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Abstract—Personalizing medical devices such as lower limb
wearable robots is challenging. While the initial feasibility of au-
tomating the process of knee prosthesis control parameter tuning
has been demonstrated in a principled way, the next critical issue is
to improve tuning efficiency and speed it up for the human user, in
clinic settings, while maintaining human safety.We, therefore, pro-
pose a policy iteration with constraint embedded (PICE) method
as an innovative solution to the problem under the framework of
reinforcement learning. Central to PICE is the use of a projected
Bellman equation with a constraint of assuring positive semidefi-
niteness of performance values during policy evaluation. Addition-
ally, we developed both online and offline PICE implementations
that provide additional flexibility for the designer to fully utilize
measurement data, either from on-policy or off-policy, to further
improve PICE tuning efficiency.Our human subject testing showed
that the PICE provided effective policies with significantly reduced
tuning time.For thefirst time,wealso experimentally evaluatedand
demonstrated the robustness of the deployed policies by applying
them to different tasks and users. Putting it together, our new way
of problem solving has been effective as PICE has demonstrated its
potential toward truly automating the process of control parameter
tuning for robotic knee prosthesis users.

Index Terms—Impedance control, knee prosthesis, policy
iteration, rehabilitation robotics, reinforcement learning (RL).

I. INTRODUCTION

ROBOTIC prostheses have emerged with recent break-
throughs in mechanical design, control theory, and biome-

chanics [1]–[4]. These robotic prostheses have manifested ex-
ceptional potentials to benefit lower limb amputees in various
ways, such as reducing metabolic consumption [5], enhancing

Manuscript receivedNovember 12, 2020; revised February 22, 2021; accepted
April 30, 2021. This work was supported in part by the National Science
Foundation under Grant 1563454, Grant 1563921, Grant 1808752, and Grant
1808898. This article was recommended for publication by Associate Editor
S. Oh and Editor E. Yoshida upon evaluation of the reviewers’ comments.
(Corresponding authors: He (Helen) Huang; Jennie Si.)

Minhan Li, Yue Wen, and He Huang are with the NCSU/UNC Depart-
ment of Biomedical Engineering, North Carolina State University, Raleigh,
NC 27695-7115 USA, and with the University of North Carolina at Chapel
Hill, Chapel Hill, NC 27599USA (e-mail: mli37@ncsu.edu; ywen3@ncsu.edu;
hhuang11@ncsu.edu).

XiangGao and Jennie Si are with theDepartment of Electrical, Computer, and
Energy Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
xgao29@asu.edu; si@asu.edu).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TRO.2021.3078317.

Digital Object Identifier 10.1109/TRO.2021.3078317

balance and stability [6], augmenting adaptability to varying
walking speeds and inclines [7], and enabling walking on
changing terrains seamlessly [8]–[10]. The finite-state machine
impedance control (FSM-IC) has been the most adopted control
framework for prosthetic devices [11]–[14], because studies
have suggested that the human nervous system modulates the
impedance of lower limb joints in order to realize stable and
robust dynamics when walking on various terrains [15], [16]. In
addition to the traditional FSM-IC, Azimi et al. [17] recently
proposed to estimate the ground reaction force (GRF) [17], and
integrated it into impedance controller [18], achieving improved
tracking performance of a prosthetic knee.
The challenges in applying FSM-IC in robotic prostheses are

as follows: 1) tuning of a large number of impedance control pa-
rameters (e.g., 12–15 in a knee prosthesis for level walking only)
in order to achieve safe human–machine–environment interac-
tion and sufficient characterization of limb movement within
a gait cycle [1], [13], [19], [20]; 2) these control parameters
must be personalized to assist individual amputees’ gait. To find
a modest set of parameters, in current clinical practice, highly
trained prosthetists need to spend hours to arduously hand-tune
the parameters for each amputee user and each locomotionmode
(e.g., level walking, ramp ascent/descent) based mainly on the
subjective observations of the user’s gait performance [21]. Not
only does it lack precision, but also it needs intensive time and
efforts due to the inability of humans to tune high-dimensional
parameters simultaneously.
Given a growing need for facilitating the assistive device

personalization, the research community has developed vari-
ous solutions to automate the process. A few estimation ap-
proaches were proposed to determine the impedance parameters
by mimicking the nature of biological joints via modeling [22],
[23]. Furthermore, optimization approaches were developed and
validated on able-bodied subjects to minimize metabolic cost
by using a small number of control parameters for exoskele-
tons (no more than 4) [24], [25]. Beyond merely identifying a
set of optimal parameters, a couple of studies have attempted
to learn the optimal sequential decision-making for optimiz-
ing high-dimensional prosthesis control parameters. Employing
knowledge and skills from experienced prosthetists, an expert
system was developed to encode human decisions as automatic
tuning rules [26]. The method was challenged by the lack of
sufficient data collected from the prosthetists in device tuning.
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Alternatively, an actor–critic reinforcement learning (RL) based
method, called direct Heuristic Dynamic Programming (dHDP),
was designed to directly obtain the impedance tuning policy
via interaction with the human-prosthesis system in an online
manner [27], [28] without a closed-form model of the system.
Although the aforementioned studies have demonstrated the

feasibility of applying automatic tuning to wearable robots with
human-in-the-loop, little attention has been paid to address the
efficiency and robustness of the tuning algorithms from a user’s
perspective. First, efficiency of a tuning algorithm (i.e., the
ability to safely complete the online tuning rapidly in time)
is critical for the clinical translation of a new method due to
patient-in-the-loop. Second, the robustness of the tuning al-
gorithm quantifies whether the optimal control parameters or
learned prosthesis tuning policy can handle situations when
walking condition (e.g., treadmill walking versus level-ground
walking) or user has changed. Additionally, a robust policy is
expected to alleviate computational burden in online learning or
continued customization, improve user safety during automated
prosthesis tuning, and expedite the tuning process in clinics.
Therefore, the objective of this study was to develop an efficient
and robust automatic tuningmethod for a robotic prosthetic knee
to reproduce near-normal knee kinematics during walking in
clinic settings, which include level-ground and ramp. The tuning
goal stemmed from the fact that having amputees walk normally
as the able-bodied people has beenwidely used as the designgoal
or the evaluation criteria for knee prosthesis control [20], [29].
To this end, the objective of this study includes as follows: 1)
developing a learning algorithm with enhanced data and time
efficiency; 2) investigating the robustness of trained policies
against changes in task and user.
To address the efficiency in learning a control parameter

