vertices. A vertex is called special if its multiplicity is greater
than 1. A frozen vertex is called isolated if it is not connected to any other vertices. Let F be the
field of rational functions in N + M independent variables with rational coefficients. There are
M distinguished variables corresponding to frozen vertices; they are denoted xp;, ..., Xy a7 and
called stable, or frozen variables. The coefficient group is a free multiplicative abelian group of
Laurent monomials in stable variables, and its integer group ring is A = Z[xﬁll, s x;f,:M] (we
write x*! instead of x, x™1).

An extended seed (of geometric type) in F is a triple X =(x,Q,P), where x=
(X5 ey X5y X415 - » Xy o) 1S @ transcendence basis of F over the field of fractions of A and
P is a set of N strings. The ith string is a collection of monomials p;, € A = Z[xn1, - > Xyl
0 <r <d;, such that p;, = p;g = 1; it is called trivial if d; = 1, and hence both elements of the
string are equal to 1. The monomials p;, are called exchange coefficients.

Given a seed as above, the adjacent cluster in direction k, 1 < k < N, is defined by x' = (x\
{xHu {xl’{}, where the new cluster variable xl’{ is given by the generalized exchange relation

dy
r roo Il die—r o lde—rl,
XX) = Zpkruk;>vk;>uk;< Uk @1
r=0

here u;., and w., 1 < k < N, are defined by

Up,s = H Xi» Up,« = H Xis

k—ieQ i—-keQ

where the products are taken over all edges between k and mutable vertices, and stable t-
monomials ULVL and UEL 1<k < N,0<r < dy, defined by

ol =

k;> xi{rbki/ko, k;J< _ xil"bik/dkl, 2.2)
N+1<isN+M N+1<isN+M
where b;; is the number of edges from k to i and b;, is the number of edges from i to k; here,
as usual, the product over the empty set is assumed to be equal to 1. In what follows, we write
V. instead of vl[ji] and vy._ instead of vl[si]. The right-hand side of (2.1) is called a generalized
exchange polynomial.
The standard definition of the quiver mutation in direction k is modified as follows: if both
vertices i and j in a path i — k — j are mutable, then this path contributes d; edges i — j to the
mutated quiver Q’; if one of the vertices i or j is frozen, then the path contributes d j ord; edges
i — j to Q'. The multiplicities at the vertices do not change. Note that isolated vertices remain
isolated in Q’.
The exchange coefficient mutation in direction k is given by

Did_p ifi=k;
P, = { b . (2.3)
Dirs otherwise.
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Given an extended seed T = (x,Q, P), we say that a seed ' = (x/,Q’, P) is adjacent to Z (in
direction k) if X/, Q' and P’ are as above. Two such seeds are mutation equivalent if they can be
connected by a sequence of pairwise adjacent seeds. The set of all seeds mutation equivalent to =
is called the generalized cluster structure (of geometric type) in [F associated with ¥ and denoted
by GC(X). R ~ .

Fix a ground ring A such that A C A C A. The generalized upper cluster algebra A(GC) =
A(GC(D)) is the intersection of the rings of Laurent polynomials over A in cluster variables taken
over all seeds in GC(X). Let V be a quasi-affine variety over C, C(V) be the field of rational func-
tions on V, and O(V) be the ring of regular functions on V. A generalized cluster structure GC(Z)
in C(V) is an embedding of x into C(V') that can be extended to a field isomorphism between
Fc = F® C and C(V). It is called regular on V if any cluster variable in any cluster belongs to
O(V), and complete if A(CC) tensored with C is isomorphic to @(V). The choice of the ground
ring is discussed in [12, Section 2.1].

Let {-, -} be a Poisson bracket on the ambient field F, and GC be a generalized cluster structure
in F. We say that the bracket and the generalized cluster structure are compatible if any extended

cluster X = (xy, ..., Xy ) is log-canonical with respect to {-, -}, that is, {x;, x;} = w;;x;x;, where
w;; € Z are constants foralli,j,1<i,j < N+ M.
For any mutable vertex k € Q, define the y-variable
ulfi; Uk;>
Y=g (2.4)
uk;<vk;<

The following statement is an immediate corollary of [12, Proposition 2.5].
Proposition 2.1. Assume that for any mutable vertex j € Q
{logx;,logy;} = 4d;6;; foranyi€ Q,

where A is a rational number not depending on j, §;; is the Kronecker symbol, and all Laurent mono-
mials

d
[r] | ldi—rT\"k
<pkrvk;>vk;<
dy—r
r k
Uk;>vk;<

Pkr =

are Casimirs of the bracket {-, -}. Then the bracket {-, -} is compatible with GC(Z).

The notion of compatibility extends to Poisson brackets on F without any changes.
Fix an arbitrary extended cluster X = (x, ..., Xy,) and define a local toric action of rank s as
a map TqW : Fc — F¢ given on the generators of F = C(xy, ..., Xj4y,) by the formula

N+M

qu(i)=<xi]i[lq§”"“> . a=(q-.9) €(CY, (2.5)

i=1

where W = (w;,) is an integer (N + M) X s weight matrix of full rank, and extended naturally to
the whole F..
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Let X’ be another extended cluster in GC, then the corresponding local toric action defined
by the weight matrix W' is compatible with the local toric action (2.5) if it commutes with the
sequence of (generalized) cluster transformations that takes X to X’. If local toric actions at all
clusters are compatible, they define a global toric action 7y on Fc called a GC-extension of the
local toric action (2.5). As shown in [9, Section 5.2], for a global toric action to be well defined, it
suffices that local toric actions at all seeds adjacent to the initial one are compatible. The following
statement is equivalent to [12, Proposition 2.6].

Proposition 2.2. The local toric action (2.5) is uniquely GC-extendable to a global action of (C*)* if
all y-variables y; and all Casimirs p,, are invariant under (2.5).

—0D
3 | THESTRUCTURE GC,

In this section, we provide a description of the seed £, and prove that the corresponding gener-

alized cluster structure Q_Cf is complete and compatible with the standard Poisson-Lie structure
on D(GL,,).

First, we list some terms and notations that will be used in what follows. A notation A*I’ is
reserved for a submatrix of a matrix A with a row set I and a column set J. If I (respectively, J) is
not specified, it is assumed that all rows (respectively, columns) are selected. An interval notation
[i, j]is used for the index set [i,i + 1, ..., j]. We call a submatrix or minor of A dense if both its row
and column sets are intervals. A dense minor of A is called trailing if it contains the lower right
entry of A.

3.1 | The initial seed

Let (X,Y) € D(GL,) = GL,, X GL,,. Following [13], define an N X N matrix

Yo
Xionl Yo
®=dX,Y) = (3.1)
Xizn) Yizn
X[2n]

with N=(m—-1)n and put ¢; =det @};Z{ for 1<i< N. Further, put det(lY + uX) =
Yo aX, YA,
Next, we define g;; = det XU for 1 < j<gi<n,andh;; =det ylinl
[i,n] ] [i,i+n—
note that ¢; = g;_n.,_1; nN+n_1 for i > N —n + 1. The family 7,, of 2n* functions in the ring of
regular functions on D(GL,,) is defined as

j]forlsisjsn;

7 N—n+1. . . fxn—1
Fp= {{§0i},-:1"+ > {gij}1<j<i<n, {hij}lsisjsna {Cz}?zl

with &(X,Y) = (=1)"Ve,(X,Y)for1 <i<n—1.
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FIGURE 1 QuiverQ,

The corresponding quiver Q,, is defined below and illustrated, for the n = 4 case, in Figure 1. It
has 2n? vertices corresponding to the functions in 7,,. The n — 1 vertices corresponding to &;(X, Y),
1 <i< n—1,areisolated; they are not shown. There are 2n frozen vertices corresponding to g;;,
1<i<n,andh, i 1 < j < n; they are shown as squares in the figure below. All vertices except for
one are arranged into a (2n — 1) X n grid; we will refer to vertices of the grid using their position
in the grid numbered top to bottom and left to right. The edges of Q,, are (i, j) — (i + 1, j + 1) for
i=1,..,2n=2,j=1,..,n—=1,(@,j) > (i,j—1) and (i,j) > (i—1,j) fori =2,..,2n =1, j =
2,..,n,and (i,1) - (i — 1,1) for i = 2, ..., n. Additionally, there is an oriented path

(n+1,n)->0B,1)->n+2,n)—>41) - - > ((n1) > 2n-1,n).

The edges in this path are depicted as dashed in Figure 1 (the dashed style does not indicate any
special features of these edges, it is for visualization purposes only). The vertex (2,1) is special; it
is shown as a hexagon in the figure. The last remaining vertex of Q,, is placed to the left of the
special vertex and there is an edge pointing from the former one to the latter.

Functions h; jare attached to the vertices (i, j), 1 < i < j < n,and all vertices in the upper row of
Q,, are frozen. Functions g;j are attached to the vertices(n +i—1,j),1<j<i<n, (i, j)#(1,1),
and all such vertices in the first column are frozen. The function g¢,, is attached to the vertex to
the left of the special one, and this vertex is frozen. Functions ¢y, ; are attached to the vertices
(i+k+1,i)for1<i<n,0<k<n-—3;the function py_,,, is attached to the vertex (n, 1). All
these vertices are mutable. One can identify in Q,, three regions associated with three families
{9:;3 {hij}, {®i}- We will call vertices in these regions g-, h- and g-vertices, respectively. The set of
strings P,, contains a unique nontrivial string (1,¢,(X,Y), ..., ¢,_;(X,Y), 1) corresponding to the
unique special vertex.
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- S - . —D
Theorem 3.1. The seed 2, = (¥, Q,, P,) defines a complete generalized cluster structure GC, in
the ring of regular functions on the Drinfeld double D(GL,) compatible with the standard Poisson—
Lie structure on D(GL,).

