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Abstract
We prove that the regular generalized cluster structure
on the Drinfeld double of 𝐺𝐿𝑛 constructed in Gekht-
man, Shapiro, and Vainshtein (Int. Math. Res. Notes,
2022, to appear, arXiv:1912.00453) is complete and com-
patible with the standard Poisson–Lie structure on the
double. Moreover, we show that for 𝑛 = 4 this struc-
ture is distinct from a previously known regular gen-
eralized cluster structure on the Drinfeld double, even
though they have the same compatible Poisson struc-
ture and the same collection of frozen variables. Further,
we prove that the regular generalized cluster structure
on band periodic matrices constructed in Gekhtman,
Shapiro, and Vainshtein (Int. Math. Res. Notes, 2022, to
appear, arXiv:1912.00453) possesses similar compatibil-
ity and completeness properties.
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1 INTRODUCTION

It is by now well known that many important algebraic varieties arising in Lie theory, representa-
tion theory and theory of integrable systems support a cluster structure. The first example of this
kind is already present in the foundational paper [6] where it was shown that the homogeneous
coordinate ring of the Grassmannian of 2-planes in ℂ𝑛+3 is naturally isomorphic to the cluster
algebra of finite type 𝐴𝑛. Among the examples that followed were Grassmannians [9, 19], dou-
ble Bruhat cells [1] and strata in flag varieties [17]. All of these examples share two key features:
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(i) the variety in question is equipped with a Poisson brackets compatible with the cluster struc-
ture in a sense reviewed in Section 2.1, and (ii) cluster transformations that connect distinguished
coordinate charts within a ring of regular functions are modeled on three-term relations such as
short Plücker relations, Desnanot–Jacobi identities and their Lie-theoretic generalizations. The
first feature led us to development of an approach for constructing a cluster structure in Pois-
son varieties possessing a particular nice coordinate chart (see, for example, [9]). However, there
are situations when reliance on three-term relations (equivalently, usual cluster transformations)
turns out to be too restrictive and when certain multinomial versions of cluster transformation
are needed. These were first considered in [4] and termed generalized cluster transformations.
The first geometric example of this sort was studied in [10, 12] where we used a more general
form of transformations defined in [4] to construct an initial seed Σ𝑛 for a complete generalized
cluster structure 𝐷𝑛 in the standard Drinfeld double 𝐷(𝐷𝐷𝐷𝐷𝑛) and proved that this structure is
compatible with the standard Poisson–Lie structure on 𝐷(𝐷𝐷𝐷𝐷𝑛).
In [13, Section 4], we presented a rich source of identities that can serve as generalized clus-

ter transformation and, as one of the applications, constructed a different seed Σ̄𝑛 for a reg-
ular generalized cluster structure 

𝐷

𝑛 on 𝐷(𝐷𝐷𝐷𝐷𝑛). In this paper, we prove that 
𝐷

𝑛 shares
all the properties of 𝐷𝑛 : it is complete and compatible with the standard Poisson–Lie struc-
ture on 𝐷(𝐷𝐷𝐷𝐷𝑛). Moreover, we prove that the seeds Σ̄4(𝑋, 𝑌𝑋 and Σ4(𝑌𝑌𝑇, 𝑋𝑇) are not mutation-
ally equivalent. This answers the question posed by Keel: ‘Do there exist two different regu-
lar cluster structures on the same variety with the same compatible Poisson bracket and the
same collection of frozen variables?’ by providing an explicit example of two different regu-
lar complete generalized cluster structures on 𝐷(𝐷𝐷𝐷𝐷4) with the same compatible Poisson struc-
ture and the same collection of frozen variables. Further, from the above properties of 

𝐷

𝑛 we
derive that the generalized cluster structure in the ring of regular functions on band periodic
matrices built in [13, Section 5] is complete and compatible with the restriction of the stan-
dard Poisson–Lie structure. Apart from possible applications to cluster integrable systems, the
latter generalized cluster structure is closely related to the conjectural ones in cyclic symme-
try loci in Grassmannians considered in the recent preprint [8] that appeared while this paper
was under review, and in the Grothendieck rings of the quantum affine algebras 𝑈𝑞𝔰𝔩𝑘 at roots
of unity [14]. These connections will be explored in a joint work of Gekhtman with Fraser and
Trampel.
Section 2 below contains all necessary information about generalized cluster structures bor-

rowed mainly from [13] to make this text self-contained. Section 3 is devoted to the study of 
𝐷

𝑛 .
The initial seed is described in Section 3.1. The main result of this section is Theorem 3.1 which
claims that 

𝐷

𝑛 is compatible with the standard Poisson–Lie structure on 𝐷(𝐷𝐷𝐷𝐷𝑛) and complete.
The former statement is proved in Sections 3.2 and 3.3, and the latter in Section 3.4. In Section 4,
we compare two generalized cluster structures on 𝐷(𝐷𝐷𝐷𝐷4): 

𝐷

4 and 𝐷4 (𝑌𝑌
𝑇, 𝑋𝑇) described in

[12]. These two structures have the same set of frozen variables, and we prove that they are dis-
tinct, that is, the two seeds are not mutationally equivalent. Finally, Section 5 treats the case of
periodic bandmatrices. The initial seed Σ𝑘𝑘𝑘 for the generalized cluster structure on the space 𝑘𝑘𝑘

of (𝑘 𝑘 1𝑘-diagonal 𝑛-periodic band matrices is described in Section 5.1. The main result of this
section is Theorem 5.1which claims that(Σ𝑘𝑘𝑘) is compatiblewith the restriction of the standard
Poisson–Lie structure on 𝐷(Mat𝑛) and complete. The former statement is proved in Section 5.2,
and the latter in Section 5.3.
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2 PRELIMINARIES

Following [12], we remind the definition of a generalized cluster structure represented by a quiver
withmultiplicities. Let (𝑄𝑄 𝑑1, … ,𝑑𝑑 𝑁) be a quiver on𝑁mutable and𝑀 frozen verticeswith positive
integer multiplicities 𝑑𝑑𝑖 at mutable vertices. A vertex is called special if its multiplicity is greater
than 1. A frozen vertex is called isolated if it is not connected to any other vertices. Let 𝔽 be the
field of rational functions in 𝑁 𝑁𝑁𝑁 independent variables with rational coefficients. There are
𝑀 distinguished variables corresponding to frozen vertices; they are denoted 𝑥𝑁𝑁𝑁, … , 𝑥𝑁𝑁𝑁𝑁 and
called stable, or frozen variables. The coefficient group is a free multiplicative abelian group of
Laurent monomials in stable variables, and its integer group ring is 𝔸̄ = ℤ[𝑥±1

𝑁𝑁𝑁
, … , 𝑥±1

𝑁𝑁𝑁𝑁
] (we

write 𝑥±1 instead of 𝑥𝑥 𝑥−1).
An extended seed (of geometric type) in 𝔽 is a triple Σ =( 𝐱𝐱𝐱𝐱𝐱 ), where 𝐱 𝐱

(𝑥1, … , 𝑥𝑁, 𝑥𝑁𝑁𝑁, … , 𝑥𝑁𝑁𝑁𝑁) is a transcendence basis of 𝔽 over the field of fractions of 𝔸̄ and
 is a set of 𝑁 strings. The 𝑖th string is a collection of monomials 𝑝𝑖𝑟 ∈ 𝔸 = ℤ[𝑥𝑁𝑁𝑁, … , 𝑥𝑁𝑁𝑁𝑁],
0 ⩽ 𝑟𝑟 ⩽ 𝑑𝑑𝑖 , such that 𝑝𝑖𝑖 = 𝑝𝑖𝑖𝑖𝑖 =1 ; it is called trivial if 𝑑𝑑𝑖 =1 , and hence both elements of the
string are equal to 1. The monomials 𝑝𝑖𝑟 are called exchange coefficients.
Given a seed as above, the adjacent cluster in direction 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁, is defined by 𝐱′ =( 𝐱 ⧵

{𝑥𝑘}) ∪ {𝑥′
𝑘
}, where the new cluster variable 𝑥′

𝑘
is given by the generalized exchange relation

𝑥𝑘𝑥
′
𝑘
=

𝑑𝑑𝑘∑
𝑟𝑟𝑟𝑟

𝑝𝑘𝑘𝑘𝑢
𝑟𝑟
𝑘;>

𝑣[𝑟𝑟𝑟
𝑘;>

𝑢
𝑑𝑑𝑘−𝑟𝑟

𝑘;<
𝑣
[𝑑𝑑𝑘−𝑟𝑟𝑟

𝑘;<
; (2.1)

here 𝑢𝑘;> and 𝑢𝑘;<, 1 ⩽ 𝑘 ⩽ 𝑁, are defined by

𝑢𝑘;> =
∏

𝑘→𝑘𝑘𝑘𝑘𝑘

𝑥𝑖, 𝑢𝑘;< =
∏

𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑥𝑖,

where the products are taken over all edges between 𝑘 and mutable vertices, and stable 𝜏-
monomials 𝑣[𝑟𝑟𝑟

𝑘;>
and 𝑣[𝑟𝑟𝑟

𝑘;<
, 1 ⩽ 𝑘 ⩽ 𝑁, 0 ⩽ 𝑟𝑟 ⩽ 𝑑𝑑𝑘, defined by

𝑣[𝑟𝑟𝑟
𝑘;>

=
∏

𝑁𝑁𝑁⩽𝑖⩽𝑁𝑁𝑁𝑁

𝑥
⌊𝑟𝑟𝑏𝑘𝑘𝑘∕𝑑𝑑𝑘⌋
𝑖

, 𝑣[𝑟𝑟𝑟
𝑘;<

=
∏

𝑁𝑁𝑁⩽𝑖⩽𝑁𝑁𝑁𝑁

𝑥
⌊𝑟𝑟𝑏𝑖𝑖𝑖∕𝑑𝑑𝑘⌋
𝑖

, (2.2)

where 𝑏𝑏𝑘𝑘𝑘 is the number of edges from 𝑘 to 𝑖 and 𝑏𝑏𝑖𝑖𝑖 is the number of edges from 𝑖 to 𝑘; here,
as usual, the product over the empty set is assumed to be equal to 1. In what follows, we write
𝑣𝑘;> instead of 𝑣[𝑑𝑑𝑘]

𝑘;>
and 𝑣𝑘;< instead of 𝑣[𝑑𝑑𝑘]

𝑘;<
. The right-hand side of (2.1) is called a generalized

exchange polynomial.
The standard definition of the quiver mutation in direction 𝑘 is modified as follows: if both

vertices 𝑖 and 𝑗 in a path 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖    are mutable, then this path contributes 𝑑𝑑𝑘 edges 𝑖 𝑖𝑖𝑖  to the
mutated quiver 𝑄′; if one of the vertices 𝑖 or 𝑗 is frozen, then the path contributes 𝑑𝑑𝑗 or 𝑑𝑑𝑖 edges
𝑖 𝑖𝑖𝑖  to 𝑄′. The multiplicities at the vertices do not change. Note that isolated vertices remain
isolated in 𝑄′.
The exchange coefficient mutation in direction 𝑘 is given by

𝑝′𝑖𝑟 =

{
𝑝𝑖𝑖𝑖𝑖𝑖−𝑟𝑟, if 𝑖 𝑖𝑖𝑖𝑖

𝑝𝑖𝑟, otherwise.
(2.3)
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Given an extended seed Σ =( 𝐱𝐱𝐱𝐱𝐱 ), we say that a seed Σ′ =( 𝐱′, 𝑄′, ′) is adjacent to Σ (in
direction 𝑘) if 𝐱′, 𝑄′ and  ′ are as above. Two such seeds are mutation equivalent if they can be
connected by a sequence of pairwise adjacent seeds. The set of all seeds mutation equivalent to Σ
is called the generalized cluster structure (of geometric type) in 𝔽 associated with Σ and denoted
by (Σ).
Fix a ground ring 𝔸̂ such that 𝔸 ⊆ 𝔸̂ ⊆ 𝔸̄. The generalized upper cluster algebra () =

((Σ)) is the intersection of the rings of Laurent polynomials over 𝔸̂ in cluster variables taken
over all seeds in (Σ). Let 𝑉 be a quasi-affine variety over ℂ, ℂ(𝑉𝑉 be the field of rational func-
tions on 𝑉, and (𝑉𝑉 be the ring of regular functions on 𝑉. A generalized cluster structure (Σ)
in ℂ(𝑉𝑉 is an embedding of 𝐱 into ℂ(𝑉𝑉 that can be extended to a field isomorphism between
𝔽ℂ = 𝔽 ⊗ ℂ and ℂ(𝑉𝑉. It is called regular on 𝑉 if any cluster variable in any cluster belongs to
(𝑉𝑉, and complete if () tensored with ℂ is isomorphic to (𝑉𝑉. The choice of the ground
ring is discussed in [12, Section 2.1].
Let {⋅, ⋅} be a Poisson bracket on the ambient field 𝔽, and  be a generalized cluster structure

in 𝔽. We say that the bracket and the generalized cluster structure are compatible if any extended
cluster 𝐱 𝐱𝐱𝐱𝐱 1, … , 𝑥𝑁𝑁𝑁𝑁) is log-canonical with respect to {⋅, ⋅}, that is, {𝑥𝑖, 𝑥𝑗} = 𝜔𝑖𝑖𝑖𝑥𝑖𝑥𝑗 , where
𝜔𝑖𝑖𝑖 ∈ ℤ are constants for all 𝑖𝑖𝑖𝑖 , 1 ⩽ 𝑖𝑖𝑖𝑖  ⩽ 𝑁 𝑁𝑁𝑁.
For any mutable vertex 𝑘 𝑘𝑘𝑘 , define the 𝑦-variable

𝑦𝑘 =
𝑢
𝑑𝑑𝑘
𝑘;>

𝑣𝑘;>

𝑢
𝑑𝑑𝑘
𝑘;<

𝑣𝑘;<

. (2.4)

The following statement is an immediate corollary of [12, Proposition 2.5].

Proposition 2.1. Assume that for any mutable vertex 𝑗 𝑗𝑗𝑗

{log 𝑥𝑖, log 𝑦𝑗} = 𝜆𝜆𝜆𝑗𝛿𝑖𝑖𝑖 for any 𝑖 𝑖𝑖𝑖 ,

where 𝜆 is a rational number not depending on 𝑗, 𝛿𝑖𝑖𝑖 is the Kronecker symbol, and all Laurent mono-
mials

𝑝̂𝑘𝑘𝑘 =

(
𝑝𝑘𝑘𝑘𝑣

[𝑟𝑟𝑟
𝑘;>

𝑣
[𝑑𝑑𝑘−𝑟𝑟𝑟

𝑘;<

)𝑑𝑑𝑘
𝑣𝑟𝑟
𝑘;>

𝑣
𝑑𝑑𝑘−𝑟𝑟

𝑘;<

are Casimirs of the bracket {⋅, ⋅}. Then the bracket {⋅, ⋅} is compatible with (Σ).

The notion of compatibility extends to Poisson brackets on 𝔽ℂ without any changes.
Fix an arbitrary extended cluster 𝐱 𝐱𝐱𝐱𝐱 1, … , 𝑥𝑁𝑁𝑁𝑁) and define a local toric action of rank 𝑠 as

a map  𝑊
𝐪 ∶ 𝔽ℂ → 𝔽ℂ given on the generators of 𝔽ℂ = ℂ(𝑥1, … , 𝑥𝑁𝑁𝑁𝑁) by the formula

 𝑊
𝐪 (𝐱𝐱𝐱

(
𝑥𝑖

𝑠∏
𝛼𝛼𝛼

𝑞
𝑤𝑖𝑖𝑖
𝛼

)𝑁𝑁𝑁𝑁

𝑖𝑖𝑖

, 𝐪 𝐪𝐪𝐪𝐪 1, … , 𝑞𝑠) ∈ (ℂ∗)𝑠, (2.5)

where𝑊 𝑊𝑊𝑊𝑊 𝑖𝑖𝑖) is an integer (𝑁 𝑁𝑁𝑁𝑁 × 𝑁𝑁 weight matrix of full rank, and extended naturally to
the whole 𝔽ℂ.
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Let 𝐱′ be another extended cluster in , then the corresponding local toric action defined
by the weight matrix 𝑊′ is compatible with the local toric action (2.5) if it commutes with the
sequence of (generalized) cluster transformations that takes 𝐱 to 𝐱′. If local toric actions at all
clusters are compatible, they define a global toric action 𝐪 on 𝔽ℂ called a -extension of the
local toric action (2.5). As shown in [9, Section 5.2], for a global toric action to be well defined, it
suffices that local toric actions at all seeds adjacent to the initial one are compatible. The following
statement is equivalent to [12, Proposition 2.6].

Proposition 2.2. The local toric action (2.5) is uniquely -extendable to a global action of (ℂ∗)𝑠 if
all 𝑦-variables 𝑦𝑘 and all Casimirs 𝑝̂𝑖𝑟 are invariant under (2.5).

