
Journal of Machine Learning Research 22 (2021) 1-38 Submitted 10/20; Revised 6/21; Published 7/21

A Greedy Algorithm for Quantizing Neural Networks

Eric Lybrand elybrand@ucsd.edu
Department of Mathematics
University of California, San Diego
San Diego, CA 92121, USA

Rayan Saab rsaab@ucsd.edu

Department of Mathematics, and

Halicioglu Data Science Institute

University of California, San Diego

San Diego, CA 92121, USA

Editor: Gal Elidan

Abstract

We propose a new computationally e�cient method for quantizing the weights of pre-
trained neural networks that is general enough to handle both multi-layer perceptrons
and convolutional neural networks. Our method deterministically quantizes layers in an
iterative fashion with no complicated re-training required. Specifically, we quantize each
neuron, or hidden unit, using a greedy path-following algorithm. This simple algorithm
is equivalent to running a dynamical system, which we prove is stable for quantizing a
single-layer neural network (or, alternatively, for quantizing the first layer of a multi-layer
network) when the training data are Gaussian. We show that under these assumptions, the
quantization error decays with the width of the layer, i.e., its level of over-parametrization.
We provide numerical experiments, on multi-layer networks, to illustrate the performance
of our methods on MNIST and CIFAR10 data, as well as for quantizing the VGG16 network
using ImageNet data.

Keywords: quantization, neural networks, deep learning, stochastic control, discrepancy
theory

1. Introduction

Deep neural networks have taken the world by storm. They outperform competing al-
gorithms on applications ranging from speech recognition and translation to autonomous
vehicles and even games, where they have beaten the best human players at, e.g., Go (see,
LeCun et al. 2015; Goodfellow et al. 2016; Schmidhuber 2015; Silver et al. 2016). Such spec-
tacular performance comes at a cost. Deep neural networks require a lot of computational
power to train, memory to store, and power to run (e.g., Han et al. 2016; Kim et al. 2016;
Gupta et al. 2015; Courbariaux et al. 2015). They are painstakingly trained on powerful
computing devices and then either run on these powerful devices or on the cloud. Indeed,
it is well-known that the expressivity of a network depends on its architecture (Baldi and
Vershynin, 2019). Larger networks can capture more complex behavior (Cybenko, 1989)
and therefore, for example, they generally learn better classifiers. The trade o↵, of course,
is that larger networks require more memory for storage as well as more power to run

c�2021 Eric Lybrand and Rayan Saab.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1233.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1233.html

Lybrand and Saab

computations. Those who design neural networks for the purpose of loading them onto
a particular device must therefore account for the device’s memory capacity, processing
power, and power consumption. A deep neural network might yield a more accurate classi-
fier, but it may require too much power to be run often without draining a device’s battery.
On the other hand, there is much to be gained in building networks directly into hardware,
for example as speech recognition or translation chips on mobile or handheld devices or
hearing aids. Such mobile applications also impose restrictions on the amount of memory
a neural network can use as well as its power consumption.

This tension between network expressivity and the cost of computation has naturally
posed the question of whether neural networks can be compressed without compromising
their performance. Given that neural networks require computing many matrix-vector
multiplications, arguably one of the most impactful changes would be to quantize the weights
in the neural network. In the extreme case, replacing each 32-bit floating point weight with
a single bit would reduce the memory required for storing a network by a factor of 32
and simplify scalar multiplications in the matrix-vector product. It is not clear at first
glance, however, that there even exists a procedure for quantizing the weights that does not
dramatically a↵ect the network’s performance.

1.1 Contributions

The goal of this paper is to propose a framework for quantizing neural networks without
sacrificing their predictive power, and to provide theoretical justification for our framework.
Specifically,

• We propose a novel algorithm in (2) and (3) for sequentially quantizing layers of a
pre-trained neural network in a data-dependent manner. This algorithm requires no
retraining of the network, requires tuning only 2 hyperparameters—namely, the num-
ber of bits used to represent a weight and the radius of the quantization alphabet—and
has a run time complexity of O(Nm) operations per layer. Here, N is the ambient
dimension of the inputs, or equivalently, the number of features per input sample of
the layer, while m is the number of training samples used to learn the quantization.
This O(Nm) bound is optimal in the sense that any data-dependent quantization
algorithm requires reading the Nm entries of the training data matrix. Furthermore,
this algorithm is parallelizable across neurons in a given layer.

