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Abstract

Dynamic information flow analysis (DIFA) supports
various security applications such as malware analysis and
vulnerability discovery. Yet traditional DIFA approaches have
limited utility for distributed software due to applicability,
portability, and scalability barriers. We present FLOWDIST, a
DIFA for common distributed software that overcomes these
challenges. FLOWDIST works at purely application level to

avoid platform customizations hence achieve high portability.

It infers implicit, interprocess dependencies from global
partially ordered execution events to address applicability to
distributed software. Most of all, it introduces a multi-staged
refinement-based scheme for application-level DIFA, where
an otherwise expensive data flow analysis is reduced by
method-level results from a cheap pre-analysis, to achieve
high scalability while remaining effective. Our evaluation of
FLOWDIST on 12 real-world distributed systems against two
peer tools revealed its superior effectiveness with practical
efficiency and scalability. It has found 18 known and 24 new
vulnerabilities, with 17 confirmed and 2 fixed. We also present
and evaluate two alternative designs of FLOWDIST for both
design justification and diverse subject accommodations.

1 Introduction

Tracking/checking dynamic information flow underlies

various security applications (e.g., [73, 94, 96, 110, 116]).

It addresses a general source-sink problem for a program
execution, in which a source is where confidential or untrusted
(i.e., sensitive) information is produced and flows into the
program, while a sink consumes the information and makes
it flow out of the program execution [40]. Due to its focused
reasoning about actual executions, this approach has precision
merits over statically inferring information flow.

One technique realizing the approach is to compute the
chains of dynamic control/data dependencies hence infer
full information flow paths between given sources and sinks
during the execution (e.g., [94-96, 115]). We refer to this
technique as dynamic information flow analysis (DIFA).
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An alternative technique is to apply a tag to (i.e., taint)
the data entering the program via the sources, propagate the
taint tag during the execution, and check the data at the sinks
against the presence of the tag (e.g., [42,45,59,60,64,77,80,
82,83,97,102,112,114,117,120,121, 124-126]). We refer to
this technique as dynamic taint analysis (DTA). Unlike DIFA,
DTA does not compute full information flow paths. DIFA
thus provides better support in usage scenarios that require
more detailed flow information (e.g., diagnosing data leaks
by inspecting the full flow paths).

Yet current DIFAs are hardly applicable to multi-process
programs, such as distributed systems (e.g., Voldemort [29],
a distributed key-value store). The reason is that they rely
on explicit dependencies (via references and/or invocations)
among code entities, dismissing implicit dependencies across
processes [67]. On the other hand, distributed systems widely
serve critical application domains (e.g., banking, medical,
social media), thus their security is of paramount importance.

Only a few existing DIFA/DTA tools (e.g., [80, 117])
overcame the applicability challenge by working at system
level with platform customizations. However, keeping the
customizations up with diverse and rapidly evolving platforms
would be time-consuming and even infeasible, which
constitutes a portability challenge. A purely application-level
analysis would eliminate the need for platform customizations.
Yet such an analysis faces a scalability challenge for two
reasons. First, application-level dynamic analysis is known to
generally incur substantial overheads. Second, working at a
fine granularity for desirable precision, as well as the typically
large size and great complexity of distributed software, adds
further to the analysis costs.

In this paper, we present FLOWDIST, a purely
application-level DIFA that addresses all the three challenges
to work practically with common distributed software.
The practicality goal here subsumes two specific aims:
scalability—FLOWDIST should be scalable to real-world
distributed systems, and effectiveness—it should be effective
for discovering known and unknown (new) vulnerabilities
in such systems at a reasonable level of accuracy. Our key
insights for fulfilling these aims are as follows:



* Since a fine-grained information flow path is subsumed by
a corresponding coarser-grained path, a cheap pre-analysis
computing the latter can narrow down the scope of the
former which may be quite expensive. This way, the overall
analysis cost can be largely reduced without effectiveness
loss, fulfilling the scalability aim.

* As the collection and use of various forms of program data
come with different cost and effectiveness contributions
to the cost-effectiveness of the entire analysis, carefully
combining these data can help attain a practical level of
accuracy while maintaining efficiency, which fulfills the
effectiveness aim without sacrificing scalability.

Following these insights, FLOWDIST introduces a
multi-staged refinement-based scheme for DIFA to attain
high scalability, where a pre-analysis computes method-level
information flow paths approximately but rapidly, followed
by a fine-grained analysis that computes statement-level

flow paths precisely as guided by the method-level results.

Then, FLOWDIST adopts a hybrid scheme using various
forms of data (i.e., method-level execution events, static
dependencies and dynamic coverage both at statement level)
to balance its cost and effectiveness. FLOWDIST addresses
the portability and applicability challenges by working at
purely application level while inferring implicit, interprocess
dependencies from happens-before relations among executed
methods across processes by partially ordering key execution
(entry, returned-into) events of those methods. The slight
compromise of precision (due to the method-level granularity)
of the interprocess part of the DIFA is compensated by precise,
ultimately statement-level analysis results within each process
(i.e., intraprocess part of the DIFA), resulting in a practical
level of accuracy overall.

To further understand the methodology for scalable,
application-level DIFA, we have also developed two
alternative designs of FLOWDIST: FLOWDISTsim and
FLOWDISTmul. The first performs more static analysis
while the second performs more dynamic analysis, both
further reducing the overall analysis overhead under certain
conditions. With these variants, FLOWDIST accommodates
diverse user needs in providing the best cost-effectiveness
tradeoffs for different kinds of distributed systems.

We implemented FLOWDIST and the two alternative
designs for Java and applied them to 12 distributed systems
of diverse scales, architectures, and domains, all of which are
real-world systems. For various operational scenarios of these
systems, FLOWDIST exhibited highly promising analysis
accuracy and efficiency. For the given lists of sources/sinks
(default ones in our study), FLOWDIST computes information
flow paths between all possible source-sink pairs. For each
subject execution, we sampled 20 flow paths when there were
more; otherwise, we sampled all paths reported. FLOWDIST

attained perfect precision and recall per our manual validation.

On average, FLOWDIST took 19 minutes for its one-off
analyses for all possible information flow path queries
(i.e., source-sink pairs) with respect to a given source/sink

configuration and 13 seconds for each query, while incurring
less than 1x run-time slowdown and negligible storage costs.
We further validated the practical usefulness of FLOWDIST by
using it to identify real vulnerability cases reported previously
in public vulnerability databases (e.g, CVEs [31]). Out of
24 cases studied, FLOWDIST found 18, with the other 6
being missed because the respective vulnerabilities were not
covered by the executions considered. It also revealed 24 new
vulnerability cases in several of the studied industry-scale
systems, of which 17 have been confirmed and 2 fixed
already by the developers. In contrast to the only two
state-of-the-art peer tools for Java that we could compare
with, (one dynamic [47] and one static [76]), FLOWDIST
exhibited superior effectiveness with practical efficiency and
high scalability. None of the baselines found any of the
existing and new vulnerabilities that FLOWDIST discovered.
Through FLOWDIST, we demonstrate a general,
refinement-based methodology for cost-effective and scalable
DIFA at purely application level, which can enable a number
of applications beyond the scope of information flow security
(e.g., system understanding and performance diagnosis)
and the domain of distributed software (e.g., single-process
concurrent programs). Our contributions and novelties are:

e The first purely application-level DIFA for common
distributed software, FLOWDIST, which features a hybrid
fine-grained data flow analysis that instantiates a
multi-staged refinement-based methodology for DIFA to
holistically overcome applicability, portability, scalability,
and cost-effectiveness barriers with peer approaches (§3).

* Alternative designs of FLOWDIST that further explore
the design methodology for DIFA to best accommodate
distributed software of diverse scale/complexity (§4).

* An open-source implementation of FLOWDIST for Java
that works with distributed software systems of various
architectures and application domains (§5).

» Extensive empirical evaluations of FLOWDIST that show
its practical effectiveness and scalability, as well as
superior capabilities in vulnerability discovery, over two
state-of-the-art approaches (§6).

The FLOWDIST artifact is available here [65], including the
source code, experimental scripts, (installation, configuration,
and usage) documentation, and relevant data sets.

2 Background and Motivation

We introduce distributed software systems and define the
problem of DIFA for these systems as opposed to DTA. A
real-world example is then given to motivate our work.

Distributed software systems. Driven by increasing
demands for computational performance and scalability,
increasingly more real-world software systems today are
distributed by design [61]. We address systems for
general-purpose distributed computing as defined in [61],
noted as common distributed systems, as opposed to those of



special types (e.g., RMI-based [113] or event-based [99]).

In common distributed software, components located at
networked computers communicate and coordinate their
actions only by passing messages, while running concurrently
in multiple (distributed) processes without a global clock.
Due to this decoupling, dependencies among distributed
components  (processes), noted as inter-component
(interprocess) dependencies, are implicit [53]. Sensitive
information can flow across decoupled components/processes
via these implicit dependencies, leading to, among other
issues, information flow security vulnerabilities that are
missed by analyses based on explicit dependencies (as are
most current techniques). Next, we use a real-world example
to illustrate the need for analyzing such information flows.