Proof. Regularity of Q_CS is proved in [13, Theorem 4.1]. To prove compatibility, it suffices to check
that the family F,, is log-canonical with respect to the bracket {-, -}, which is done in Section 3.2,
and to check the compatibility conditions of Proposition 2.1, which is done in Section 3.3. To prove
the completeness, we establish a connection between cluster dynamics for standard cluster struc-

—0D
tures on rectangular matrices and that for GC " with certain vertices frozen, see Section 3.4. As a
consequence, we prove in Proposition 3.7 that all matrix entries in Y, and all matrix entries in X

—D
except for the first row are cluster variables in §C, . The entries in the first row of X are treated
separately in Lemma 3.8. I

3.2 | Log-canonicity

Denote by b, Borel subalgebras of upper/lower triangular matrices in g[,, and by n__ the corre-
sponding nilpotent ideals. Let 7., 7, be the projections of an element of g[,, onto n_,n_, 7,
be the projection onto the diagonal subalgebra, R, = %7‘[0 + 7. As explained in [12, Section 2.2],
the standard Poisson-Lie bracket {-, -} = {-, -}, on D(GL,) can be written as

{fp fz} = <R+(ELf1)aELf2> - <R+(ERf1)’ERf2>
+ (XVxf1.YVy o) =(Vxfi1 - X,Vy [y Y)
= (R (EL.f1).ELf2) — (Ry(Erf1). Exf2)

+(Erf1,YVy f2) =(ELf1, Vy [2- Y),

(3.2)

where Vy f = (% ijl and Vy f = (% ijl are the gradients of f with respect to X and Y,

respectively, the operators E and E; are defined via

and (A, B) = Tr AB is the trace form; in what follows we will omit the comma and write just (AB).

Note that the functions ¢; are Casimirs for {-, -}. One way to see this is by observing that any func-
tion f on D(GL,,) that has a property, shared by all ¢;, that f(AXB, AYB) = detAdetB - f(X,Y)
forany X,Y,A,B € GL,, is a Casimir. For such f, Epf = E; f is a scalar multiple of the identity
matrix and so the claim follows from the second formula in (3.2) and the identity Tr AB = Tr BA.
Thus, we only need to treat the functions in the three other subfamilies in 7.

Lemma 3.2.
(i) Foranyl<j<i<nandl <k <N,
;X)) = g;;(N . .X), h;i(Y) = h;(YN_),

(3.3)
(X, Y) = 9, (N, XN_,N,YN_),



1608 | GEKHTMAN ET AL.

where N is an arbitrary unipotent upper triangular matrix and N_ is an arbitrary unipo-
tent lower triangular matrix. In addition, g;; and h;; are homogeneous with respect to right
and left multiplication of their arguments by arbitrary diagonal matrices, and ¢, are homo-
geneous with respect to right and left multiplication of X, Y by the same pair of diagonal
matrices.

(ii) Let g, h and @ be three functions possessing invariance properties (3.3), respectively. Then

1 1
{p,9} = E(EL% Vxg-X)y— £<ER§D’XVX9)O,

1 1
{p,h} = 5<ER(P’ YVyh), — §<EL‘P’ Vyh-Y), (3.4)
1 1
{g,h} = §<XVX9’YVYh>0 - §<VX9 X, Vyh-Y),
where (A, B), = (AB)y = (my(A)my(B)).

Proof.

(i) Invariance properties of functions g;;, h;;, ¢ follow easily from their definition.

(ii) Infinitesimally, equations (3.3) imply that XVy¢,Erp € b, and Vyh - Y,E; ¢ € b_. Taking
into account that R, (§) = %no(é') for any £ € b, and that b, L n, with respect to (,-), the
result follows from (3.2). O

The fact that any two of the three functions g;;, h,,, ¢ are log-canonical follows immediately
from the above lemma. Indeed, the infinitesimal version of homogeneity properties described in
Lemma 3.2(i) states that for functions g = log g;;, h = logh,, ¢ = log ¢, projections of Vy g - X,
XVxg,YVyh,Vyh- Y, E;@, Erp onto the Cartan subalgebra are constant diagonal matrices and
the claim then follows from (3.4). Log-canonicity of the families {g;;} and {h;;} is established in
[12, Lemma 5.4].

It remains to show that {log ¢, , log ¢;} is constant for any k, [. In fact, it suffices to consider the
case 1 <k <I< N —n+1,since fork > N —n + 1 the function ¢, belongs to the family {g;}.

Denote V log @y, Vy log ¢y, B log ¢y, E; log g by VX, VK EX, EF, respectively. As mentioned
in the proof of Lemma 3.2 (ii), Ellg €b,, E’L‘ € b_. Consequently, (3.2) gives

1 1
{log gy, log o} = = (EfEL ), — = (EREg ),

2 2 (3.5)
+(XVEYV ) = (VEXVLY).

It follows from the homogeneity of functions ¢, (Lemma 3.2(i)) that the first two terms above are
constant. Thus, we need to evaluate

(XVEYV,) = (VEXVLY). (3.6)

For a smooth function F on Maty, we write its gradient V4F in a block form as V4F =

(V pq)g;i’,gzv where the blocks V ,, are of size n X (n — 1). For functions ¢, viewed as functions

-1,
on Maty, we denote V4 log @y, by VE = (ng)ﬁzl’zzl.
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Observe that if one views [ X [ trailing principal minor of a square matrix A as a function f(A)

of A, then

0 %

AVf(A):(O 11), Vf(A)A:(i fl)

0 * 0 0
chk qu)
¢ <0 1 > @ (* 1 >
N—k+1 N—k+1

Denote X = X ., Y = Y|, ,)- Then (3.7) translates into

Thus

k k —
XV, g+ IV, =0 P24,
XVﬁ_l,q =0, g<n,

k k —
quy+vp,q+1x =0, p<gqg.

Clearly,
n—1 n—1
(XVEYVL) = <X DVE LYY V;q> ,
p=1 g=1
n—1 n—1
(VEXVLYY) = <p21 V;pﬁxqz{ Vf]qy> .

Denote A, = (XVE yVﬁqu B,, = (Vi‘7 xvéqyy Using (3.8), we obtain

,p+1 ,p+1

— k l _ k l _
Apg = —(avE vl Y= (avE yvl Y=

p.p+2 p.p+2
_ X I _ k l —
a _<XVP,p+S+1XVq+s—LQ> a <va,p+8+1yvq“’q> -
k l —
—(XVp,p_q+n+1XVn_1,q> =0, p<g,
k I
<vanyvq—p+n—1’q>’ pza
Similarly,
0, pP<q,
Bpg = —<Vk AL y> >
onYVopingy ) P>4
Therefore,

(XVEYVEY — (VEXVLY)

q—p+n-14q q—p+ngq
1<g<psn—1 1<g<p<n—1

- ¥ <xv’ljnyvl >+ 3 <yv’;nyvl >

3.7)

(3.8)
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k l k l
= Z <vanyvq_p+n—1,q> + Z <yvp+1,nyvq—p+n—1,q>

1<gspsn—1 1<g<psn-2

— k l k l

- Z <(q)v<1>)rmyqu> + Z <(q)v<1>>p+l,nyvq—p+n—1,q>' (3'9)
1gg<n—1 1<g<psn—2

Since (®V%),, =1, fork <N —n + 1, the first sum above is equal to Yicgen—1YVy,). Fur-
ptn-1g =0 forl > g(n —1) + 1, while (@V’é’)pﬂﬂ =0fork < p(n —1) + 1. Thus,
the summand in the second sum in (3.9) is zero unless p(n — 1) + 1 < k < I < g(n — 1) + 1, which
is impossible since g < p. We conclude that

thermore, Vfl

(XVEYVL) — (Vixvivy= Y (wv)

1<q<n-1

for1<k<I<N-n+1.
Let us show that the right-hand side above is constant. To this end, first observe that

Z <)7Vflq> = % - loggp; (X,e'Y).

1<gsn—1
Furthermore,

®(X,e'Y) = diag (¢"'1,_,,...,e'1,_;)P(X,Y)diag (e_("_l)tln, s e‘t1n>.

Then ¢;(X, efY)=det<D(X,e‘Y){i’z} = e*'p;(X,Y), where constant coefficients x; can be
arranged into a matrix

G Q-1 (-2 (")) +1
(2) (2) (”;1}2 ! (”Z) +1
(utn-1345) g oy = ( : ) ! 2 ) 2 ) ", :>+1 : (3.10)
1 1
0 0 0 0

Therefore, 3 ;1 (ny]q) = x; and we are done.

3.3 | Compatibility

To prove the compatibility statement, we start with the following lemma, which is a direct analog
of [12, Theorem 6.1].