• We establish upper bounds on the relative training error in Theorem 2 and the gener-
alization error in Theorem 3 when quantizing the first layer of a neural network that
hold with high probability when the training data are Gaussian. Additionally, these
bounds make explicit how the relative training error and generalization error decay
as a function of the overparametrization of the data.

• We provide numerical simulations in Section 6 for quantizing networks trained on the
benchmark data sets MNIST and CIFAR10 using both multilayer perceptrons and
convolutional neural networks. We quantize all layers of the neural networks in these
numerical simulations to demonstrate that the quantized networks generalize very well
even when the data are not Gaussian.

2

A Greedy Algorithm for Quantizing Neural Networks

2. Notation

Throughout the paper, we will use the following notation. Universal constants will be
denoted as C, c and their values may change from line to line. For real valued quantities
x, y, we write x . y when we mean that x  Cy and x / y when we mean cy  x  Cy.
For any natural number m 2 N, we denote the set {1, . . . ,m} by [m]. For column vectors
u, v 2 Rm, the Euclidean inner product is denoted by hu, vi = u

T
v =

Pm
j=1 ujvj , the `2-

norm by kuk2 =
qPm

j=1 u
2
j , the `1-norm by kuk1 =

Pm
j=1 |uj |, and the `1-norm by kuk1 =

maxj2[m] |uj |. B(x, r) will denote the `2-ball centered at x with radius r and we will use the
notation B

m
2 := B(0, 1) ⇢ Rm. For a sequence of vectors ut 2 Rm with t 2 Z, the backwards

di↵erence operator � acts by �ut = ut � ut�1. For a matrix X 2 Rm⇥N we will denote the
rows using lowercase characters xt and the columns with uppercase characters Xt. For two

matrices X,Y 2 Rm⇥N we denote the Frobenius norm by kX�Y kF :=
qP

i,j |Xi,j � Yi,j |2.
� will denote a L-layer neural network, or multilayer perceptron, which acts on data x 2 RN0

via

�(x) := ' �A(L) � · · · � ' �A(1)(x).

Here, ' : R ! R is a rectifier which acts on each component of a vector, A(`) is an a�ne
operator with A

(`)(v) = v
T
W

(`)+b
(`)T and W

(`) 2 RN`⇥N`+1 is the `th layer’s weight matrix,
b
(`) 2 RN`+1 is the bias.

3. Background

While there are a handful of empirical studies on quantizing neural networks, the mathe-
matical literature on the subject is still in its infancy. In practice there appear to be three
di↵erent paradigms for quantizing neural networks. These include quantizing the gradients
during training, quantizing the activation functions, and quantizing the weights either dur-
ing or after training. Guo (2018) presents an overview of these di↵erent paradigms. Any
quantization that occurs during training introduces issues regarding the convergence of the
learning algorithm. In the case of using quantized gradients, it is important to choose
an appropriate codebook for the gradient prior to training to ensure stochastic gradient
descent converges to a local minimum. When using quantized activation functions, one
must suitably modify backpropagation since the activation functions are no longer di↵er-
entiable. Further, enforcing the weights to be discrete during training also causes problems
for backpropagation which assumes no such restriction. In any of these cases, it will be
necessary to carefully choose hyperparameters and modify the training algorithm beyond
what is necessary to train unquantized neural networks. In contrast to these approaches,
our result allows the practitioner to train neural networks in any fashion they choose and
quantizes the trained network afterwards. Our quantization algorithm only requires tuning
the number of bits that are used to represent a weight and the radius of the quantization
alphabet. We now turn to surveying approaches similar to ours which quantize weights
after training.