DIFA versus DTA. These are two related techniques for
tracking/checking dynamic information flows. While they
have been treated equivalently and named exchangeably [60],
we differentiate them (1) by their inner workings as mentioned
earlie—DIFA works by computing dynamic dependencies
while DTA works via data tainting and taint propagation, and
(2) by their results—DIFA provides full information flow
paths while DTA just tells which data is tainted.

On the other hand, both DIFA and DTA solve a source-sink
problem, concerning information flow between given sources
and sinks. For DIFA, we define a source as a function (call)
producing information of interest (e.g., sensitive data) that
flows into the program, and a sink as a function (call) that
consumes the information and makes it flow out of the
program. We refer to an exercised program path from a source
to a sink as a (dynamic) sensitive information flow path. For
multi-process programs (e.g,. distributed software systems),
we divide an interprocess information flow path into three
segments: source information flow path segment (SOFPS)
and sink information flow path segment (SIFPS), consisting
of only statements within the process that executes the source
and the sink, respectively, and remote information flow path
segment (REFPS) consisting of all other statements.

Motivating example. Figure | shows an excerpt from
Apache ZooKeeper (v3.4.11), a popular distributed
coordination service, where the sensitive flow is responsible
for CVE-2018-8012 [32]. It revealed that when an Apache
ZooKeeper server starts and attempts to join a quorum, there
is no enforced authentication. As shown, the data-leaking
flow exercised in the relevant execution crossed three
processes: The sensitive data (a security key) was read into
incomingBuff in class clientcnxnsockernto Of a Client process
(at the Source), passed through class instancecontainer of a
Container process, and reached class sinaryoutputarchive of a
Server process where the data leaked out of the system (at
the Sink). This leakage caused an authentication failure when
an endpoint attempted to join a quorum, which thus might
propagate fake changes to the leader node of ZooKeeper.
Suppose this case, along with the system execution that
revealed it, is reported to a developer for diagnosis, to whom
no platform customization is feasible. Purely application-level

// Executed in a Client process
39 public class ClientCnxnSocketNIO extends ClientCnxnSocket {. . .

61 public void dolO(java.utils.list,>**) { . . .
63 SocketChannel sock = (SocketChannel) sockKey.channel();
68 int rc = sock.read(incomingBuffer); // Source Blue line: source
103 Packet p = findSeridablePacket(outgoingQueue,... ';;:g:;:'gbﬁgg path
ey Green line: remote
107 sock.write(p.bb); ... }} information flow path
~ segment (REFPS)

. N\ Red line: sink
// Executed in a Container process / information flow path

247 public class InstanceContairya'f implements Watcher, ...{ | segment (SIFPS)

391 public void run() throwsylOException, ... { Solid line:
intraprocess flow

392 zk = new ZooKeeper(zkHostPort, sessTimeout, this); pashed line:

393 mknod(assngnments/Node CreateMode.PERSISTENT); | interprocess flow

397 zk.getChildren(assignmentsNode, true, this, nul...} ...}

// Executed in a Server process \

432 public class BinaryOutputArchive |mp\ementsDutputArch|ve/{
437  public getArchive(java.io.OutputStream &trm) {~ —

438 return new BinaryOutputArchive(new DataOutputStream(strm)); }
442  public BinaryOutputArchive(DatdOutput out) {
443 this.out = out;

454 public void\writelnt(int i, String tag) throws IOException {...
455 out.writelnt(i); // Sink L))

Figure 1: A case of sensitive information flow (marked by arrowed
lines) in ZooKeeper across its three components (processes).

DIFA/DTA tools exist (e.g., [35]), which only track flows
within the same processes (plus most of such tools only work
for C/C++ programs). There are analyses that resolve data
flows across decoupled components (e.g., [74, 119]), yet they
do not work for common distributed software; and they are
static hence would lead to excessive imprecision. We will
demonstrate how FLOWDIST addresses these challenges.

3 Approach

This section elaborates FLOWDIST, starting with an overview,
followed by design details.

@ Phasel: Pre -analysis
Approximating information flow paths

) Phase 2: Refmement
Refining Information flow paths

o |
I ! Statement-level Information ||
Branch coverage !
! Q 8 \J | } flow paths |
} Method event traces Ll |
| |
! | Method-level information flow paths | | FiowDist Output
|

M,

Figure 2: FLOWDIST overview: the cheap pre-analysis
computes coarse flow paths to reduce the expensive
fine-grained analysis which refines the coarse result.

3.1 Overview

Figure 2 depicts the overall workflow and two phases of
FLOWDIST. The high-level idea is to achieve the scalability
and effectiveness aims via a multi-staged refinement-based
DIFA design, as guided by our key insights as outlined earlier.



FLOWDIST takes three inputs: the distributed program
D under analysis, the run-time input / that drives the
specific concrete execution of D, and a user configuration
C that specifies the sources and sinks as common inputs
required by DIFA/DTA. Optionally, a list of message-passing
APIs that FLOWDIST recognizes in order to monitor
interprocess communication (i.e., message-passing) events
may be given in C. If the user does not specify this
list, common message-passing APIs in the language (e.g.,
Java) SDK would be considered by default (as listed
in [65]/Message_PassingAPIList.txt and in the Appendix).

With these inputs, FLOWDIST profiles method execution
events and branch coverage hence computes method-level
information flow paths in its pre-analysis phase (Phase 1)
to narrow down the scope of later analyses that may be
highly expensive (hence impede the overall scalability of
FLOWDIST) otherwise. Then, in the refinement phase (Phase
2), FLOwDIST refines the method-level paths via a hybrid
analysis of dynamic dependencies, using the method events
and branch coverage. This phase produces statement-level
flow paths as the eventual output of FLOWDIST.

Working example. To illustrate how FLOWDIST works, we
will use the case of Figure | as a working example: running
ZooKeeper against a system test, querying information flow
paths between two methods (java.nio.channels.SocketChannel
read(java.nio.ByteBuffer) and java.io.DataOutput writelnt (int) ) as
a source/sink pair (i.e., flow path query). For brevity, we will

omit from our illustrations the callees not shown in the figure.

3.2 Pre-analysis (Phase 1)

Distributed program D User configuration € Program Input /

L1 v 1 12 1 15 L3
Static Analysis & Instrumentation Tracing Method-Level Analysis
Computing relevant methods and Run D’ to trace method Computing method-level

probing for monitoring events and branch events information flow paths

Method event traces
Method-level
information flow paths

Branch coverage

Figure 3: The process of FLOWDIST pre-analysis (Phase 1).

Instrumented
programD’

To enable a cost-effective DIFA, FLOWDIST uses (1)

several forms of dynamic data and (2) static dependencies.

Computing these, especially (2), can be too expensive to scale
to large-scale systems, as we have empirically validated. The
pre-analysis aims to reduce the overall cost by narrowing
down the scope of such computations, in three steps as shown
in Figure 3 and detailed below.

Static analysis and instrumentation (1.1). FLOWDIST
utilizes three kinds of dynamic data in its hybrid analysis
of dynamic dependencies to achieve a good cost-effectiveness
balance, as inspired by prior work [70]: (1) two kinds
of method execution events—entry (i.e., program control

entering a method) and returned-into (i.e., program control
returning from a callee into a caller), (2) two kinds of
message-passing events—sending/receiving a message, and
(3) branch coverage events—a branch being exercised.

To this end, we instrument D to probe for these events,
with respect to the given or default message-passing APIs.
Since only the methods on a static control flow path between a
source-sink pair are likely to occur on a dynamic information
flow path between the same pair, we only need to probe for
the events of those methods, referred to as relevant methods.
Accordingly, only branches in a relevant method (i.e., relevant
branches) need to be probed. Thus, we start by constructing
the interprocedural control flow graph (ICFG) of each
distributed component in D and treat each message-sending
and message-receiving API callsite in the component as an
additional sink and source, respectively. Then, any method
through which a sink is control-flow reachable from a source
on the ICFG is identified as a relevant method.

Tracing (1.2). In this step, the instrumented program D’
is executed against the program input /, during which the
three kinds of events are traced (at instance level but only
for relevant methods and branches). Given the absence of a
global timing mechanism in common distributed software,
FLOWDIST uses the Lamport time-stamping (LTS) [105]
algorithm to derive the global partial ordering of the two kinds
of method execution events, to derive the happens-before
relations required for interprocess dependence inference. With
LTS, each process maintains a logic clock locally, which
may be updated by, or used to update, the local clocks
of other (communicating) processes. The synchronization
is realized by attaching the current values of local logic
clocks to the messages transmitted among processes. Then,
the synchronized logic clocks are used to time-stamp the
method-execution events hence maintain the global partial
ordering of all such events during D’s execution.

For each of the n processes (P;) in the execution, besides
the trace (7;) of the partially-ordered, time-stamped method
execution events, a mapping (p2mli]) is produced to keep the
timestamp (p2fml[i][j]) of each message-passing event of P;
receiving the first message from a process P; (i, j€[1,n], j7#i).
This mapping is used to enhance the precision of the
interprocess dependence inference.

Method-level analysis (1.3). With the event traces and
mapping from Step 1.2, FLOWDIST then identifies (from
D) the list SO (resp., ST) of the enclosing methods of each
source (resp., sink) in C and computes the method-level
paths according to Algorithm 1. The key idea is to combine
method-level control flow and process-level data flow for a
dynamic method-level dependence approximation.