Lemma 3.3. The action

(X,Y) — (T,XT,,T,YT,) (3.11)

of right and left multiplication by diagonal matrices is Q_Cf—extendable to a global toric action on F.
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Proof. As explained in [12], Proposition 2.2 implies that it suffices to check that y-variables (2.4)
are homogeneous functions of degree zero with respect to the action (3.11) (note that the func-

—bD
tions p,, for GC, are the same as for GC). To this effect, we define weights &, (f) = 7((E, log f)
and &x(f) = my(Eg log f). For 1 < i < j < n, let A(i, j) denote a diagonal matrix with ones in the
entries (i,1), ..., (j, j) and zeros everywhere else. Direct computation shows that

";:L(gl]) = A(]! n +J - l)’ §R(gl]) = A(l’ n)7
§Llhp) = AG,n),  Er(hy) = A, n+i— ),
§(pr) = (n =2 = 2,)AQ, n) + Alpy, n),

Er(pp) = (n =1 = w)AQR,n) + A(oy, +1,n),

(3.12)

where A, oy, 4 and o are defined viak =4 n+ o, 1< pp <n,andk =y (n—1)+ 04, 1 <
o, < n— 1. Now the verification of the claim above becomes straightforward. It is based on the
description of Q,, in Section 3.1 and the fact that for a Laurent monomial in homogeneous func-
tions M = gbfl ;‘2 - the right and left weights are § [ (M) = a; 8, 1 (1) + @, € 1 (P,) + -

For example, let v be the vertex associated with the function ¢, n + 1 < k < N —n. To treat
the left weight of y, we have to consider the following three cases.

Case 1: 1, _; = A, = 4, = A. Consequently, 4;,_, =411 =4—-1L, A1 =4y =41+1
and Py _1 = Pryn_1 = P> Pk—n = Pikan =P + 1, Oy41 = Pr—n+1 = P + 2. Therefore, (3.12) yields

§L(yv)
= §(Pe—1) + §L(@iin) + L @k—ns1) — E(Prs1) — §L(@i—n) — &L (Phyn—1)
=m-2-A1)AQ,n)+A(p,n)+ (n—2—-1—1)A(1,n) + A(p + 1,n)
+(n—-2-1+1DAQ,n)+A(p+2,n)—(n—2—-1A,n) — Alp + 2,n)
—(m-2-1+1DAQ,n)—A(p+1,n)—(n—2—-1—-1)A{,n) —A(p,n) = 0.

Case 2: Ay =2 =4, 444 =4+1. Consequently, 4,_, =1-1, 4_,;1 =4, A1 =
Apn=A+1andpp ) =ppiy 1 =N =1, Py = Pyn =N, Pty = Pr—ns1 = 1. Therefore, (3.12)
yields

§L(yv)
= 80(pk-1) + EL(@rrn) + EL(@rnt1) — §(Prs) = EL(@rn) = EL(Phpn1)
=mn-2-)AQ,n)+An—-1,n)+(n—-2—-1-1)AA,n) + A(n,n)
+(n-2-1)A1Q,n)+A0,n)—(n—-2—-1-1)A1,n) — A, n)
—(n=-2-1+1DA0,n)—A(n,n)—(n—-2-1-1AQ,n)—A(n—1,n) =0.

Case 3: A1 =41, 4 =441 =41+1. Consequently, A;_, =4;_,1 =4, g1 =1+1,
Agn =A+2 and oy = pPpip1 =N Py = Pin =1, Piy1 = Pk—n41 = 2. Therefore, (3.12)
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yields
gL(yv)
= §(Pr-1) + EL(@rin) + EL(@r—ni1) — EL(Pra1) — §L(@r—n) — €L (Prsn—1)
=n-2-A)AQ,n)+A(n,n)+mn—-2—-21-2)A1,n) + A(1,n)
+(m-2-0)A0,n)+A2,n)—(n—2—-1-1)A,n) — AQ2,n)
—-(n-2-1)AQ,n)—AQ,n)—(n—2—-1-1)A1,n)— A(n,n) =0.
The right weight of y, is treated in a similar way. O

The verification of compatibility conditions in Proposition 2.1 is based on relations (3.4), (3.5)
and (3.12). The case when the vertices i and j belong to different regions in Q,,, or are simultane-
ously non-diagonal g- or h-vertices, is treated in the same way as in [12]. For the case when both
i and j are gp-vertices, the check is based on the following claim in which we assume »y; = 0.

Proposition 3.4.

(i) Foranyk, 1 < k < N, either ), = . and » = »j .1 +1or A, = . — land x; = x;.
(ii) Foranyk,1 <k <N —n,
Heqn — X , o, #Fn—1,
X = Hpyq = 4 T K # (3.13)
Hetn = Xkant1 T 1, o =n-1
Proof. Follows immediately from (3.10) and the definitions of A, o, 4 and oy. O

Let us check the compatibility condition for the case when v is the vertex associated with the
function ¢; and u is the vertex associated with the function ¢;, n + 1 < j < N — n. There are five
possiblecases: ()i< j—n; (i) j—n+1<ig<j—-1(iD)i=j;{v)j+1<i<j+n—-1mj+
n<i.

In the first case, the left-hand side of the condition in Proposition 2.1 is computed directly via
(3.5). The first term equals

%(gL((pi)gL(yu)) = %(&(%)ﬁ(?’j—l/?/)) - %(ﬁ(%)ﬁ(CP_j+n—1/(Pj+n)>
+ %<§L(¢i)§L(¢j/¢’j+1)> - %<§L(§0i)§L(¢j—n/¢j—n+1)>
and vanishes by Lemma 3.3. Similarly, the second term equals

2 ER@IEROD) = =S @DER (P11/9))) + SR @DER (P4n1/911))

- %(gR(¢i)§R(¢j/¢j+1)> + %@R(%)g}a(@j—n/%—nﬂ))
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and vanishes by Lemma 3.3. The third term equals
Otjog = x) = Oyt = %) + G = x40) = O = X _py1)

and vanishes by (3.13) since ;_; = 0;_,.

In the second case, in order to use (3.5), one has to swap the arguments in the brackets
{logp;,logp;_,}p and {logp;,log@;_,,.1}p. Consequently, the first term contributes

<§L(§0i)£L(¢j—n/¢j—n+1)>’

the second term contributes

—<§R(¢’i)§R(¢’j—n/¢’j—n+1)>,

and the third term contributes x;_,, — x;_,,. By Proposition 3.4(i), either x;_, — x;_,,; = 0and

Aj_n = Mj_, — 1 which implies

<§L(¢i)§L(¢j—n/¢j—n+1)> = <§R(§0i)§1z(§0j—n/¢j—n+1)> =n—4;,_,-2,

or x

jon = Xj_p41 = land 4;_, = p;_, which implies

<§L(¢i)§L(¢j-n/¢j—n+1)) =n—2;_,—2,

(Er(@DER(Pj_n/Pjns)y = —Aj_, — 1.

In both cases, the total additional contribution vanishes.
Cases (iii)-(v) are treated in a similar way.

3.4 | Completeness
We start with the following proposition.

Proposition 3.5. There exists an (n — 1) X (n — 1) unipotent upper triangular matrixG = G(X,Y)
such that:

(i) entries of G are rational functions in X,Y whose denominators are monomials in cluster vari-
ables 9,1, k=1,..,n—2;and

(ii) the 2n —1) X n matrix S = [GXTZ J] satisfies

detsimotl =P oy n-2 i=1.n (314)
’ Prn+1

Proof. We will establish the claim by applying to the matrix ® a sequence of n — 2 transformations
that do not affect its trailing principal minors. After the kth transformation, every X-block of ®
will be multiplied on the left by the same unipotent upper triangular matrix G,, while the Y-block
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in the jth block row of ® will be replaced by (Gk)[ o 1]

j=2,..,kand by Yik+1n] preceded with k — 1 zerorows for j =k +1,...,n — 1.
_ q)[n+1 N
[n+1,N]

immediately above ¥, in the submatrix ®"*1N] To this effect, we multiply the block rows from
2 to n of ® on the left by a block Toplitz upper triangular matrix

Y741, Preceded with j — 1 zero rows for

On the first step, we use the submatrix ¥; = to eliminate all the entries in the row

G Gz o Giug

0 Gll coe Gl,n—2
0 0 .. Gp

where Gy for j > 1 are (n — 1) X (n — 1) matrices with the only non-zero entries lying in the first

row and Gy, is a unipotent upper triangular matrix with the only off-diagonal non-zero entries

lying in the first row. Note that the denominator of the non-trivial entries in G, ; isequal todet ¥, =

®,4+1- As a result, all X-blocks of ® are multiplied by G, = G;;, and Y-blocks in the block rows

2,...,n — larereplaced by Y|; ,) preceded with the zero row. All zero blocks are not changed. The

obtained matrix is block lower triangular, and hence (3.14) is valid for k = 1,i = 1, ..., n, for the

: _[
matrix S; = [61 X, n]].