A natural question to ask is whether or not for every neural network there exists a
quantized representation that approximates it well on a given data set. It turns out that
a partial answer to this question lies in the field of discrepancy theory. Ignoring bias

3

Lybrand and Saab

terms for now, let’s look at quantizing the first layer. There we have some weight matrix
W 2 RN0⇥N1 which acts on input x 2 RN0 by x

T
W and this quantity is then fed through

the rectifier. Of course, a layer can act on a collection of m > 0 inputs stored as the rows
in a matrix X 2 Rm⇥N0 where now the rectifier acts componentwise. Focusing on just
one neuron w, or column of W , rather than viewing the matrix vector product Xw as a
collection of inner products {xTi w}i2[m], we can think about this as a linear combination
of the columns of X, namely

P
t2[N0]

wtXt. This elementary linear algebra observation
now lends the quantization problem a rather elegant interpretation: is there some way of
choosing quantized weights qt from a fixed alphabet A, such as {�1, 0, 1}, so that the walk
Xq =

PN0
t=1 qtXt approximates the walk Xw =

PN0
t=1wtXt?

As we mentioned above, the study of the existence of such a q when Xw = 0 has a
rather rich history from the discrepancy theory literature. Spencer (1985) in Corollary 18
was able to prove the following surprising claim. There exists an absolute constant c > 0
so that given N vectors X1, . . . , XN 2 Rm with supt2[N] kXtk2  1 there exists a vector

q 2 {�1, 1}N so that kXw �Xqk1 = kXqk1  c log(m). What makes this so remarkable
is that the upper bound is independent of N , or the number of vectors in the walk. Spencer
further remarks that János Komlós has conjectured that this upper bound can be reduced
to simply c. The proof of the Komlós conjecture seems to be elusive except in special cases.
One special case where it is true is if we require N < m and now allow q 2 {�1, 0, 1}N .
Theorem 16 in Spencer (1985) then proves that there exists universal constants c 2 (0, 1)
and K > 0 so that for every collection of vetors X1, . . . , XN 2 Rm with maxi2[N] kXik2  1

there is some q 2 {�1, 0, 1}N with |{i 2 [N] : qi = 0}| < cN and kXqk1  K.
Spencer’s result inspired others to attack the Komlós conjecture and variants thereof.

Banaszczyk (1990) was able to prove a variant of Spencer’s result for vectors Xt chosen from
an ellipsoid. In the special case where the ellipsoid is the unit ball in Rm, Banaszczyk’s
result says for any X1, . . . , XN 2 B

m
2 there exists q 2 {�1, 1}N so that kXqk2 

p
m. This

bound is tight, as it is achieved by the walk with N = m and when the vectors Xt form
an orthonormal basis. Later works consider a more general notion of boundedness. Rather
than controlling the infinity or Euclidean norm one might instead wonder if there exists a
bit string q so that the quantized walk never leaves a su�ciently large convex set containing
the origin. The first such result, to the best of our knowledge, was proven by Giannopoulos
(1997). Giannopoulos proved there that for any origin-symmetric convex set K ⇢ Rm with
standard Gaussian measure �(K) � 1/2 and for any collection of vectors X1, . . . , Xm 2 B

m
2

there exists a bit string q 2 {�1, 1}m so that Xq 2 c log(m)K. Notice here that the number
of vectors in this result is equal to the dimension. Banaszczyk (1998) strengthened this
result by allowing the number of vectors to be arbitrary and further showed that, under the
same assumption �(K) � 1/2, there exists a q 2 {�1, 1}N which satisfies Xq 2 cK. Scaling
the hypercube appropriately, this immediately implies that the bound in Spencer’s result
can be reduced from c log(m) to c

p
1 + log(m). Though the above results were formulated

in the special case when w = 0, a result by Lovasz et al. (1986) proves that results in this
special case naturally extend to results in the linear discrepancy case when kwk1  1,
though the universal constant scales by a factor of 2.