3 THE STRUCTURE 
𝑫

𝒏

In this section, we provide a description of the seed Σ̄𝑛 and prove that the corresponding gener-
alized cluster structure 

𝐷

𝑛 is complete and compatible with the standard Poisson–Lie structure
on 𝐷(𝐷𝐷𝐷𝐷𝑛).
First, we list some terms and notations that will be used in what follows. A notation 𝐴𝐽

𝐼
is

reserved for a submatrix of a matrix 𝐴 with a row set 𝐼 and a column set 𝐽. If 𝐼 (respectively, 𝐽) is
not specified, it is assumed that all rows (respectively, columns) are selected. An interval notation
[𝑖𝑖𝑖𝑖𝑖  is used for the index set [𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    . We call a submatrix or minor of𝐴 dense if both its row
and column sets are intervals. A dense minor of 𝐴 is called trailing if it contains the lower right
entry of 𝐴.

3.1 The initial seed

Let (𝑋, 𝑌𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑛) = 𝐺𝐿𝑛 × 𝐺𝐿𝑛. Following [13], define an 𝑁 × 𝑁 matrix

Φ = Φ(𝑋,𝑌) =

⎛⎜⎜⎜⎜⎜⎝

𝑌𝑌[2,𝑛𝑛

𝑋[2,𝑛𝑛 𝑌𝑌[2,𝑛𝑛

⋱ ⋱
𝑋[2,𝑛𝑛 𝑌𝑌[2,𝑛𝑛

𝑋[2,𝑛𝑛

⎞⎟⎟⎟⎟⎟⎠
(3.1)

with 𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁    and put 𝜑𝑖 = detΦ[𝑖𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖𝑖
for 1 ⩽ 𝑖 ⩽ 𝑁. Further, put det(𝜆𝜆𝜆𝜆  𝜇𝜆𝜆𝜆𝜆 ∑𝑛

𝑖𝑖𝑖 𝑐𝑖(𝑋, 𝑌𝑋𝑋𝑋
𝑖𝜆𝑛𝑛𝑛𝑛 .

Next, we define g𝑖𝑖𝑖 = det 𝑋
[𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

[𝑖𝑖𝑖𝑖𝑖
for 1 ⩽ 𝑗 ⩽ 𝑖 ⩽ 𝑛, and ℎ𝑖𝑖𝑖 = det𝑌𝑌

[𝑗𝑗𝑗𝑗𝑗

[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛;

note that 𝜑𝑖 = g𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     . The family ̄𝑛 of 2𝑛2 functions in the ring of
regular functions on 𝐷(𝐷𝐷𝐷𝐷𝑛) is defined as

̄𝑛 =
{
{𝜑𝑖}

𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖𝑖

; {g𝑖𝑖𝑖}1⩽𝑗⩽𝑖⩽𝑛; {ℎ𝑖𝑖𝑖}1⩽𝑖⩽𝑗⩽𝑛; {𝑐𝑖}
𝑛𝑛𝑛
𝑖𝑖𝑖

}
with 𝑐𝑖(𝑋, 𝑌𝑋𝑋𝑋𝑋𝑋𝑋  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑖(𝑋, 𝑌𝑋 for 1 ⩽ 𝑖 ⩽ 𝑛 𝑛𝑛 .
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F IGURE 1 Quiver 𝑄̄4

The corresponding quiver 𝑄̄𝑛 is defined below and illustrated, for the 𝑛 = 4 case, in Figure 1. It
has 2𝑛2 vertices corresponding to the functions in ̄𝑛. The𝑛 𝑛𝑛  vertices corresponding to 𝑐𝑖(𝑋, 𝑌𝑋,
1 ⩽ 𝑖 ⩽ 𝑛 𝑛𝑛 , are isolated; they are not shown. There are 2𝑛 frozen vertices corresponding to g𝑖𝑖,
1 ⩽ 𝑖 ⩽ 𝑛, and ℎ1𝑗 , 1 ⩽ 𝑗 ⩽ 𝑛; they are shown as squares in the figure below. All vertices except for
one are arranged into a (2𝑛 𝑛𝑛𝑛𝑛   𝑛 grid; we will refer to vertices of the grid using their position
in the grid numbered top to bottom and left to right. The edges of 𝑄̄𝑛 are (𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     for
𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖𝑖𝑖𝑖𝑖    and (𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , 𝑗 𝑗
2,… , 𝑛, and (𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖𝑖𝑖   for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    . Additionally, there is an oriented path

(𝑛 + 𝑛𝑛 𝑛𝑛𝑛𝑛  3𝑛𝑛𝑛𝑛𝑛   𝑛 + 𝑛𝑛 𝑛𝑛𝑛𝑛  4𝑛𝑛𝑛𝑛   ⋯ →( 𝑛𝑛𝑛𝑛𝑛𝑛𝑛   𝑛 𝑛𝑛𝑛  𝑛𝑛𝑛

The edges in this path are depicted as dashed in Figure 1 (the dashed style does not indicate any
special features of these edges, it is for visualization purposes only). The vertex (2,1) is special; it
is shown as a hexagon in the figure. The last remaining vertex of 𝑄̄𝑛 is placed to the left of the
special vertex and there is an edge pointing from the former one to the latter.
Functions ℎ𝑖𝑖𝑖 are attached to the vertices (𝑖𝑖𝑖𝑖𝑖 , 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛, and all vertices in the upper row of

𝑄̄𝑛 are frozen. Functions g𝑖𝑖𝑖 are attached to the vertices (𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   , 1 ⩽ 𝑗 ⩽ 𝑖 ⩽ 𝑛, (𝑖𝑖𝑖𝑖𝑖  ≠ (1,1 ),
and all such vertices in the first column are frozen. The function g11 is attached to the vertex to
the left of the special one, and this vertex is frozen. Functions 𝜑𝑘𝑘𝑘𝑘𝑘𝑘 are attached to the vertices
(𝑖 𝑖𝑖𝑖𝑖𝑖𝑖    𝑖𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛, 0 ⩽ 𝑘 ⩽ 𝑛 𝑛 3; the function 𝜑𝑁𝑁𝑁𝑁𝑁𝑁 is attached to the vertex (𝑛𝑛𝑛𝑛 . All
these vertices are mutable. One can identify in 𝑄̄𝑛 three regions associated with three families
{g𝑖𝑖𝑖}, {ℎ𝑖𝑖𝑖}, {𝜑𝑘}. We will call vertices in these regions g-, ℎ- and 𝜑-vertices, respectively. The set of
strings ̄𝑛 contains a unique nontrivial string (1, 𝑐1(𝑋, 𝑌𝑋, 𝑋 , 𝑐𝑛𝑛𝑛(𝑋, 𝑌𝑋, 𝑋𝑋 corresponding to the
unique special vertex.
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Theorem 3.1. The seed Σ̄𝑛 =( ̄𝑛, 𝑄̄𝑛, ̄𝑛) defines a complete generalized cluster structure 
𝐷

𝑛 in
the ring of regular functions on the Drinfeld double 𝐷(𝐷𝐷𝐷𝐷𝑛) compatible with the standard Poisson–
Lie structure on 𝐷(𝐷𝐷𝐷𝐷𝑛).

Proof. Regularity of 
𝐷

𝑛 is proved in [13, Theorem 4.1]. To prove compatibility, it suffices to check
that the family ̄𝑛 is log-canonical with respect to the bracket {⋅, ⋅}𝐷 , which is done in Section 3.2,
and to check the compatibility conditions of Proposition 2.1, which is done in Section 3.3. To prove
the completeness, we establish a connection between cluster dynamics for standard cluster struc-
tures on rectangular matrices and that for 

𝐷

𝑛 with certain vertices frozen, see Section 3.4. As a
consequence, we prove in Proposition 3.7 that all matrix entries in 𝑌𝑌, and all matrix entries in 𝑋
except for the first row are cluster variables in 

𝐷

𝑛 . The entries in the first row of 𝑋 are treated
separately in Lemma 3.8. □

3.2 Log-canonicity

Denote by 𝔟± Borel subalgebras of upper/lower triangular matrices in 𝔤𝔤𝔤𝑛 and by 𝔫± the corre-
sponding nilpotent ideals. Let 𝜋>0, 𝜋<0 be the projections of an element of 𝔤𝔤𝔤𝑛 onto 𝔫+, 𝔫−, 𝜋0
be the projection onto the diagonal subalgebra, 𝑅+ = 1

2
𝜋0 + 𝜋>0. As explained in [12, Section 2.2],

the standard Poisson–Lie bracket {⋅, ⋅} = {⋅, ⋅}𝐷 on 𝐷(𝐷𝐷𝐷𝐷𝑛) can be written as

{𝑓1, 𝑓2} =
⟨
𝑅+(𝐸𝐿𝐿𝑓1), 𝐸𝐿𝐿𝑓2

⟩
−
⟨
𝑅+(𝐸𝑅𝑓1), 𝐸𝑅𝑓2

⟩
+ ⟨𝑋∇𝑋𝑓1,𝑌𝑌𝑌 𝑌𝑌𝑓2⟩ − ⟨∇𝑋𝑓1 ⋅ 𝑋,∇𝑌𝑌𝑓2 ⋅ 𝑌𝑌⟩

=
⟨
𝑅+(𝐸𝐿𝐿𝑓1), 𝐸𝐿𝐿𝑓2

⟩
−
⟨
𝑅+(𝐸𝑅𝑓1), 𝐸𝑅𝑓2

⟩
+ ⟨𝐸𝑅𝑓1,𝑌𝑌𝑌 𝑌𝑌𝑓2⟩ − ⟨𝐸𝐿𝐿𝑓1,∇ 𝑌𝑌𝑓2 ⋅ 𝑌𝑌⟩,

(3.2)

where ∇𝑋𝑓 𝑓𝑓
𝜕𝜕𝜕

𝜕𝜕𝜕𝑗𝑗𝑗
)𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

and ∇𝑌𝑌𝑓 𝑓𝑓
𝜕𝜕𝜕

𝜕𝜕𝜕𝑗𝑗𝑗
)𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

are the gradients of 𝑓 with respect to 𝑋 and 𝑌𝑌,
respectively, the operators 𝐸𝑅 and 𝐸𝐿𝐿 are defined via

𝐸𝑅𝑓 𝑓𝑓𝑓𝑓 𝑋𝑓 𝑓𝑓𝑓𝑓 𝑌𝑌𝑓𝑓𝑓𝑓 𝐿𝐿𝑓 𝑓𝑓 𝑋𝑓 ⋅ 𝑋 𝑋 ∇𝑌𝑌𝑓 ⋅ 𝑌𝑌𝑌

and ⟨𝐴𝐴 𝐵⟩ = Tr𝐴𝐵 is the trace form; inwhat followswewill omit the comma andwrite just ⟨𝐴𝐵⟩.
Note that the functions 𝑐𝑖 are Casimirs for {⋅, ⋅}. Oneway to see this is by observing that any func-

tion 𝑓 on 𝐷(𝐷𝐷𝐷𝐷𝑛) that has a property, shared by all 𝑐𝑖 , that 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
for any 𝑋,𝑌,𝑋𝑋, 𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑛 is a Casimir. For such 𝑓, 𝐸𝑅𝑓 𝑓𝑓𝑓 𝐿𝐿𝑓 is a scalar multiple of the identity
matrix and so the claim follows from the second formula in (3.2) and the identity Tr𝐴𝐵 𝐴𝐴𝐴 𝐵𝐴.
Thus, we only need to treat the functions in the three other subfamilies in ̄𝑛.

Lemma 3.2.

(i) For any 1 ⩽ 𝑗 ⩽ 𝑖 ⩽ 𝑛 and 1 ⩽ 𝑘 ⩽ 𝑁,

g𝑖𝑖𝑖(𝑋𝑋𝑋  g𝑖𝑖𝑖(𝑁+𝑋𝑋, 𝑋𝑗𝑗𝑗(𝑌𝑌𝑌𝑌𝑌  𝑗𝑗𝑗(𝑌𝑌𝑌𝑌−),

𝜑𝑘(𝑋, 𝑌𝑋𝑋𝑋𝑋  𝑘(𝑁+𝑋𝑋𝑋−,𝑁+𝑌𝑌𝑌𝑌−),
(3.3)



1608 GEKHTMAN et al.

where 𝑁+ is an arbitrary unipotent upper triangular matrix and 𝑁− is an arbitrary unipo-
tent lower triangular matrix. In addition, g𝑖𝑖𝑖 and ℎ𝑖𝑖𝑖 are homogeneous with respect to right
and left multiplication of their arguments by arbitrary diagonal matrices, and 𝜑𝑘 are homo-
geneous with respect to right and left multiplication of 𝑋, 𝑌𝑌 by the same pair of diagonal
matrices.

(ii) Let g , ℎ and 𝜑 be three functions possessing invariance properties (3.3), respectively. Then

{𝜑𝜑 g} = 1

2
⟨𝐸𝐿𝐿𝜑𝜑𝜑𝑋g ⋅ 𝑋⟩0 − 1

2
⟨𝐸𝑅𝜑𝜑𝜑𝜑𝜑 𝑋g⟩0,

{𝜑𝜑𝜑𝜑𝜑 
1

2
⟨𝐸𝑅𝜑𝜑𝜑𝜑𝜑 𝑌𝑌ℎ⟩0 − 1

2
⟨𝐸𝐿𝐿𝜑𝜑𝜑𝑌𝑌ℎ ⋅ 𝑌𝑌⟩0,

{g , ℎ} = 1

2
⟨𝑋∇𝑋g ,𝑌𝑌𝑌 𝑌𝑌ℎ⟩0 − 1

2
⟨∇𝑋g ⋅ 𝑋,∇𝑌𝑌ℎ ⋅ 𝑌𝑌⟩0,

(3.4)

where ⟨𝐴𝐴 𝐵⟩0 = ⟨𝐴𝐵⟩0 = ⟨𝜋0(𝐴𝐴𝐴𝐴0(𝐵𝐵𝐵⟩.
Proof.

(i) Invariance properties of functions g𝑖𝑖𝑖 , ℎ𝑖𝑖𝑖 , 𝜑𝑘 follow easily from their definition.
(ii) Infinitesimally, equations (3.3) imply that 𝑋∇𝑋g , 𝐸𝑅𝜑 𝜑𝜑𝜑 + and ∇𝑌𝑌ℎ ⋅ 𝑌𝑌𝑌𝑌𝑌 𝐿𝐿𝜑 𝜑𝜑𝜑 −. Taking

into account that 𝑅+(𝜉𝜉𝜉
1

2
𝜋0(𝜉𝜉 for any 𝜉 𝜉𝜉𝜉 ± and that 𝔟± ⟂ 𝔫± with respect to ⟨⋅, ⋅⟩, the

result follows from (3.2). □

The fact that any two of the three functions g𝑖𝑖𝑖 , ℎ𝑝𝑝𝑝, 𝜑𝑘 are log-canonical follows immediately
from the above lemma. Indeed, the infinitesimal version of homogeneity properties described in
Lemma 3.2(i) states that for functions g = log g𝑖𝑖𝑖 , ℎ = log ℎ𝑝𝑝𝑝, 𝜑 𝜑𝜑𝜑𝜑  𝜑𝑘, projections of∇𝑋g ⋅ 𝑋,
𝑋∇𝑋g , 𝑌𝑌𝑌𝑌𝑌ℎ,∇𝑌𝑌ℎ ⋅ 𝑌𝑌, 𝐸𝐿𝐿𝜑, 𝐸𝑅𝜑 onto the Cartan subalgebra are constant diagonal matrices and
the claim then follows from (3.4). Log-canonicity of the families {g𝑖𝑖𝑖} and {ℎ𝑖𝑖𝑖} is established in
[12, Lemma 5.4].
It remains to show that {log 𝜑𝑘, log 𝜑𝑙} is constant for any 𝑘, 𝑙. In fact, it suffices to consider the

case 1 ⩽ 𝑘 ⩽ 𝑙 ⩽ 𝑁 𝑁𝑁𝑁𝑁𝑁   , since for 𝑘 > 𝑘𝑘𝑘𝑘𝑘𝑘    1 the function 𝜑𝑘 belongs to the family {g𝑖𝑖𝑖}.
Denote∇𝑋 log 𝜑𝑘,∇𝑌𝑌 log 𝜑𝑘,𝐸𝑅 log 𝜑𝑘,𝐸𝐿𝐿 log 𝜑𝑘 by∇𝑘

𝑋
,∇𝑘

𝑌𝑌
,𝐸𝑘

𝑅
,𝐸𝑘

𝐿𝐿
, respectively. Asmentioned

in the proof of Lemma 3.2 (ii), 𝐸𝑘
𝑅
∈ 𝔟+, 𝐸𝑘

𝐿𝐿
∈ 𝔟−. Consequently, (3.2) gives

{log 𝜑𝑘, log 𝜑𝑙} =
1

2

⟨
𝐸𝑘
𝐿𝐿𝐸

𝑙
𝐿𝐿

⟩
0
−
1

2

⟨
𝐸𝑘
𝑅𝐸

𝑙
𝑅

⟩
0

+
⟨
𝑋∇𝑘

𝑋𝑌𝑌𝑌
𝑙
𝑌𝑌

⟩
−
⟨
∇𝑘
𝑋𝑋∇

𝑙
𝑌𝑌𝑌𝑌

⟩
.