— @l2n+LN]
[2n+1,N]
immediately above ¥, in the submatrix formed by columns [2n + 1, N] of the matrix obtained on

the previous step. To this effect, we multiply the block rows from 2 to n of this matrix on the left
by a block upper triangular matrix

On the second step, we use the submatrix ¥, = to eliminate all the entries in the row

G, 0 0 .. 0
0 G21 G22 GZ,I’Z—Z
0 0 G21 GZ,I’Z—?) N

0 0 0 .. Gy
where G, for j > 1 are (n — 1) X (n — 1) matrices with the only non-zero entries lying in the sec-
ond row and G,; is a unipotent upper triangular with the same property. Note that the denomina-
tor of the non-trivial entries in G,; is equal to det ¥, = ¢, ;. As a result, all X- blocks are multi-
plied by G, = G,,G;;, the Y-block in the second block row is replaced by (Gz) 1]

by the zero row and Y -blocks in the block rows 3, ..., n — 1 are replaced by Y[4,n] preceded by two
zero rows. The submatrix of the obtained matrix lying in rows and columns n + 1, ..., N is block

Yl3 n] preceded

lower triangular, and hence (3.14) is valid for k = 2, i = 1, ..., n, for the matrix S, = [Gz;f/[ m]. It
is also valid for k =1, i =1, ..., n, since the corresponding minors coincide with those for the
matrix S;.

Continuing in the same fashion, we define Gj,...,G,_,; such that the product G =
Gy, - Gy, satisfies properties (i) and (ii) of the claim. Note that the kth row of G coincides

with the kth row of Gy;. O

The following proposition can be proved in a similar way.
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Proposition 3.6. There exists an n X n unipotent lower triangular matrix H = H(X,Y) such
that:

(i) entries of H are rational functions in X, Y whose denominators are monomials in cluster vari-
ables Pr(n—-1)+1> k=1,..,n—1,and
(ii) the (n — 1) X 2n matrix T = [X[, ) Y|, H] satisfies

T[n+k i+1n+k] _ Pn—k)(n—1)—i+1 ’ K
[n—i,n—1]

Pn—k)(n—-1)+1

det

We will use Propositions 3.5 and 3.6 to establish the following

—D
Proposition 3.7. All matrix entries of X[, ,) and Y are cluster variables in GC, .

Proof. We will use the comparison with the standard cluster structure C;,,,, on Mat,,,,, which is
isomorphic to the cluster structure on the big cell in the Grassmannian Gr(l, [ + m) described in [9,
Section 4.2.2] via the identification of a matrix A € Mat,,,,, with a representative [1, (AW ,,)] of an
element in Gr(l,l + m), where Wm is the m X m antidiagonal matrix. First, we establish the claim
for matrix entries of Y = (yl )i ] |- Let us temporarily treat the vertices in Q,, that correspond to
variables ¢;,,, 1,k =0,. , as frozen. Then the vertex correspondlng to g;, becomes isolated.
Denote the quiver formed by the rest of the non-isolated vertices by Qn, and let F C F,, be the
corresponding subset of cluster variables.

Define a new collection of variables 7, = {f: f € F,} via @j,,_;,, = ¢£" Hok=1,..,n-2,
+1

i=1,..n,and f = f forall other f € Fn. Denote by Q,, the quiver obtained from Qn via deletion
of all edges that are dashed in Figure 1.

Let us now define a (2n — 1) X n matrix S as in Proposition 3.5. Then (3.14) ensures that the
collection F,, consists of all dense minors of S containing entries of the last row or column of S,
where the minor that has an (i, j)-entry of S in a top left corner is attached to the (i, j) vertex in
the grid that describes Q,. Viewed this way, £ = (F,,,0,) becomes the initial seed for the stan-
dard cluster structure C~(2n—1)><n on Mat(,, 1y, Note that every exchange relation in this seed is

—D
obtained via dividing the corresponding exchange relation of GC, by an appropriate monomial
in variables ¢, ;, k = 1,...,n — 2, which are frozen in $= (7?", Qn). Applying [11, Lemma 8.4]

—D
repeatedly, we conclude that if ¢ is a cluster variable in GC, obtained via an arbitrary sequence of
mutations not involving mutations at ¢;,,, 1, k = 0, ..., n — 2, then the result of the same sequence
of mutations in C,;,_1)y, is @ = %, where M is a Laurent monomial in ¢y, .,k =1,...,n — 2.

Since all matrix entries of S are cluster variables in 6:(2)1—1))(71’ the latter observation means

that, for any i, j € [1, n], there is a cluster variable ¢ € Q_Cf obtained via a sequence of muta-
tions not involving mutations at ¢y, k =0,...,n — 2, and such that ¢ = y;;M, where M is a
Laurent monomial in ¢, ., k = 1,...,n — 2. We will now show that M = 1. Indeed, since ¢ is a
regular function in X, Y, and all functions in ¥, are irreducible via [13, Lemma 4.2], all factors in
M have non-negative degrees. On the other hand, in terms of elements of 7, ¢ is a polynomial
in ¢y,.1, k =1,..,n— 2. Furthermore, as a polynomial in each ¢, it has a non-zero constant
term. This claim is obvious for every single mutation away from the initial cluster, and then is
verified inductively. This implies that M = 1. Thus all matrix entries of Y are cluster variables in

—D
ac,.
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FIGURE 2 Rearranged quiver Q,

To treat matrix entries of X, ,,, we start with rearranging the vertices of Q,,- All vertices except
for those corresponding to ¢;; and h,;, i =1, ..., n, are arranged into an (n — 1) X 2n grid. It is
obtained by moving the lower (n — 1) X n part and placing it on the left from the upper (n — 1) X n
part; the remaining n + 1 vertices are placed above as an additional row aligned on the right. All
former dashed edges become regular, and the path

m-1,n+1)-»(1,2)»(n—-1,n+2)—>(1,3) > - > (1,n) » (n—1,2n)

becomes dashed; see Figure 2 for the rearranged version of Q,. To proceed further, we temporarily
freeze vertices that correspond to Pr(n—1)+1> k=0,..,n—2,and hzj, j =2,...,n,and compare the
result with an initial seed for the standard cluster structure on Mat,_,),,, defined by the matrix
T given in Proposition 3.6. O

Recall that the generalized exchange relation for ¢, is given by

n
?19] = DY) (D" Moy ) @5 (3.16)
i=0

where ¢’ is a polynomial in the entries of X and Y, see [13, Section 4]. Denote 7 = 7, \ {¢;} U
{o1}-
The following lemma implies that entries of the first row of X belong to the generalized upper
——0D
cluster algebra A(GC,, ).

Lemma 3.8. Every matrix entry x,; can be expressed as PX.Y)

, Where P is a polynomial in matrix
1
entries of Y, X (2] and functions ¢ § (X,Y), j =1,..., n. Alternatively, x,; can be expressed as Laurent

. . . . T ,
polynomials in terms of cluster variables in F.

Proof. Denote by X the matrix obtained from X by setting all entries of the first row to 0. For
1<j<n,c j(X ,Y)is a linear function in matrix entries x,;, and so we can write
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(X, Y) =¢;(X,Y)+ ) x;2;(X,Y), (3.17)

i=1

where z;;(X, Y) are polynomials in the entries of X, ,; and Y. Thus we obtain a linear system for
the entries x;; and Z = (z; j X, Y))ijl is the matrix of this system. Clearly, solutions of the system
are polynomials in the entries of X}, ,; and Y divided by det Z.

Note that z; j(X ,Y) is a polynomial of degree n — j — 1 in the entries of X and of degree j in
the entries of Y and so, both det Z and ¢, (X, Y) are polynomials of total degree @ in terms of
both X and Y. We will now show that, up to a scalar multiple, det Z coincides with ¢,(X,Y). To
this end, we will demonstrate that det Z = 0 implies ¢; = 0. Since ¢, is irreducible ([13, Lemma
4.2]), this means that det Z and ¢, (X, Y) differ by a constant multiple.

To prove the implication detZ = 0 = ¢, = 0, suppose that detZ vanishes. Then the system
(3.17) is still solvable, but its solution is not unique. Consequently, there exists a non-zero row
vector v’ such that det(e;v” + X + 1Y) = det(X + AY). The determinant on the left is evaluated

via the Schur complement:

X+ Y
det [ :T 511] = det(X + V) (1 + 0" (X +AY) ey, (3.18)
which means that v (X + AY)~'e; = 0 for any 1. Equivalently, v"Y~'U/e, = 0 for j =0,1,2, ...,
where U = XY~!, and hence det[U""'e, U" 2e, ... Ue,e;] = 0. However, by [13, Lemma 3.3],

@1 (X,Y) = +(detY)" " det [U" e, U" %e, -+ Ue, ¢,]

and so, whenever det Z vanishes so does ¢;. This proves the first claim of the Lemma.
To establish the second claim, let us consider the dependence of the coefficient matrix Z and

functions ¢; = ¢; (X,Y) on the initial cluster variables. In view of the proof of Proposition 3.7, all

z;j and ¢; are Laurent polynomials in variables from 7?‘,1 and, moreover, are polynomials in ¢, .
Write Z = Z° + ¢, Z', where Z° does not depend on ¢ . Since det Z is a scalar multiple of ¢,, the
entries of Z~! are Laurent polynomials in cluster variables from f’n. Furthermore, it is easy to
see that det(Z° + ¢, Z') is proportional to goi‘_mnk(zo), and hence the rank of Z° is equal to n — 1.
Further, Z~" = ¢ 'W" + W, where W' is polynomial in ¢,, and W° does not depend on ¢, and
satisfies relations ZOW9 = w920 = 0. It follows that W is of rank 1, that is, W° = wlsz, where
w,, W, are non-zero column vectors such that w, spans the kernel of Z°. Therefore, the first row

of X can be expressed as

n
Xpy = %_1(2(0/‘ - C'j)wlj>sz +L,
=1

where L is a vector of Laurent polynomials in terms of cluster variables in 7).
Let us show that the vector