While all of these works are important contributions towards resolving the Komlós
conjecture, many important questions remain, particularly pertaining to their applicability
to our problem of quantizing neural networks. Naturally the most important question

4

A Greedy Algorithm for Quantizing Neural Networks

remains on how to construct such a q given X, w. A näıve first guess towards answering
both questions would be to solve an integer least squares problem. That is, given a data
set X, a neuron w, and a quantization alphabet A, such as {-1, 1}, solve

minimize
q

kXw �Xqk22

subject to qi 2 A, i = 1, . . . ,m.

(1)

It is well-known, however, that solving (1) is NP-Hard. See, for example, Ajtai (1998).
Nevertheless, there have been many iterative constructions of vectors q 2 {�1, 1}N which
satisfy the bounds in the aforementioned works. A non-comprehensive list of such works in-
cludes Bansal (2010); Lovett and Meka (2015); Rothvoss (2017); Harvey et al. (2014); Eldan
and Singh (2014). Constructions of q which satisfy the bound in the result of Banaszczyk
(1998) include the works of Dadush et al. (2016); Bansal et al. (2018). These works also
generalize to the linear discrepancy setting. In fact, Bansal et al. (2018) prove a much more
general result which allows the use of more arbitrary alphabets other than {�1, 1}. Their
algorithm is random though, so their result holds with high probability on the execution
of the algorithm. This is in contrast, as we will see, with our result which will hold with
high probability on the draw of Gaussian data. Beyond this, the computational complexity
of the algorithms in Dadush et al. (2016); Bansal et al. (2018) prohibit their use in quan-
tizing deep neural networks. For Dadush et al. (2016), this consists of looping over O(N5

0)
iterations of solving a semi-definite program and computing a Cholesky factorization for a
N0 ⇥N0 matrix. The Gram-Schmidt walk algorithm in Bansal et al. (2018) has a run-time
complexity of O(N0(N0 + m)!), where ! � 2 is the exponent for matrix multiplication.
These complexities are already quite restrictive and only give the run-time for quantizing a
single neuron. As the number of neurons in each layer is likely to be large for deep neural
networks, these algorithms are simply infeasible for the task at hand. As we will see, our
algorithm in comparison has a run-time complexity of O(N0m) per neuron which is optimal
in the sense that any data driven approach towards constructing q will require one pass over
the N0m entries of X. Using a norm inequality on Banasczyzk’s bound, the result in Bansal
(2010) guarantees for kwk1  1 the existence of a q such that kXw�Xqk2  c

p
m log(m).

Provided w is a generic vector in the hypercube, namely that kwk2 /
p
N0, then a simple

calculation shows that with high probability on the draw of Gaussian data X with entries
having variance 1/m to ensure that the columns are approximately unit norm, the Gram-

Schmidt walk achieves a relative error bound of kXw�Xqk2
kXwk2 .

p
m log(m)/N0. As we will

see in Theorem 2, our relative training error bound for quantizing neurons in the first layer
decays like log(N0)

p
m/N0. In other words, to achieve a relative error of less than " in the

overparametrized regime where N0 � m, the Gram-Schmidt walk requires on the order of
m3 log3(m)

"6 floating point operations as compared to our algorithm which only requires on

the order of m2

"2 floating point operations.
With no quantization algorithm that is both competitive from a theoretical perspective

and computationally feasible, we turn to surveying what has been done outside the mathe-
matical realm. Perhaps the simplest manner of quantizing weights is to quantize each weight
within each neuron independently. The authors in Rastegari et al. (2016) consider precisely
this set-up in the context of convolutional neural networks (CNNs). For each weight matrix
W

(`) 2 RN`⇥N`+1 the quantized weight matrix Q
(`) and optimal scaling factor ↵` are defined

5

Lybrand and Saab

as minimizers of kW (`) � ↵Qk2F subject to the constraint that Qi,j 2 {�1, 1} for all i, j. It

turns out that the analytical solution to this optimization problem is Q(`)
i,j = sign(W (`)

i,j) and

↵` =
1

mn

P
i,j |W

(`)
i,j |. This form of quantization has long been known to the digital signal

processing community as Memoryless Scalar Quantization (MSQ) because it quantizes a
given weight independently of all other weights. While MSQ may minimize the Euclidean
distance between two weight matrices, we will see that it is far from optimal if the concern
is to design a matrix Q which approximates W on an overparameterized data set. Other
related approaches are investigated in, e.g., Hubara et al. (2017).