The algorithm searches paths ps by traversing the n
per-process traces (lines 2-11). In each trace T;, the set Sy
of covered source-enclosing methods is obtained (line 3). No
path would start in P; (corresponding to T;) if there is no
source executed in P; (line 4). Otherwise, for each method g
in S, the algorithm attempts to identify paths starting at g by



Algorithm 1 Computing method-level flow paths

let SO and SI be the list of source and sink enclosing methods, respectively

let 7; be time-stamped method execution event trace in process P;, i€[1,n]
1: ps=0
2: for i=1 ton do

// initialize the set of all method-level paths between the given pair

// traverse the n processes of the given execution

33 Sy={sls€SOAseT}

4: if S;==0 then continue

5: for each method qc Sd do  // first infer intraprocess dependencies
6 DS(g)={mmeT A fe(g)<ir(m)}

7 for j=l ton do // then infer interprocess dependencies
8: if i==j V p2fm[i][j]==null then continue

o: DS(q) U= {m|m € T A fe(q) < p2fmlil[j] < ir(m)}
10: if DS(gq) N SI==0 then continue

11: ps U= {< ml,..mp > |ml == g Amy € SI A

Viej, ijep ik fe(mi) < lr(mj) AV ymi € DS(q)}
12: return ps

computing its dynamic dependence set DS(g) (lines 5-10).
Let fe(m) and Ir(m) be the timestamp of the first entry
and last returned-into event of a method m, respectively. First,
the local (intraprocess) dependencies are identified (line 6)
according to the happens-before relation between g and each
other method m executed in P; (which is treated as a local
process). The rationale is that a method m?2 is not dependent
on a method m1 if m2 has never executed after m1 [51].
Then, dependencies in every other (remote) process P; are
identified (lines 7-9). If P; never sent a message (line 8) or the
timing of message passing implies no dependence, relevant
methods in P; are dismissed; otherwise, they are added to
DS(g) (line 9). The rationale is that, suppose ml and m2
execute in two processes pl and p2, respectively, m2 depends
on m1 only if p2 receives at least one message before Ir(m2)
that is sent (directly or transitively) from p1 after fe(ml).
Once DS(gq) is computed, if it includes a sink-enclosing
method my, (line 10), the partial ordering of relevant methods
in DS(g) forms an information flow path from g to my. All

such paths are gathered into ps (line 11) and returned (line 12).

Illustration. For the working example, FLOWDIST first
identifies relevant methods (e.g., doto in the client component
and getarchive in the server component) and branches in them
to probe for. After the tracing, the methods in the resulting

traces are ..., doIo, run, getArchive, BinaryOutputArchive, writelnt, ....

Then, in Algorithm 1, all these methods are included in

dependent set of do10, the only source-enclosing method here.

The global partially-ordered sequence between this method
and writernt (the only sink-enclosing method here) gives the
method-level information flow path: do10 — run — getarchive —

BinaryOutputArchive — writelInt.

3.3 Refinement (Phase 2)

In this phase, FLOWDIST aims to produce fine-grained
information flow paths by refining the coarse (method-level)
results computed in Phase [, in three steps as shown in

| (Distributed program D) |Method-level information flow paths|
1

@h/iﬂerai[ Method event traces i

21 2.2 ! 2.3

Static Analysis Statement-Level Analysis

Computing static Computing statement-level
dependencies Control coverage information flow paths

dependencies
Static dependence Statement coverage
graph

Figure 4: The process of FLOWDIST refinement (Phase 2).

Coverage Analysis
Computing statement

Statement-level
information flow paths

Figure 4 and detailed below. To this end, it leverages
program data of two modalities (static and dynamic) and
two granularity levels (method and statement). The primary
motivation for this highly hybrid design is that it may
offer a practically competitive balance between the analysis
precision and the total analysis cost [52].

Static analysis (2.1). A key enabler for FLOWDIST to
attain its design goal is that it utilizes fine-grained
(statement-level) static dependencies, represented as a graph.
More importantly, the graph only needs to be partial (as
opposed to a whole-system dependence graph [78])—only
static dependencies involving methods on the flow paths
from the pre-analysis are computed. The rationale is that
any method via which the sensitive information originated
at a source s reaches a sink t must be on a method-level
information flow path between the enclosing method of
s and that of t. The main idea here is that, while
performing data/control flow analysis for computing varied
kinds of dependencies (as detailed below), the analysis stops
interprocedural propagation of relevant flow facts whenever
it encounters a method that is not on the method-level path.
Specifically, FLOWDIST computes traditional control
and data dependencies [78] within each thread, followed
by computing dependencies across threads including
threading-induced control (ready and synchronization [72])
and data (interference [101]) dependencies. The static
dependence analysis here is chosen to be context-insensitive
because its results are only used in Step 2.3 where the
method-execution events used will provide the necessary
contexts; further, its interprocedural analysis part is chosen
to be flow-insensitive because those events are ordered (by
their timestamps). The intraprocedural analysis part remains
flow-sensitive, though, as those events are at method level.
These choices reduce the total analysis cost of FLOWDIST.
The static dependencies across distributed components
are not computed due to their implicit nature. Thus, the
resulting dependence graph of the entire system consists of
disconnected subgraphs (each for one component/process, as
illustrated in Figure 5). FLOWDIST builds each subgraph by
considering all possible entry points of D, without purposely
separating/recognizing the components.

Coverage analysis (2.2). This step aims to generate
per-process statement coverage, the only fine-grained
dynamic data used to refine the hybrid analysis in Step 2.3.
This is done by referring to the static dependencies from



Algorithm 2 Computing statement-level flow paths

let SC be the set of statements covered across all processes

let 7; be time-stamped method execution event trace in process P;, i€[1,n]
let sDG be the partial static dependence graph

let <s,t> be a source-sink callsite pair between which paths are computed
let outlets be the list of all outlets

let inlets be the list of all inlets

1: SOFPS=0, REFPS=0, SIFPS=0, intraFP=0

2: merge T;, i€[1,n] into a global partially ordered sequence ES
3: dDG =DbuildDyndepGraph(sDG, <s,it>, ES)
4: dDG' = pruneDyndepGraph(dDG, SC) /1 statement-level pruning
5. SOFPS = findPaths(dDG’, {s}, outlets, tr(s))

6: for i=ton do /I compute remote segments of interprocess paths
7 intraFP U= fil’ldPathS(dDG/,{S},{l},Sj) // intraprocess paths
8:  iftr(s) ==T; V tr(t) ==T, then continue

9: REFPS U= findPaths(dDG/, inlets, outlets, T;)

10: SIFPS = findPaths(dDG, inlets, {t}, tr(t))

11: return [spliceSegs(SOFPS, REFPS, SIFPS), intraFP]

// hybrid analysis

Step 2.1 and branch coverage from Step 1.2—statements
control dependent on a covered branch are considered covered.
Importantly, during this inference, only methods on any
method-level path found in Phase | are considered. The
insight is that statements in other methods will not appear on
the final (statement-level) information flow paths.

Statement-level analysis (2.3). With the covered statements
(8C), per-process method event traces (7;), and partial
static dependence graph (sDG) of D, FLOWDIST now
computes statement-level information flow paths between
each source-sink callsite pair (<s,t>) with Algorithm 2. It
identifies the callsites of message sending and receiving APIs
(within the methods on the method-level flow paths), referred
to as outlets and inlets, indicating where information flows
out from and into each process, respectively.

First, per-process sequences of method events are merged
as a whole-system event sequence ES (line 2) ordered by
event timestamps. Then, the subroutine buildDyndepGraph
constructs a dynamic dependence graph dDG (line 3)
by referring to the static dependencies in sDG while
traversing ES, using a hybrid dependence analysis inspired

by DIVER [51]. The key idea is summarized as follows.

First, interprocedural dependencies in sDG are categorized
into two classes: adjacent (due to parameter or return-value
passing) and posterior (due to the def-use associations of heap
variables and control dependencies). Next, when scanning ES,
a static dependence of a method m2 on another method m1
is activated (hence added to dDG) if (1) that dependence
is adjacent and m2 happens immediately after m1 in ES or
(2) the dependence is posterior and m2 happens anywhere
after m1 in ES. The analysis treats all static intraprocedural
dependencies in a method that is in ES as activated and adds
them to dDG. And the graph construction starts with s and
only includes dependencies that reach 7.

The resulting dependencies (in dDG) would be imprecise at
statement level. Thus, FLOWDIST proceeds with a subroutine
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Figure 5: The partial static dependence graph created in (the
Step 2.1 of) Phase 2 for the working example.

pruneDyndepGraph which prunes spurious dependencies in
dDG per the statement coverage SC: nodes corresponding
to unexercised statements and their associated edges are
removed from the graph, resulting in the pruned graph dDG’
(line 4). While the pruning may still leave spurious dynamic
dependencies [39] in dDG', we make this choice to contain
the overall analysis cost of FLOWDIST to gain in scalability.
With the dDG’, the algorithm then computes both
intraprocess and interprocess information flow paths with
findPaths (G, X, Y, T), a subroutine that finds paths from any
statement in X to any statement in Y on a graph G while only
considering nodes in T. Intraprocess paths (intraFP) in each
process are computed by simply traversing dDG’ (line 7).
For any interprocess flow path, however, the sink is not
explicitly reachable from the source on dDG’ because it
(as a projection of sDG) remains disconnected. FLOWDIST
computes the three segments separately (§2). First, the
segment within the source (s)’s process (SOFPS) is computed
via a traversal on dDG’ (line 5) that retrieves paths from s to
a relevant outlet within that process’s trace—r(x) denotes
the trace that includes an event of the method that encloses
a statement x. The segment within the sink (¢)’s process
(SIFPS) is computed similarly (line 10), but by searching
paths from any inlet to . The remaining segment (REFPS)
is searched within each process (lines 6-9) other than the
one that encloses s or ¢ (line 8). The search is again realized
through a traversal on dDG’, looking for paths from any inlet
to any outlet within the process. Finally, these segments
are spliced into interprocess information flow paths with
the subroutine spliceSegs, according to the timestamps of
relevant inlets/outlets. The splicing works such that there are
not any events between the end of an SOFPS and the start of
an REFPS, nor between the end of the REFPS and the start
of an SIFPS as per the global partially ordered sequence ES.
With the intraprocess paths, these spliced interprocess paths
are then returned as the output of this algorithm (line 11).