. o n
u= (((—1)n_1h22§0n+1)1§0; j)j:l
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spans the kernel of Z°. Note that (3.16) implies

n
2 cju; +det Yol = ¢, 9],
j=1

n
Zc"juj +detYo! = ¢ @),
j=1

where @] is a polynomial in the entries of X|, ,,; and Y|, ., and thus can be written as a Laurent

polynomial in variables from f’n which is polynomial in ¢,, and hence as a Laurent polynomial
in variables from 7/. Consequently, Z;’zl(c i —Cu; = ,(p] — @), so that

0@} — @) = X1 Zu = X1 ) Z%u + ¢, X 2 u,

and hence ¢; = 0 implies XUJZOM = 0. Note that Z° and u does not depend on ¢, and on X1}
which means that u spans the kernel of Z°, as claimed. Therefore, we can choose w; = u, and
since the entries of u are monomials in terms of variables from 7, \ {¢, }, entries of w, are Laurent
monomials in terms of the same variables. We conclude that

n
Xy = (/’1_1(2(01' —c‘j)uj)sz + L= go;sz +(L —¢J{w2T),
j=1

which proves the claim. O

It follows immediately from Lemma 3.8 that each x;; can be written as a Laurent polynomial
in terms of the cluster variables in the initial cluster and in any of its neighbors, since by Proposi-
tion 3.7, all entries of Y and X1, ,,) are cluster variables, and hence Laurent polynomials in any clus-
ter.

4 | TWO GENERALIZED CLUSTER STRUCTURES ON D(GL,)

In [12], we described a generalized cluster structure GC2 on D(GL,). It is easy to see that the

generalized cluster structures Q_CS described in this paper and QCE (YT, XT) have the same set of
frozen variables. Moreover, for n = 2 the initial seeds £,(X, Y) and Z,(Y”, XT) coincide. Forn = 3,
a straightforward computation shows that the sequence of mutations at vertices (4,3), (3,2), (2,1)
takes (X, Y) to Z;(YT, XT). In this section, we prove that for n = 4 no such sequence exists, and
hence generalized cluster structures Q_Cf and QC? (YT, XxT) are distinct. We conjecture that this
holds true for any n > 4 as well, see Remark 4.4.

—D —D
Proposition 4.1. The generalized cluster structures GC 4, =GC, X,Y) and QC? = QC? T, xT
are distinct.

_ —D

Proof. We start with the seed X, for GC 4 and perform a sequence of mutations at vertices (5,4),
3 3 / / / / ! / "

(4,3), (3,2), (6,4), (5,3), (4,2), (5,4) and (4,3). In this way, we get functions ¢}, @3, ¢, ¢, 7, P, ¢, s
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g3l

Eq

FIGURE 3 Modified Q,

FIGURE 4 Quiver Q,

qog’ , respectively. A straightforward computation shows that

Vas Y Yar Va3 Yaa V32 V33 YV
’_ 43 Yy r_ "_
®g = det [x x ] » pr=det|xsy X33 X3, @y =det|ya, Yaz Yas
43 Xag
Xap X43 Xyg Xap X43 Xyg
V31 V32 V33 Vg Vo1 Yoo Yoz Vos
qog — det Ya1 YVaz Va3 YVau i go's' — det Va1 V32 Y3z Vs )
X31 X3p X33 X3q Yo Yar Va3 Yaa
X411 Xgp X43 Xy4 X411 Xgp Xy43 Xy4

The corresponding quiver is shown in Figure 3. The quiver for the initial seed for QC? constructed
in [12] is shown in Figure 4. Recall that we are interested in the seed 2,(YT, XT), and hence in this
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FIGURE 5 Subquiversof Q, and Q,

case g;;(Y",X") = det(YT)H’y{]Jr”_i] =h;;(X,Y) and h;;(YT,XT) = g;;(X,Y). Further, functions
[fij are defined via

fi;(Y",XT) = det [(YT)[”*”L"] 060 it Al I
[n—i—j+1,n]

and hence fy;(Y".X")=g[(X.Y), f,(Y".X")=g/(X.Y), and f,(v",X") = ¢/(X.Y).
Finally, as explained in [12, Remark 3.1], functions ¢;; with i + j = 4 are defined via the same
expression as f;;,and hence 3, (Y7, X") = ¢7/(X,Y), p,,(Y",X") = ¢/ (X, Y),and ¢, (Y, XT) =
(X, Y). We thus see that the restrictions of both quivers to the three lower rows coincide, as well
as the functions attached to the corresponding vertices. Moreover, the functions attached to the
fourth row from below in both quivers coincide as well, as well as the arrows between the third and
the fourth row. We will prove that the corresponding two seeds are not mutationally equivalent.

By [3, Theorem 3.6], if two seeds are mutationally equivalent and share a set of common cluster
variables, there exists a sequence of mutations that connects these seeds and does not involve the
common cluster variables.

Remark 4.2. In fact, the definition of a generalized cluster structure in [3] and in the preceding
paper [2] is more restrictive, since it imposes a reciprocity condition on exchange coefficients, fol-
lowing [18]. However, this condition is only used in the proof of Lemma 4.20 in [2], which in turn
is based on Proposition 3.3 in [18]. This proposition claims that every cluster variable can be writ-
ten as a Laurent polynomial in cluster variables of the initial cluster and an ordinary polynomial
in frozen variables. It is an analog of the corresponding statement for ordinary cluster structures
and its proof extends to the case of generalized cluster structures as defined in Section 2 without
any changes.

Consequently, if the above two seeds are equivalent, there should exist a sequence of mutations
that involves only three vertices comprising the uppermost triangle. We will concentrate on two
four-vertex subquivers that are formed by the uppermost triangle and the vertex corresponding to
p13(YT,XT) = 9y(X,Y). These two subquivers are shown in Figure 5. We claim that there is no
sequence of mutations at the vertices 1, 2 and 3 that takes one subquiver to the other one. Note
that although the mutations at vertex 4 are not allowed, it is not frozen.

To prove our claim, we consider the evolution of a more general quiver Q(«, 8,y) shown in
Figure 6 under mutations at the vertices 1, 2 and 3. Here multiplicities «, 8 and y can take any
integer values except for « = § = y = 0. A negative value means that the direction of the corre-
sponding arrow is reversed. Clearly, two quivers shown in Figure 5 are Q(0, 1,0) and Q(0, —1, 0).
To keep track of the mutations, it will be convenient to renumber the vertices so that the
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FIGURE 6 Quiver Q(a,B,7)

generalized vertex is always vertex 1, and the direction of arrows in the triangleis1 - 2 - 3 — 1.
Note that any mutation of Q(«, 8,y) transforms it into Q(a/, 8’,y’) for certain values of o, g’
and y'.

Define the charge of Q = Q(«, 8,7) as C(Q) = |a| + |B]| + |y|. The nodes of the 3-regular tree
T that describes all possible mutations of Q(«, 8, ¥) can be classified into 10 possible types with
respect to the charge. We encode these types by a triple [i, j, k], where i stands for the number of
mutations that increase the charge, j stands for the number of mutations that preserve the charge,
and k stands for the number of mutations that decrease the charge, so thati + j + k = 3. Note that
both quivers Q(0, 1,0) and Q(0, —1, 0) have charge 1. Consequently, if they are mutation equiva-
lent, then either all quivers along the simple path (the one that never returns to the same vertex)
in T that connects Q(0, 1,0) and Q(0, —1,0) have charge 1, or this path contains two quivers Q,
Q, that differ by one mutation, such that C(Q;) < C(Q,) and C(Q,) > C(Q) for any other quiver
Q along the path.

Consider the first possibility. A straightforward computation shows that mutations at vertices 1
and 2 preserve the charge and take Q(0, 1, 0) to Q(1, 0, 0), while mutation at vertex 3 increases the
charge. Further, mutations of Q(1, 0, 0) at vertices 1 and 3 preserve the charge and take Q(1,0,0)
to Q(0,1,0), while mutation at vertex 2 increases the charge. Therefore, Q(0, —1,0) cannot be
reached from Q(0, 1, 0) along a path with the constant charge 1.

Consider the second possibility. Let [i, j, k] be the type of Q,, then k > 1 and j + k > 2, so we
remain with the following possibilities: [1,1,1], [1,0,2], [0,2,1], [0,1,2], [0,0,3]. We are interested in
finding conditions on «, § and y that would guarantee that the type of Q, is indeed one of the
types listed above. One can distinguish eight possible cases according to the signs of «, 8 and y.
Let us consider in detail one of the nontrivial cases.

Leta <0, 8 >0, y > 0. Mutation at vertex 1 takes Q = Q(a, 8,7) to Q" = Q(B, & + 4y, —y), so
that C(Q") = C(Q) + a + |a + 4y|, and hence C(Q") < C(Q) if « + 2y < 0 and y # 0. Mutation at
vertex 2 takes Q to Q" = Q(B, —a, 7y + a), so that C(Q") = C(Q) — ¥ + |« + y|, and hence C(Q") <
C(Q) if e + 2y > 0. Mutation at vertex 3 takes Q to Q" = Q(—8,a,y + 8), so that C(Q") = C(Q) +
B = C(Q). Consequently, the type of Q(«, 3,7) is [1,1,1] ifa + 2y > 0and § = 0, or if « + 2y < 0,
y # 0 and 8 = 0. For the other values of parameters, the type of Q(«, §8,y) is either [i, j, 0] with
i+ j=3o0r[2,0,1].