tuning policy for robotic prostheses, policy iteration, a classi-
cal RL method, lends itself as a promising candidate. This is
because, such as general RL-based control framework, it has an
excellent capability of learning optimal sequential decisions in
high-dimensional space [30]. Also, our approach is data-driven,
which learns directly from interactions between the actions and
the consequences measured from the human–robot system. In
another word, there is no need of explicitly performing a system
identification procedure, either online or offline, prior to or
during controller design as most control theoretic approaches
do, including adaptive control. In addition, as the process of
customizing prosthesis control parameter design for a human
user does not render abundance of data, which is a necessary
feature in those deep RL applications [31]–[34], the classic pol-
icy iteration framework with moderate demands on data amount
is a suitable approach. Furthermore, previous evidences suggest
that the policy iteration has the advantage of fast convergence
over other classical RL algorithms, such as value iteration and
gradient-based policy search [35], [36] (including our previously
reported dHDP [37], which is a stochastic gradient method).
The idea of policy iteration is to iteratively improve the policy
by alternately carrying out the policy evaluation and the policy
improvement steps [38], [39]. As the efficiency in the pol-
icy evaluation step significantly influences the overall learning
algorithm efficiency, the problem boils down to improving the
efficiency of policy evaluation.

Therefore, in this study, based upon the policy iteration
framework, we proposed an improved solution, namely the
policy iteration with constraint embedded (PICE), to enhance
policy training efficiency. Such enhancement was enabled by
the following special designs in the algorithm tailored for our
application. First, we leveraged a projected Bellman equation
fromwhich the performance values can be approximately solved
during each policy evaluation step. This is to ensure positive
semidefiniteness of the value function to avoid incorrect out-
come of negative values due to approximation errors. Second,
inspired by a widely utilized quadratic cost formulation in
successful applications of RL [40]–[42], we adopted simple
yet efficient quadratic basis functions to approximately evaluate
policies rather than using complex structures such as actor–critic
networks. Additionally, we provided flexible implementations
of PICE to perform either offline or online learning, a proper
use of which can further improve learning efficiency. The PICE
algorithm was implemented and tested on human-prosthesis
systems; the efficiency and robustness of the tuning policy were
evaluated quantitatively.
The main contributions of this study are as follows.
1) We developed a new problem solution PICE based on pol-

icy iteration RL for improving the efficiency of automatic
tuning of the robotic knee control parameters. Our new
design entails constraining the performance values from
going into the incorrect range of having negative values.

2) TheproposedPICEalgorithmwas implemented and tested
in real time on human subjects for prosthesis control
parameter tuning. We successfully demonstrated its effi-
ciency and effectiveness in experiments involving human
subjects.

3) The robustness of learned control parameter tuning poli-
cies against changes of tasks and users were tested on
human subjects. The successful demonstration of robust-
ness of PICE suggests its potential values for clinical
application.

The remainder of this article is organized as follows. Section II
describes the problem to be solved and shows how it relates to
the theory of optimal sequential decision. Section III presents
details of the proposedRLalgorithm for improving data and time
efficiency. Section IV elaborates on the considerations regarding
the implementations of the algorithm. Results are presented in
Section V. Finally, we discuss these results and limitations of
this study in Section VI. Section VII concludes this article.

II. PROBLEM FORMULATION

In this study, the proposed PICE algorithm aims at determin-
ing optimal control parameter tuning policies to supplement the
impedance controller of a robotic knee prosthesis in order for
its user to restore a near-normal knee motion. The algorithm is
implemented within a well-established FSM-IC framework [1],
[13], as shown in Fig. 1.

A. Finite-State Machine Impedance Controller

As depicted in the FSM-IC block of Fig. 1, a single gait
cycle during walking is decomposed into four distinct phases
in the FSM-IC: stance flexion (STF), stance extension (STE),
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Fig. 1. Schematic illustration of the RL-based impedance tuning for a robotic
knee prosthesis system within the FSM-IC framework. Red dashed lines denote
inputs and outputs in the impedance update loop, whereas blue dash-dotted
lines stand for those in the policy update loop. A tuning policy acts to adjust
impedance parameters, according to the state of the human-prosthesis system,
in the FSM-IC to regulate the interaction force with users. The policy can be
obtained from and further updated by the proposed PICE algorithm. In the block
of FSM-IC, STF, STE, SWF, and SWE stand for stance flexion, stance extension,
swing flexion, and swing extension, respectively.

swing flexion (SWF), and swing extension (SWE). The major
gait events determining the phase transitions are identified by
utilizing the measurements of knee angle and GRF together
using the Dempster–Shafer theory, as described in [13].
For each phase in a single gait cycle, the FSM selects the

corresponding set of impedance parameters for the impedance
controller to generate a torque τ at the prosthetic knee joint based
on the impedance control law

τ = K(θe − θ)− Cω (1)

where the impedance controller consists of three control param-
eters: the stiffnessK, the equilibrium angle θe and the damping
C. Real-time sensor feedback includes the knee joint angle θ
and angular velocity ω. Therefore, a total of 12 impedance
parameters need to be regulated in a gait cycle.

B. Dynamic Process of Impedance Update

As shown in Fig. 1, the impedance update loop is executed
by specified policies to adjust impedance parameters for the
FSM-IC. Without loss of generality, the following formulation
toward describing the dynamic process of impedance update
for a robotic prosthesis is applicable to all four phases in the
FSM-IC. This is owing to the fact that, despite sharing the
identical framework for learning the tuning policy, each phase is
associatedwith an independent tuning policy running in parallel.
We consider the human-prosthesis system as a discrete-time

system with unknown dynamics f , which was also studied
in [28] and [43]

x(k+1) = f(x(k), u(k)), k = 0, 1, . . .

u(k) = π(x(k))
(2)

where k denotes the discrete index in the impedance update
loop in Fig. 1. We denote x and u as state and action variables of

Fig. 2. Features of knee kinematics in a single gait cycle. The subscript
numbers 1 through 4 denote respective phases (i.e., STF, STE, SWF, and SWE)
of a gait cycle, to which the features correspond.

the process, respectively, while the tuning policy π represents a
mapping to determine actions according to current states.
In the context of impedance update, the abovementioned state

variables are defined based on features extracted from the knee
kinematic profiles for each segmented phase in the FSM-IC.
Specifically, the continuous knee profile within a single gait
cycle (from the heel strike to the next heel strike of the same
foot) is characterized by four discrete points, each of which is
a local extrema in the corresponding phase along the profile
as shown in Fig. 2. Each point is associated with two features,
the angle feature P and the duration feature D, respectively.
Similarly, target features (P d and Dd) in each phase can be
determined from the representative data of knee kinematics in
the able-bodied population [44].
Consequently, state variablesx ∈ R2 are defined as the differ-

ences betweenmeasured features and target features (referred as
the peak error and the duration error, respectively) in a specific
phase at each impedance update as follows:

x = [P − P d, D −Dd]T . (3)

Meanwhile, action variables u ∈ R3 are defined in the following
form:

u = [ΔK,Δθe,ΔC]T (4)

where ΔK,Δθe, and ΔC are the adjustments of impedance
parameters for the corresponding phase at each instance of
impedance update.