(3.5)

It follows from the homogeneity of functions 𝜑𝑘 (Lemma 3.2(i)) that the first two terms above are
constant. Thus, we need to evaluate⟨

𝑋∇𝑘
𝑋𝑌𝑌𝑌

𝑙
𝑌𝑌

⟩
−
⟨
∇𝑘
𝑋𝑋∇

𝑙
𝑌𝑌𝑌𝑌

⟩
. (3.6)

For a smooth function 𝐹 on Mat𝑁 , we write its gradient ∇Φ𝐹 in a block form as ∇Φ𝐹 𝐹

(∇𝑝𝑝𝑝)
𝑛𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, where the blocks ∇𝑝𝑝𝑝 are of size 𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛 . For functions 𝜑𝑘 viewed as functions
onMat𝑁 , we denote ∇Φ log 𝜑𝑘 by ∇𝑘

Φ
=(∇ 𝑘

𝑝𝑝𝑝)
𝑛𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

.
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Observe that if one views 𝑙 𝑙 𝑙 trailing principal minor of a square matrix 𝐴 as a function 𝑓𝑓𝑓𝑓𝑓
of 𝐴, then

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(
0 ⋆

0 𝟏𝑙

)
,∇ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(
0 0

⋆ 𝟏𝑙

)
.

Thus

Φ∇𝑘
Φ =

(
0 ⋆

0 𝟏𝑁𝑁𝑁𝑁𝑁𝑁

)
,∇ 𝑘

ΦΦ =

(
0 0

⋆ 𝟏𝑁𝑁𝑁𝑁𝑁𝑁

)
. (3.7)

Denote  = 𝑋[2,𝑛𝑛,  =𝑌𝑌 [2,𝑛𝑛. Then (3.7) translates into

∇𝑘
𝑝𝑝𝑝 + ∇𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 = 0, 𝑝 ⩾ 𝑞𝑞

∇𝑘
𝑛𝑛𝑛𝑛𝑛𝑛 = 0, 𝑞 𝑞𝑞𝑞𝑞

∇𝑘
𝑝𝑝𝑝 +∇ 𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 = 0, 𝑝 𝑝𝑝𝑝𝑝

(3.8)

Clearly,

⟨
𝑋∇𝑘

𝑋𝑌𝑌𝑌
𝑙
𝑌𝑌

⟩
=

⟨


𝑛𝑛𝑛∑
𝑝𝑝𝑝

∇𝑘
𝑝𝑝𝑝𝑝𝑝

𝑛𝑛𝑛∑
𝑞𝑞𝑞

∇𝑙
qq

⟩
,

⟨
∇𝑘
𝑋𝑋∇

𝑙
𝑌𝑌𝑌𝑌

⟩
=

⟨
𝑛𝑛𝑛∑
𝑝𝑝𝑝

∇𝑘
𝑝𝑝𝑝𝑝𝑝

𝑛𝑛𝑛∑
𝑞𝑞𝑞

∇𝑙
qq

⟩
.

Denote 𝐴𝑝𝑝𝑝 = ⟨∇𝑘
𝑝𝑝𝑝𝑝𝑝

∇𝑙
𝑞𝑞⟩, 𝐵𝐵𝑝𝑝𝑝 = ⟨∇𝑘

𝑝𝑝𝑝𝑝𝑝
∇𝑙

𝑞𝑞⟩. Using (3.8), we obtain
𝐴𝑝𝑝𝑝 = −

⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝∇
𝑙
𝑞𝑞

⟩
=
⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝∇
𝑙
𝑞𝑞𝑞𝑞𝑞

⟩
= ⋯

= −
⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
=
⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞

⟩
= ⋯

=

⎧⎪⎨⎪⎩
−
⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∇𝑙

𝑛𝑛𝑛𝑛𝑛𝑛

⟩
= 0, 𝑝 𝑝𝑝𝑝𝑝 ⟨

∇𝑘
𝑝𝑝𝑝∇

𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
, 𝑝 ⩾ 𝑞𝑞

Similarly,

𝐵𝐵𝑝𝑝𝑝 =

{
0, 𝑝 ⩽ 𝑞𝑞

−
⟨
∇𝑘
𝑝𝑝𝑝∇

𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
, 𝑝 𝑝𝑝𝑝𝑝

Therefore,⟨
𝑋∇𝑘

𝑋𝑌𝑌𝑌
𝑙
𝑌𝑌

⟩
−
⟨
∇𝑘
𝑋𝑋∇

𝑙
𝑌𝑌𝑌𝑌

⟩
=

∑
1⩽𝑞⩽𝑝⩽𝑛𝑛𝑛

⟨
∇𝑘

pn∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
+

∑
1⩽𝑞𝑞𝑞𝑞⩽𝑛𝑛𝑛

⟨
∇𝑘

pn∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
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=
∑

1⩽𝑞⩽𝑝⩽𝑛𝑛𝑛

⟨
∇𝑘

pn∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
+

∑
1⩽𝑞⩽𝑝⩽𝑛𝑛𝑛

⟨
∇𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∇
𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
=

∑
1⩽𝑞⩽𝑛𝑛𝑛

⟨(
Φ∇𝑘

Φ

)
nn∇

𝑙
qq

⟩
+

∑
1⩽𝑞⩽𝑝⩽𝑛𝑛𝑛

⟨(
Φ∇𝑘

Φ

)
𝑝𝑝𝑝𝑝𝑝𝑝

∇𝑙
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⟩
. (3.9)

Since (Φ∇𝑘
Φ
)𝑛𝑛 = 𝟏𝑛𝑛𝑛 for 𝑘 ⩽ 𝑁 𝑁𝑁𝑁𝑁𝑁   , the first sum above is equal to

∑
1⩽𝑞⩽𝑛𝑛𝑛⟨∇𝑙

𝑞𝑞⟩. Fur-
thermore, ∇𝑙

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
= 0 for 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙     , while (Φ∇𝑘

Φ
)𝑝𝑝𝑝𝑝𝑝𝑝 = 0 for 𝑘 ⩽ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    . Thus,

the summand in the second sum in (3.9) is zero unless 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝       ⩽ 𝑙 ⩽ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞    , which
is impossible since 𝑞 ⩽ 𝑝. We conclude that⟨

𝑋∇𝑘
𝑋𝑌𝑌𝑌

𝑙
𝑌𝑌

⟩
−
⟨
∇𝑘
𝑋𝑋∇

𝑙
𝑌𝑌𝑌𝑌

⟩
=

∑
1⩽𝑞⩽𝑛𝑛𝑛

⟨
∇𝑙

𝑞𝑞

⟩
for 1 ⩽ 𝑘 ⩽ 𝑙 ⩽ 𝑁 𝑁𝑁𝑁𝑁𝑁   .
Let us show that the right-hand side above is constant. To this end, first observe that∑

1⩽𝑞⩽𝑛𝑛𝑛

⟨
∇𝑙

qq

⟩
=

𝑑𝑑

dt
||||𝑡𝑡𝑡 log 𝜑𝑙 (𝑋, 𝑒𝑡𝑌𝑌) .

Furthermore,

Φ
(
𝑋, 𝑒𝑡𝑌𝑌

)
= diag

(
𝑒𝑒𝑛𝑛𝑛𝟏𝑛𝑛𝑛, … ,𝑒𝑒 𝑡𝟏𝑛𝑛𝑛

)
Φ(𝑋,𝑌) diag

(
𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛𝑛𝟏𝑛, … ,𝑒𝑒 −𝑡𝟏𝑛

)
.

Then 𝜑𝑙(𝑋, 𝑒
𝑡𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌   𝑡𝑌𝑌𝑌[𝑙𝑙𝑙𝑙𝑙

[𝑙𝑙𝑙𝑙𝑙
=𝑒𝑒 𝜘𝑙 𝑡𝜑𝑙(𝑋, 𝑌𝑋, where constant coefficients 𝜘𝑙 can be

arranged into a matrix

(
𝜘𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜎

)𝑛𝑛𝑛 𝑛𝑛𝑛
𝜇𝜇𝜇𝜇 𝜎𝜇𝜇

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑛
2

) (𝑛
2

)
− 1

(𝑛
2

)
− 2 ⋯

(𝑛𝑛𝑛
2

)
+1 (𝑛𝑛𝑛

2

) (𝑛𝑛𝑛
2

) (𝑛𝑛𝑛
2

)
− 1 ⋯

(𝑛𝑛𝑛
2

)
+1 (𝑛𝑛𝑛

2

) (𝑛𝑛𝑛
2

) (𝑛𝑛𝑛
2

)
⋯

(𝑛𝑛3
2

)
+1

⋮ ⋮ ⋮ ⋱ ⋮

111   ⋯ 1

0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.10)

Therefore,
∑

1⩽𝑞⩽𝑛𝑛𝑛⟨∇𝑙
𝑞𝑞⟩ = 𝜘𝑙 and we are done.

3.3 Compatibility

To prove the compatibility statement, we start with the following lemma, which is a direct analog
of [12, Theorem 6.1].

Lemma 3.3. The action

(𝑋, 𝑌𝑋 ↦ 𝑋𝑋𝑋1𝑋𝑋𝑋2, 𝑇1𝑌𝑌𝑌𝑌2) (3.11)

of right and left multiplication by diagonal matrices is 
𝐷

𝑛 -extendable to a global toric action onℂ.
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Proof. As explained in [12], Proposition 2.2 implies that it suffices to check that 𝑦-variables (2.4)
are homogeneous functions of degree zero with respect to the action (3.11) (note that the func-
tions 𝑝̂1𝑟𝑟 for 

𝐷

𝑛 are the same as for 
𝐷
𝑛 ). To this effect, we define weights 𝜉𝐿𝐿(𝑓𝑓𝑓𝑓𝑓  0(𝐸𝐿𝐿 log 𝑓𝑓

and 𝜉𝑅(𝑓𝑓𝑓𝑓𝑓  0(𝐸𝑅 log 𝑓𝑓. For 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛, let Δ(𝑖𝑖𝑖𝑖𝑖  denote a diagonal matrix with ones in the
entries (𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     and zeros everywhere else. Direct computation shows that

𝜉𝐿𝐿(g𝑖𝑖𝑖) = Δ(𝑗𝑗𝑗𝑗𝑗   𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  𝑅(g𝑖𝑖𝑖) = Δ(𝑖𝑖𝑖𝑖𝑖𝑖

𝜉𝐿𝐿(ℎ𝑖𝑖𝑖) = Δ(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  𝑅(ℎ𝑖𝑖𝑖) = Δ(𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖𝑖𝑖

𝜉𝐿𝐿(𝜑𝑘) =( 𝑛 𝑛𝑛𝑛𝑛𝑛   𝑘)Δ(1, 𝑛𝑛 + 𝑛𝑛𝜌𝑘, 𝑛𝑛𝑛

𝜉𝑅(𝜑𝑘) =( 𝑛 𝑛𝑛𝑛𝑛𝑛   𝑘)Δ(2, 𝑛𝑛 + 𝑛𝑛𝑛𝑛𝑘 +1,  𝑛𝑛𝑛

(3.12)

where 𝜆𝑘, 𝜌𝜌𝑘, 𝜇𝜇𝑘 and 𝜎𝜎𝑘 are defined via 𝑘 𝑘𝑘𝑘 𝑘𝑛 + 𝜌𝑘, 1 ⩽ 𝜌𝜌𝑘 ⩽ 𝑛, and 𝑘 𝑘𝑘𝑘 𝑘(𝑛 𝑛𝑛𝑛  + 𝑛𝑛𝑘, 1 ⩽
𝜎𝜎𝑘 ⩽ 𝑛 𝑛𝑛 . Now the verification of the claim above becomes straightforward. It is based on the
description of 𝑄̄𝑛 in Section 3.1 and the fact that for a Laurent monomial in homogeneous func-
tions𝑀 𝑀 𝜓

𝛼1
1
𝜓𝜓
𝛼2
2

⋯ the right and left weights are 𝜉𝑅𝑅𝑅𝑅(𝑀𝑀𝑀𝑀𝑀  1𝜉𝑅𝑅𝑅𝑅(𝜓𝜓1) + 𝛼2𝜉𝑅𝑅𝑅𝑅(𝜓𝜓2) +⋯.
For example, let 𝑣 be the vertex associated with the function 𝜑𝑘, 𝑛 + 𝑛 ⩽ 𝑘 ⩽ 𝑁 𝑁𝑁𝑁 . To treat

the left weight of 𝑦𝑣 we have to consider the following three cases.
Case 1: 𝜆𝑘𝑘1 = 𝜆𝑘 = 𝜆𝑘𝑘1 = 𝜆. Consequently, 𝜆𝑘𝑘𝑘𝑘 = 𝜆𝑘𝑘𝑘𝑘𝑘1 = 𝜆 𝜆𝜆 , 𝜆𝑘𝑘𝑘𝑘𝑘1 = 𝜆𝑘𝑘𝑘𝑘 = 𝜆 𝜆𝜆

and 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 =𝜌𝜌 , 𝜌𝜌𝑘𝑘𝑘𝑘 =𝜌𝜌 𝑘𝑘𝑘𝑘 =𝜌𝜌𝜌𝜌   , 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 =𝜌𝜌𝜌𝜌   . Therefore, (3.12) yields

𝜉𝐿𝐿(𝑦𝑣)

= 𝜉𝐿𝐿(𝜑𝑘𝑘1) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1)

=( 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛 + 𝑛𝑛𝜌𝑛 𝑛𝑛 + 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛 + 𝑛𝑛𝜌 + 𝑛𝑛 𝑛𝑛

+( 𝑛 𝑛𝑛𝑛𝑛𝑛    + 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 + 𝑛𝑛𝜌 + 𝑛𝑛 𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛𝑛  𝜌 + 𝑛𝑛 𝑛𝑛

− (𝑛 𝑛𝑛𝑛𝑛𝑛    + 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛  𝜌 + 𝑛𝑛 𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛𝑛𝑛𝑛  𝜌𝑛 𝑛𝑛 = 𝑛𝑛

Case 2: 𝜆𝑘𝑘1 = 𝜆𝑘 = 𝜆, 𝜆𝑘𝑘1 = 𝜆 𝜆𝜆 . Consequently, 𝜆𝑘𝑘𝑘𝑘 = 𝜆 𝜆𝜆 , 𝜆𝑘𝑘𝑘𝑘𝑘1 = 𝜆, 𝜆𝑘𝑘𝑘𝑘𝑘1 =

𝜆𝑘𝑘𝑘𝑘 = 𝜆 𝜆𝜆  and 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 = 𝑛 𝑛𝑛 , 𝜌𝜌𝑘𝑘𝑘𝑘 =𝜌𝜌 𝑘𝑘𝑘𝑘 = 𝑛, 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 =1 . Therefore, (3.12)
yields

𝜉𝐿𝐿(𝑦𝑣)

= 𝜉𝐿𝐿(𝜑𝑘𝑘1) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1)

=( 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛 + 𝑛𝑛𝑛 𝑛𝑛𝑛  𝑛𝑛 + 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛 + 𝑛𝑛𝑛𝑛 𝑛𝑛

+( 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛 + 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛𝑛𝑛𝑛𝑛𝑛   𝑛𝑛

− (𝑛 𝑛𝑛𝑛𝑛𝑛    + 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛  𝑛𝑛 𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛  𝑛𝑛 = 𝑛𝑛

Case 3: 𝜆𝑘𝑘1 = 𝜆, 𝜆𝑘 = 𝜆𝑘𝑘1 = 𝜆 𝜆𝜆 . Consequently, 𝜆𝑘𝑘𝑘𝑘 = 𝜆𝑘𝑘𝑘𝑘𝑘1 = 𝜆, 𝜆𝑘𝑘𝑘𝑘𝑘1 = 𝜆 𝜆𝜆 ,
𝜆𝑘𝑘𝑘𝑘 = 𝜆 𝜆𝜆  and 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 = 𝑛, 𝜌𝜌𝑘𝑘𝑘𝑘 =𝜌𝜌 𝑘𝑘𝑘𝑘 =1 , 𝜌𝜌𝑘𝑘1 =𝜌𝜌 𝑘𝑘𝑘𝑘𝑘1 = 2. Therefore, (3.12)
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yields

𝜉𝐿𝐿(𝑦𝑣)

= 𝜉𝐿𝐿(𝜑𝑘𝑘1) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) + 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘1) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘) − 𝜉𝐿𝐿(𝜑𝑘𝑘𝑘𝑘𝑘1)

=( 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛 + 𝑛𝑛𝑛𝑛 𝑛𝑛 + 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛 + 𝑛𝑛𝑛𝑛 𝑛𝑛

+( 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛 + 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛𝑛𝑛𝑛𝑛𝑛   𝑛𝑛

− (𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛𝑛𝑛𝑛   𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      𝑛𝑛𝑛𝑛𝑛  𝑛𝑛 𝑛𝑛 = 𝑛𝑛

The right weight of 𝑦𝑣 is treated in a similar way. □

The verification of compatibility conditions in Proposition 2.1 is based on relations (3.4), (3.5)
and (3.12). The case when the vertices 𝑖 and 𝑗 belong to different regions in 𝑄̄𝑛, or are simultane-
ously non-diagonal g- or ℎ-vertices, is treated in the same way as in [12]. For the case when both
𝑖 and 𝑗 are 𝜑-vertices, the check is based on the following claim in which we assume 𝜘𝑁𝑁𝑁 = 0.