Hlustration. For the working example, Figure 5 depicts the
dDG (i.e., before pruning), including three subgraphs each for
one of the three processes Client (left), Container (middle),
and Server (right)}—only the part for the code of Figure 1 is
shown. FLOWDIST then infers the covered statements from



the branch coverage obtained in Phase 1: 68, ..., 103, ..., 107,
392, 393, ..., 397, ..., 438, ..., 442, 443, ..., 454, 455.

The dark solid nodes indicate covered statements on
the corresponding dDG’, among which {107,397} are outlets
and (392,438} are inlets—in the example code, the actual
message-sending/receiving APIs are invoked within some of
the relevant methods shown (e.g., zookeeper(...) at line 392).
The grey nodes are those pruned away per the statement
coverage. After executing Algorithm 2, SOFPS=<ss, 69,
75, 101, 102, 103, ..., 107>, REFPS=<392, 393, ..., 397>, and
SIFPS=<u38, ..., 442, 443, ..., 454, 455>. Splicing these
segments leads to the entire path <ss, 103, ..., 107, 392,
393, ..., 397, 438, 442, 443, ..., 454, 455>, as also highlighted
in arrowed lines of Figure 1. intraFP==0 as there is
no intraprocedural information flow path between the
source-sink pair in this example.

4 Alternative Designs

The default design of FLOWDIST as presented above
targets common distributed systems in general. To more
systematically explore the multi-staged refinement-based
methodology for DIFA, we have developed two alternative
designs: FLOWDI1STsim and FLOWDI1STmul. They may offer
even greater cost-effectiveness and scalability for systems that
meet certain conditions, by further reducing analysis costs
while without compromising soundness and precision.

FLOWDISTsim: In the Step 1.1 of FLOWDIST, the goal of
the static analysis (i.e., ICFG construction) is to reduce
the instrumentation scope hence the costs of tracing
method and branch events. Yet with certain systems,
probing for and tracing all such events is cheap, and the
cost incurred by this static analysis itself may outweigh
the cost reduction. Optimized for systems meeting these
conditions, FLOWDI1STsim skips the static analysis, and
simply instruments all methods and branches in D in this
step, with the rest being the same as FLOWDIST.

FLowDiISTmul: With some systems, the FLOWDISTsim
design is well justified. Yet probing for and then tracing all
method and branch events in D incurs substantial costs. To
reduce these costs, we introduce an intermediate phase, with
two more changes, to FLOWDISTsim. The idea is to have a
multi-staged refinement-based design in Phase 1 itself. First,
the new Phase 1 only probes for and traces the first entry and
last returned-into events of each method, and then computes
method-level flow paths from those events. The intermediate
phase then probes for and traces the coverage of branches
in, and all instances of both kinds of events of, methods on
such paths. Lastly, the Step 2.2 is removed from Phase 2.

Since FLOWDISTmul requires multiple executions of the
same system against the same input (in the first and
intermediate phases), this design is optimized for systems
with deterministic executions—inconsistencies between the
two executions could compromise the soundness of the

DIFA as a whole. Another condition is that the cost reduction
outweighs the costs incurred by the intermediate phase.

According to the rationale of each alternative design,
FLOWDISTsim is expected to perform the best for
small/simple systems with non-deterministic executions,
while FLOWDISTmul is the best for such systems without
non-deterministic executions. For large/complex systems,
FLOWDIST would perform the best. These contrasts are
justified by the conditions (as described above) under which
either alternative design is motivated and best fits; when none
of those conditions are met, FLOWDIST is superior in general.

S Implementation and Limitations

We implemented FLOWDIST and its alternative designs for
Java based on Soot [88] while reusing our dependence
analyzers [48, 49]. Our tools take Java bytecode directly
and account for data/control flows due to exception-handling
constructs and reflection. For computing threading-induced
dependencies, we reused relevant parts of Indus [108].
Additional implementation details can be found in [66, 68].
Due to their common inability to fully analyze dynamic
language features (e.g., complex cases of reflection, native
code) the static analyses in our tools are soundy [92] but not
sound [79]. Since they compute information flow paths based
on dynamic dependencies projected from static ones, while
considering a specific system execution only, our tools may
suffer from false negatives (akin to under-tainting in DTA).
Our tools do not address the problem of identifying the
sources/sinks of interest, which are assumed to be given in
the default source/sink lists or specified differently by users.
Also, as with any dynamic analysis, the analyses in our tools
are limited to the program parts that are exercised at runtime.
Thus, their capabilities of discovering a bug rely on that (1) the
relevant source and sink are specified and (2) the source and
sink are covered by the run-time inputs considered. Moreover,
considering the security context in specific usage scenarios
(e.g., external protection mechanisms applied to the source or
sink), our tools may suffer from false positives as they do not
analyze, nor have access to, those external/context factors.
Finally, our tools require static instrumentation, thus they
may not suit scenarios where the system cannot be modified.
Additional limitations of FLOWDISTsim and FLOWDISTmul
are those implied by the respective system conditions
discussed earlier (e.g., the system execution is deterministic).

6 Evaluation

Our evaluation was guided by the following questions:

RQ1 How effective is FLOWDIST in terms of its precision?
RQ2 How efficient is FLOWDIST in terms of its costs?
RQ3 How scalable is FLOWDIST?



Table 1: Subject distributed programs and test inputs used

Subject #SLOC | #Method Scenario Tests
NIOEcho 412 27 | Client-Server | Integration
MultiChat 470 37 | Peer-to-Peer | Integration
ADEN 4,385 260 | Peer-to-Peer Integration
Raining Sockets 6,711 319 | Client-Server | Integration
OpenChord 9,244 736 | Peer-to-Peer | Integration
Thrift 14,510 1,941 | Client-Server | Integration
xSocket 15,760 2,209 | Peer-to-Peer Integration

Client-Server | Integration
ZooKeeper 62,194 5,383 | N-tier Load
N-tier System
N-tier Integration
RocketMQ 105,444 6,198 | N-tier System
Client-Server | Integration
Voldemort 115,310 20,406 | N-tier Load
N-tier System
Netty 167,961 12,389 | N-tier Integration
Client-Server | Integration
HSQLDB 326,678 10,095 | N-tier System

RQ4 Can FLOWDIST find real-world vulnerabilities?
RQ5 Can FLOWDIST discover new vulnerabilities?

RQ6 How does FLOWDIST compare to the state of the art?
RQ7 How well do the alternative designs perform?

6.1 Experiment Setup

As shown in Table 1, we used 12 Java distributed systems
as subjects. The subject sizes are measured by numbers of
non-blank non-comment Java source code lines (#SLOC),
numbers of methods defined in the subject (#Method),
and execution scenarios (Scenario) including client-server,
peer-to-peer, and n-tier. The last column lists the kinds of tests
available to us, from which the run-time inputs are drawn.
NioEcho [27] provides an echoing service for any
message sent by clients. MultiChat [26] is a chat service

broadcasting messages received from one client to others.
ADEN [25] offers a UDP-based alternative to TCP sockets.

Raining Sockets [24] is a non-blocking and sockets-based
framework. OpenChord [28] is a peer-to-peer network
service. Thrift [33] is a framework for developing scalable
cross-language services. xSocket [34] is an NIO-based
library for building high-performance computing (HPC)
software. ZooKeeper [30] is a coordination service achieving

consistency and synchronization in distributed systems.
RocketMQ [38] is a distributed messaging platform.

Voldemort [29] is a distributed key-value store underlying
LinkedIn’s services. Netty [37] is a framework for
rapid HPC application development. HSQLDB (HyperSQL
DataBase) [36] is an SQL relational database system.

We chose these subjects to cover various scales, application

domains, architectures, and mechanisms for message passing.

The system and load tests were part of the software packages
downloaded from the respective project websites. The
integration tests were created manually as per the official
documentation of each subject with concrete inputs. Both

valid and invalid inputs were considered. For each of these
tests, we ran two to five processes each on a different machine
per the typical use of each subject.

In each integration test, we started several server/client
instances and performed various operations, to cover main
subject features. Particularly for ADEN, Raining Sockets,
Thrift, xSocket, and Netty, which are frameworks/libraries, we
developed an application for each to cover its major functional
features and then exercised each of the applications. The
following are brief descriptions of operations and test inputs
involved in each integration test.