C. Policy Update

The policy update loop is carried out by the proposed PICE
algorithm, as shown in Fig. 1, to progressively approach optimal
policies with respect to specified objectives. In this study, the
objective is to regulate states with minimal control energy ex-
penditure over the process of impedance update in order to keep
the peak error and duration error as close to zero as possible.
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Hence, at each instance of impedance update, we assign a
scalar stage cost with a quadratic form

g(x(k), u(k)) = x(k)
TRsx(k) + u(k)

TRau(k) (5)

whereRs ∈ R2×2 andRa ∈ R3×3 are both positive semidefinite
(PSD) matrices. Thereby, given a policy πi after the ith policy
update, the corresponding discounted cost-to-go in an infinite
horizon, namely the action-dependent value function Q(i), is
given by

Q(i)(x(k), u(k)) = g(x(k), u(k)) +

∞∑
t=k+1

αt−kg(x(t), u(t))

= g(x(k), u(k)) + αQ(i)(x(k+1), πi(x(k+1)))

(6)

whereα is the discount factor. This value function is nonnegative
due to the definition of g(x(k), u(k)) in (5), and the value function
reflects ameasure of the performancewhen action u(k) is applied
at state x(k) and the control policy πi is followed thereafter.
The goal for PICE, as in value-based RL algorithms [38], is to

seek an optimal policy that minimizes the cost-to-go by solving
the Bellman optimality equation approximately

Q∗(x(k), u(k)) = min
π

Q(x(k), u(k))

= g(x(k), u(k)) + α min
u(k+1)

Q∗(x(k+1), u(k+1))

= g(x(k), u(k)) + αQ∗(x(k+1), π∗(x(k+1))) (7)

where π∗ and Q∗ denote the optimal tuning policy and the
associated optimal value, respectively.

III. POLICY ITERATION WITH CONSTRAINT EMBEDDED

To solve the abovementioned Bellman equation approxi-
mately and effectively, we propose the PICE algorithm. Instead
of achieving a close approximation to the value function as in
most general policy iteration algorithms, the PICE makes use of
simple quadratic polynomial basis functions,which are expected
to provide simplified, albeit with approximation errors and,
thus, efficient solutions during policy evaluation. Meanwhile,
aiming at improving the quality of policy evaluation, the PICE
introduces a PSD constraint on the approximated value function
to prevent the value function from becoming negative due to
approximation errors.

A. Value Function Approximation

To represent the approximate value function Q̂(i) associ-
ated with the policy πi being evaluated (referred to as tar-
get policy hereafter), a linear parametric combination of basis
functions is often used in classic policy iterations as follows,
because of its virtues of easy-to-implement and fairly transparent
behavior [35], [36]

Q̂(i)(x, u) = φ(x, u)T r(i) (8)

where φ(x, u) ∈ Rm is the vector of fixed basis functions of
states and actions, and the weight parameter vector r(i) ∈ Rm

varies as policy updates. Hereafter, we ignore subscript k in
state and action and replace them with x and u, respectively, for

notation simplicity. Instead of the usual universal approxima-
tors, such as multilayer perceptron neural networks, radial basis
functions, and splines, we opt for a simple structure of quadratic
polynomials as the basis functions to practically further simplify
the basis functions, therefore, potentially reducing uncertainties
associated with large number of free parameters used in the
approximation.
As a result, the approximating value function can be rewritten

in the following equivalent form of weighted inner product,
which yields all possible quadratic basis functions of states and
actions

Q̂(i)(x, u) =

[
x

u

]T

H(i)

[
x

u

]

=

[
x

u

]T [
H

(i)
xx H

(i)
xu

H
(i)
ux H

(i)
uu

][
x

u

] (9)

whereH(i) is a PSD matrix, andH(i)
xx ,H

(i)
xu ,H

(i)
ux , andH

(i)
uu are

submatrices ofH(i) with proper dimensions. By rearranging and
grouping like terms in (9), we can convert the weight parameter
vector r(i) to the matrix H(i) and vice versa.

B. Policy Iteration Under Constraint

Two iterative procedures, policy evaluation and policy im-
provement, are alternately performed in a standard approximate
policy iteration. The policy evaluation is to find an approximated
value function Q̂(i) satisfying the Bellman equation under the
target policy πi as follows:

Q̂(i)(x, u) = g(x, u) + αQ̂(i)(f(x, u), πi(f(x, u))). (10)

Replacing the approximate function Q̂(i) with parametric basis
functions in (8), we obtain the following equivalent form and its
vector-matrix version

φ(x, u)T r(i) = g(x, u) + αφ(f(x, u), πi(f(x, u)))T r(i)

(11)

Φr(i) = g + αTΦr(i) � B(Φr(i)) (12)

where thematrixΦ consists of basis functions for every possible
state-action pair in its rows, and the corresponding stage costs
make up the vector g. In addition, the T and B denote the state
transition matrix and the Bellman operator, respectively, under
the target policy.
The policy improvement then follows to seek an optimal

mapping from states to actions as an improved target policy,
with which the next iteration starts

πi+1(x) = arg minu∈U Q̂
(i)(x, u) (13)

where U is the admissible action space. With the choice of
quadratic basis functions, the improvement procedure (13) is
equivalent to solving a quadratic programming (QP) problem.
The equivalence can be easily observed by formulating the
minimization problem of (9) over the actions with any given
states. As such, the equivalent QP problem can be readilywritten
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as

πi+1(x) = arg min
u∈U

{uTH(i)
uuu+ 2xTH(i)

xuu}. (14)

Directly solving the Bellman equation (12) based on the
abovementioned standard policy iteration framework, we ob-
tained a preliminary proof-of-concept result for offline policy
training [45]. To bemore efficient and also to accommodate both
offline and online scenarios, we proposed the PICE algorithm
with the following details.
As a result of the approximation error, some of the value

functions solved from (12) may yield negative values. This
clearly indicates poor approximation given the positive-valued
stage cost and the definition of value function. Stemming from
insights on the formulated problem, we, therefore, impose a
PSD constraint on the solved value functions from (12) toward
an improved solution. Specifically, we seek an approximated
value function Q̂(i) satisfying the following projected Bellman
equation that is to be solved by PICE

Φr(i) = projS+
(B(Φr(i))) (15)

where projS+
denotes the operator of projection onto a closed

convex subset S+. The closed convex subset S+ is contained in
a subspace spanned by the columns of Φ