Proposition 3.4.

(i) For any 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁, either 𝜆𝑘 =𝜇𝜇 𝑘 and 𝜘𝑘 = 𝜘𝑘𝑘1 +1  or 𝜆𝑘 =𝜇𝜇 𝑘 − 1 and 𝜘𝑘 = 𝜘𝑘𝑘1.
(ii) For any 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 𝑁𝑁𝑁 ,

𝜘𝑘 − 𝜘𝑘𝑘1 =

{
𝜘𝑘𝑘𝑘𝑘 − 𝜘𝑘𝑘𝑘𝑘𝑘1,𝜎𝜎 𝑘 ≠ 𝑛 𝑛𝑛𝑛

𝜘𝑘𝑘𝑘𝑘 − 𝜘𝑘𝑘𝑘𝑘𝑘1 +1,𝜎𝜎  𝑘 = 𝑛 𝑛𝑛𝑛
(3.13)

Proof. Follows immediately from (3.10) and the definitions of 𝜆𝑘, 𝜌𝜌𝑘, 𝜇𝜇𝑘 and 𝜎𝜎𝑘. □

Let us check the compatibility condition for the case when 𝑣 is the vertex associated with the
function 𝜑𝑖 and 𝑢 is the vertex associated with the function 𝜑𝑗 , 𝑛 + 𝑛 ⩽ 𝑗 ⩽ 𝑁 𝑁𝑁𝑁 . There are five
possible cases: (i) 𝑖 ⩽ 𝑗 𝑗𝑗𝑗 ; (ii) 𝑗 𝑗𝑗𝑗𝑗𝑗    ⩽ 𝑖 ⩽ 𝑗 𝑗𝑗 ; (iii) 𝑖 𝑖𝑖𝑖 ; (iv) 𝑗 𝑗𝑗  ⩽ 𝑖 ⩽ 𝑗 𝑗𝑗𝑗𝑗𝑗   ; (v) 𝑗 𝑗
𝑛 ⩽ 𝑖.
In the first case, the left-hand side of the condition in Proposition 2.1 is computed directly via

(3.5). The first term equals

1

2
⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝑦𝑢)⟩ = 1

2
⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗∕𝜑𝑗)⟩ − 1

2
⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗)⟩

+
1

2
⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗∕𝜑𝑗𝑗𝑗)⟩ − 1

2
⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩

and vanishes by Lemma 3.3. Similarly, the second term equals

−
1

2
⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝑦𝑢)⟩ = −

1

2
⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗∕𝜑𝑗)⟩ + 1

2
⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗)⟩

−
1

2
⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗∕𝜑𝑗𝑗𝑗)⟩ + 1

2
⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩
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and vanishes by Lemma 3.3. The third term equals

(𝜘𝑗𝑗𝑗 − 𝜘𝑗) − (𝜘𝑗𝑗𝑗𝑗𝑗𝑗 − 𝜘𝑗𝑗𝑗𝑗) +( 𝜘𝑗 − 𝜘𝑗𝑗𝑗) − (𝜘𝑗𝑗𝑗𝑗 − 𝜘𝑗𝑗𝑗𝑗𝑗𝑗)

and vanishes by (3.13) since 𝜎𝜎𝑗𝑗𝑗 =𝜎𝜎 𝑗𝑗𝑗𝑗.
In the second case, in order to use (3.5), one has to swap the arguments in the brackets

{log 𝜑𝑖, log 𝜑𝑗𝑗𝑗𝑗}𝐷 and {log 𝜑𝑖, log 𝜑𝑗𝑗𝑗𝑗𝑗𝑗}𝐷 . Consequently, the first term contributes

⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩,
the second term contributes

−⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩,
and the third term contributes 𝜘𝑗𝑗𝑗𝑗 − 𝜘𝑗𝑗𝑗𝑗𝑗𝑗. By Proposition 3.4(i), either 𝜘𝑗𝑗𝑗𝑗 − 𝜘𝑗𝑗𝑗𝑗𝑗𝑗 = 0 and
𝜆𝑗𝑗𝑗𝑗 =𝜇𝜇 𝑗𝑗𝑗𝑗 − 1 which implies

⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩ = ⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩ = 𝑛 𝑛𝑛𝑛 𝑗𝑗𝑗𝑗 − 2,

or 𝜘𝑗𝑗𝑗𝑗 − 𝜘𝑗𝑗𝑗𝑗𝑗𝑗 =1  and 𝜆𝑗𝑗𝑗𝑗 =𝜇𝜇 𝑗𝑗𝑗𝑗 which implies

⟨𝜉𝐿𝐿(𝜑𝑖)𝜉𝐿𝐿(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩ = 𝑛 𝑛𝑛𝑛 𝑗𝑗𝑗𝑗 − 2,

⟨𝜉𝑅(𝜑𝑖)𝜉𝑅(𝜑𝑗𝑗𝑗𝑗∕𝜑𝑗𝑗𝑗𝑗𝑗𝑗)⟩ = 𝑛 𝑛𝑛𝑛 𝑗𝑗𝑗𝑗 − 1.

In both cases, the total additional contribution vanishes.
Cases (iii)–(v) are treated in a similar way.

3.4 Completeness

We start with the following proposition.

Proposition 3.5. There exists an (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 𝑛𝑛𝑛  unipotent upper triangular matrix𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

such that:

(i) entries of 𝐺 are rational functions in 𝑋,𝑌 whose denominators are monomials in cluster vari-
ables 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    ; and

(ii) the (2𝑛 𝑛𝑛𝑛𝑛   𝑛matrix 𝑆 𝑆
[

𝑌𝑌
𝐺𝐺𝐺[2,𝑛𝑛

]
satisfies

det 𝑆[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛
[𝑛𝑛𝑛𝑛+𝑛+𝑛𝑛𝑛𝑛+𝑛𝑛𝑛

=
𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘1
𝜑𝑘𝑘𝑘𝑘1

, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘       1𝑘𝑘𝑘𝑘𝑘𝑘    (3.14)

Proof. Wewill establish the claim by applying to thematrixΦ a sequence of 𝑛 𝑛𝑛  transformations
that do not affect its trailing principal minors. After the 𝑘th transformation, every 𝑋-block of Φ
will bemultiplied on the left by the same unipotent upper triangularmatrix𝐺𝑘, while the𝑌𝑌-block
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in the 𝑗th block row of Φ will be replaced by (𝐺𝑘)
[𝑗𝑗𝑗𝑗𝑗𝑗𝑗

[𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑌𝑌[𝑗𝑗𝑗𝑗𝑗𝑗𝑗 preceded with 𝑗 𝑗𝑗  zero rows for

𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗    and by 𝑌𝑌[𝑘𝑘1𝑘𝑘𝑘𝑘 preceded with 𝑘 𝑘 1 zero rows for 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗       .
On the first step, we use the submatrix Ψ1 = Φ[𝑛+𝑛𝑛𝑛𝑛𝑛

[𝑛+𝑛𝑛𝑛𝑛𝑛
to eliminate all the entries in the row

immediately above Ψ1 in the submatrix Φ[𝑛+𝑛𝑛𝑛𝑛𝑛. To this effect, we multiply the block rows from
2 to 𝑛 of Φ on the left by a block Töplitz upper triangular matrix

⎡⎢⎢⎢⎢⎣
𝐺11 𝐺12 … 𝐺1,𝑛𝑛𝑛

0 𝐺11 … 𝐺1,𝑛𝑛𝑛

⋮ ⋮ ⋱ ⋮
0 0 … 𝐺11

⎤⎥⎥⎥⎥⎦
,

where 𝐺1𝑗 for 𝑗 𝑗𝑗  are (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 𝑛𝑛𝑛 matrices with the only non-zero entries lying in the first
row and 𝐺11 is a unipotent upper triangular matrix with the only off-diagonal non-zero entries
lying in the first row.Note that the denominator of the non-trivial entries in𝐺1𝑗 is equal todetΨ1 =

𝜑𝑛+𝑛. As a result, all 𝑋-blocks of Φ are multiplied by 𝐺1 = 𝐺11, and 𝑌𝑌-blocks in the block rows
2, … , 𝑛 𝑛𝑛  are replaced by𝑌𝑌[3,𝑛𝑛 preceded with the zero row. All zero blocks are not changed. The
obtained matrix is block lower triangular, and hence (3.14) is valid for 𝑘 𝑘 1, 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , for the
matrix 𝑆1 =

[
𝑌𝑌

𝐺1𝑋[2,𝑛𝑛

]
.

On the second step, we use the submatrix Ψ2 = Φ[2𝑛+𝑛𝑛𝑛𝑛𝑛

[2𝑛+𝑛𝑛𝑛𝑛𝑛
to eliminate all the entries in the row

immediately aboveΨ2 in the submatrix formed by columns [2𝑛 + 𝑛𝑛𝑛𝑛𝑛 of the matrix obtained on
the previous step. To this effect, we multiply the block rows from 2 to 𝑛 of this matrix on the left
by a block upper triangular matrix

⎡⎢⎢⎢⎢⎢⎣

𝐺21 0 0 … 0

0 𝐺21 𝐺22 … 𝐺2,𝑛𝑛𝑛

0 0 𝐺21 … 𝐺2,𝑛𝑛3

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝐺21

⎤⎥⎥⎥⎥⎥⎦
,

where 𝐺2𝑗 for 𝑗 𝑗𝑗  are (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 𝑛𝑛𝑛 matrices with the only non-zero entries lying in the sec-
ond row and 𝐺21 is a unipotent upper triangular with the same property. Note that the denomina-
tor of the non-trivial entries in 𝐺2𝑗 is equal to detΨ2 = 𝜑2𝑛+𝑛. As a result, all 𝑋-blocks are multi-
plied by𝐺2 = 𝐺21𝐺11, the𝑌𝑌-block in the second block row is replaced by (𝐺2)

[2,𝑛𝑛𝑛𝑛

[2,𝑛𝑛𝑛𝑛
𝑌𝑌[3,𝑛𝑛 preceded

by the zero row and 𝑌𝑌-blocks in the block rows 3, … , 𝑛 𝑛𝑛  are replaced by 𝑌𝑌[4,𝑛𝑛 preceded by two
zero rows. The submatrix of the obtained matrix lying in rows and columns 𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛  is block
lower triangular, and hence (3.14) is valid for 𝑘 𝑘𝑘 , 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , for the matrix 𝑆2 =

[
𝑌𝑌

𝐺2𝑋[2,𝑛𝑛

]
. It

is also valid for 𝑘 𝑘 1, 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , since the corresponding minors coincide with those for the
matrix 𝑆1.
Continuing in the same fashion, we define 𝐺31, … , 𝐺𝑛𝑛𝑛𝑛𝑛 such that the product 𝐺 𝐺

𝐺𝑛𝑛𝑛𝑛𝑛⋯𝐺11 satisfies properties (i) and (ii) of the claim. Note that the 𝑘th row of 𝐺 coincides
with the 𝑘th row of 𝐺𝑘1. □

The following proposition can be proved in a similar way.
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Proposition 3.6. There exists an 𝑛 𝑛 𝑛 unipotent lower triangular matrix 𝐻 𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 such
that:

(i) entries of 𝐻 are rational functions in 𝑋, 𝑌𝑌 whose denominators are monomials in cluster vari-
ables 𝜑𝑘𝑘𝑘𝑘𝑘1𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘    1, and

(ii) the (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛matrix 𝑇 𝑇𝑇𝑇𝑇 [2,𝑛𝑛 𝑌𝑌[2,𝑛𝑛𝐻𝐻 satisfies

det 𝑇[𝑛+𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛+𝑛𝑛𝑛
[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

=
𝜑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛

𝜑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛
, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘    1𝑘𝑘𝑘𝑘   1𝑘𝑘𝑘𝑘𝑘𝑘     1𝑘 (3.15)

We will use Propositions 3.5 and 3.6 to establish the following

Proposition 3.7. All matrix entries of 𝑋[2,𝑛𝑛 and 𝑌𝑌 are cluster variables in 
𝐷

𝑛 .

Proof. We will use the comparison with the standard cluster structure ̃𝑙𝑙𝑚 onMat𝑙𝑙𝑚 which is
isomorphic to the cluster structure on the big cell in theGrassmannianGr(𝑙𝑙 𝑙 𝑙 𝑚𝑙 described in [9,
Section 4.2.2] via the identification of amatrix𝐴 𝐴𝐴𝐴𝐴 𝑙𝑙𝑚 with a representative [𝟏𝑙 (𝐴𝐴𝐴𝑚𝑚)] of an
element inGr(𝑙𝑙 𝑙 𝑙 𝑚𝑙, where𝑊𝑚𝑚 is the𝑚𝑚𝑚𝑚𝑚  antidiagonal matrix. First, we establish the claim
for matrix entries of 𝑌𝑌𝑌𝑌𝑌𝑌  𝑖𝑖𝑖)

𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

. Let us temporarily treat the vertices in 𝑄̄𝑛 that correspond to
variables 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘     , as frozen. Then the vertex corresponding to g11 becomes isolated.
Denote the quiver formed by the rest of the non-isolated vertices by 𝑄𝑛, and let ̂𝑛 ⊂ ̄𝑛 be the
corresponding subset of cluster variables.
Define a new collection of variables ̃𝑛 = {𝑓𝑓 𝑓 𝑓 ̂𝑛} via 𝜑̃𝑘𝑘𝑘𝑘𝑘𝑘𝑘1 =

𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘1
𝜑𝑘𝑘𝑘𝑘1

, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    ,

𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  , and 𝑓 𝑓 𝑓 for all other 𝑓 𝑓 ̂𝑛. Denote by 𝑄̃𝑛 the quiver obtained from 𝑄𝑛 via deletion
of all edges that are dashed in Figure 1.
Let us now define a (2𝑛 𝑛𝑛𝑛𝑛   𝑛 matrix 𝑆 as in Proposition 3.5. Then (3.14) ensures that the

collection ̃𝑛 consists of all dense minors of 𝑆 containing entries of the last row or column of 𝑆,
where the minor that has an (𝑖𝑖𝑖𝑖𝑖 -entry of 𝑆 in a top left corner is attached to the (𝑖𝑖𝑖𝑖𝑖  vertex in
the grid that describes 𝑄̃𝑛. Viewed this way, Σ̃ =( ̃𝑛, 𝑄̃𝑛) becomes the initial seed for the stan-
dard cluster structure ̃(2𝑛𝑛𝑛𝑛𝑛𝑛 onMat(2𝑛𝑛𝑛𝑛𝑛𝑛. Note that every exchange relation in this seed is

obtained via dividing the corresponding exchange relation of 
𝐷

𝑛 by an appropriate monomial
in variables 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    , which are frozen in Σ̂ =( ̂𝑛, 𝑄̂𝑛). Applying [11, Lemma 8.4]
repeatedly, we conclude that if 𝜑 is a cluster variable in 

𝐷

𝑛 obtained via an arbitrary sequence of
mutations not involving mutations at 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘     , then the result of the same sequence
of mutations in ̃(2𝑛𝑛𝑛𝑛𝑛𝑛 is 𝜑̃ 𝜑

𝜑

𝑀
, where𝑀 is a Laurent monomial in 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    .