¢ NioEcho: We started a server and a client, sent random text
messages from the client to the server, and then waited for
the echo of each message.

* MultiChat: We started a server and three clients. From one
client we sent random text messages to the server which
broadcasted them to all other clients.

* ADEN: We started two nodes each of which sends messages
to and receives messages from the other node.

» Raining Sockets: We started a server and a client, and then
the client sent text messages to the server.

* OpenChord: We first started three nodes A, B, and C. Then,
we performed following operations: On node A, create
an overlay network; on the other nodes B and C, join the
network; on the node C, insert a new data entry to the
network; on the node A, search and then remove the data
entry; Lastly, on the node B, list all data entries.

 Thrift: With a server and a client, a calculator application
was developed. The client sent some basic arithmetic
operations (addition, subtraction, multiplication, and
division of two numbers, in order) to the server and got the
calculation results from the server.

* xSocket: Two nodes were started and then each sends
messages to the other node.

» ZooKeeper: Our operations were: create two nodes, search
them, look up their attributes, update their data association,
and remove these two nodes.

* RocketMQ: There are four components: a name server, a
broker, a producer, and a consumer. The server provides
reading and writing service and records full routing
information. The broker stores messages. The producer
sends messages to the broker. The customer receives
messages from the broker.

* Voldemort: We performed the following operations in order:
add a key-value pair, find the key for its value, remove the
key, and retrieve the pair.

* Netty: We develop a 3-tier application with three nodes.
The first node read an email list from a file and then sent
relevant emails to the second node. Next, the second node
encrypted the emails using the RSA algorithm and then sent
them to the third node. Lastly, the third node used Postfix
to send emails received.

* HSQLDB: We started a database server and a client. Then,
the client sent a SQL query to the server and then received
the SQL result from the server.



We evaluated FLOWDIST via its implementation for Java,
thus we set the sources and sinks (found in [65]/data)
based on our understanding of security-related APIs in the
Java SDK, as default. We used the list of message-passing
APIs (§3.1) in the Java SDK to cover Java Socket
I/O, ObjectStream I/O, and Java NIO APIs (as listed
in [65]/Message_Passing APIList.txt).

6.2 Experimental Methodology

Given the default user configuration, we considered pair-wise
pairing of all sources and sinks as queries against each subject
execution. Due to the absence of ground truth, for each query
we manually checked the (statement-level) information flow
paths produced by FLOWDIST to compute precision.

Specifically, for each path, we tracked the dependencies
of the source; then we considered the path a true positive if
we reached the sink without encountering any sanitization
via the path, and a false positive otherwise. FLOWDIST
does not support sanitization at the moment—its current
implementation does not check if a resulting flow path
contains sanitizing operations. Yet among the paths we
examined, we did not find sanitized ones. Also, we manually
constructed the ground truth for three subjects to evaluate
recall. In each case of manual analysis, the two authors and a
non-author CS graduate student each inspected independently;
then they cross-validated and confirmed the result when all
three concurred. The manual check was time-consuming, thus
we randomly sampled only 20 paths when there were more
(otherwise we checked them all). We avoided taking more
than one path between each pair to reduce biases.

Regarding efficiency, we computed FLOWDIST’s time and
storage costs for each query and reported the average-case
numbers over all the queries per execution, in addition to
run-time slowdowns and static analysis costs. To evaluate
scalability, we used linear regression to model how those
numbers vary with changing code and trace sizes.

We are not aware of a prior DIFA/DTA, nor a fine-grained
dynamic data flow analysis that could serve the same purpose,
that works with diverse real-world distributed systems.
Thus, we compare FLOWDIST with PHOSPHOR [47] and
JOANA [76], the state-of-the-art dynamic and static taint
analyzers for single-process Java software, respectively. Our
study considered only this single baseline DIFA/DTA because
our extensive search for such tools and contact with the
authors of relevant papers ended up with no more comparable
tools to include (as further discussed in §7). We chose to
include JOANA to see how DIFA/DTA tools are compared
with static ones. The machines we used were all Ubuntu
16.04.3 LTS workstations with an Intel E7-4860 2.27GHz
CPU and 32GB DMI RAM.

6.3 Results and Analysis

We now discuss our results for each RQ. We focus on major
findings while discussing the key implications and insights.

Table 2: Numbers of intraprocess (/r) source/sink pairs (Pr) and
information flow paths (Ps), versus interprocess (Inf) ones

Execution #IrPr |#1IrPs #IntPr|#IntPs | IntPs/AllPs
NioEcho 66| 21 12 6 22.22%
MultiChat 42 0 12 0 0.00%
ADEN 0 0 5 0 0.00%
Raining Sockets 12 3 0 0 0.00%
OpenChord 14 0 24 0 0.00%
Thrift 4 0 4 3| 100.00%
xSocket 10 8 26 2 20.00%
Zookeeper Integration 9 0 33 0 0.00%
Zookeeper Load 1086 1| 6522 64 98.46%
Zookeeper System 124 0] 1116 46| 100.00%
RocketMQ Integration| 19| 23 46 17 42.50%
RocketMQ System 24 0 187 50| 100.00%
Voldemort Integration | 198/ 30[ 193] 138 82.14%
Voldemort Load 6 0 6 0 0.00%
Voldemort System 80| 30 77 42 58.33%
Netty 9 3 7 2 40.00%
HSQLDB Integration | 140 10| 668 0 0.00%
HSQLDB System 7 2 11 4 66.67%

6.3.1 RQ1: Effectiveness (Precision/Recall)

Table 2 shows the number of source-sink pairs covered in
each execution (i.e., subject-test type) and that of information
flow paths between the pairs, separately for intraprocess
and interprocess paths. For each source/sink given in the
configuration C, FLOWDIST treated each of its exercised
callsites as a separate source/sink in counting the pairs and
computing the paths. The last column shows the percentage
of interprocess paths over all information flow paths per
execution. The rows for executions without any information
flow paths found are greyed.

The numbers of exercised source/sink pairs and information
flow paths varied widely and were generally independent of
subject size and input type. In 5 of the 18 cases (executions),
FLOWDIST found no sensitive flow (e.g., for voldemort-Load). In
the other 13 cases, the paths were all true positives. Between
any of the pairs in Thrift, Voldemort-Load, and Nety—the cases with
smallest total numbers of pairs, we found no path beyond
those found by FLOWDIST. Thus, the precision and recall
were both 100% for the manually validated samples.

The majority (74% on average) of all of the reported
paths were interprocess ones—in 7 cases the percentage
was above 50% and in 3 cases 100%. This implies that, by
only analyzing dynamic information flows within individual
processes, a conventional DIFA/DTA would miss most of the
sensitive flows in distributed program executions. This result
also provides an alternative measure of recall of FLOWDIST
versus single-process DIFA/DTA, and indicates the much
higher recall of our approach.

More generally, while our evaluation on recall was limited
due to the lack of ground truth and the impracticality of
manually curating it for all queries (especially for large
systems with complex executions), high recall (hence a low



false negative rate) is crucial, especially in the context of
finding security vulnerabilities. Meanwhile, we note that,
relative to a static approach, the generally lower recall of
a dynamic technique like ours is mainly attributed to the
limited coverage of run-time inputs considered. On the other
hand, a dynamic analysis is expected in nature to focus on
the particular inputs (hence the specific executions) given
by users. Thus, the input coverage problem is considered
orthogonal to the design of a dynamic analysis [79]. With
respect to the given executions, both our manual validation
for RQ1 and evaluations against real vulnerability cases for
following RQs confirmed that FLOWDIST found all of the
information flow paths and related vulnerabilities, suggesting
no false negatives for those executions.

In addition, the precision and recall of a hybrid analysis
(as is the Step 2.3 of FLOWDIST) often compete with each
other [85]. However, in our approach, we strive for precision
improvement over a purely dynamic dependence analysis
based on method-level control flows, by conservatively
pruning static dependencies with those exercised control
flows. This conservative nature leads to the ability of
FLOWDIST to retain recall when gaining in precision.

Interprocess flow analysis is essential for a DIFA/DTA of
common distributed systems. Manual validation suggested
FLOWDIST s very-high precision and promising recall.

6.3.2 RQ2: Efficiency (Time/Storage Costs)

Table 3 gives the breakdowns of the time and storage costs of
FLOWDIST over its two phases and further over the steps of
each phase. The time costs include those for static analysis
(and instrumentation if any) (St.), profiling (Run), and on
average for computing the (method- or statement-level) paths
between each source-sink pair (Query). The second column
lists the original run time (Norm Run) of each execution,
from which profiling overheads were computed as runtime
slowdown ratios (Slowdown). The eighth column shows the
time for coverage analysis (Co.). The last column is the
total storage cost (Storage) for all phases per execution—for
storing the traces of method and branch events in Phase 1,
statement coverage and partial static dependence graph in
Phase 2, as well as the instrumented program. The overall
averages (across all executions) are given in the bottom row.
On average over the 18 cases (executions), FLOWDIST
took 19 minutes for all one-off analyses, including the
time for all static analyses, instrumentation, and coverage
analysis. We considered them one-off because their results
are shared by all queries with respect to a given subject
execution and source/sink configuration. In particular, the
partial dependence analysis (as guided by the method-level
paths from Phase 1) was significantly more efficient than a
whole-system analysis (without a pre-analysis). For instance,
per our additional experiments, the latter did not even finish
in 12 hours with otherwise the same setup against Voldemort.
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Figure 6: The total analysis time (seconds, y axis) versus
subject size (#SLOC, x axis) of all subjects (integration test).
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Figure 7: The run-time slowdowns (%, y axis) versus #method
execution event instances (x axis) of all subject executions.