S+ = ΦR+ (16)

where R+ ⊂ Rm is the PSD cone in the vector space of Rm.
The idea of solving the projected Bellman equation was also

used in the least square policy iteration (LSPI) algorithm [35].
The PICE algorithm, however, imposes a new and tighter con-
straint and, thus, results in a different projected Bellman equa-
tion. Specifically, the PICE requires the solved value function
from the projectedBellman to be positive semidefnite. Similar to
the LSPI, the PICE can be used as either on-policy or off-policy
learning schemes. In general, the behavior policy governing
sample distributions for policy evaluation is different from the
target policy being evaluated for off-policy learning scheme,
whereas they are the same for on-policy learning scheme.
Our discussions in the following on PICE cover both learning
schemes.
Inspired by established results [46], we convert the problem

of solving (15) to the one that corresponds to the solution of the
following variational inequality:

(Φr(i) −B(Φr(i)))TΞ(Φr −Φr(i)) ≥ 0 ∀r ∈ R+ (17)

where Ξ is a diagonal matrix and its diagonal elements are the
steady-state probabilities of theMarkov chain under the behavior
policy for each corresponding state-action pair in Φ.
For notation simplicity, an equivalent form of inequality (17)

can be readily written as

(A(i)r(i) − b(i))T (r − r(i)) ≥ 0 ∀r ∈ R+

A(i) = ΦTΞ(I − αT )Φ

b(i) = ΦTΞg.

(18)

Involving every single possible state-action pair in terms A(i)

and b(i), the inequality is intractable to solve in closed form.

Instead, in practice, we can replace the two terms with approx-
imated Â(i) and b̂(i) by using observational samples, as shown
in [46]

Â(i) =
1

N + 1

N∑
n=0

φ(sn)

(
φ(sn)− α

psn,s′n
qsn,s′n

φ(s′n)
)T

b̂(i) =
1

N + 1

N∑
n=0

psn,s′n
qsn,s′n

φ(sn)g(sn)

(19)

where n and N denote sample index and sample size of the
collected data, respectively. The variable sn � (xn, un) denotes
a sample of a state-action pair, and the variable s′n � (x′

n, u
′
n)

denotes the next sample pair following sn in the sampling trajec-
tory. In addition, the ratio termpsn,s′n/qsn,s′n is in place to correct
any mismatch in state transition probability matrix T between
the behavior policy and the target policy. Importance sampling
can be readily applied to address the mismatch. Specifically,
psn,s′n and qsn,s′n denote transition probability from the sample
sn to the sample s′n under the target policy and behavior policy,
respectively. In the context ofQ value function, the ratio can be
further simplified to the following form as shown in [39]:

psn,s′n
qsn,s′n

=
δ
(
u′
n = πi(x′

n)
)

ν (u′
n|x′

n)
(20)

where δ(·) denotes the indicator function (i.e., equals to 1 if
u′ = πi(x′) and 0 otherwise), and ν(·) denotes the conditional
probability of taking action u of the behavior policy in state x.

C. Iterative Approach for Solving Policy Evaluation

To solve the variational inequality (18), the following iterative
approach has been proposed in previous studies [46], [47] to
approximate r(i) with r̂(i)j

r̂
(i)
j+1 = projE [r̂

(i)
j − γj(Â

(i)
j r̂

(i)
j − b̂

(i)
j )] (21)

where j denotes iterative steps andE is the constraint set for the
solution.
To result in a convergent sequence, the approach also requires

constraint set E to be closed, bounded, and convex [47]. In our
case, however, the PSD cone is not bounded. To address this
issue, we construct a convex set with an intersection between
the PSD cone and an Euclidean ball as follows:

E = R+ ∩ Zδ (22)

where Zδ denotes a closed Euclidean ball centered at the origin
with the radius of δ, the choice of radius can be as large as needed
to cover a sufficient subset of the original PSD cone. Since (21)
involves a projection onto the intersection of two convex sets,
the Dykstra’s projection algorithm is applied [48].
Furthermore, the step size γj also needs to be decreasing on

the order of 1/j to guarantee a convergent sequence resulted
from (21) as follows:

γj − γj+1

γj
= O

(
1

j

)
. (23)
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IV. IMPLEMENTATION

To apply PICE for tuning the impedance control parameters
of a prosthetic knee on human subjects, some practical issues
need to be considered during implementation. Hereafter, an
experimental trialwith a human subject, namely a trial, refers to a
single experiment with impedance and policy initializations that
allow prosthetic knee control parameters to adapt until reaching
a stopping criterion.

A. Human Variability and Stopping Criterion

Due to variations in physical conditions and fatigue of human
subjects, measurement noise, and other uncertainties associated
with the environment, data recorded from the human-prosthesis
system need to be processed and tuning target set needs to be
realistically specified. Specifically, impedance update is set to
take place every four gait cycles to reduce noise introduced by
human stride-to-stride variance. That is to say, knee features are
averagedover the four gait cycleswith a single impedanceupdate
to forma state-action pair to be used in policy update. In addition,
we introduce a target set as tolerance levels of error (specifically,
±1.5◦ for peak errors and ±3% for duration errors) to account
for the inherent walking variability [44], [49]. Consequently, we
consider an impedance parameter tuning procedure in a given
phase a success if the errors stay within the target set for 8 out
of 10 consecutive impedance updates. If all four phases become
successful, a trial is successful and is considered reaching the
stopping criterion.

B. Safety Bounds for Impedance Tuning

In each trial, a set of initial impedance parameters are selected
for the prosthetic knee, and then subjects experience a series of
impedance updates guided by tuning policies for each phase of
the FSM. While the initial impedance parameters are randomly
selected, they need to be feasible for walking. Such feasible
initial impedance parameter setting is validated prior to the start
of a trial and is verified by the experimenter either via visual
inspection if the subject is capable of walking without holding
on a handrail, or via the subject’s verbal expression. To avoid any
potential harm to human subjects caused by unsafe parameters
and associated knee kinematics, we set a safety range within
which peak error is allowed us to vary. Once a peak error is
beyond the safety range, impedance parameters will be reset to
the initial ones, which are known to be safe. Herein, the peak
error bounds are set to±12◦ for all four phases since they cover
two standard deviations of knee kinematic features in normal
walking among different test subjects [44]. More importantly,
the safety range also defines a compact set for states and actions,
which consequently guarantees our implementation to fulfill
the requirement of initial admissible policy for general policy
iteration algorithms because the zero-output policy is always an
eligible initial policy.