Since all matrix entries of 𝑆 are cluster variables in ̃(2𝑛𝑛𝑛𝑛𝑛𝑛, the latter observation means

that, for any 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , there is a cluster variable 𝜑 𝜑 
𝐷

𝑛 obtained via a sequence of muta-
tions not involving mutations at 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘     , and such that 𝜑 𝜑𝜑𝜑 𝑖𝑖𝑖𝑀, where 𝑀 is a
Laurent monomial in 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    . We will now show that𝑀 𝑀𝑀 . Indeed, since 𝜑 is a
regular function in 𝑋,𝑌, and all functions in 𝑛 are irreducible via [13, Lemma 4.2], all factors in
𝑀 have non-negative degrees. On the other hand, in terms of elements of ̄𝑛, 𝜑 is a polynomial
in 𝜑𝑘𝑘𝑘𝑘1, 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘    . Furthermore, as a polynomial in each 𝜑𝑘𝑘𝑘𝑘1 it has a non-zero constant
term. This claim is obvious for every single mutation away from the initial cluster, and then is
verified inductively. This implies that𝑀 𝑀𝑀 . Thus all matrix entries of 𝑌𝑌 are cluster variables in


𝐷

𝑛 .
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F IGURE 2 Rearranged quiver 𝑄̄4

To treat matrix entries of 𝑋[2,𝑛𝑛, we start with rearranging the vertices of 𝑄̄𝑛. All vertices except
for those corresponding to g11 and ℎ1𝑖 , 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , are arranged into an (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 grid. It is
obtained bymoving the lower (𝑛 𝑛𝑛𝑛𝑛   𝑛 part and placing it on the left from the upper (𝑛 𝑛𝑛𝑛𝑛   𝑛

part; the remaining 𝑛 + 𝑛 vertices are placed above as an additional row aligned on the right. All
former dashed edges become regular, and the path

(𝑛 𝑛𝑛𝑛  𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     𝑛 𝑛𝑛𝑛  𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛   3𝑛𝑛  ⋯ →(1,  𝑛𝑛𝑛𝑛  𝑛 𝑛𝑛𝑛𝑛  𝑛𝑛

becomes dashed; see Figure 2 for the rearranged version of 𝑄̄4. To proceed further, we temporarily
freeze vertices that correspond to 𝜑𝑘𝑘𝑘𝑘𝑘1𝑘𝑘1, 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘     , and ℎ2𝑗 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , and compare the
result with an initial seed for the standard cluster structure onMat(𝑛𝑛𝑛𝑛𝑛𝑛𝑛 defined by the matrix
𝑇 given in Proposition 3.6. □

Recall that the generalized exchange relation for 𝜑1 is given by

𝜑1𝜑
′
1 =

𝑛∑
𝑖𝑖𝑖

𝑐𝑖(𝑋, 𝑌𝑋
(
(−1)𝑛𝑛𝑛ℎ22𝜑𝑛+𝑛

)𝑖
𝜑𝑛𝑛𝑛𝑛2 , (3.16)

where 𝜑′
1
is a polynomial in the entries of 𝑋 and 𝑌𝑌, see [13, Section 4]. Denote ̄ ′

𝑛 = ̄𝑛 ⧵ {𝜑1} ∪

{𝜑′
1
}.
The following lemma implies that entries of the first row of 𝑋 belong to the generalized upper

cluster algebra(
𝐷

𝑛 ).

Lemma 3.8. Every matrix entry 𝑥1𝑖 can be expressed as
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝜑1
, where 𝑃 is a polynomial in matrix

entries of𝑌𝑌,𝑋[2,𝑛𝑛 and functions 𝑐𝑗(𝑋, 𝑌𝑋, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   . Alternatively, 𝑥1𝑖 can be expressed as Laurent
polynomials in terms of cluster variables in ̄ ′

𝑛.

Proof. Denote by 𝑋̄ the matrix obtained from 𝑋 by setting all entries of the first row to 0. For
1 ⩽ 𝑗 ⩽ 𝑛, 𝑐𝑗(𝑋, 𝑌𝑋 is a linear function in matrix entries 𝑥1𝑖 , and so we can write
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𝑐𝑗(𝑋, 𝑌𝑋𝑋𝑋𝑋  𝑗(𝑋̄, 𝑌𝑋𝑋

𝑛∑
𝑖𝑖𝑖

𝑥1𝑖𝑧𝑖𝑖𝑖(𝑋̄, 𝑌𝑋, (3.17)

where 𝑧𝑖𝑖𝑖(𝑋̄, 𝑌𝑋 are polynomials in the entries of 𝑋[2,𝑛𝑛 and 𝑌𝑌. Thus we obtain a linear system for
the entries 𝑥1𝑖 and 𝑍 𝑍𝑍𝑍𝑍 𝑖𝑖𝑖(𝑋̄, 𝑌𝑋𝑋

𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

is thematrix of this system. Clearly, solutions of the system
are polynomials in the entries of 𝑋[2,𝑛𝑛 and 𝑌𝑌 divided by det 𝑍.
Note that 𝑧𝑖𝑖𝑖(𝑋̄, 𝑌𝑋 is a polynomial of degree 𝑛 𝑛𝑛𝑛𝑛𝑛    in the entries of 𝑋 and of degree 𝑗 in

the entries of 𝑌𝑌 and so, both det 𝑍 and 𝜑1(𝑋, 𝑌𝑋 are polynomials of total degree
𝑛𝑛𝑛𝑛𝑛𝑛

2
in terms of

both 𝑋 and 𝑌𝑌. We will now show that, up to a scalar multiple, det 𝑍 coincides with 𝜑1(𝑋, 𝑌𝑋. To
this end, we will demonstrate that det 𝑍 𝑍𝑍  implies 𝜑1 = 0. Since 𝜑1 is irreducible ([13, Lemma
4.2]), this means that det 𝑍 and 𝜑1(𝑋, 𝑌𝑋 differ by a constant multiple.
To prove the implication det 𝑍 𝑍𝑍  ⇒ 𝑍𝑍1 = 0, suppose that det 𝑍 vanishes. Then the system

(3.17) is still solvable, but its solution is not unique. Consequently, there exists a non-zero row
vector 𝑣𝑇 such that det(𝑒𝑒1𝑣𝑇 + 𝑋 𝑋𝑋𝑋 𝑌𝑋𝑋𝑋𝑋𝑋𝑋  𝑋 𝑋𝑋𝑋 𝑌𝑋. The determinant on the left is evaluated
via the Schur complement:

det

[
𝑋 𝑋𝑋𝑋 𝑌 𝑒1
𝑣𝑇 −1

]
= det(𝑋 𝑋𝑋𝑋 𝑌𝑋

(
1+  𝑣𝑇(𝑋 𝑋𝑋𝑋 𝑌𝑋−1𝑒𝑒1

)
, (3.18)

which means that 𝑣𝑇(𝑋 𝑋𝑋𝑋 𝑌𝑋−1𝑒𝑒1 = 0 for any 𝜆. Equivalently, 𝑣𝑇𝑌𝑌−1𝑈𝑗𝑒𝑒1 = 0 for 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    ,
where 𝑈 𝑈𝑈𝑈𝑈𝑈 −1, and hence det[𝑈𝑛𝑛𝑛𝑒𝑒1 𝑈

𝑛𝑛𝑛𝑒𝑒1 …𝑈𝑈𝑈1𝑒𝑒1] = 0. However, by [13, Lemma 3.3],

𝜑1(𝑋, 𝑌𝑋𝑋𝑋  (det𝑌𝑌 )𝑛𝑛𝑛 det
[
𝑈𝑛𝑛𝑛𝑒𝑒1𝑈

𝑛𝑛𝑛𝑒𝑒1⋯𝑈𝑈𝑈1 𝑒𝑒1
]

and so, whenever det 𝑍 vanishes so does 𝜑1. This proves the first claim of the Lemma.
To establish the second claim, let us consider the dependence of the coefficient matrix 𝑍 and

functions 𝑐𝑗 = 𝑐𝑗(𝑋̄, 𝑌𝑋 on the initial cluster variables. In view of the proof of Proposition 3.7, all
𝑧𝑖𝑖𝑖 and 𝑐𝑗 are Laurent polynomials in variables from ̂𝑛 and, moreover, are polynomials in 𝜑1.
Write 𝑍 𝑍 𝑍0 + 𝜑1𝑍

1, where 𝑍0 does not depend on 𝜑1. Since det 𝑍 is a scalar multiple of 𝜑1, the
entries of 𝑍−1 are Laurent polynomials in cluster variables from ̂𝑛. Furthermore, it is easy to
see that det(𝑍0 + 𝜑1𝑍

1) is proportional to 𝜑𝑛𝑛𝑛𝑛nk𝑛𝑛𝑛
0)

1
, and hence the rank of 𝑍0 is equal to 𝑛 𝑛𝑛 .

Further, 𝑍−1 = 𝜑−1
1
𝑊0 +𝑊1, where𝑊1 is polynomial in 𝜑1, and𝑊0 does not depend on 𝜑1 and

satisfies relations 𝑍0𝑊0 = 𝑊0𝑍0 = 0. It follows that𝑊0 is of rank 1, that is,𝑊0 = 𝑤1𝑤
𝑇
2
, where

𝑤1,𝑤2 are non-zero column vectors such that 𝑤1 spans the kernel of 𝑍0. Therefore, the first row
of 𝑋 can be expressed as

𝑋[1] = 𝜑−11

(
𝑛∑
𝑗𝑗𝑗

(𝑐𝑗 − 𝑐𝑗)𝑤1𝑗

)
𝑤𝑇
2 + ,

where  is a vector of Laurent polynomials in terms of cluster variables in ̄ ′
𝑛.

Let us show that the vector

𝑢 𝑢
((
(−1)𝑛𝑛𝑛ℎ22𝜑𝑛+𝑛

)𝑗
𝜑
𝑛𝑛𝑛𝑛
2

)𝑛
𝑗𝑗𝑗
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spans the kernel of 𝑍0. Note that (3.16) implies

𝑛∑
𝑗𝑗𝑗

𝑐𝑗𝑢𝑗 + det𝑌𝑌𝑌𝑌 𝑛2 = 𝜑1𝜑
′
1,

𝑛∑
𝑗𝑗𝑗

𝑐𝑗𝑢𝑗 + det𝑌𝑌𝑌𝑌 𝑛2 = 𝜑1𝜑̄
′
1,

where 𝜑̄′
1
is a polynomial in the entries of 𝑋[2,𝑛𝑛 and 𝑌𝑌[2,𝑛𝑛, and thus can be written as a Laurent

polynomial in variables from ̂𝑛 which is polynomial in 𝜑1, and hence as a Laurent polynomial
in variables from ̄ ′

𝑛. Consequently,
∑𝑛

𝑗𝑗𝑗(𝑐𝑗 − 𝑐𝑗)𝑢𝑗 = 𝜑1(𝜑
′
1
− 𝜑̄′

1
), so that

𝜑1(𝜑
′
1 − 𝜑̄′1) = 𝑋[1]𝑍𝑍𝑍𝑍𝑍𝑍  [1]𝑍

0𝑢 𝑢𝑢𝑢 1𝑋[1]𝑍
1𝑢𝑢

and hence 𝜑1 = 0 implies 𝑋[1]𝑍
0𝑢 𝑢𝑢 . Note that 𝑍0 and 𝑢 does not depend on 𝜑1 and on 𝑋[1],

which means that 𝑢 spans the kernel of 𝑍0, as claimed. Therefore, we can choose 𝑤1 = 𝑢, and
since the entries of 𝑢 aremonomials in terms of variables from ̄𝑛 ⧵ {𝜑1}, entries of𝑤2 are Laurent
monomials in terms of the same variables. We conclude that

𝑋[1] = 𝜑−11

(
𝑛∑
𝑗𝑗𝑗

(𝑐𝑗 − 𝑐𝑗)𝑢𝑗

)
𝑤𝑇
2 +  = 𝜑′1𝑤

𝑇
2 +(  − 𝜑̄′1𝑤

𝑇
2 ),

which proves the claim. □

It follows immediately from Lemma 3.8 that each 𝑥1𝑖 can be written as a Laurent polynomial
in terms of the cluster variables in the initial cluster and in any of its neighbors, since by Proposi-
tion 3.7, all entries of𝑌𝑌 and𝑋[2,𝑛𝑛 are cluster variables, and hence Laurent polynomials in any clus-
ter.

4 TWO GENERALIZED CLUSTER STRUCTURES ON 𝑫𝑫𝑫𝑫𝑫𝑫𝟒)

In [12], we described a generalized cluster structure 𝐷𝑛 on 𝐷(𝐷𝐷𝐷𝐷𝑛). It is easy to see that the
generalized cluster structures 

𝐷

𝑛 described in this paper and 
𝐷
𝑛 (𝑌𝑌

𝑇, 𝑋𝑇) have the same set of
frozen variables.Moreover, for𝑛 = 𝑛 the initial seeds Σ̄2(𝑋, 𝑌𝑋 andΣ2(𝑌𝑌𝑇, 𝑋𝑇) coincide. For𝑛 = 3,
a straightforward computation shows that the sequence of mutations at vertices (4,3), (3,2), (2,1)
takes Σ̄3(𝑋, 𝑌𝑋 to Σ3(𝑌𝑌𝑇, 𝑋𝑇). In this section, we prove that for 𝑛 = 4 no such sequence exists, and
hence generalized cluster structures 

𝐷

4 and 𝐷4 (𝑌𝑌
𝑇, 𝑋𝑇) are distinct. We conjecture that this

holds true for any 𝑛 𝑛 4 as well, see Remark 4.4.

Proposition 4.1. The generalized cluster structures 
𝐷

4 = 
𝐷

4 (𝑋, 𝑌𝑋 and 𝐷4 = 𝐷4 (𝑌𝑌
𝑇, 𝑋𝑇)

are distinct.

Proof. We start with the seed Σ̄4 for 
𝐷

4 and perform a sequence of mutations at vertices (5,4),
(4,3), (3,2), (6,4), (5,3), (4,2), (5,4) and (4,3). In this way, we get functions 𝜑′

4
, 𝜑′

3
, 𝜑′

2
, 𝜑′

8
, 𝜑′7, 𝜑

′
6
, 𝜑′′

4
,
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F IGURE 3 Modified 𝑄̄4
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F IGURE 4 Quiver 𝑄4

𝜑′′
3
, respectively. A straightforward computation shows that

𝜑′8 = det

[
𝑦43 𝑦44
𝑥43 𝑥44

]
, 𝜑′7 = det

⎡⎢⎢⎣
𝑦42 𝑦43 𝑦44
𝑥32 𝑥33 𝑥34
𝑥42 𝑥43 𝑥44

⎤⎥⎥⎦ , 𝜑′′4 = det
⎡⎢⎢⎣
𝑦32 𝑦33 𝑦34
𝑦42 𝑦43 𝑦44
𝑥42 𝑥43 𝑥44

⎤⎥⎥⎦ ,

𝜑′6 = det

⎡⎢⎢⎢⎢⎣
𝑦31 𝑦32 𝑦33 𝑦34
𝑦41 𝑦42 𝑦43 𝑦44
𝑥31 𝑥32 𝑥33 𝑥34
𝑥41 𝑥42 𝑥43 𝑥44

⎤⎥⎥⎥⎥⎦
, 𝜑′′3 = det

⎡⎢⎢⎢⎢⎣
𝑦21 𝑦22 𝑦23 𝑦24
𝑦31 𝑦32 𝑦33 𝑦34
𝑦41 𝑦42 𝑦43 𝑦44
𝑥41 𝑥42 𝑥43 𝑥44

⎤⎥⎥⎥⎥⎦
.

The corresponding quiver is shown in Figure 3. The quiver for the initial seed for 𝐷4 constructed
in [12] is shown in Figure 4. Recall that we are interested in the seed Σ4(𝑌𝑌𝑇, 𝑋𝑇), and hence in this
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F IGURE 5 Subquivers of 𝑄4 and 𝑄̄4

case g𝑖𝑖𝑖(𝑌𝑌𝑇, 𝑋𝑇) = det(𝑌𝑌𝑇)
[𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

[𝑖𝑖𝑖𝑖𝑖
= ℎ𝑗𝑗𝑗(𝑋, 𝑌𝑋 and ℎ𝑖𝑖𝑖(𝑌𝑌

𝑇, 𝑋𝑇) = g𝑗𝑗𝑗(𝑋, 𝑌𝑋. Further, functions
𝑓𝑖𝑖𝑖 are defined via

𝑓𝑖𝑖𝑖(𝑌𝑌
𝑇, 𝑋𝑇) = det

[
(𝑌𝑌𝑇)[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛 (𝑋𝑇)[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

]
[𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

,

and hence 𝑓11(𝑌𝑌
𝑇, 𝑋𝑇) = 𝜑′

8
(𝑋, 𝑌𝑋, 𝑓21(𝑌𝑌

𝑇, 𝑋𝑇) = 𝜑′′
4
(𝑋, 𝑌𝑋, and 𝑓12(𝑌𝑌

𝑇, 𝑋𝑇) = 𝜑′7(𝑋, 𝑌𝑋.
Finally, as explained in [12, Remark 3.1], functions 𝜑𝑖𝑖𝑖 with 𝑖 𝑖𝑖𝑖𝑖𝑖    are defined via the same
expression as𝑓𝑖𝑖𝑖 , and hence𝜑31(𝑌𝑌𝑇, 𝑋𝑇) = 𝜑′′

3
(𝑋, 𝑌𝑋,𝜑22(𝑌𝑌𝑇, 𝑋𝑇) = 𝜑′

6
(𝑋, 𝑌𝑋, and𝜑13(𝑌𝑌𝑇, 𝑋𝑇) =

𝜑9(𝑋, 𝑌𝑋. We thus see that the restrictions of both quivers to the three lower rows coincide, as well
as the functions attached to the corresponding vertices. Moreover, the functions attached to the
fourth row frombelow in both quivers coincide aswell, aswell as the arrows between the third and
the fourth row. We will prove that the corresponding two seeds are not mutationally equivalent.
By [3, Theorem 3.6], if two seeds are mutationally equivalent and share a set of common cluster

variables, there exists a sequence of mutations that connects these seeds and does not involve the
common cluster variables.