For profiling, FLOWDIST caused an average of 68%
slowdown calculated as (7;-T,)/T, where T; and T}, is the run
time of the instrumented and original program, respectively.

The time cost for querying each source/sink pair was 13
seconds on average, with a maximum of 50 seconds seen
by HSQLDB-sysem mainly because of its static dependence
complexity. Note that this cost was dominated by building
the dynamic dependence graph from its static counterpart
and an instance-level method execution event sequence
(Algorithm 2), whose time expense depends on the scale of
the graph and the length of the sequence.

The storage costs of FLOWDIST were all insignificant.

FLOWDIST is promisingly efficient and scalable to large
systems, taking on average 19 minutes by one-off analyses
and 13 seconds to query for a source/sink pair while
causing <Ix slowdown and a negligible storage cost.

6.3.3 RQ3: Scalability

We first look at how FLOWDIST scaled to subjects of growing
sizes in terms of its total time cost (the sum of one-off analysis
time, profiling costs, and the time for querying all possible
source/sink pairs), against integration tests since every subject
has such a test. Figure 6 shows the fitting curve, along with
the determination coefficient R2 €[0,1] which indicates how
close the data are to the curve. The closer R? is to 1, the better
the fitting is. As shown, FLOWDIST’s time cost grew linearly.
We then look at the scalability of FLOWDIST in terms of its
runtime slowdown, for all 18 executions each characterized
by the length of the instance-level method execution event
sequence in it as a run-time complexity measure. In the
same format as Figure 6, Figure 7 shows the fitting curve
with R2>0.88, indicating that FLOWDIST scaled gracefully to
large-scale systems in terms of the runtime overhead.



Table 3: Time (in seconds) and storage (in MB) costs of FLOWDIST

6.3.4 RQ4: Finding Real-World Vulnerabilities

We searched real-world vulnerabilities from varied sources
(e.g., bug repositories and CVE reports) on our subjects and
then selected those on information flow security. We identified
one or more vulnerabilities for 7 of our studied subjects, as
shown in Table 4. For each of these subjects, cases along
with reference links are listed, with marks indicating which
was found and which was missed. The last column gives the
numbers of false negatives (#FN).

We started with the information flow paths computed in
our experiments for RQ1 and RQ2 (i.e., the paths between
all the sources and sinks in the default lists). Next, for each
of the known vulnerabilities, we narrowed the search down
to the paths between the source/sink that are most relevant
to the vulnerability according to its bug report/description,
while navigating the associated subject’s code to gain more
confidence. Finally, we considered that FLOWDIST found the
vulnerability case if any of those paths is responsible for the
vulnerability as per the bug report/description.

FLOWDIST successfully found most of the cases for all
these 7 subjects but Netty. 5 cases for Netty and 1 for voldemort
were missed by FLOWDIST. The reason, as we verified, was
that the missed vulnerabilities were not exercised during
the executions we considered—we did not purposely select
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Norm Phase | Time Phase 2 Time

Executions Run | St. | Run | Slowdown | Query | St. | Co. | Query | Storage

NioEcho 39 53| 41 5.16% 0.2 50 1 1.0 1.6

MultiChat 26 55| 28 6.12% 0.2 50 1 0.1 1.0

ADEN 21| 117 | 23 10.23% 0.3 59 3 0.3 4.0

Raining Sockets. 6 40 6 7.67% 03| 122 6 0.4 14.5

OpenChord 541 177 | 59 8.54% 03| 740 | 41 4.7 26.7

Thrift 8| 146 10 24.83% 0.5 79 | 45 0.6 26.1

xSocket 11| 101 19 63.99% 0.5 70| 14 0.1 29.3

Zookeeper Integration 711 292 | 121 70.16% 0.5 193 | 108 1.8 231.2

Zookeeper Load 99 | 292 | 177 78.83% 0.6 | 137 | 67 2.0 404.0

Zookeeper System 98 | 292 | 178 81.87% 05| 250 | 93 1.1 417.5

RocketMQ Integration 105 56 | 196 87.05% 0.6 | 704 | 49 21.5 291.0

RocketMQ System 339 | 156 | 753 122.09% 06| 727 | 52 34.0 463.2

Voldemort Integration 28 | 1206 | 58 106.06% 0.6 | 566 | 317 9.1 560.4

Voldemort Load 11| 1206 | 23 113.37% 0.6 | 435 260 14.4 523.1

Voldemort System 31 | 1206 | 65 109.81% 0.6 | 618|344 22.2 545.1

Netty 12 | 1132 | 22 81.65% 0.6 | 381|317 30.1 417.6

HSQLDB Integration 91 659 19 107.46% 0.7 12227 | 96| 415 591.1

HSQLDB System 15| 684 | 36 142.71% 0.7 | 2771 | 408 49.7 733.7

Overall Average 55| 437 | 102 68.20% 05| 565|124 13.0 2934
Both the total analysis time and runtime overhead of run-time inputs to cover the vulnerabilities but just used those
FLOWDIST grew linearly with the growth of subject and available to us to represent the operational scenarios of these
trace sizes, suggesting its high scalability in practice. systems. We note that for all the 18 successful cases the

underlying information flow paths were interprocess ones.

FLOWDIST found 18 out of 24 vulnerability cases related
to our subjects, all on interprocess flow paths. The other
6 were missed as the respective vulnerabilities were not
covered by the executions analyzed.

6.3.5 RQS5: Discovering New Vulnerabilities

From the information flow paths found by FLOWDIST, we
identified 24 new vulnerabilities related to 8 of our subjects,
as listed in Table 5. We reported these to the respective
developers, with 17 having been confirmed and 2 already
fixed so far. It is important to note that FLOWDIST does
not need any bug reports or the like to find known or new
vulnerabilities/bugs—it just computes all information flow
paths between the specified or default input sources and sinks
in the given execution for vulnerability inspection, albeit using
such reports that include particular sources/sinks/executions
of interest would facilitate the inspection.

Full details on these 24 cases are documented in [65]. Next,
we illustrate with one fixed case and one confirmed case.

Case 1. In the Netty-Integration execution, this fixed case is a
data leak induced by logging via exceptional control flow, as
depicted in Figure 8. The sensitive data (object selectionKey)
was read in class abstractniochannel Of the Nio process (at
the source), passed through class singlerhreadzventixecutor of



Table 4: Known vulnerabilities detected by FLOWDIST

Subject Vulnerability Reference | Found | #Case | #FN
HSQLDB | CVE-2005-3280 [1] v 1 0
CVE-2014-0193 [3] X
CVE-2014-3488 [4] X
CVE-2015-2156 [5] X
CVE-2016-4970 [7] X
Issue 8869 [10] X
Netty Issue 9112 [11] v 10 5
Issue 9229 [12] v
Issue 9243 [13] v
Issue 9291 [14] v
Issue 9362 [15] v
RocketMQ | CVE-2019-17572 [9] v 1 0
Thrift CVE-2015-3254 [6] v 1 0
Issue 101 [16] v
Issue 381 [20] v
Issue 387 [21] v
Voldemort | {gque 352 [17] v 6 1
Issue 378 [19] v
Issue 377 [18] X
xSocket Bug 21 [22] v 1 0
CVE-2014-0085 [2] v
Bug 2569 [23] v
ZooKeeper | CVE-2018-8012 [32] v 4 0
CVE-2019-0201 [8] v

Table 5: New vulnerabilities discovered by FLOWDIST

Subject #Fixed | #Confirmed | #Pending
HSQLDB
Netty

Raining Sockets
RocketMQ
Thrift
Voldemort
xSocket
Zookeeper
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the Concurrent process, and reached class wioeventroop Of
the Nio process where the data went out of the system (at
the sink). The throwable object ¢t exposed selectionKey in
the log, with which a client registers a socket channel and
connects to the server. An adversary can exploit this leaked
data to launch denial-of-service (DoS) attacks against the
server. A single-process DIFA/DTA would have missed the
interprocess information flow here hence this vulnerability.

Case 2. During the Thrift-Tntegration execution, we found again
a logging-induced data leak, but in normal control flows, as
depicted in Figure 9. At the source, an user input was read
into buf in class rrostreantransporc Of the Transport process,
passed through class calculatorciient of the Calculator process,
and flowed back into class TsasiTransport Of the Tramsport
process where the data went out of the system (at the sink).
Any sensitive data (e.g., personal identification information)
included in the user input would be leaked into the log,
hence possibly enable intrusions into the system or cause
losses. This vulnerability would be missed by existing
application-level DIFA/DTA too since it occurs also via an
interprocess information flow.
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// Executed in a Nio ﬁ,rocess
public class AbstractNioChannel extends AbstractChannel {. . .

public void doBeginRead() throws Exception {. ..
final SelectionKey selectionKey = this.selectionKey;
readPending = true;

final SelectionKey selectionKey = this.selectionKey; // Source

selectionKey.interestOps(interestOps | readinterestOp); ... }}

// Executed in a Concurrent process

public void run() { Blue line: source information
thread = Thread.currentThread(); flow path segment (SOFPS)
Green line: remote
information flow path
SingleThreadEventExecutor.this.run(); ... }}} segment (REFPS)
Red line: sink information
flow path segment (SIFPS)

// Executed in a Nio process
public final class NioEventLoop extendsSingleThreadEventLoop {.. . .
private void rebuildSelector0() {. . .

try { oldSelector.close(); Solid line: intraprocess flow
} catch (Throwable t Dashed line: interprocess flow
if (logger.isWarnEnable

logger.warn("Failed to close the old Selector.", t); // Sink m

Figure 8: New vulnerabilities discovered: Case 1.