C. Implementations of PICE

Prior to feeding data into the PICE algorithm for policy
training, feature scaling was first performed on state and action

Algorithm 1: Offline Off-Policy PICE.
Initialization:

Random initial target policy π0, policy update index
i ← 0;
Empty replay buffer DS with capacity N ;
Choose a tolerance for offline training εa.

Offline Data Preparation:
Populate the buffer DS with N samples of 4-tuple
(xn, un, gn, x

′
n) generated by a behavior policy from

previous experiments, where n is sample index and x′

denotes the next state in each sample.
Iteration:
1: repeat
2: (Update Next Actions) Compute u′

n with current
target policy πi(x′

n) for every sample in DS;
3: (Update Sampling Weight) Compute the ratio

psn,s′n
qsn,s′n

by (20) for every sample in DS;

4: (Policy Evaluation) Evaluate policy πi by solving
(21) for r̂(i) and Q̂(i), along with approximating (19)
using all samples in DS;

5: (Policy Improvement) Update policy πi+1 by (14),
i ← i+ 1;

6: until ‖r̂(i) − r̂(i−1)‖2 � εa;
7: return Q̂∗ ← Q̂(i) and π̂∗ ← πi.

variables for all four phases. To normalize them into a compa-
rable unit magnitude, following scaling factors were selected
in this study. Specifically, the state variables x in (3) were
normalized with a scaling factor of 8 and 0.24 for the respective
peak error and duration error. Similarly, the action variables u
in (4) were normalized with a scaling factor of 0.05, 0.5, and
0.0005 for respective adjustments of stiffness, equilibriumangle,
and damping. The only one exception was that the value for
equilibrium angle in the SWF was set to 1 when considering
phase differences. Meanwhile, to keep actions staying in a
reasonable range, we set the admissible space U in (14) for
normalized action variables to a range between −1 and 1.
The PICE features a flexibility that can be implemented in

both offline and online manners by taking off-policy and on-
policy learning schemes, respectively. The procedures of both
implementations are described as pseudocodes in Algorithms
1 and 2. A summary of value selections for parameters in
PICE implementations is listed as follows. Penalty matrices
for states Rs and actions Ra were set to diag(1, 0.5) and
diag(0.01, 0.01, 0.01), respectively, while discount factorαwas
selected as 0.9. The radius of Euclidean ball δ was assigned to
100. The tolerance for offline training εa was set to 10−4. The
batch size Nb for online training samples was selected as 15.

The two implementations differ from each other in two major
aspects: training data and termination condition. For offline
PICE, the training data consist of a fixed set of four-tuple
samples,whichwere collected fromprevious studies and already
stored in a buffer beforehand. The same data are repeatedly
utilized until the iteration terminates. The off-policy scheme
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Algorithm 2: Online On-Policy PICE.
Initialization:

Choose a batch size Nb, and empty replay buffer DS;
Random initial target policy π0, policy update index
i ← 0;
Random initial state x(0), impedance update index
k ← 0;
Choose an initial action u(0) using policy π0(x(0));

Iteration:
1: repeat
2: (Online Data Collection) Execute the action u(k),

observe stage cost g(k) and next state x(k+1), choose
the next action u(k+1) by following current target
policy πi, form a 5-tuple sample
(x(k), u(k), g(k), x(k+1), u(k+1)) and store it in DS;

3: if k = iNb(i ∈ N) then
4: (Policy Evaluation) Evaluate policy πi by solving

(21) for r̂(i) and Q̂(i), along with approximating
(19) using all samples in DS;

5: (Policy Improvement) Update policy πi+1 by
(14), i ← i+ 1;

6: (Reset Buffer) Empty DS;
7: end if
8: k ← k + 1;
9: until Early-stopping termination condition is fulfilled

10: return Q̂∗ ← Q̂(i) and π̂∗ ← πi.

is adopted for offline training as the original behavior policy
generating the training samples is different from the target policy
to be evaluated for every iteration. On the other hand, the online
PICE follows an on-policy scheme. In each online iteration, the
target policy keeps interactingwith the human-prosthesis system
to generate on-policy samples of up the specified batch size,
thereby performing the policy evaluation correspondingly. The
sample will be discarded after usage and replaced with new ones
for the new target policy.
In addition, in contrast to offline PICE,which terminates itera-

tions until the parameters in the parameterized value function get
converged, we used an early stopping termination condition to
deactivate anonline trainingprocess. It is not only to prevent over
training, but also to take into consideration that human subjects
can only walk for about 30–60 min during an experiential trial
due to physical constraints. Specifically, during online training,
we analyze the trend in evolution of the stage cost based on
the current policy every time when we have newly collectedNb

samples of state-action pairs. When either of the two conditions
listed below is fulfilled, the online training is deactivated and the
rest of impedance update is carried out with the current policy
until policy update is triggered again.
1) The case of no occurrence of impedance reset due to

hitting the safety bounds. We fit a linear regression model
between the time series of stage cost and that of impedance
update. From the model, we obtain a confidence interval
(specifically 95% confidence interval) around the slope of
the regression line. If the interval falls below zero, which

Fig. 3. Hardware setup for the prototype of robotic knee prosthesis.

signals a rigorously decreasing stage cost as impedance
parameters updated according to the current policy, we
deactivate the online training.

2) The case of using stage costs. We averaged the stage
costs over samples being analyzed. If it is smaller than
a threshold value εb, online training is deactivated. We set
the threshold to 0.043, which is equivalent to the stage cost
of the largest tolerated errors within target set (i.e., 1.5◦

for peak error and 3% for duration error).

V. EXPERIMENTS AND RESULTS

We performed three tests involving four human subjects (two
able-bodied and two amputees) to evaluate the performances of
the proposed PICE.

A. Hardware Setup

Aprototype of robotic knee prosthesis designed in our labwas
used in this study [13]. The prosthesis utilizes a slider-crank
mechanism, in which the slider is driven by the rotation of a
dc motor (Maxon, Switzerland) through a ball screw (THK,
Japan), and the crank rotation mimics the knee motion. The
whole mechanism is integrated with a pylon as shown in Fig. 3.
A maximum of 80 N · m torque output at the joint is ensured
with such a design. The rotational motion of the prosthetic
knee joint is recorded by a potentiometer (ALPS, Japan). A
load cell (Bertec, USA) is attached to the pylon to measure the
GRF. All the analog readings are converted to digital signals
through a DAQ board (NI, USA) and then fed back to the control
system, which is implemented by LabVIEW andMATLAB on a
desktop PC.