Remark 4.2. In fact, the definition of a generalized cluster structure in [3] and in the preceding
paper [2] is more restrictive, since it imposes a reciprocity condition on exchange coefficients, fol-
lowing [18]. However, this condition is only used in the proof of Lemma 4.20 in [2], which in turn
is based on Proposition 3.3 in [18]. This proposition claims that every cluster variable can be writ-
ten as a Laurent polynomial in cluster variables of the initial cluster and an ordinary polynomial
in frozen variables. It is an analog of the corresponding statement for ordinary cluster structures
and its proof extends to the case of generalized cluster structures as defined in Section 2 without
any changes.

Consequently, if the above two seeds are equivalent, there should exist a sequence of mutations
that involves only three vertices comprising the uppermost triangle. We will concentrate on two
four-vertex subquivers that are formed by the uppermost triangle and the vertex corresponding to
𝜑13(𝑌𝑌

𝑇, 𝑋𝑇) = 𝜑9(𝑋, 𝑌𝑋. These two subquivers are shown in Figure 5. We claim that there is no
sequence of mutations at the vertices 1, 2 and 3 that takes one subquiver to the other one. Note
that although the mutations at vertex 4 are not allowed, it is not frozen.
To prove our claim, we consider the evolution of a more general quiver 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 shown in

Figure 6 under mutations at the vertices 1, 2 and 3. Here multiplicities 𝛼, 𝛽𝛽 and 𝛾𝛾 can take any
integer values except for 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼     . A negative value means that the direction of the corre-
sponding arrow is reversed. Clearly, two quivers shown in Figure 5 are 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  .
To keep track of the mutations, it will be convenient to renumber the vertices so that the
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F IGURE 6 Quiver 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄

generalized vertex is always vertex 1, and the direction of arrows in the triangle is 1→  2 →3→1   .
Note that any mutation of 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 transforms it into 𝑄𝑄𝑄𝑄′,𝛽𝛽 ′,𝛾𝛾 ′) for certain values of 𝛼′, 𝛽𝛽′
and 𝛾𝛾′.
Define the charge of 𝑄 𝑄 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 as 𝐶𝐶𝐶𝐶𝐶𝐶  |𝛼| + |𝛽𝛽| + |𝛾𝛾|. The nodes of the 3-regular tree

𝕋 that describes all possible mutations of 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 can be classified into 10 possible types with
respect to the charge. We encode these types by a triple [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  , where 𝑖 stands for the number of
mutations that increase the charge, 𝑗 stands for the number ofmutations that preserve the charge,
and 𝑘 stands for the number ofmutations that decrease the charge, so that 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     . Note that
both quivers 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   have charge 1. Consequently, if they are mutation equiva-
lent, then either all quivers along the simple path (the one that never returns to the same vertex)
in 𝕋 that connects 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   have charge 1, or this path contains two quivers 𝑄1,
𝑄2 that differ by one mutation, such that 𝐶𝐶𝐶𝐶1) < 𝐶𝐶𝐶𝐶2) and 𝐶𝐶𝐶𝐶2) ⩾ 𝐶𝐶𝐶𝐶𝐶 for any other quiver
𝑄 along the path.
Consider the first possibility. A straightforward computation shows that mutations at vertices 1

and 2 preserve the charge and take 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   to 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  , while mutation at vertex 3 increases the
charge. Further, mutations of 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   at vertices 1 and 3 preserve the charge and take 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 
to 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  , while mutation at vertex 2 increases the charge. Therefore, 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   cannot be
reached from 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   along a path with the constant charge 1.
Consider the second possibility. Let [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   be the type of 𝑄2, then 𝑘 ⩾ 1 and 𝑗 𝑗𝑗𝑗  ⩾ 2, so we

remain with the following possibilities: [1,1,1], [1,0,2], [0,2,1], [0,1,2], [0,0,3]. We are interested in
finding conditions on 𝛼, 𝛽𝛽 and 𝛾𝛾 that would guarantee that the type of 𝑄2 is indeed one of the
types listed above. One can distinguish eight possible cases according to the signs of 𝛼, 𝛽𝛽 and 𝛾𝛾.
Let us consider in detail one of the nontrivial cases.
Let 𝛼 𝛼𝛼 , 𝛽𝛽 ⩾ 0, 𝛾𝛾 ⩾ 0. Mutation at vertex 1 takes 𝑄 𝑄 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 to 𝑄′ = 𝑄𝑄𝛽𝑄𝑄𝑄𝑄𝑄   𝛾𝑄𝑄 𝛾𝑄, so

that 𝐶𝐶𝐶𝐶′) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛼 𝛼𝛼𝛼𝛼 |, and hence 𝐶𝐶𝐶𝐶′) < 𝐶𝐶𝐶𝐶𝐶 if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼    and 𝛾𝛾 ≠ 0. Mutation at
vertex 2 takes 𝑄 to 𝑄′ = 𝑄𝑄𝛽𝑄𝑄𝑄𝑄𝑄  𝛾 𝑄𝑄𝑄𝑄 , so that 𝐶𝐶𝐶𝐶′) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛼 𝛼𝛼𝛼 |, and hence 𝐶𝐶𝐶𝐶′) <

𝐶𝐶𝐶𝐶𝐶 if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼   . Mutation at vertex 3 takes 𝑄 to 𝑄′ = 𝑄𝑄𝑄𝛽𝑄𝑄𝑄𝑄  𝛾 𝑄 𝛽𝑄, so that 𝐶𝐶𝐶𝐶′) = 𝐶𝐶𝐶𝐶𝐶𝐶

𝛽𝛽 ⩾ 𝐶𝐶𝐶𝐶𝐶. Consequently, the type of 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 is [1,1,1] if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼    and 𝛽𝛽𝛽𝛽  , or if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼   ,
𝛾𝛾 ≠ 0 and 𝛽𝛽𝛽𝛽  . For the other values of parameters, the type of 𝑄𝑄𝑄𝑄𝑄 𝛽𝑄 𝛾𝑄 is either [𝑖𝑖𝑖𝑖𝑖𝑖𝑖   with
𝑖 𝑖𝑖𝑖𝑖𝑖    or [2,0,1].
Results of similar considerations in all the remaining cases are summarized in Table 1 that

contains, for each case, the values of the charge after the three possible mutations and possible
types of 𝑄 depending on the values of 𝛼, 𝛽𝛽, and 𝛾𝛾.
It follows from the results presented in the table that the only possible candidates for the quiver

𝑄2 are quivers of type [1,1,1] in Cases 2–4. In all three cases, the next node in the path should have
the same charge. If 𝑄2 is as in Case 2, then the next node is obtained by mutation at vertex 3, and
the resulting quiver is𝑄′ = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄  𝛾𝑄with𝛼 𝛼𝛼  and 𝛾𝛾𝛾𝛾  . This situation is covered byCase 3, and
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TABLE 1 Types of 𝑄

Case 1: 𝛼 ⩾ 0,𝛽𝛽  ⩾ 0,𝛾𝛾  ⩾ 0 Case 2: 𝛼 𝛼𝛼𝛼𝛼𝛼   ⩾ 0,𝛾𝛾  ⩾ 0

𝐶𝐶𝐶𝐶1(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   ⩾ 𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛼 𝛼𝛼𝛼𝛼 |
𝐶𝐶𝐶𝐶2(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄   ⩾ 𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛼 𝛼𝛼𝛼 |
𝐶𝐶𝐶𝐶3(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   ⩾ 𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

type of 𝑄 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[1,1,1  ], if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼     

or if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼 

𝛾𝛾 ≠ 0,𝛽𝛽𝛽𝛽  

[𝑖𝑖𝑖𝑖𝑖𝑖𝑖   or
[2, 0,1 ] otherwise.

Case 3: 𝛼 ⩾ 0,𝛽𝛽𝛽𝛽𝛽𝛽𝛽     ⩾ 0 Case 4: 𝛼 ⩾ 0,𝛽𝛽  ⩾ 0,𝛾𝛾𝛾𝛾  

𝐶𝐶𝐶𝐶1(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄  𝛾 ⩾ 𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛽𝛽𝛽𝛽𝛽𝛽  |
𝐶𝐶𝐶𝐶2(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛽𝛽𝛽𝛽𝛽𝛽  | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   ⩾ 𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶3(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄    |𝛼 𝛼𝛼𝛼𝛼 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛾𝛾𝛾𝛾𝛾  |

type of 𝑄

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[1,1,1  ], if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼    

or if 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 

𝛼 ≠ 0,𝛾𝛾𝛾𝛾  

[𝑖𝑖𝑖𝑖𝑖𝑖𝑖   or
[2, 0,1 ] otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[1,1,1  ], if 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽      

or if 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽   

𝛾𝛾 ≠ 0, 𝛼 𝛼𝛼

[𝑖𝑖𝑖𝑖𝑖𝑖𝑖   or
[2, 0,1 ] otherwise.

Case 5: 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼     ⩾ 0 Case 6: 𝛼 𝛼𝛼𝛼𝛼𝛼   ⩾ 0,𝛾𝛾𝛾𝛾  

𝐶𝐶𝐶𝐶1(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛼 𝛼𝛼𝛼𝛼 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛽𝛽𝛽𝛽𝛽𝛽  |
𝐶𝐶𝐶𝐶2(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄  𝛾 𝑄 |𝛼 𝛼𝛼𝛼 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶3(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛾𝛾𝛾𝛾𝛾  |
type of 𝑄 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   or [2, 0,1 ] [𝑖𝑖𝑖𝑖𝑖𝑖𝑖   or [2, 0,1 ]

Case 7: 𝛼 ⩾ 0,𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽       Case 8: 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼      

𝐶𝐶𝐶𝐶1(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄  𝛾 𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄  𝛾 𝑄𝑄𝑄𝑄 𝑄𝑄

𝐶𝐶𝐶𝐶2(𝑄𝑄𝑄 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    |𝛽𝛽𝛽𝛽𝛽𝛽  | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶3(𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄    |𝛼 𝛼𝛼𝛼𝛼 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶𝐶𝐶𝐶𝐶

type of 𝑄 [𝑖𝑖𝑖𝑖𝑖𝑖𝑖   or [2, 0,1 ] [3,0,0]

the other twomutations of𝑄′ yield 𝐶𝐶𝐶𝐶′) +4𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾   ′) and 𝐶𝐶𝐶𝐶′) + |2𝛼| > 𝐶𝐶𝐶𝐶′). Consequently,
the maximality condition for the charge of 𝑄2 fails.
The remaining two cases are analyzed in a similar way, with Case 3 leading to Case 2 and Case

4 leading to Case 4. Therefore, 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   cannot be reached from 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄   along a path with a
varying charge, which completes the proof. □

Remark 4.3. In a recent preprint [21], a technique of scattering diagrams is used to construct a log
Calabi–Yau variety with two non-equivalent cluster structures both associated with the Markov
quiver. This variety is obtained by a certain augmentation of a clusterA-varietywith principal coef-
ficients in the sense of [15]. In contrast to this, the example we presented above gives two explicitly
defined non-equivalent generalized cluster structures with the same set of frozen variables in an
affine variety obtained by deleting a divisor with a normal crossing from an affine space.
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Remark 4.4. For 𝑛 𝑛 4, one can build a sequence of mutations that takes the seed Σ̄𝑛 to a seed
Σ =( 𝐱𝐱𝐱𝐱𝐱 ) with the following properties. Let Σ𝑛(𝑌𝑌𝑇, 𝑋𝑇) =( 𝐱𝑛, 𝑄𝑛,𝑛), and assume that 𝑄𝑛

and 𝑄 are arranged in 2𝑛 𝑛𝑛  rows, as in Figures 3 and 4, then the restrictions of 𝑄 and 𝑄𝑛 to
𝑛 𝑛𝑛  lower rows coincide, as well as the functions attached to the corresponding vertices. So do
the functions attached to the 𝑛th row from below in both quivers and the arrows between the
𝑛th and the (𝑛 𝑛𝑛𝑛 th row. The restrictions of 𝑄 and 𝑄𝑛 to the remaining 𝑛 𝑛𝑛  upper rows also
coincide, however, the functions attached to the corresponding vertices differ. Finally, 𝜑𝑛𝑛𝑛 →
𝜑𝑁𝑁𝑁𝑁𝑁𝑁 is an edge in𝑄, 𝜑1,𝑛𝑛𝑛 → 𝜑1,𝑛𝑛𝑛 is an edge in𝑄𝑛, 𝜑𝑁𝑁𝑁𝑁𝑁𝑁(𝑋, 𝑌𝑋𝑋𝑋𝑋  1,𝑛𝑛𝑛(𝑌𝑌

𝑇, 𝑋𝑇), vertices
𝜑𝑛𝑛𝑛 and 𝜑1,𝑛𝑛𝑛 correspond each other in the upper parts of 𝑄 and 𝑄𝑛, respectively, and there are
no edges between 𝜑𝑁𝑁𝑁𝑁𝑁𝑁 and the upper part of 𝑄 (𝜑1,𝑛𝑛𝑛 and the upper part of 𝑄𝑛, respectively).
We believe that similarly to the case 𝑛 = 4, one can prove that it is impossible to invert the arrow
in question via a sequence of mutations at the vertices of the upper part, which would imply that
the generalized cluster structures 

𝐷

𝑛 (𝑋, 𝑌𝑋 and 
𝐷
𝑛 (𝑌𝑌

𝑇, 𝑋𝑇) are distinct.

The example presented above describes two different generalized cluster structures1 = 
𝐷

4 ,
2 = 𝐷4 such that:

∙ the corresponding upper cluster algebras coincide with the ringℂ[𝐷(𝐷𝐷𝐷𝐷4)] of regular functions
on the Drinfeld double of 𝐺𝐿4;

∙ both generalized cluster algebras are compatible with the standard Poisson–Lie bracket on
𝐷(𝐷𝐷𝐷𝐷4) and have the same collection of frozen cluster variables.

We believe that both generalized cluster structures 1 and 2 can be related to the same
ordinary cluster structure  using a conjectural construction outlined below for the case of
general 𝑛.
The cluster structure  is associated with the moduli space𝐺𝐺𝐺𝐺 introduced by Fock and Gon-

charov in the study of 𝐺-local systems on a marked Riemann surface 𝑆, see [5]. In our exam-
ple 𝐺 𝐺 𝐺𝐿𝑛, 𝑆 is the punctured disk with four marked points on the boundary. The variety
𝐺𝐿𝑛,𝑆

is homeomorphic to the configuration space of triples (𝐅𝐅𝐅𝐅𝐅𝐅𝐅 modulo the 𝐺𝐿𝑛-action
where 𝐅 denotes a quadruple of decorated flags at the marked points,𝑀 is the 𝐺𝐿𝑛-monodromy
about the puncture amd Φ is a flag at the puncture which is invariant under the monodromy.
Note that the invariant flag at the puncture is not uniquely defined by the monodromy: there
are 𝑛! choices corresponding to different orderings of monodromy eigenvalues. The Weyl group
𝑊 𝑊𝑊𝑊 𝑛 acts on 𝐺𝐿𝑛,𝑆

by reordering eigenvalues, which results in a different choice of the
invariant flag.
The parametrization of 𝐺𝐿𝑛,𝑆

introduced in [5] endows it with a cluster structure which, in
turn, leads to a compatible Poisson bracket. This Poisson structure has corank 2𝑛 with 𝑛 Casimirs
given by the coefficients of the characteristic polynomial of the monodromy and 𝑛 additional
Casimirs. Fixing values of 𝑛 additional Casimirs to 1, we obtain a codimension 𝑛 subvariety 𝑉.
The action of𝑊 restricts to 𝑉. Further, 𝑉 is a cluster variety whose coordinate ring is equipped
with the cluster structure . In particular,  inherits the𝑊-action.
There is a natural projection 𝜋 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋   𝑛) with a fiber𝑊 𝑊𝑊𝑊 where 𝐻 is the Cartan sub-

group. We conjecture that the projection 𝜋 provides a natural connection between generalized
cluster structures 𝑖 in ℂ[𝐷(𝐷𝐷𝐷𝐷𝑛)] for 𝑖 𝑖𝑖𝑖𝑖   and . More precisely, the pullbacks of all cluster
variables in 𝑖 are𝑊-invariant cluster variables in. Furthermore, each seedΣ of the generalized
cluster structure 𝑖 contains one cluster variable g(Σ) attached to the special vertex of the quiver
and satisfying a generalized mutation rule, while the remaining cluster variables obey the usual
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mutation rules. The rank of  is 𝑛 𝑛𝑛 more than the rank of  𝑖 . Any seed Σ of  𝑖 corresponds
to a seed Σ̃ of  in which g(Σ) corresponds to an 𝑛-tuple of cluster variables g̃𝑗(Σ̃), 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , such
that 𝜋∗g(Σ) =

∏𝑛
𝑗𝑗𝑗 g̃𝑗(Σ̃). The remaining cluster variables of the seed Σ̃ and frozen variables of

 are obtained as pullbacks 𝜋∗ of the corresponding cluster variables of Σ and frozen variables
in  𝑖 . The generalized mutation of g(Σ) corresponds to the composition 𝑠𝑠Σ̃) of 𝑛 mutations at
all g̃𝑗(Σ̃) taken in any order (mutations of g̃𝑗(Σ̃) commute). Namely, let g ′ denote the function
obtained by the generalized mutation of g(Σ) and g̃ ′

𝑗
= 𝑠𝑠Σ̃)(g̃𝑗(Σ̃)), then 𝜋∗g ′ =

∏𝑛
𝑗𝑗𝑗 g̃ ′

𝑗
. Fur-

ther, the set of seeds of  corresponding to 1 is disjoint from the set of seeds corresponding
to 2.
A detailed proof will be presented elsewhere.