Results of similar considerations in all the remaining cases are summarized in Table 1 that
contains, for each case, the values of the charge after the three possible mutations and possible
types of Q depending on the values of «, 8, and y.

It follows from the results presented in the table that the only possible candidates for the quiver
Q, are quivers of type [1,1,1] in Cases 2-4. In all three cases, the next node in the path should have
the same charge. If Q, is as in Case 2, then the next node is obtained by mutation at vertex 3, and
the resulting quiveris Q" = Q(0, a,y) with @ < 0 and y > 0. This situation is covered by Case 3, and
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TABLE 1 TypesofQ

Casel:a>0,8>0,y >0 Case2:a<0,8>0,y >0
C(1 (Q) C(Q) +4y > CQ) CQ+a+|a+4yl|
C(u(Q) C(Q)+2a>CQ) CQ-y+la+yl
C(us(Q) C(Q+B>CQ C@+8

[1,1,1], ifa+2y>0,8=0
orifa +2y <0,
type of Q [i, j,0] y#0,=0
[i, j,0] or
[2,0,1] otherwise.

Case3:a>0,8<0,y >0 Case4:a >0, >0,y <0
C, (Q) C(Q) +4y >CQ) CQ - B+16+4yl
C(1,(Q) CQ+B+18+2yl C(Q) +2a > C(Q)
C(u3(Q) CQ) —a+ |a+ 28 CQ+y+lr+8l
[1,1,1], ifa+£5>0,y=0 [1,1,1], iff+2y>0,a=0
orifa + <0, orif 8 +2y <0,
type of Q a#0,y=0 y#0,a=0
[i, j,0] or [i, j,0] or
[2,0,1] otherwise. [2,0,1] otherwise.
Case5: 0 <0,8<0,y >0 Case6:ax <0,8>0,y <0
C(u,(Q) C(Q) +a + |a+4y| CQ-B+I18+4I
C(p,(Q) CQ -7 +la+yl CQ)—a>CQ)
C(us(Q) C(Q-26>CQ CQ+y+ly+8l
type of Q [i, j,0] or [2,0,1] [i, j,0] or [2,0,1]
Case7:a>0,8<0,y <0 Case8:a<0,8<0,y <0
C(, (Q) C(Q) -4y >CQ) C(Q) -4y >CQ)
C(1,(Q) C(Q) + B+ 16 +2a C(Q)—a>C(Q)
C(u3(Q) C(Q) —a+ |a+ 2| C(Q@)-28>CQ)
type of Q [i, j,0] or [2,0,1] [3,0,0]

the other two mutations of Q' yield C(Q") + 4y > C(Q") and C(Q’) + [2a| > C(Q’). Consequently,
the maximality condition for the charge of Q, fails.

The remaining two cases are analyzed in a similar way, with Case 3 leading to Case 2 and Case
4 leading to Case 4. Therefore, Q(0, —1, 0) cannot be reached from Q(0, 1,0) along a path with a
varying charge, which completes the proof. O

Remark 4.3. In a recent preprint [21], a technique of scattering diagrams is used to construct a log
Calabi-Yau variety with two non-equivalent cluster structures both associated with the Markov
quiver. This variety is obtained by a certain augmentation of a cluster A-variety with principal coef-
ficients in the sense of [15]. In contrast to this, the example we presented above gives two explicitly
defined non-equivalent generalized cluster structures with the same set of frozen variables in an
affine variety obtained by deleting a divisor with a normal crossing from an affine space.
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Remark 4.4. For n > 4, one can build a sequence of mutations that takes the seed £, to a seed
T = (x,Q, P) with the following properties. Let %, (Y',XT) = (x,,,Q,,, P,), and assume that Q,,
and Q are arranged in 2n — 2 rows, as in Figures 3 and 4, then the restrictions of Q and Q,, to
n — 1 lower rows coincide, as well as the functions attached to the corresponding vertices. So do
the functions attached to the nth row from below in both quivers and the arrows between the
nth and the (n — 1)th row. The restrictions of Q and Q,, to the remaining n — 2 upper rows also
coincide, however, the functions attached to the corresponding vertices differ. Finally, ¢,,_, —
Pn_ny1isanedgeinQ, ¢, | = @1, sisanedgein Q,, oy_, 1 (X,Y) = ¢, , (YT, XT), vertices
®n— and ¢, ,,_, correspond each other in the upper parts of Q and Q,, respectively, and there are
no edges between ¢,,_, ., and the upper part of Q (¢, ,,_; and the upper part of Q,, respectively).
We believe that similarly to the case n = 4, one can prove that it is impossible to invert the arrow
in question via a sequence of mutations at the vertices of the upper part, which would imply that

—D
the generalized cluster structures ¢C, (X,Y) and QCf (YT, xT) are distinct.

—D
The example presented above describes two different generalized cluster structures GC; = GC 0
GC, = GC¥ such that:

* the corresponding upper cluster algebras coincide with the ring C[D(GL,)] of regular functions
on the Drinfeld double of GL,;

* both generalized cluster algebras are compatible with the standard Poisson-Lie bracket on
D(GL,) and have the same collection of frozen cluster variables.

We believe that both generalized cluster structures GC, and GC, can be related to the same
ordinary cluster structure C using a conjectural construction outlined below for the case of
general n.

The cluster structure C is associated with the moduli space A s introduced by Fock and Gon-
charov in the study of G-local systems on a marked Riemann surface S, see [5]. In our exam-
ple G = GL,, S is the punctured disk with four marked points on the boundary. The variety
Agr, s is homeomorphic to the configuration space of triples (F, M, ®) modulo the GL,-action
where F denotes a quadruple of decorated flags at the marked points, M is the GL,-monodromy
about the puncture amd & is a flag at the puncture which is invariant under the monodromy.
Note that the invariant flag at the puncture is not uniquely defined by the monodromy: there
are n! choices corresponding to different orderings of monodromy eigenvalues. The Weyl group
W =S, acts on Ag; g by reordering eigenvalues, which results in a different choice of the
invariant flag.

The parametrization of Ag; g introduced in [5] endows it with a cluster structure which, in
turn, leads to a compatible Poisson bracket. This Poisson structure has corank 2n with n Casimirs
given by the coefficients of the characteristic polynomial of the monodromy and n additional
Casimirs. Fixing values of n additional Casimirs to 1, we obtain a codimension n subvariety V.
The action of W restricts to V. Further, V is a cluster variety whose coordinate ring is equipped
with the cluster structure C. In particular, C inherits the W-action.

There is a natural projection 7 : V — D(GL,) with a fiber W x H where H is the Cartan sub-
group. We conjecture that the projection 7 provides a natural connection between generalized
cluster structures GC; in C[D(GL,,)] for i = 1,2 and C. More precisely, the pullbacks of all cluster
variables in GC; are W-invariant cluster variables in C. Furthermore, each seed Z of the generalized
cluster structure GC; contains one cluster variable g(X) attached to the special vertex of the quiver
and satisfying a generalized mutation rule, while the remaining cluster variables obey the usual
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mutation rules. The rank of C is n — 1 more than the rank of GC;. Any seed X of GC; corresponds
to a seed £ of C in which ¢(Z) corresponds to an n-tuple of cluster variables g; (%), j € [1,n], such
that 7% ¢(%) = H';:l gj(i). The remaining cluster variables of the seed £ and frozen variables of
C are obtained as pullbacks 7* of the corresponding cluster variables of X and frozen variables
in GC;. The generalized mutation of g(X) corresponds to the composition s(£) of n mutations at
all §;(£) taken in any order (mutations of 7;(£) commute). Namely, let g" denote the function
obtained by the generalized mutation of ¢(Z) and gj’. = s(i)(gj(fl)), then 7*¢’ = H?:l gj’.. Fur-
ther, the set of seeds of C corresponding to GC, is disjoint from the set of seeds corresponding
to GC,.
A detailed proof will be presented elsewhere.

Remark 4.5. Let G be a semisimple complex Lie group with the Lie algebra g. The group G is
equipped with the standard Poisson-Lie structure. In [20], the semiclassical limit of U (g) is real-
ized as a quotient by an ideal generated by Poisson central elements of the W-invariant subring
of the coordinate ring of the second moduli space X6.50.1 of Fock-Goncharov cluster ensemble,
where S ; , is a once punctured disk with two marked points on the boundary. This construc-
tion seems to be closely related to the projection 7 above. However, no cluster structure on the
W -invariant subring was considered in [20].

5 | REDUCTION TO A GENERALIZED CLUSTER STRUCTURE ON
BAND PERIODIC MATRICES

In [13], we presented a framework for constructing generalized cluster structures. It is based on
certain identities associated with periodic staircase shaped matrices. One of the examples con-
sidered in [13] was the generalized cluster structure Q_Cf that we treated in previous sections.
Another example was a generalized cluster structure on the space of (k + 1) diagonal n-periodic
band matrices with k < n. In this section, we will show how the latter structure, denoted here by
GC(L,,,) can be obtained as a restriction of the former. In particular, this will allow us to obtain
an analogue of Theorem 3.1 for GC(Ly,,).