B. Participants

We recruited four male subjects, two able-bodied individuals
(AB1 andAB2), and two transfemoral amputees (TF1 and TF2),
in this study. The participants’ information is summarized in
Table I. An L-shaped adapter (see Fig. 3) and a daily socket
were used by AB and TF subjects, respectively, to allow them to
walk with the knee prosthesis. The alignment of prosthesis for
each subject was done by a certified prosthetist. All the subjects
received trainingwith the powered prosthesis until they canwalk
comfortably and confidently without holding the handrail. All
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TABLE I
PARTICIPANT INFORMATION

∗The body weight includes the robotic knee prosthesis.

the subjects were provided written informed consent before any
procedures, and this study was approved by the Institutional
Review Board of University of North Carolina at Chapel Hill.

C. Experimental Protocols

Wecarried out three experimental tests to validate and analyze
the performance of the proposed PICE. They are, respectively,
associated with the following the following three goals:
1) to experimentally assess convergence properties during

offline training and the effect of training data size;
2) to quantitatively assess potential gains by using an offline

pretrained policy as the initial policy for online training,
and compare its performance to randomly initialized on-
line training;

3) to investigate the robustness of a set of well-trained poli-
cies as tasks and users change.

1) Test of Offline Training: We used five sets of offline data
all collected from AB1 to perform the offline policy training
and obtained five sets of policies accordingly. The numbers of
data samples in the five sets were 15, 45, 75, 105, and 135,
respectively, each sample was a four-tuple (xn, un, gn, x

′
n). We

then evaluated each policy in five independent trials using AB1
as the test subject. AB1 walked on a treadmill at a speed of
0.6 m/s, while the offline trained policy adjusted the prosthesis
impedance. The same set of initial impedance was applied to
all the five trials. To eliminate the confounding effect of fatigue
resulting from prolonged walking, for each tuning trial, AB1
performed several 3-min walking segments followed by a rest
period. Additionally, a maximum of 135 impedance updates
were allowed in consideration of the subject’s limited enduring
with walking. If training did not complete within this limit, the
trial was considered a failure.
Two outcome measures were captured in each trial. The first

measure was the L2 distance (i.e., ‖r(i) − r(i−1)‖2) between
the two consecutive weight parameter vectors in (18). It is used
to quantify changes in the series of value outcomes in (10).
The second measure was to explore the relationship between
the number of offline training samples and the number of phases
in which the success as defined in Section IV-A was reached
without any online policy updates beyond offline training.
2) Test of Online Training: We conducted online training

under two different initial policy conditions: 1) randomly ini-
tialized; 2) offline pretrained. Two subjects, AB1 and TF1, were
asked to perform the treadmill walking task at the speed of
0.6 m/s. We used their own available offline data to obtain the

pretrained policies. For both subjects, the offline training data
had 105 samples. The same pretrained policies were used to
serve as initial policies across trials for each subject, while
randomly initialized policies varied. A few blocks of exper-
imental sessions were conducted, each including two online
training trials for comparison purpose. Specifically, in each
block, we randomly selected the initial impedance parameters
with the only requirement of being feasible for walking. Then,
two online training trials with different initial policy conditions
were performed. For AB1, three blocks of experimental sessions
(each of which used different initial impedance parameter) were
conducted. For TF1, one block was tested. The same walk-
rest experimental protocol and the same maximum number of
impedance update were applied as discussed in the first test.
The evaluation for the test of online training included ef-

ficiency, effectiveness, and impedance tuning convergence.
Herein, the efficiency of online training was quantified by the
following: 1) the number of phases needed for online policy
updates beyond the initial policies until meeting the stopping
criteria defined in Section IV-A; 2) the number of impedance
updates to meet the stopping criterion for prosthesis tuning.
To understand the effectiveness of tuning prosthesis control
for producing desired knee motion, the knee kinematics were
measured to reflect how the prosthetic knee joint moved when
it interacted with the human users as the impedance varied with
the guidance of policies. Finally, the impedance tuning conver-
gence was analyzed by checking the evolution of peak errors
and duration errors of knee kinematics (states) and prosthesis
impedance values (control parameters) during the tuning.
3) Test of Policy Robustness: We investigated the robustness

of well-trained policies and studied how well they behaved
against changes of task and human subject. Two sets of well-
trained policies were used, which were obtained from AB1 and
AB2 in their respective treadmill walking tasks at the speed of
0.6 m/s prior to trials in this test. We applied them as initial
policies for three new trials. Specifically, the trials consisted of
the following:
1) up-ramp walking with slope of 4◦ performed by subject

AB1 starting with his own policy;
2) self-paced level-ground walking performed by subject

AB2 starting with his own policy;
3) treadmill walking (0.6 m/s) performed by subject TF2 but

starting with AB2’s policy.
To investigate how policies acted when they were applied

to different tasks or subjects, we monitored sequences of both
impedance and policy updates in each trial and the associated
evolution of stage cost.

D. Experimental Results

1) Offline Training Assessment: Since similar results were
obtained from all trials in the test of offline training, we only
demonstrate the representative results (trained by data with the
size of 105 samples collected from AB1) in Fig. 4(a). As shown
in the data that changes in the weight parameter vectors of
the approximating value function in (18) reduced to within the
tolerance (10−4) in six offline policy updates,which is equivalent
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Fig. 4. Result of offline training evaluation. (a) Evolution of the L2 distance
between weight parameter vectors in two value function consecutive updates
(i.e., ‖r(i) − r(i−1)‖2) in a representative trial of offline training test. At each
instance of offline policy update, the vector is updated correspondingly. (b)
Number of phases being able to reach a success increases with the increase of
amount of training data.

TABLE II
EFFICIENCY COMPARISONS OF ONLINE TRAINING BY USING PRETRAINED

VERSUS RANDOM INITIAL POLICIES

∗ The experimental block B1 through B3 were tested with subject AB1, while the block
B4 was associated with the subject TF1.† The numbers 1 through 4 under the column
represent STF, STE, SWF, and SWE, respectively, in the FSM-IC.

to 10 s for performing the computation. The results suggest that
the approximate value functions, as well as the policies, were
convergent given the offline training data.
For the effect of the size of training dataset, we see in Fig. 4(b)

that the number of phases being able to reach a success increased
as the amount of training data increased. Particularly, when we
performed the offline training with 135 samples, the number
of phases reached up to four and no more policy updates were
needed to accomplish the tuning. The evidence implies that, with
the offline implementation alone, the proposed PICE algorithm
is able to obtain policies ready to deploy as sufficient offline data
of good quality are available to use.
2) Online Training Assessment: We first looked into its im-

provement in tuning efficiency by employing the pretrained
initial policies obtained from offline training. As shown in Ta-
ble II, the comparison results reveal that online training starting
with pretrained policies obtained from offline training, albeit not
perfect, were significantlymore efficient than those startingwith
random policies. On average, the former cases only resulted in
1 phase that required online policy update, whereas the number
amounted to 4 in the latter cases. Meanwhile, pretrained cases
were observed to have less overall number of impedance updates
than random cases did to meet the stopping criterion by an
average of 58, which was equivalent to about 7 min of walking
time of a subject.