Remark 4.5. Let 𝐺 be a semisimple complex Lie group with the Lie algebra 𝔤. The group 𝐺 is
equipped with the standard Poisson–Lie structure. In [20], the semiclassical limit of𝑞(𝔤𝔤 is real-
ized as a quotient by an ideal generated by Poisson central elements of the𝑊-invariant subring
of the coordinate ring of the second moduli space 𝐺𝐺𝐺𝐺0,1,2

of Fock–Goncharov cluster ensemble,
where 𝑆0,1,2 is a once punctured disk with two marked points on the boundary. This construc-
tion seems to be closely related to the projection 𝜋 above. However, no cluster structure on the
𝑊-invariant subring was considered in [20].

5 REDUCTION TO A GENERALIZED CLUSTER STRUCTURE ON
BAND PERIODICMATRICES

In [13], we presented a framework for constructing generalized cluster structures. It is based on
certain identities associated with periodic staircase shaped matrices. One of the examples con-
sidered in [13] was the generalized cluster structure 

𝐷

𝑛 that we treated in previous sections.
Another example was a generalized cluster structure on the space of (𝑘 𝑘 1𝑘 diagonal 𝑛-periodic
band matrices with 𝑘 ⩽ 𝑛. In this section, we will show how the latter structure, denoted here by
(𝑘𝑘𝑘) can be obtained as a restriction of the former. In particular, this will allow us to obtain
an analogue of Theorem 3.1 for (𝑘𝑘𝑘).

5.1 Initial cluster

In the case of the Drinfeld double 𝐷(𝐷𝐷𝐷𝐷𝑛), the periodic staircase matrix mentioned above is an
infinite block bidiagonal matrix

𝐿𝐿𝐿

⎡⎢⎢⎢⎢⎣
⋱ ⋱ ⋱ ⋱

0 𝑋 𝑌 𝑋

0 𝑋 𝑌 𝑋

⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎦
, (5.1)

that corresponds to (𝑋, 𝑌𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑛). Nowwe drop the invertibility requirement for𝑋 and choose
𝑌𝑌 to be a lower triangular bandmatrix withmin(𝑘 𝑘 1𝑘𝑘𝑘𝑘  non-zero diagonals (including themain
diagonal) and 𝑋 to be a matrix with zeros everywhere outside of the 𝑘 𝑘 𝑘 upper triangular block
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in the upper right corner:

𝑋 𝑋

⎡⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0 𝑎11 ⋯ 𝑎𝑘1
0 ⋯ 0 0 𝑎12 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱
0 ⋯ 0 ⋯ 0 𝑎1𝑘
0 ⋯ 0 ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝑌𝑌𝑌

⎡⎢⎢⎢⎢⎢⎢⎣

𝑎𝑘𝑘1𝑘1 0 ⋯ ⋯ ⋯ 0

𝑎𝑘𝑘 𝑎𝑘𝑘1𝑘𝑘 0 ⋯ ⋯ ⋯
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑎1,𝑘𝑘1 𝑎2,𝑘𝑘1 ⋯ 𝑎𝑘𝑘1𝑘𝑘𝑘1 0 ⋯
0 ⋱ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝑎1𝑛 𝑎2𝑛 ⋯ 𝑎𝑘𝑘1𝑘𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥⎦
for 𝑘 < 𝑘𝑘𝑘

𝑌𝑌𝑌
(
𝑎𝑛+𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛𝑛

)𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

for 𝑘 𝑘𝑘𝑘𝑘

(5.2)

where we assume that 𝑎𝑡𝑡𝑡 = 0 when 𝑡 𝑡𝑡𝑡𝑡𝑡   . Then 𝐿𝐿 in (5.1) is a (𝑘 𝑘 1𝑘-diagonal 𝑛-periodic
band matrix. We denote by 𝑘𝑘𝑘 the space of such matrices with an additional condition that all
entries of the lowest and the highest diagonals are non-zero. Let ̄𝑘𝑘𝑘 be the closure of 𝑘𝑘𝑘 in the
space 𝐷(Mat𝑛) =Mat 𝑛 ×Mat𝑛. Every element of ̄𝑘𝑘𝑘 is identified with a pair of matrices of the
form (5.2). In particular, vanishing of the lowest diagonal yields an inclusion 𝑘𝑘1𝑘𝑘𝑘 ⊂ ̄𝑘𝑘𝑘.
Note thatwhen suchmatrices are substituted into (3.1),Φ becomes reduciblewith a leading irre-

ducible block Φ(𝑘𝑘 of size (𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘𝑘𝑘  𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘. For 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖        , we define

𝜑̃𝑖 = 𝜑̃(𝑘𝑘
𝑖

= detΦ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
. (5.3)

By [13], a generalized cluster structure in the space of regular functions on 𝑘𝑘𝑘 is defined by
the following data.
Define the family 𝑘𝑘𝑘 of (𝑘 𝑘 1𝑘𝑘𝑘 regular functions on 𝑘𝑘𝑘 via

𝑘𝑘𝑘 =
{
{𝜑̃(𝑘𝑘

𝑖
}(𝑘𝑘1𝑘𝑘𝑘𝑘𝑘1𝑘
𝑖𝑖𝑖

; 𝑎̃11; {𝑎1𝑖}
𝑛
𝑖𝑖𝑖

; {𝑎𝑘𝑘1𝑘𝑘𝑘}
𝑛
𝑖𝑖𝑖

; {𝑐𝑖(𝑋, 𝑌𝑋𝑋
𝑘𝑘1
𝑖𝑖𝑖

}
, (5.4)

where 𝑎̃11 =( −1)𝑘𝑘𝑘𝑘𝑘1𝑘𝑎11 and 𝑐𝑖(𝑋, 𝑌𝑋𝑋𝑋𝑋𝑋𝑋  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑖(𝑋, 𝑌𝑋 for 1 ⩽ 𝑖 ⩽ 𝑘 𝑘 1 with 𝑐𝑖(𝑋, 𝑌𝑋 satis-
fying the identity det(𝜆𝜆𝜆𝜆  𝜇𝜆𝜆𝜆𝜆  𝜆𝑛𝑛𝑛𝑛

∑𝑘
𝑖𝑖𝑖 𝑐𝑖(𝑋, 𝑌𝑋𝑋𝑋

𝑖𝜆𝑘𝑘𝑘𝑘 .
Let 𝑄𝑘𝑘𝑘 be the quiver with (𝑘 𝑘 1𝑘𝑘𝑘 vertices, of which 𝑘 𝑘 1 vertices are isolated and are not

shown in the figure below, (𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘 are arranged in an (𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛    + 𝑛𝑛 grid and denoted
(𝑖𝑖𝑖𝑖𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛 𝑛𝑛 , 1 ⩽ 𝑗 ⩽ 𝑘 𝑘 1, and the remaining two are placed on top of the leftmost and
the rightmost columns in the grid and denoted (0,1) and (0, 𝑘 𝑘 1𝑘, respectively. All vertices in the
leftmost and in the rightmost columns are frozen. The vertex (1, 𝑘𝑘 is special, and its multiplicity
equals 𝑘. All other vertices are regular mutable vertices.
The edge set of 𝑄𝑘𝑘𝑘 consists of the edges (𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ;

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖𝑖𝑖𝑖𝑖    for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , (𝑖𝑖𝑖𝑖𝑖  ≠ (1, 𝑘𝑘; (𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    𝑖𝑖𝑖𝑖𝑖𝑖𝑖    for 𝑖 𝑖

1, … , 𝑛 𝑛𝑛 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , shown by solid lines. In addition, there are edges (𝑛 𝑛𝑛𝑛  3𝑛𝑛𝑛𝑛𝑛𝑛𝑛   ,
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F IGURE 7 Quiver 𝑄47

(1, 2) →( 𝑛 𝑛𝑛𝑛  4𝑛, (𝑛 𝑛𝑛𝑛  4𝑛𝑛𝑛𝑛𝑛   3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛        𝑛 𝑛𝑛𝑛𝑛𝑛   + 𝑛𝑛 that form a directed path
(shown by dotted lines). Save for this path, and the missing edge (1, 𝑘𝑘 → 𝑘1𝑘 𝑘 𝑘 1𝑘, mutable ver-
tices of 𝑄𝑘𝑘𝑘 form a mesh of consistently oriented triangles
Finally, there are edges between the special vertex (1, 𝑘𝑘 and frozen vertices (𝑖𝑖𝑖𝑖 , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖    for

𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    . There are 𝑘 𝑘 1 parallel edges between (1, 𝑘𝑘 and (𝑖𝑖𝑖𝑖𝑖𝑖𝑖    for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , and
one edge between (1, 𝑘𝑘 and all other frozen vertices (including (0, 𝑘 𝑘 1𝑘). The edge to (0, 𝑘 𝑘 1𝑘

is directed from (1, 𝑘𝑘; if 𝑘 > 𝑘, all other edges are directed toward (1, 𝑘𝑘, and if 𝑘 𝑘𝑘 , the direction
of the edge between (1,1) and (1, 𝑘𝑘 is reversed.
Quiver 𝑄47 is shown in Figure 7.
We attach functions 𝑎̃11, 𝑎12, … , 𝑎1𝑛, in a top to bottom order, to the vertices of the leftmost col-

umn in 𝑄𝑘𝑘𝑘, and functions 𝑎𝑘𝑘1𝑘1, … , 𝑎𝑘𝑘1𝑘𝑘𝑘, in the same order, to the vertices of the rightmost
column in 𝑄𝑘𝑘𝑘. Functions 𝜑̃𝑖 are attached, in a top to bottom, right to left order, to the remaining
vertices of 𝑄𝑘𝑘𝑘, starting with 𝜑̃1 attached to the special vertex (1, 𝑘𝑘. The set of strings 𝑘𝑘𝑘 con-
tains a unique non-trivial string (1, 𝑐1(𝑋, 𝑌𝑋, 𝑋 , 𝑐𝑘𝑘1(𝑋, 𝑌𝑋, 𝑋𝑋 corresponding to the unique special
vertex.

Theorem 5.1. The seed Σ𝑘𝑘𝑘 =( 𝑘𝑘𝑘, 𝑄𝑘𝑘𝑘,𝑘𝑘𝑘𝑘 defines a complete generalized cluster structure
(Σ𝑘𝑘𝑘) in the ring of regular functions on 𝑘𝑘𝑘 compatible with the restriction of the standard
Poisson–Lie structure on 𝐷(Mat𝑛).

Proof. The proof follows closely that for Theorem 3.1. Regularity of (Σ𝑘𝑘𝑘) is borrowed from
[13, Theorem 5.1]. The proof of log-canonicity and of compatibility is based on the downward
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induction on 𝑘, see Section 5.2. The proof of completeness is a modification of a similar statement
for the Drinfeld double and relies on the same ideas, see Section 5.3. □

5.2 Compatible Poisson bracket

Let us re-write the Poisson bracket (3.2) in terms of matrix entries of a pair of matrices (𝑋, 𝑌𝑋:

{𝑥𝑖𝑖𝑖, 𝑥𝑝𝑝𝑝} =
1

2
(sign(𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     )𝑥𝑖𝑖𝑖𝑥𝑝𝑝𝑝,

{𝑦𝑖𝑖𝑖, 𝑦𝑝𝑝𝑝} =
1

2
(sign(𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     )𝑦𝑖𝑖𝑖𝑦𝑝𝑝𝑝,

{𝑦𝑖𝑖𝑖, 𝑥𝑝𝑝𝑝} =
1

2

(
1+  sign(𝑞 𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑥𝑝𝑝𝑝 − (1+  sign(𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑦𝑝𝑝𝑝

)
.

(5.5)

This Poisson bracket can be extended to 𝐷(Mat𝑛). It follows from (5.5) that every inclusion in the
chain

𝐷(Mat𝑛) ⊃ ̄𝑛𝑛 ⊃ ̄𝑛𝑛𝑛𝑛𝑛 ⊃ ⋯ ⊃ ̄𝑘𝑘𝑘 ⊃ ⋯ ⊃ ̄2𝑛

is a Poisson map. The same is true about inclusions 𝑘𝑘𝑘 ⊂ ̄𝑘𝑘𝑘.

Proposition 5.2. The family 𝑘𝑘𝑘 defined in (5.4) is log-canonical with respect to the restriction of
the Poisson bracket (5.5) to 𝑘𝑘𝑘.

Proof. For 𝑘 𝑘𝑘𝑘 , substitute (𝑋, 𝑌𝑋𝑋  𝑛𝑛 into (3.1). Aswasmentioned above,Φ becomes reducible
with an irreducible (𝑛 𝑛𝑛𝑛 2 ×( 𝑛 𝑛𝑛𝑛 2 upper left block Φ(𝑛𝑛 and, for 𝑖 ⩽ (𝑛 𝑛𝑛𝑛 2, functions 𝜑𝑖
restricted to 𝑛𝑛 factor as

𝜑𝑖 = 𝜑̃(𝑛𝑛
𝑖
𝜑(𝑛𝑛𝑛𝑛2+1. (5.6)

By Theorem 3.1, Poisson brackets {log 𝜑𝑖, log 𝜑𝑗} = 𝜔𝑖𝑖𝑖 are constant on 𝐷(𝐷𝐷𝐷𝐷𝑛) and, by extension,
on 𝐷(Mat𝑛). Since 𝑛𝑛 is a Poisson submanifold in 𝐷(Mat𝑛), we obtain {log 𝜑̃

(𝑛𝑛
𝑖
, log 𝜑(𝑛𝑛𝑛𝑛2+1} =

𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2+1 for 𝑖 ⩽ (𝑛 𝑛𝑛𝑛 2, and thus

{log 𝜑̃(𝑛𝑛
𝑖
, log 𝜑̃(𝑛𝑛

𝑗
} = 𝜔𝑖𝑖𝑖 − 𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2+1 + 𝜔𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2+1

is constant on 𝑛𝑛 for any 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖        2; we denote this constant by 𝜔(𝑛𝑛
𝑖𝑖𝑖
. Furthermore, on

𝑛𝑛 we have ℎ𝑖𝑖(𝑌𝑌𝑌𝑌𝑌𝑌  𝑛+𝑛𝑛𝑛𝑛 ⋯𝑎𝑛+𝑛𝑛𝑛, g𝑖𝑖(𝑋𝑋𝑋𝑋𝑋  1𝑖 ⋯𝑎1𝑛, and so the log-canonicity of the entire
family 𝑛𝑛 follows from the log-canonicity of ̄𝑛. By extension, we get the log-canonicity of the
family 𝑛𝑛 on ̄𝑛𝑛.
Using induction, assume that {log 𝜑̃(𝑘𝑘

𝑖
, log 𝜑̃(𝑘𝑘

𝑗
} = 𝜔(𝑘𝑘

𝑖𝑖𝑖
is constant on ̄𝑘𝑘𝑘 for any 𝑖𝑖𝑖𝑖𝑖 

1, … ,( 𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘. Substituting (𝑋, 𝑌𝑋𝑋  𝑘𝑘1𝑘𝑘𝑘 into the (𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘𝑘𝑘  𝑘 𝑘 1𝑘𝑘𝑘𝑘𝑘  1𝑘 matrix
Φ(𝑘𝑘makes it reducible with an irreducible (𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘   1𝑘𝑘𝑘  𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘   1𝑘 upper left blockΦ(𝑘𝑘1𝑘

and functions 𝜑̃(𝑘𝑘
𝑖

restricted to 𝑘𝑘1𝑘𝑘𝑘 factor as 𝜑̃
(𝑘𝑘
𝑖

= 𝜑̃(𝑘𝑘1𝑘
𝑖

𝜑̃(𝑘𝑘
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘𝑘1

for 𝑖 ⩽ (𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘   1𝑘.
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In addition, 𝜑̃(𝑘𝑘
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘𝑘𝑘𝑘

= 𝑎1,𝑖𝑖𝑖⋯𝑎1𝑛 for 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    . Arguing precisely as above, we conclude
that

{log 𝜑̃(𝑘𝑘1𝑘
𝑖

, log 𝜑̃(𝑘𝑘1𝑘
𝑗

} = 𝜔(𝑘𝑘
𝑖𝑖𝑖

− 𝜔(𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
+ 𝜔(𝑘𝑘

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
(5.7)

is a constant on 𝑘𝑘1𝑘𝑘𝑘 for any 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖           and denote it by 𝜔(𝑘𝑘1𝑘
𝑖𝑖𝑖

. Therefore, the
log-canonicity of the entire family 𝑘𝑘1𝑘𝑘𝑘 on 𝑘𝑘1𝑘𝑘𝑘, and hence on ̄𝑘𝑘1𝑘𝑘𝑘, follows from the log-
canonicity of 𝑘𝑘𝑘 on ̄𝑘𝑘𝑘. □

Proposition 5.3. The Poisson bracket (5.5) is compatible with the generalized cluster structure
(Σ𝑘𝑘𝑘) on 𝑘𝑘𝑘.