5.1 | Initial cluster

In the case of the Drinfeld double D(GL,), the periodic staircase matrix mentioned above is an
infinite block bidiagonal matrix

(5.1)

Sl
<o
o

that corresponds to (X, Y) € D(GL,,). Now we drop the invertibility requirement for X and choose
Y to be a lower triangular band matrix with min(k + 1, n) non-zero diagonals (including the main
diagonal) and X to be a matrix with zeros everywhere outside of the k X k upper triangular block
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in the upper right corner:

0 0 au i akl
0 b 0 0 a12
X = N ,
0 0 0 ay
_ak+1,1 0 0 (5.2)
ak2 ak+1,2 0 aee
Y = : : - : : : fork < n,
Arke1 Ape1 " Qgrksr O
0 - - : -
| 0 ain 57 ak+1,n_

n
Y= (an+1—i+j,i)i,j:1 fork =n,

where we assume that a;; = 0 when t > k + 1. Then L in (5.1) is a (k + 1)-diagonal n-periodic
band matrix. We denote by £, the space of such matrices with an additional condition that all
entries of the lowest and the highest diagonals are non-zero. Let £, be the closure of £, in the
space D(Mat,,) = Mat,, X Mat,,. Every element of £, is identified with a pair of matrices of the
form (5.2). In particular, vanishing of the lowest diagonal yields an inclusion £;_, ,, C £y,,.

Note that when such matrices are substituted into (3.1), ® becomes reducible with a leading irre-
ducible block ®® of size (k —1)(n — 1) x (k —1)(n —1). Fori = 1, ..., (k — 1)(n — 1), we define

L (k k—1)(n—1
¢ = ¢ = det@ (7 (5.3)
By [13], a generalized cluster structure in the space of regular functions on £;,, is defined by
the following data.
Define the family 7}, of (k 4+ 1)n regular functions on £, via

w = (PN an e e 3L OGNS G4

where d,; = (=1)*(*"Da; and &,(X,Y) = (=1)*"De,(X,Y) for 1 < i < k — 1 with ¢;(X, Y) satis-
fying the identity det(1Y + uX) = A"* Ef:o ¢;(X, )i Ak=t,

Let Q,,, be the quiver with (k + 1)n vertices, of which k — 1 vertices are isolated and are not
shown in the figure below, (k + 1)(n — 1) are arranged in an (n — 1) X (k + 1) grid and denoted
(i,j),1<i<n-—-1,1<j<k+1,and the remaining two are placed on top of the leftmost and
the rlghtmost columns in the grid and denoted (0,1) and (0, k + 1), respectively. All vertices in the
leftmost and in the rightmost columns are frozen. The vertex (1, k) is special, and its multiplicity
equals k. All other vertices are regular mutable vertices.

The edge set of Qy, consists of the edges (i,j) - (i+1,j) fori=1,..,n—-2, j=2,..,k;
G4,j))—» G, j-1) for i=1,..,n—-1, j=2,...k, (,j)#@Q,k); (i+1,j)—> (@G, j+1) for i=
1,..,n—2, j=2,..,k, shown by solid lines. In addition, there are edges (n —1,3) — (1,2),
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Ase

FIGURE 7 Quiver Q,,

1,2)»(n-1,4), n-1,4) - (1,3),...,(1,k—1) > (n—1,k + 1) that form a directed path
(shown by dotted lines). Save for this path, and the missing edge (1, k) — (1, k — 1), mutable ver-
tices of Q,,, form a mesh of consistently oriented triangles

Finally, there are edges between the special vertex (1, k) and frozen vertices (i, 1), (i, k + 1) for
i =0,..n—1.There are k — 1 parallel edges between (1,k) and (i,k + 1) fori =1,...,n — 1, and
one edge between (1, k) and all other frozen vertices (including (0, k + 1)). The edge to (0,k + 1)
is directed from (1, k); if k > 2, all other edges are directed toward (1, k), and if k = 2, the direction
of the edge between (1,1) and (1, k) is reversed.

Quiver Q,; is shown in Figure 7.

We attach functions @, a5, ..., a;,,, in a top to bottom order, to the vertices of the leftmost col-
umn in Qy,, and functions a;,; ;, ..., @x11 ,, in the same order, to the vertices of the rightmost
column in Qy,,. Functions @, are attached, in a top to bottom, right to left order, to the remaining
vertices of Q,,,, starting with @, attached to the special vertex (1, k). The set of strings 7, con-
tains a unique non-trivial string (1, &, (X, Y), ..., ¢, (X, Y), 1) corresponding to the unique special
vertex.

Theorem 5.1. The seed %y, = (Fi, Qpns Piyy defines a complete generalized cluster structure
GC(Zy,) in the ring of regular functions on L, compatible with the restriction of the standard
Poisson-Lie structure on D(Mat,,).

Proof. The proof follows closely that for Theorem 3.1. Regularity of GC(Z,,) is borrowed from
[13, Theorem 5.1]. The proof of log-canonicity and of compatibility is based on the downward
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induction on k, see Section 5.2. The proof of completeness is a modification of a similar statement
for the Drinfeld double and relies on the same ideas, see Section 5.3. O

5.2 | Compatible Poisson bracket

Let us re-write the Poisson bracket (3.2) in terms of matrix entries of a pair of matrices (X, Y):
1, . . . .
{xij, xpgt = 5(51gn(P — i) + sign(q — ))XigXp;s

1. L .
WijsVpq} = 5 (sign(p — i) + sign(q — D)yigyp)» (5.5)

1 . . o
ijrxpgt = 5(1 +sign(q — ))yigx,; — (1 + sign( — p)x;y,;)-

This Poisson bracket can be extended to D(Mat,,). It follows from (5.5) that every inclusion in the
chain

DMat,) D L,, DL, 1, DLy, D DLy,
is a Poisson map. The same is true about inclusions £;,, C L.

Proposition 5.2. The family F,, defined in (5.4) is log-canonical with respect to the restriction of
the Poisson bracket (5.5) to Ly,,.

Proof. For k = n, substitute (X,Y) € L, into(3.1). As was mentioned above, ® becomes reducible
with an irreducible (n — 1)> x (n — 1) upper left block ® and, for i < (n — 1)?, functions ¢;
restricted to L,,,, factor as

¢ = ¢§n)¢(n—l)2+1' (5.6)

By Theorem 3.1, Poisson brackets {log ¢;,1og ¢;} = w;; are constant on D(GL,,) and, by extension,

on D(Mat,). Since L, is a Poisson submanifold in D(Mat, ), we obtain {log cﬁg"), log p(,_1y241} =
@; (n—1y241 for i < (n —1)?, and thus

{log @EH), log (795-")} = Wi~ W (n-1)241 T Dj (1241

is constant on £, for any i, j = 1, ..., (n — 1)?; we denote this constant by wgr.l). Furthermore, on
L,, wehave h;(Y) = a, ;" a1, 6:(X) = ay; --- a;,,, and so the log-canonicity of the entire
family F,,, follows from the log-canonicity of F,,. By extension, we get the log-canonicity of the
family F,,, on .

Using induction, assume that {log qbgk), log ¢§k)} = cofk ) is constant on Ly, for any i,j =
L,...,(k = 1)(n — 1). Substituting (X,Y) € L;_, ,, into the (k —1)(n — 1) X (k — 1)(n — 1) matrix
@) makes it reducible with an irreducible (k — 2)(n — 1) X (k — 2)(n — 1) upper left block ®*-1)

and functions cpgk) restricted to £,_; , factor as gagk) = gagk_l)gbgz)_ =141 fori < (k—2)(n—1).
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~(k)

In addition, ¢(k_2)(n—1)+i =ayi41

that

--ay, fori = 2,...,n. Arguing precisely as above, we conclude

~(k—1) ~(k=1)y _ (k) _ (k) (k)
llogg,” “logg, r=w =@ o 0t @; (k=2)(n—1)+1 (.7)
is a constant on £_, ,, for any i, j = 1,...,(k — 2)(n — 1) and denote it by cog.‘_l). Therefore, the

log-canonicity of the entire family 7 _; , on £;_, ,, and hence on £;_, ,, follows from the log-
canonicity of 7y, on Ly,,. O

Proposition 5.3. The Poisson bracket (5.5) is compatible with the generalized cluster structure
QC(an) on £kn'

Proof. We will use induction again. Within this proof, it will be convenient to refer to the vertex in
Q,, to which the variable ¢; is attached and to the vertex in Q,,,, to which the variable @, is attached
as the vertex i in the corresponding quiver. Assume first that k = n, and let y; be the y-variable
corresponding to the vertex i in Q,, and yl.(”) be the y-variable corresponding to the vertex iin Q,,,,.
We claim thaton £, yl.(”) =y, for all mutable vertices in Q,,,,.

Indeed, for n < i < (n — 2)(n — 1), the neighborhood of the vertex labeled i in Q,,,, is identical
to the neighborhood of the vertex labeled i in Q,,. We claim that on ,,,,, yl(”) =Y.