Fig. 5. Prosthetic knee kinematics with initial and final tuned impedance
parameters in the test of online training. (a)–(d) Trials with pretrained initial
policies in experimental block B1, B2, B3, and B4, respectively. Time series
of kinematics are divided and normalized to multiple profiles in individual gait
cycles based on the timing of heel strike. Shaded areas along profiles indicate
the real motion ranges across four gait cycles performed by subjects walking
with the same impedance parameters. The associated lines (dashed and solid)
denote the averaged kinematics.

Fig. 6. Evolution of states as impedance parameters was updated. (a) Peak
errors. (b) Duration errors.

Apart from the efficiency, for the trials staring with pretrained
initial policies, we studied the tuning effectiveness. Fig. 5 dis-
plays the overall effect of tuning by comparing the knee profiles
generated by initial impedance parameters before tuning with
those produced by adjusted parameters at the end of tuning trials.
Wenoted that, though differed in shape, initial knee profiles in all
trials deviated from the targets, especially peak angle features.
However, going through the tuning process under the guidance
of final policies, the final parameters enabled knee profiles to
approach the targets.
To inspect the impedance tuning convergence, we present

representative results here (the experimental block B1 with
pretrained initial policies in the Table II) as similar results across
trials were observed. As revealed in Fig. 6, no matter how large
the initial errors were, they all progressively converged into
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Fig. 7. Evolution of the impedance parameters (i.e., stiffness, equilibrium angle, and damping) in different phases. (a) STF, (b) STE, (c) SWF, (d) SWE.

Fig. 8. Normalized stage cost over the number of impedance updates in testing policy robustness. The vertical lines indicate the instances where policy updates
took place. The areas highlighted in yellow denote the periods of time when the online learning was activated and intermediate policies were employed, the areas
highlighted in purple describe the phases where online learning was deactivated and final policies were deployed. Remaining areas without highlights indicate that
initial policies trained from the treadmill walking of one subject were sufficient for successful impedance tuning when applied directly to other walking tasks or
subjects. (a) Four phases in a trial of AB2 level-ground walking. (b) Four phases in a trial of AB1 up-ramp walking with slope of 4◦. (c) Four phases in a trial of
TF2 treadmill walking.

the tolerance range of errors (±1.5◦ for peak error, ±3% for
duration error) and eventually remained within the range. Cor-
respondingly, in Fig. 7, we observed that impedance parameters
converged to constant values at the end of the trial (i.e., last
ten updates) for most phases, except for the STF where the
momentum of impedance adjustment lingered. The difference
may be attributed to varying perturbations introduced by more
dynamical interactions occurring in the STF among the human,
the robotic prosthesis and the ground. As a result, the final
policy for STF needed to respond by adjusting the impedance
to accommodate such disturbances and stabilize errors within
tolerances.
3) Robustness Investigation: As seen in Fig. 8(a), subject

AB2 used a pretrained policy obtained from his own treadmill
walking to perform level-ground walking with no difficulty as
no further policy update was needed, and after 46 impedance
updates (about 6 min of subject walking time), the subject knee
kinematicsmet stopping criterion. Similar results were observed
from Fig. 8(b) in the trial of AB1 up-ramp walking with even
fewer impedanceupdates (i.e., 30 impedanceupdates).As for the
trial of TF2 treadmill walking using the AB2’s pretrained policy,

despite not being completely successful in deploying policies to
all four phases, only three updates of policy occurred in the STF
phase, as shown in Fig. 8(c). Although 72 impedance updates
(about 9 min) were needed to meet the stopping criterion, it only
took 45 updates of impedance (about 6 min) to obtain the final
policy refined for the STF phase of the new subject.
Note that a cyclic pattern of change in the cost was displayed

in Fig. 8(c). This was caused by following initial or intermediate
policies, which led to cost value sloping upward until the safety
boundwas hit, thereby triggering the reset of impedance parame-
ters and getting the cost drop back to the initial value. The results
suggest that policies we obtained from AB2 treadmill walking
were, to some extent, robust against the changes of tasks and
subjects.

VI. DISCUSSIONS

In this study, we proposed a promising solution of PICE
for tuning high-dimensional robotic knee prosthesis control
parameters in order to provide efficient personalized assistance
in walking. The tuning efficiency stemmed partly from our
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innovation that enables offline policy training, beside online
training, via policy iteration. To the best of authors’ knowledge,
few studies have successfully addressed wearable robot person-
alization in such an offline–online manner.
Our proposed RL method, as suggested in Fig. 4, demon-

strated the feasibility of obtaining policies from a sufficient
amount of existing offline data by the offline training, which can
be deployed directly without interacting with the real human-
prosthesis system. Clearly the offline implementation of PICE
enables a maximal utility of existing parameter-performance
data and is a new way to improve training efficiency in ob-
taining prosthesis tuning policies. Nevertheless, pure offline
implementation has no guarantees to obtain accurate and robust
policies despite being convergent in the sense of offline training,
especially when the training data quality is poor. Note that the
quality of data has two meanings, which include the amount
of data and the extent of mismatch in data distribution [50]. In
this study, however, we only investigated the influence of the
amount of data on the offline training. Therefore, the number of
training data we examined in this study might not be applicable
to other datasets due to the confounding effect caused by data
distributions, and it is actually difficult to determine the exact
number in practice. Hence, an RL algorithm that is capable of
performing offline–online training, such as our proposed PICE,
became especially intriguing in order to ensure efficiency and
effectiveness of autotuning algorithm for learning the prosthesis
tuning policy. In this article, we demonstrated that when offline
learned policies cannot handle realistic human-prosthesis inter-
action or were not robust enough to handle the variation across
human users, as shown in Fig. 8(c), PICE can trigger online
training that further update the policy to achieve the desired
tuning goal.
In addition, the investigation of robustness associated with

policies learned by the proposed algorithm showed other indirect
benefits to potentially scale up the training outcome.As shown in
Fig. 8, most deployed polices possessed exceptional robustness,
in spite of the fact that policy refinements happened in the STF
through online training to further accommodate for the changes
in users. A potential reason to explain the phenomenon could
be the fact that the underlying physical principles in prosthe-
sis control have no drastic changes across different subjects
and walking tasks as well as the associated variations in gait
patterns and GRFs. The promising discovery may enable us
to collect data and obtain pretrained initial policies, albeit not
optimal, from more available users and relatively easier tasks.
From there, further user-specific or task-specific refinements, if
needed, could be accomplished by online training. As opposed
to learning from scratch, such an approach ismore likely to result
in higher training efficiency, and thus, it is of great clinical value
when applied at scales.
As a generic and efficient learning framework, the proposed