// Executed in a Transport process

public class TIOStreamTransport extends TTransport {. . .

public int read(byte[] buf, int off, int len) throws TTransportException {. ..
int bvtesRead;
bytesRead = inputStream_.read(buf, off, len); // Source

return bytesRead; }}

// Executed in a Calcujator process
public abstract ctassCalculatorClient extends ... {...
QUB”C static void main(String[] args) {. . .
transport = createTTransport();
openTTransport(transport);
transport = createTTransport(); .

I 1
// Executed in a Transport process /
abstract class TSaslIransport extends TTransport {. ..
public voicyopen() throws TTransportException { . . .
boolean readSaslHeader = false;

>
LOGGER.debug("opening transport {}", this); // Sink o

Figure 9: New vulnerabilities discovered: Case 2.

FLOWDIST discovered 24 new vulnerabilities in 8
real-world distributed systems, with 17 confirmed and 2
fixed, suggesting its promising capability in this regard.

Additional analysis. Not every information flow path
reported by FLOWDIST represents a real vulnerability. Thus,
additional analysis is expected for bug confirmation.

For a known vulnerability, once the relevant source and sink
are identified as described earlier (§6.3.4), the vulnerability
is readily confirmed as per the bug report/description after
FLOWDIST found a path between the source and the sink.

For a new vulnerability, found from given sources/sinks,
the additional analysis/effort is to confirm it by checking the
relevant paths FLOWDIST produced. A path from a source
s to a sink ¢ reported may not always be a really critical
bug to the user: for instance, the data retrieved at s may
not actually be considered sensitive by the user even if ¢
represents a data-leaking operation, or the sink is considered
critical (e.g., making a branch decision) but s retrieves data
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Figure 10: The accuracy of FLOWDIST versus the baselines.

not from any user input. It is also possible that in the user’s
specific application scenario there are some external security
protection mechanisms (e.g., logging sensitive data into
protected logs). Such security context factors are not currently
considered by FLOWDIST itself (and it is hard to do so). Thus,
confirmation is generally a necessary additional step.

False positives/negatives. Due to the presence of various
security context factors, only part of the information flow
paths reported by FLOWDIST will be confirmed as real
bugs as described above; others are false positives from a
vulnerability-discovery’s point of view. Note that in RQ1
we reported a zero false positive rate, which was from the
perspective of DIFA reporting true dynamic dependencies.

Given that all the known vulnerabilities were reproduced
on interprocess flows according to the results for RQ4, in
our experiments for RQS5 we focused on interprocess paths
to discover new vulnerabilities. From a total of 323 unique
reports, by carefully considering security context factors, we
confirmed 209 bugs. Further confirmation with developers
went slow, thus we only reported 24 most critical (in our
view) ones by the time of writing this paper. Yet others are
also valid/non-trivial. Thus, the overall false positive rate for
security context was (323-209)/323=35%.

As a dynamic analysis, FLOWDIST cannot discover
vulnerabilities that are not covered by the executions it
analyzes, which naturally causes false negatives. Since the
entire set of true vulnerabilities is unknown for our subject
systems, we could not quantify the false negative rate of
FLOWDIST for security context with respect to our dataset.

6.3.6 RQ6: Baseline Comparisons

Our baseline PHOSPHOR instruments a standard JVM such
that taint tags set and retrieved in (unit) test cases can be
propagated during the execution of a given application on the
instrumented JVM [47]. This requires sources and sinks to
be in the test code. Thus, we needed to write a dedicated unit
test for each source-sink pair per subject—the original test
cases (e.g., system tests) associated with our subjects do not
contain the sources/sinks considered in our comparisons.

In each of these dedicated tests, we first tainted the source
data (variable) at the test entry, then triggered the original
subject execution, and finally checked the taint-tag at the
sink upon the test exit. We realized these taint tagging
and checking operations using PHOSPHOR APIs as per the
variable type. These test cases are in [65]/PhosphorTest. We
spent 4 to 10 hours to develop such dedicated tests for each of
our subjects. By design, PHOSPHOR does not compute taint
flow paths. Thus, for each source-sink pair, we considered
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that PHOSPHOR found a taint flow between the pair if the sink
contained the taint tag set at the source.

The other baseline JOANA [71] identifies vulnerabilities
(e.g., sensitive information leaks) in a given Java program
through a static dependence analysis. It requires entry points,
sources, and sinks explicitly specified by users through
annotations in the program. We spent [ fo 3 hours to set
such annotations for each of our subjects. JOANA does not
report flow paths either, but only the sinks reachable from any
annotated sources. To enable comparison, we considered that
it found an information flow path between a source and a sink
if it reports the sink when we annotated the source.

We note that a few cross-process DIFA/DTA tools do exist,
yet to the best of our knowledge no such tools working
for common distributed Java software like our subjects
are available: For example, Kakute [80] works only with
data-intensive applications based on a particular framework
Spark while Taint-Exchange [125] (like Cloudfence [104] and
Cloudopsy [124]) only works for C/C++ software. And all
such tools are not purely application-level like ours.

Effectiveness. Figure 10 contrasts FLOWDIST with the
baselines in terms of effectiveness for all the source/sink
pairs in Thrift, Voldemort-Load, and Nety—we only considered
these executions as we were able to (manually) produce
the ground truth only for them (as for RQ1). Both baselines
captured all the true intraprocess paths found by FLOWDIST
but missed all the interprocess ones. Thus, they had the
same but low (37.5%) recall; for the same reason, none of
them found any of the known and new vulnerabilities (which
were all on interprocess paths) as FLOWDIST did. JOANA
reported many additional paths that were not covered in
the executions considered. With respect to the ground-truth
paths (all being dynamic), those additional paths were false
positives, leading to very low (30%) precision of JOANA. As
aresult, FLOWDIST had a much higher F1 accuracy (100%)
than PHOSPHOR (54.6%) and JOANA (33.3%).

It should also be noted that many of the vulnerabilities
found by FLOWDIST were confirmed not just according to
the source-sink reachability but by checking the complete,
detailed flow paths as offered by a DIFA. DTA techniques
like JOANA and PHOSPHOR would not sufficiently support
such confirmations (even when working across processes to
address interprocess flows), because they do not provide the
path details needed. This helps justify using DIFA over DTA.

Efficiency. For the above effectiveness results, PHOSPHOR
and JOANA took 1.38 and 0.43 seconds on average,
respectively, for each source/sink pair, lower than
FLOWDIST’s querying cost (13 seconds on average).
FLOWDIST also incurred a higher average storage cost
(293.4MB) than PHOSPHOR (21.2MB) and JOANA (35.2MB).
The reason is that FLOWDIST performed more, heavier
analyses (e.g., probing, building the dependence graph,
profiling instance-level method events) than the baselines
(e.g., JOANA only statically checked the source code). These
extra costs of FLOWDIST were moderate and should be paid
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Figure 11: The total time costs (in seconds) of FLOWDI1STmul and
FLOWDISTsim against FLOWDIST for all subject executions.

off by its much higher effectiveness. Critically, it did not
incur the substantial manual (e.g., test case development or
source annotation) effort as the baselines require.

Discussion. Our goal with FLOWDIST is to achieve practical
applicability, portability, scalability, and cost-effectiveness
together for DIFA of distributed software instead of

just better DTA efficiency for single-process programs.

In addition, FLOWDIST works at an application level
and computes full information flow paths (as opposed
to taint checking only as by our baselines). Thus, we
expected it to incur higher overheads than system-level DTA
approaches (e.g., PHOSPHOR). The baselines need platform
customization and/or substantial manual (test development
or source annotation) effort that FLOWDIST avoids. The full
information flow paths, which the baselines do not provide,
are valuable for detailed security diagnoses. FLOWDIST thus
complements the baselines by making different tradeoffs (e.g.,
portability versus efficiency).

FLOWDIST achieved much higher effectiveness at
reasonable costs over two state-of-the-art peer tools, yet
without manual setup effort. None of the baselines found
any of the known and new vulnerability as FLOWDIST did
due to their failure to analyze interprocess flows.

6.3.7 RQ7: Alternative Design Comparisons

To compare FLOWDIST to the two alternative designs,
we repeated the experiments for RQ1 and RQ2 with
FLowD1STsim and FLOWDI1STmul. We confirmed that these
three tools produced the same information flow paths, hence
their equivalence in effectiveness—while FLOWDISTmul
generally suffers from non-determinism in the analyzed
executions, it was not affected by such issues in our study.
Also as expected, the best performer among the three
varied for different systems in terms of efficiency. Figure 11
shows the contrasts in the total analysis time of each tool
for each of the 18 executions studied. For relatively large
systems (ZooKeeper and larger), FLOWDIST was constantly
the most efficient. For these systems the time saved due
to the reduced instrumentation and profiling scope in the
pre-analysis noticeably outweighed the time cost of the static
analysis itself that enabled the reduction—thus, FLOWDIST
won over FLOWDISTsim. Meanwhile, the time saved due to
the reduced scope of profiling instance-level method events
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Figure 12: The storage costs (in MB) of FLOWDISTmul and
FLowD1sTsim against FLOWDIST for all subject executions.