For(h—-2)(n—1)<i<(n—-1)>%1leti’ =i—(n—2)(n—1). Then

(1) (1)
NOM PinPindrrer _ PinPinfrarivr
' am e Pi1Pin1Gr2iivz

by (5.6) and since g;; = a;; - @, on Ly,.
Forl<i<n,

=(n) (1)

y(n) — Pir1Pirn1Tntri _ Pi+1Pivn—1Mi — v
l ¢l(f)1g51(i)n PiaPirnhisrin
by (5.6) and since hj; = @,y j =+ Qpyyp O L.
Finally,
NORY
Y = | 22 Oni11 = < - )n@ =y
' 5 Pusrhn /) 91 '

n—1
n n
¢I’H-l Hj:l alj (Hj:z an+1,j)

Therefore {logyl@, log ¢§")} = {logy;,logp; —log ¢, 12,1} = d;6;;, where d; =n and d; =1
otherwise. The induction step is performed in precisely the same fashion by showing that on

Ly, ,, for all mutable vertices in Q;_, ,,, ygk_l) = yl(k). O

Remark 5.4. When restricted to L, the Poisson structure 5.5 coincides with the one considered in
arecent paper [16] on the space of properly bounded n-periodic difference operators. A modification
of that Poisson bracket for spaces of sparse pseudo-difference operators was also considered in [16]
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in order to derive complete integrability of a family of pentagram-like maps. It would be interesting
to see if such a modification has a cluster-algebraic meaning as well.

5.3 | Completeness

The next two propositions are analogous to Propositions 3.5, 3.6 and can be proved in exactly the
same way.

Proposition 5.5. There exists a (k — 1) X (k — 1) unipotent upper triangular matrix G = G(X,Y)
such that:

(i) entries of G are rational functions in X, Y whose denominators are monomials in cluster vari-
ables ¢3jn+1, j=1,...,k—2;and

[n—k+2,n]

(ii) the 2k —2)x (k — 1) matrix S = [ Gi‘(wﬁz“lﬂ] satisfies
1,k—1]

detG[k ik—1] ¢jn—i+1

[k+j—ik+j-1] ~ & ’

j=1,.,k=2, i=1,.. k-1 (5.8)
¢jn+1

Proposition 5.6. There exists a (k — 1) X (k — 1) unipotent lower triangular matrix H = H(X,Y)
such that:

(i) entries of H are rational functions in X, Y whose denominators are monomials in cluster vari-
ables @jp_1y41, J =1,....k —2; and
(ii) the(n — 1) X (n + k — 1) band matrix

_ [n—k+2,n] +,[1,n—k+1] ,[n—k+2,n]
T= [X[z,n] Yo Yo H]

satisfies

[n+j—i+1,n+j] go(n—j)(n—l)—i+l . 3
detT) 0 = P j=2,..,k-1,
(k—j)(n=1)+1

The completeness statement for GC(L;,,) is based on the following result.

Proposition 5.7. All matrixentries a;;,i = 2,...,k, j = 2,...n, are cluster variables in GC(L,,,).

lJ’
Proof. We use an argument similar to that in the proof of Proposition 3.7. Namely, we will tem-
porarily freeze certain subsets of vertices in Q,,, and compare the result with initial seeds of appro-
priate previously studied cluster structures. First, freeze the vertices in the top row of Q,,,, that
is, those that correspond to ¢ i(n—1)+1> Jj =1,...,k — 2. Then the vertices that correspond to a;,
a5, Qpy11> Apy1, Decome isolated. The subquiver Q, of Qy,, formed by the remaining vertices
is closely related to an initial quiver Q’ , for the regular cluster structure C(E’ ) on the
space E’ of m-1)xm+k-1) band matrlces with k + 1 diagonals that was constructed
in (7, Sectlon 10] via a quasi-isomorphism from the regular cluster structure on the affine cone
Gr(n — 1,n + k — 1) over the Grassmannian Gr(n — 1, n + k — 1). The difference is that in Qk’n_1
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there are no edges between the vertices in the top row and vertices in the bottom row. Let T be an

element in £’ :
k,n—1°

ln In e 0 0
r=|9 hs te3 USSR ;
0 0 bin bon tk+l,n
note thatt;; = T;_, ;, ;_,. Initial cluster variables that correspond to Q’ ,in C(E’ ) are func-

tions ; j(T) i=2,..,k, j=2,..,n, where J(T) is the maximal dense minor of T w1th tij
the upper left corner, and matrix entries ¢,;, j =3,...,n, iy j, j =2,..,n—1. The latter are
frozen and attached to the same vertices in Q;m that alj, j=3,..,n, and Ajeqr, > j=2,..,n—-1,
are attached in Qy,,. The function ), ;(T) is attached to the vertex (i — 1, j) of Ql,cn' In addition to
the frozen variables mentioned above, the variables attached to the vertices of the first row of le
are also frozen. All the irreducible row-dense minors of T are cluster variables in C(E’ _1).
Note that in [7] an initial seed for C(E’ |) is not described explicitly. To justify our explicit
description of the seed above, we rely on two observatrons First, the functions 3;;(T') are images
under the quasi-isomorphism of [7] of cluster variables of the initial seed for Grn—1,n+k—1)
as described in [9, Chapter 4]. This means that subquivers formed by non-frozen vertices in the
initial quivers for these two structures coincide, the only difference is in the arrows that connect
frozen and non-frozen variables. Second, the edges between frozen and non-frozen variables in
the initial quiver for C(E;(’n_l) are uniquely determined by the regularity of this cluster structures.
To see this, one needs to analyze, in a bottom to top order, the exchange relations for left-most and
right-most mutable vertices in Ql,c,n—l and apply the standard Desnanot-Jacobi identities.

Now, assume that T € [,I’{ et is the matrix defined in Proposition 5.6. Then it follows from

. . Pk—i)(n—1)+j-1
59)thatt,; =a,;forj=3,...,n,t =a forj=2,..,n—1and ¢, .(T) = ————— for
( ) 1j 1j J k+1,j k+1,j J l)bl‘]( ) Blk—it (1)1

i=2,..,k,j=2,...,n. Then,just like in the proof of Proposition 3.7, we conclude that sequences
of mutations in GC(L;,) that do not involve functions @ i(n—1)+1> j=1,..,k—1, result in cor-
responding sequences of mutations in C(ﬁ’ ,) with the initial seed defined by Q,’{ and func-
tions t,;, t;4 j, ¥;;(T). Since every ¢;; is a cluster variable in C(Ll’ ) and ;; = a;; unless
(i, )eR={Um),l=3,..,k, m=n—1+3,..,n}, we use the argument in the proof of Propo-
sition 3.7 to conclude that, for (i, j) € R, q; jisa cluster variable in GC(L;,,).

The case of (i, j) € R is treated in a similar way. Namely, consider the vertices corresponding
t0 @jpi1s J =0,..,k =2, and to G_z)n—1)—jn> J = 0, ...k — 3, in Q. The vertices in the first
set form an anti-diagonal that starts in the upper right corner of the grid formed by non-frozen
vertices of Q,,,, and the vertices in the second set lie immediately below the anti-diagonal that
starts in the lower left corner of this grid. Let us temporarily freeze the vertices in both sets as well
as all the vertices lying between them. The quiver Q,,, obtained by deleting all isolated vertices is,
once again, similar to the quiver of the initial seed for the cluster structure C (£2k ke ) onasetof
finite band matrices, this time (2k — 2) X (k — 1) matrices with k diagonals. To see this, one just
needs to move the vertices of Q,,, around in a way illustrated in Figure § for the case n = 7,k = 5.

The latter quiver is isomorphic to Q] 12k—2’ but we denote it by Qz 1ok tO reflect the fact that
the initial seed for C(Czk k-1 k—12k—2

sition. To obtain Qk_1 Sk, from Q. one simply needs to erase vertices in the bottom row that

) can be easily obtained from the one for C(£’ ) via transpo-
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ap

a; Aes

ayy > s
de

FIGURE 8 Quiver Qs,

correspond to functions @ int1s j =1,...,k — 2. Then the functions

B
il o k=2, i=1,.,k—1
gojn+1

!/

are subject to exchange relations in C(L£ ). At the same time, by Proposition 5.5, these

2U—2,k—1
functions represent the minors of the band matrix A that, together with the frozen variables
ay;,i=2,..,k=1,and ay;;,i = n—k+ 3,..., n, form an initial seed for C(E/Zk_2 ,_1)- Then the
argument concludes exactly as above. [l

To establish completeness of QC([ZM), it now remains to show that a;;, i = 2, ..., k, belong to
the generalized upper cluster algebra A(GC(Ly,,)). Since these are the entries of the first row of X
as defined in (5.2), one applies a modification of Lemma 3.8 and its proof. To this end, we replace

the system (3.17) with
k

X, Y) = (X, V) + D) anz;(X.Y), (5.10)
i=1
where X is defined as in the proof of Lemma 3.8. The implication detZ = det(z; j(X , Y))’i‘j=1 =

0= @, = 0is established via the same reasoning as before, except now XY ! = [LO] 3] , where the

block U is k X k and (3.18) implies that det[U*~'e,U*~2¢, --- Ue, e,] = 0. As before, [13, Lemma
3.3] states that the determinant in the last equation is a non-zero multiple of ¢, and the desired
implication is confirmed. The rest of the arguments in the proof of Lemma 3.8 transfer to the
current situation in a straightforward way.
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