PICE could also potentially shed light on similar problems for
other assistive wearable machines, such as exoskeletons and
neuroprosthetics. These devices are also in need of identifying
the optimal control parameters for individual users with motor
deficits [51], [52]. By unleashing the potentials demonstrated
in this study, translations of the proposed approach into other

human–machine systems are expected to be valuable because
they all call for high training efficiency and being model-free
due to patient-in-the-loop. However, specific modifications re-
garding problem formulations or implementations need to be
properly considered before the translations, such as how to
define states, actions, and costs for each application.
The successful implementation of the proposed PICE in the

human-prosthesis system would encourage future studies to
explore more application-specific solutions to an efficient ap-
proximation of the value function in RL. We demonstrated, in
this study that leveraging simple basis functions (e.g., quadratic
basis functions) fueled by insights on the control problem (e.g.,
thePSDconstraint for the value function presented in this article)
is likely to yield a satisfying approximation for the value function
with limited amount of data. This is because, with fewer number
of unknown parameters to estimate, such a choice alleviates the
high demands for persistent excitation [53] or data richness [54]
required by generic basis functions, which are often difficult to
meet in practice; meanwhile the prestructured treatment is able
to compensate for a poor approximation due to the lack of data.
Our proposed design and study, although promising, also had

several limitations. The primary limitations of this study were
the limited evaluation of the algorithm on human subjects and
walking terrains in daily environments, because the focuses of
this study were on developing a new automatic prosthesis tuning
solution and demonstrating its promising advantages in clinic
settings. Systematic evaluation of proposed tuning algorithm on
more human subjects and terrain types (sand, grass, foam, etc.)
is needed in order to show the clinical value in the future. In addi-
tion, we need more designed experiments to further validate the
robustness of policies trained by the proposed approach against
realistic conditions of uncertainties or disturbances. Another
limitation arose from the feature extraction of the continuous
knee profile. We selected four discrete points, as a means of
dimension reduction, to characterize knee kinematics in each
phase of a single gait cycle. Such a selection dropped the
information of kinematics between these points, and thus, we
had little control over the entire profile except for the feature
points. To really reproduce target knee kinematics, we need
to explore more advanced feature extraction methods that can
better characterize a continuous profile. Lastly, in this study, the
impedance tuning goal was to drive the prosthetic knee kine-
matics to approach the predefined knee profile extracted from
representativemotion in able-bodied population. This is limiting
aswell as such agoalmight not alignwith user’s preference, thus,
may not be optimal with respect to other measures of the gait
performance (e.g., gait symmetry, energy expenditure, balance,
etc.). How to set up target profiles will be investigated in our
future study.

VII. CONCLUSION

In this article, we proposed an improved solution of an RL-
based algorithm, PICE, to learn impedance tuning policies for a
robotic knee prosthesis efficiently. The tuning objective was to
reproduce near-normal knee kinematics during walking tasks.
The PICE algorithm benefited from an ability of offline–online
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training and from making a compromise in using a simplified
value function approximation structure. The problem of falsely
yielded negative performance values due to approximation er-
rors was avoided by imposing a PSD constraint to keep the
approximated value function qualitatively correct. Therefore,
it has great advantage on improving efficiency of the policy
training.
We directly tested the proposed idea on human subjects.

Our results showed that PICE successfully provided impedance
tuning policy to the prosthetic knee with a human in the loop,
and it significantly reduced policy training time especially for
online training after initializingwith an offline pretrained policy.
In addition, the deployed policy is robust across human subjects
andmodifications in tasks. These promising results suggest great
potential for future clinical application of our proposed methods
on automatically personalizing assistive wearable robots.

APPENDIX

ERROR BOUND ANALYSIS

The focus of the analysis is to obtain a qualitative error bound
for our proposed PICE algorithm. The analysis is performed
along the line of [35] and [55]. We assume the following
sufficient condition that the contraction property holds for any
r ⊂ Rm under the general projected Bellman operation without
constraints

‖projS(TΦr)‖Ξ ≤ ‖Φr‖Ξ.
The rationale of the assumption is that the property is theoreti-
cally guaranteed by adopting an on-policy scheme, while it can
also be practically fulfilled by means of optimized sampling
when utilizing an off-policy scheme as demonstrated in [55].
With the abovementioned assumption and nonexpansive

property of projections shown as follows:

‖projS+
(·)‖Ξ ≤ ‖projS(·)‖Ξ ≤ ‖ · ‖Ξ

we have the following bounded error between the approximate
value function Q̂π and the ground truthQπ for the target policy
π in the context of PICE

‖Q̂π −Qπ‖Ξ ≤ ‖Q̂π − projS+
(Qπ)‖Ξ + ‖projS+

(Qπ)−Qπ‖Ξ
= ‖projS+

B(Q̂π)− projS+
B(Qπ)‖Ξ

+ ‖projS+
(Qπ)−Qπ‖Ξ

≤ α‖projS(TQ̂π)− projS(TQ
π)‖Ξ

+ ‖projS+
(Qπ)−Qπ‖Ξ

≤ α‖projS(TQ̂π)− projS(TprojS(Q
π))‖Ξ

+ α‖projS(TprojS(Qπ))− projS(TQ
π)‖Ξ

+ ‖projS+
(Qπ)−Qπ‖Ξ

≤ α‖Q̂π −Qπ‖Ξ + ακ(Θ)‖projS(Qπ)−Qπ‖Ξ
+ ‖projS+

(Qπ)−Qπ‖Ξ

≤ 1 + 2ακ(Θ)

1− α
‖projS+

(Qπ)−Qπ‖Ξ

where κ(Θ) denotes the condition number of the matrix Θ �
(ΞΛ)−

1
2 . The Ξ and Λ are diagonal matrices consisting of

steady-state probabilities of Markov chains under the behavior
and target policy, respectively.
Let ξ be the largest upper bound of evaluation errors over all

iterations of policy evaluation. According to [35] and [56], when
the policy improvement is performed exactly without incurring
errors (which is guaranteed in this problem setting due to a use
of QP solution), the following bound is yielded:

lim sup
i→∞

‖ Q̂(i) −Q∗ ‖≤ 2αξ

(1− α)2
.

This result for off-policy learning may result in a less tight
bound if the condition number is poor. However, it still provides
performance guarantees for the solution quality of PICE with
the error being bounded, as opposed to being arbitrarily large.
The bound implies that the proposed algorithm will eventually
either converge or oscillate within a suboptimal policy space
where the resulted policy is at most a constant away from the
true optimality.
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