Table 6: Recommendations on DIFA/DTA tool selection

With non-deterministic executions?

System type Yes No
] FLOWDISTsim
o Common Small | FLOWDISTsim | o FLowDISTmul
Distributed Large | FLOWDIST FLOWDIST

(multi-process) Kakute [80] (for Spark [123])

Pileus [117] (for OpenStack [111]),...
PHOSPHOR [47], JOANA [76]....

Specialized

Single-process

was outweighed by the extra time incurred by additional
executions (with tracing) of the subject (in the intermediate
phase)—thus, FLOWDIST won over FLOWDISTmul.

These outweighing contrasts were reversed for small
systems (those smaller than ZooKeeper), which explains why
for those systems the alternative designs won (albeit the
difference between FLOWDISTsim and FLOWDISTmul was
small). Here we differentiate systems as small and large not
only by code size but also trace size.

Comparison on storage costs revealed insignificant
differences, as shown in Figure 12. FLOWDISTsim needed
the most storage spaces while FLOWDI1STmul had the least
storage requirements. And the storage costs incurred by
FLOWDIST (default design) were in between. The reason
is that FLOWDISTsim traces all instance-level method and
branch events in the subject execution during the pre-analysis
phase. In contrast, FLOWDIST traces relevant methods and
branches only. On the other hand, FLOWDISTmul just records
the first entry and last returned-into events in the pre-analysis
phase, and then only traces methods on the method-level flow
paths found in the pre-analysis and branches in those methods.

These findings led us to the recommendations on
choosing the right tool for a particular system, as shown in
Table 6. Overall, FLOWDIST best suits large-scale common
distributed systems, regardless of the executions analyzed
being non-deterministic or not. For small common distributed
systems, either FLOWDISTsim or FLOWDISTmul may be
a great choice if the target execution is known to be
deterministic; otherwise, FLOWDISTmul would be opted
out. We also put in a few peer tools that suite other types
of (specialized distributed or single-process) systems, to
highlight again that our work complements them.

The two alternative designs can complement FLOWDIST
in suiting smaller systems, while the three together
complement existing DIFA/DTA tools in dealing with
common distributed systems.




6.4 Regarding the Vulnerabilities Discovered

The previously known vulnerabilities discovered by
FLOWDIST have been documented in detail on respective
CVE pages as seen in Table 4. The documentations include
how the vulnerabilities have been disclosed and addressed.

Regarding each of the 24 new vulnerabilities discovered by
FLowDIST, we have contacted the developers of respective
systems. By the time of this paper submission, all of these
have been reported to the system vendors, although some
of them have not been confirmed yet (i.e., for HSQLDB,
Raining Sockets, Voldemort, and xSocket), possibly because
the developers have not been active recently. Others have
all been confirmed, among which two have been fixed. The
details on each of these 24 vulnerabilities are documented
in [65]/new Vulnerabilities/Vulnerabilities.docx.

7 Related Work

Most previous information flow analyses are purely static
(e.g., [50,76, 100, 118]), including well-known works for
Android (e.g., FlowDroid [41], IccTA [89], Amandroid [119],
DroidSafe [74], and HornDroid [54]). These approaches
suffer from imprecision issues common to purely static
analysis, which is also commonly unsound due to dynamic
constructs (e.g., reflection and dynamic code loading) in
modern languages [92]. With distributed programs, these
issues are exacerbated due to implicit dependencies among
distributed (decoupled) components. Next, we discuss prior
works closely related to ours (i.e., relevant to DIFA/DTA),
which are dynamic in nature and target specific program
executions by design (hence orthogonal to common problems
like run-time input quality and limited coverage).

Conventional DIFA/DTA. Like TaintDroid [64],
TaintMan [121] customizes the Android OS to track
whole-system information flow at runtime. Panorama [120]
performs system-side dynamic information flow tracking for
Windows malware analysis, through dynamic instrumentation
as Dytan [60] and TaintEraser [126]. In [77], a dynamic
taint analysis was used for intrusion detection via a custom
Linux security module. Juturna [93] employs bytecode
augmentation and modified Java API classes, similar to
PHOSPHOR instrumenting JVM, for taint tracking. These
approaches require customized run-time platforms, like
a few others [59, 62, 116] using specialized hardware, to
perform DTA. In [43,44,83], the authors proposed language

semantics for dynamic taint analysis of JavaScript code.

LabelFlow [58] works as an extension of PHP to implement
security policies in web applications. Like many other DTA
tools [35,42,45,57,97,102,107, 114], these approaches do
not work with common distributed software as they only
track information flows in single threads/processes.

In contrast, FLOWDIST is a purely application-level DIFA.

It does not require modifying original run-time platforms nor
specific frameworks/emulators. Importantly, it tracks dynamic
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information flow (across processes), which is out of the
applicability scope of most peer approaches.

Cross-process DIFA/DTA. Only a few existing techniques
address information flows across processes. Kakute [80]
tracks field-level data flow with unified APIs for reference
propagation and tag sharing. Based on PHOSPHOR, it needs to
customize (instrument) its runtime platform (i.e., JVM). And
it focuses on Spark [123] applications only, not working with
common distributed software. Similarly, Pileus [117] targets
the applications on a special cloud platform OpenStack [111].
Taint-Exchange [125] is a framework for cross-host taint
tracking, using libdft [84] to transfer taint information
through sockets and pipes. Like Cloudfence [104] and
Cloudopsy [124], Taint-Exchange relies on a customized
platform (Pin) and targets C/C++ software.

In contrast, FLOWDIST works generally with common
distributed systems, without any change to the original
run-time platform while offering full information flow paths.
We are not aware of a prior DIFA working for common
distributed software: Kakute [80] and Pileus [117] are DTA
and work only for specialized distributed systems—DTA is
conceptually differentiated from DIFA (§2); other relevant
approaches are either DTA or not working with common
distributed systems. The key conceptual differences between
FLOWDIST and peer approaches lie in our multi-staged,
refinement-based methodology for DIFA and in FLOWDIST
explicitly addressing interprocess information flow.

Dynamic dependence analysis for distributed programs.
A number of dynamic slicing algorithms [46, 55, 63, 69,
75, 81, 86, 98] have been developed. In particular, prior
work [46] defines varied kinds of dependencies induced by
interprocess communication. However, the approach was
not implemented to work on real-world distributed software,
and its algorithmic nature implies scalability barriers. A
major focus of FLOWDIST is to deal with the overhead of
fine-grained dynamic dependence analysis so as to scale
to large real-world distributed systems. The method-level
dependence analysis in the pre-analysis of FLOWDIST was
inspired by DISTIA [53]. In comparison, FLOWDIST targets
a finer-grained and much more precise data-flow analysis at
statement level with high efficiency and scalability.

Reasoning about happens-before relations by addressing
global timing via partial ordering based on logic clocks is
a standard technique in concurrent program analysis. This
technique has been used in testing concurrent programs and
distributed systems [90, 103, 122]. For example, DCatch [90]
detects concurrency bugs by checking a distributed execution
against a set of happens-before relation rules. FLOWDIST
also leverages happens-before relations, but among method
execution events partially ordered through message-passing
events and for inferring interprocess dependencies.

Language-based information flow control. Jif [106]
extends Java to address information flow security via
augmenting the language with features that are related
to security. It supports security labels to help users



specify confidentiality/integrity policies. Furthermore, as a
platform and language for building secure distributed systems,
Fabric [91] extends Jif to support distributed transactions
and programming. It has several mechanisms, such as access
control and information flow control, to prevent untrusted
nodes from violating integrity and confidentiality. Other
language-based information flow control approaches [56, 87,
109] have also been proposed.

In essence, these approaches offer ways of constructing
an information-flow-secure system. Thus, to benefit from
them, developers need to build the system in a specialized
manner (e.g., using the Fabric language). Also, the security
capabilities they offer depend on the accuracy of the policies
specified. In contrast, FLOWDIST does not impose these
burdens to developers and it analyzes existing distributed
systems already built without any knowledge about itself. It
also provides detailed code-level information flow paths that
those language-based tools typically do not offer. Finally, the
core of FLOWDIST is a dynamic data flow analysis, which can
empower applications beyond those on security (e.g., testing,
debugging, program understanding, performance analysis)
that the language-based approaches do not readily support.

8 Conclusion

We presented FLOWDIST, a purely application-level dynamic
information flow analysis for common distributed systems. To
enable a practical solution to computing full information flow
paths in large-scale systems, FLOWDIST overcomes multiple
technical challenges via a multi-staged refinement-based
analysis methodology. This methodology itself is applicable
beyond information flow analysis and distributed systems.
Extensive evaluation of FLOWDIST and its two alternative
designs showed that our approach scaled well to large-scale

distributed systems with generally small run-time overhead.

We also demonstrated its capabilities in discovering known
and new vulnerabilities in diverse real-world systems, and its
superiority over state-of-the-art peer techniques.
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