Proof. Wewill use induction again. Within this proof, it will be convenient to refer to the vertex in
𝑄̄𝑛 to which the variable 𝜑𝑖 is attached and to the vertex in𝑄𝑛𝑛 to which the variable 𝜑̃𝑖 is attached
as the vertex 𝑖 in the corresponding quiver. Assume first that 𝑘 𝑘𝑘𝑘 , and let 𝑦𝑖 be the 𝑦-variable
corresponding to the vertex 𝑖 in 𝑄̄𝑛 and 𝑦

(𝑛𝑛
𝑖

be the 𝑦-variable corresponding to the vertex 𝑖 in𝑄𝑛𝑛.
We claim that on 𝑛𝑛, 𝑦

(𝑛𝑛
𝑖

= 𝑦𝑖 for all mutable vertices in 𝑄𝑛𝑛.
Indeed, for 𝑛 𝑛𝑛𝑛  ⩽ (𝑛 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛 , the neighborhood of the vertex labeled 𝑖 in 𝑄𝑛𝑛 is identical

to the neighborhood of the vertex labeled 𝑖 in 𝑄̄𝑛. We claim that on 𝑛𝑛, 𝑦
(𝑛𝑛
𝑖

= 𝑦𝑖 .
For (𝑛 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛    ⩽ (𝑛 𝑛𝑛𝑛 2, let 𝑖′ = 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     . Then

𝑦(𝑛𝑛
𝑖

=
𝜑̃(𝑛𝑛
𝑖𝑖𝑖

𝜑̃(𝑛𝑛
𝑖𝑖𝑖𝑖

𝑎1,𝑖′+1

𝜑̃(𝑛𝑛
𝑖𝑖𝑖

𝜑̃(𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

=
𝜑𝑖𝑖𝑖𝜑𝑖𝑖𝑖𝑖g𝑖′+1,𝑖′+1
𝜑𝑖𝑖𝑖𝜑𝑖𝑖𝑖𝑖𝑖𝑖g𝑖′+2,𝑖′+2

= 𝑦𝑖,

by (5.6) and since g𝑗𝑗 = 𝑎1𝑗 ⋯𝑎1𝑛 on 𝑛𝑛.
For 1<  𝑖 ⩽ 𝑛,

𝑦(𝑛𝑛
𝑖

=
𝜑̃(𝑛𝑛
𝑖𝑖𝑖

𝜑̃(𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑛+𝑛𝑛𝑛𝑛

𝜑̃(𝑛𝑛
𝑖𝑖𝑖

𝜑̃(𝑛𝑛
𝑖𝑖𝑖𝑖

=
𝜑𝑖𝑖𝑖𝜑𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖
𝜑𝑖𝑖𝑖𝜑𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑦𝑖,

by (5.6) and since ℎ𝑗𝑗 = 𝑎𝑛+𝑛𝑛𝑛𝑛 ⋯𝑎𝑛+𝑛𝑛𝑛 on 𝑛𝑛.
Finally,

𝑦(𝑛𝑛
1

=
⎛⎜⎜⎝
𝜑̃(𝑛𝑛
2

𝜑̃(𝑛𝑛
𝑛+𝑛

⎞⎟⎟⎠
𝑛

𝑎𝑛+𝑛𝑛𝑛∏𝑛
𝑗𝑗𝑗 𝑎1𝑗

(∏𝑛
𝑗𝑗𝑗 𝑎𝑛+𝑛𝑛𝑛𝑛

)𝑛𝑛𝑛 =

(
𝜑2

𝜑𝑛+𝑛ℎ22

)𝑛 ℎ11
g11

= 𝑦1.

Therefore {log 𝑦(𝑛𝑛
𝑖
, log 𝜑̃(𝑛𝑛

𝑗
} = {log 𝑦𝑖, log 𝜑𝑗 − log 𝜑(𝑛𝑛𝑛𝑛2+1} =𝑑𝑑 𝑖𝛿𝑖𝑖𝑖 , where 𝑑𝑑1 = 𝑛 and 𝑑𝑑𝑖 =1

otherwise. The induction step is performed in precisely the same fashion by showing that on
𝑘𝑘1𝑘𝑘𝑘, for all mutable vertices in 𝑄𝑘𝑘1𝑘𝑘𝑘, 𝑦

(𝑘𝑘1𝑘
𝑖

= 𝑦(𝑘𝑘
𝑖
. □

Remark 5.4. When restricted to𝑘𝑘𝑘, the Poisson structure 5.5 coincides with the one considered in
a recent paper [16] on the space of properly bounded 𝑛-periodic difference operators. Amodification
of that Poisson bracket for spaces of sparse pseudo-difference operators was also considered in [16]
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in order to derive complete integrability of a family of pentagram-likemaps. Itwould be interesting
to see if such a modification has a cluster-algebraic meaning as well.

5.3 Completeness

The next two propositions are analogous to Propositions 3.5, 3.6 and can be proved in exactly the
same way.

Proposition 5.5. There exists a (𝑘 𝑘 1𝑘𝑘𝑘  𝑘 𝑘 1𝑘 unipotent upper triangular matrix 𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

such that:

(i) entries of 𝐺 are rational functions in 𝑋, 𝑌𝑌 whose denominators are monomials in cluster vari-
ables 𝜑̃𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     ; and

(ii) the (2𝑘 𝑘𝑘𝑘𝑘𝑘   𝑘 𝑘 1𝑘matrix 𝑆 𝑆

[
𝑌𝑌[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

𝐺𝐺𝐺[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

[1,𝑘𝑘1𝑘

]
satisfies

det 𝐺[𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘

[𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘
=

𝜑̃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝜑̃𝑗𝑗𝑗𝑗𝑗
, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗              (5.8)

Proposition 5.6. There exists a (𝑘 𝑘 1𝑘𝑘𝑘  𝑘 𝑘 1𝑘 unipotent lower triangular matrix 𝐻 𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

such that:

(i) entries of 𝐻 are rational functions in 𝑋, 𝑌𝑌 whose denominators are monomials in cluster vari-
ables 𝜑̃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     ; and

(ii) the (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 + 𝑛𝑛𝑛𝑛𝑛   band matrix

𝑇 𝑇
[
𝑋[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

[2,𝑛𝑛
𝑌𝑌[1,𝑛𝑛𝑛𝑛+𝑛𝑛

[2,𝑛𝑛
𝑌𝑌[𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛

[2,𝑛𝑛
𝐻
]

satisfies

det 𝑇
[𝑛+𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛+𝑛𝑛𝑛

[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
=

𝜑̃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛

𝜑̃(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘𝑘1
, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗              (5.9)

The completeness statement for (𝑘𝑘𝑘) is based on the following result.

Proposition 5.7. All matrix entries 𝑎𝑖𝑖𝑖 , 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗 , are cluster variables in (𝑘𝑘𝑘).

Proof. We use an argument similar to that in the proof of Proposition 3.7. Namely, we will tem-
porarily freeze certain subsets of vertices in𝑄𝑘𝑘𝑘 and compare the result with initial seeds of appro-
priate previously studied cluster structures. First, freeze the vertices in the top row of 𝑄𝑘𝑘𝑘, that
is, those that correspond to 𝜑̃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     . Then the vertices that correspond to 𝑎11,
𝑎12, 𝑎𝑘𝑘1𝑘1, 𝑎𝑘𝑘1𝑘𝑘𝑘 become isolated. The subquiver 𝑄̃𝑘𝑘𝑘 of 𝑄𝑘𝑘𝑘 formed by the remaining vertices
is closely related to an initial quiver 𝑄′

𝑘𝑘𝑘𝑘𝑘1
for the regular cluster structure (′

𝑘𝑘𝑘𝑘𝑘1
) on the

space ′
𝑘𝑘𝑘𝑘𝑘1

of (𝑛 𝑛𝑛𝑛𝑛𝑛   𝑛 + 𝑛𝑛𝑛𝑛𝑛   band matrices with 𝑘 𝑘 1 diagonals that was constructed
in [7, Section 10] via a quasi-isomorphism from the regular cluster structure on the affine cone
Ĝr(𝑛 𝑛𝑛𝑛  𝑛 + 𝑛𝑛𝑛𝑛𝑛   over the Grassmannian Gr(𝑛 𝑛𝑛𝑛  𝑛 + 𝑛𝑛𝑛𝑛𝑛  . The difference is that in 𝑄′

𝑘𝑘𝑘𝑘𝑘1
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there are no edges between the vertices in the top row and vertices in the bottom row. Let 𝑇 be an
element in ′

𝑘𝑘𝑘𝑘𝑘1
:

𝑇 𝑇

⎡⎢⎢⎢⎢⎣
𝑡12 𝑡22 ⋯ 𝑡𝑘𝑘1𝑘𝑘 0 ⋯ 0

0 𝑡13 𝑡23 ⋯ 𝑡𝑘𝑘1𝑘𝑘 0 ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋱ ⋱
0 ⋯ 0 𝑡1𝑛 𝑡2𝑛 ⋯ 𝑡𝑘𝑘1𝑘𝑘𝑘

⎤⎥⎥⎥⎥⎦
;

note that 𝑡𝑖𝑖𝑖 = 𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. Initial cluster variables that correspond to 𝑄′
𝑘𝑘𝑘𝑘𝑘1

in (′
𝑘𝑘𝑘𝑘𝑘1

) are func-
tions 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇, 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , where 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇 is the maximal dense minor of 𝑇 with 𝑡𝑖𝑖𝑖 in
the upper left corner, and matrix entries 𝑡1𝑗 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , 𝑡𝑘𝑘1𝑘𝑘𝑘 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     . The latter are
frozen and attached to the same vertices in 𝑄′

𝑘𝑘𝑘
that 𝑎1𝑗 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , and 𝑎𝑘𝑘1𝑘𝑘𝑘 , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     ,

are attached in 𝑄̃𝑘𝑘𝑘. The function 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇 is attached to the vertex (𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   of 𝑄′
𝑘𝑘𝑘
. In addition to

the frozen variables mentioned above, the variables attached to the vertices of the first row of 𝑄′
𝑘𝑘𝑘

are also frozen. All the irreducible row-dense minors of 𝑇 are cluster variables in (′
𝑘𝑘𝑘𝑘𝑘1

).
Note that in [7] an initial seed for (′

𝑘𝑘𝑘𝑘𝑘1
) is not described explicitly. To justify our explicit

description of the seed above, we rely on two observations. First, the functions 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇 are images
under the quasi-isomorphism of [7] of cluster variables of the initial seed for Ĝr(𝑛 𝑛𝑛𝑛  𝑛 + 𝑛𝑛𝑛𝑛𝑛 

as described in [9, Chapter 4]. This means that subquivers formed by non-frozen vertices in the
initial quivers for these two structures coincide, the only difference is in the arrows that connect
frozen and non-frozen variables. Second, the edges between frozen and non-frozen variables in
the initial quiver for (′

𝑘𝑘𝑘𝑘𝑘1
) are uniquely determined by the regularity of this cluster structures.

To see this, one needs to analyze, in a bottom to top order, the exchange relations for left-most and
right-most mutable vertices in 𝑄′

𝑘𝑘𝑘𝑘𝑘1
and apply the standard Desnanot–Jacobi identities.

Now, assume that 𝑇 𝑇 ′
𝑘𝑘𝑘𝑘𝑘1

is the matrix defined in Proposition 5.6. Then it follows from

(5.9) that 𝑡1𝑗 = 𝑎1𝑗 for 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , 𝑡𝑘𝑘1𝑘𝑘𝑘 = 𝑎𝑘𝑘1𝑘𝑘𝑘 for 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗      and 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇𝑇
𝜑̃(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘𝑘𝑘𝑘𝑘1

𝜑̃(𝑘𝑘𝑘𝑘𝑘1𝑘𝑘𝑘𝑘𝑘1𝑘𝑘1
for

𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   . Then, just like in the proof of Proposition 3.7, we conclude that sequences
of mutations in (𝑘𝑘𝑘) that do not involve functions 𝜑̃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     , result in cor-
responding sequences of mutations in (′

𝑘𝑘𝑘𝑘𝑘1
) with the initial seed defined by 𝑄′

𝑘𝑘𝑘
and func-

tions 𝑡1𝑗 , 𝑡𝑘𝑘1𝑘𝑘𝑘 , 𝜓𝜓𝑖𝑖𝑖(𝑇𝑇. Since every 𝑡𝑖𝑖𝑖 is a cluster variable in (′
𝑘𝑘𝑘𝑘𝑘1

) and 𝑡𝑖𝑖𝑖 = 𝑎𝑖𝑖𝑖 unless
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                    , we use the argument in the proof of Propo-
sition 3.7 to conclude that, for (𝑖𝑖𝑖𝑖𝑖  ∉ 𝑖𝑖, 𝑎𝑖𝑖𝑖 is a cluster variable in (𝑘𝑘𝑘).
The case of (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    is treated in a similar way. Namely, consider the vertices corresponding

to 𝜑̃𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     , and to 𝜑̃(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1𝑘𝑘𝑘𝑘𝑘𝑘, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     , in 𝑄𝑘𝑘𝑘. The vertices in the first
set form an anti-diagonal that starts in the upper right corner of the grid formed by non-frozen
vertices of 𝑄𝑘𝑘𝑘, and the vertices in the second set lie immediately below the anti-diagonal that
starts in the lower left corner of this grid. Let us temporarily freeze the vertices in both sets as well
as all the vertices lying between them. The quiver 𝑄̂𝑘𝑘𝑘 obtained by deleting all isolated vertices is,
once again, similar to the quiver of the initial seed for the cluster structure (′

2𝑘𝑘𝑘𝑘𝑘𝑘1
) on a set of

finite band matrices, this time (2𝑘 𝑘𝑘𝑘𝑘𝑘   𝑘 𝑘 1𝑘 matrices with 𝑘 diagonals. To see this, one just
needs to move the vertices of 𝑄̂𝑘𝑘𝑘 around in a way illustrated in Figure 8 for the case 𝑛 = 𝑛𝑛𝑛𝑛  = 5.
The latter quiver is isomorphic to𝑄′

𝑘𝑘1𝑘𝑘𝑘𝑘𝑘
, but we denote it by𝑄𝑇

𝑘𝑘1𝑘𝑘𝑘𝑘𝑘
to reflect the fact that

the initial seed for (′
2𝑘𝑘𝑘𝑘𝑘𝑘1

) can be easily obtained from the one for (′
𝑘𝑘1𝑘𝑘𝑘𝑘𝑘

) via transpo-
sition. To obtain 𝑄𝑇

𝑘𝑘1𝑘𝑘𝑘𝑘𝑘
from 𝑄̂𝑘𝑘𝑘 one simply needs to erase vertices in the bottom row that
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correspond to functions 𝜑̃𝑗𝑗𝑗𝑗𝑗, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     . Then the functions

𝜑̃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝜑̃𝑗𝑗𝑗𝑗𝑗
, 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗            

are subject to exchange relations in (′
2𝑘𝑘𝑘𝑘𝑘𝑘1

). At the same time, by Proposition 5.5, these
functions represent the minors of the band matrix 𝐴 that, together with the frozen variables
𝑎1𝑖 , 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      , and 𝑎𝑘𝑘1𝑘𝑘𝑘 , 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖       , form an initial seed for (′

2𝑘𝑘𝑘𝑘𝑘𝑘1
). Then the

argument concludes exactly as above. □

To establish completeness of (𝑘𝑘𝑘), it now remains to show that 𝑎𝑖𝑖, 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , belong to
the generalized upper cluster algebra((𝑘𝑘𝑘)). Since these are the entries of the first row of 𝑋
as defined in (5.2), one applies a modification of Lemma 3.8 and its proof. To this end, we replace
the system (3.17) with

𝑐𝑗(𝑋, 𝑌𝑋𝑋  𝑐𝑗(𝑋̄, 𝑌𝑋𝑋

𝑘∑
𝑖𝑖𝑖

𝑎𝑖𝑖𝑧𝑖𝑖𝑖(𝑋̄, 𝑌𝑋, (5.10)

where 𝑋̄ is defined as in the proof of Lemma 3.8. The implication det 𝑍 𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑖𝑖𝑖(𝑋̄, 𝑌𝑋𝑋
𝑘
𝑖𝑖𝑖𝑖𝑖𝑖

=

0 ⇒ 𝜑̃1 = 0 is established via the same reasoning as before, except now 𝑋𝑌−1 =
[
𝑈 𝑈
0 0

]
, where the

block 𝑈 is 𝑘 𝑘 𝑘 and (3.18) implies that det[𝑈𝑘𝑘1𝑒𝑒1𝑈
𝑘𝑘𝑘𝑒𝑒1⋯𝑈𝑈𝑈1 𝑒𝑒1] = 0. As before, [13, Lemma

3.3] states that the determinant in the last equation is a non-zero multiple of 𝜑̃1 and the desired
implication is confirmed. The rest of the arguments in the proof of Lemma 3.8 transfer to the
current situation in a straightforward way.
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