In a similar vein, Wang and Cheng (2017) consider learning a quantized factorization of
the weight matrix W = XDY , where the matrices X,Y are ternary matrices with entries
{�1, 0, 1} and D is a full-precision diagonal matrix. While in general this is a NP-hard
problem authors use a greedy approach for constructing X,Y,D inspired by the work of
Kolda and O’leary (1998). They provide simulations to demonstrate the e�cacy of this
method on a few pre-trained models, yet no theoretical analysis is provided for the e�cacy
of this framework. We would like to remark that the work Kueng and Tropp (2019) gives
a framework for computing factorizations of W when rank(W) = r as W = SA 2 Rn⇥m,
where S 2 {�1, 1}n⇥r

, A 2 Rr⇥m. The reason this work is intruiging is that it does o↵er
a means for compressing the weight matrix W by storing a smaller analog matrix A and
a binarized matrix S though it does not o↵er nearly as much compression as if we were
to replace W by a fully quantized matrix Q. Indeed, the matrix A is not guaranteed to
be binary or admit a representation with a low-complexity quantization alphabet. Never-
theless, Kueng and Tropp (2019) give conditions under which such a factorization exists
and propose an algorithm which provably constructs S,A using semi-definite programming.
They extend this analysis to the case when W is the sum of a rank r matrix and a sparse
matrix but do not establish robustness of their factorization to more general noise models.

Extending beyond the case where the quantization alphabet is fixed a priori, Gong et al.
(2014) propose learning a codebook through vector quantization to quantize only the dense
layers in a convolutional neural network. This stands in contrast to our work where we
quantize all layers of a network. They consider clustering weights using k-means clus-
tering and using the centroids of the clusters as the quantized weights. Moreover, they
consider three di↵erent methods of clustering, which include clustering the neurons as vec-
tors, groups of neurons thought of as sub-matrices of the weight matrix, and quantizing the
neurons and the successive residuals between the cluster centers and the neurons. Beyond
the fact that this work does not consider quantizing the convolutional layers, there is the
additional shortcoming that clustering the neurons or groups thereof requires choosing the
number of clusters in advance and choosing a maximal number of iterations to stop after.
Our algorithm gives explicit control over the alphabet in advance, requires tuning only the
radius of the quantization alphabet, and runs in a fixed number of iterations. Similar to
the above work, we make special mention of Deep Compression by Han et al. (2016). Deep
Compression seems to enjoy compressing large networks like AlexNet without sacrificing
their empirical performance on data sets like ImageNet. There, authors consider first prun-
ing the network and quantizing the values of the (scalar-valued) weights in a given layer
using k-means clustering. This method applies both to fully connected and convolutional
layers. An important drawback of this quantization procedure is that the network must

6

A Greedy Algorithm for Quantizing Neural Networks

be retrained, perhaps multiple times, to fine tune these learned parameters. Once these
parameters have been fine tuned, the weight clusters for each layer are further compressed
using Hu↵man coding. We further remark that quantizing in this fashion is sensitive to the
initialization of the cluster weights.

4. Algorithm and Intuition

Going forward we will consider neural networks without bias vectors. This assumption may
seem restrictive, but in practice one can always use MSQ with a big enough bit budget
to control the quantization error for the bias. Even better, one may simply embed the
m dimensional data/activations x and weights w into an m + 1 dimensional space via
x 7! (x, 1) and w 7! (w, b) so that w

T
x + b = (w, b)T (x, 1). In other words, the bias term

can simply be treated as an extra dimension to the weight vector, so we will henceforth
ignore it. Given a trained neural network � with its associated weight matrices W

(`) and
a data set X 2 Rm⇥N0 , our goal is to construct quantized weight matrices Q

(`) to form
a new neural network e� for which k�(X) � e�(X)kF is small. For simplicity and ease of
exposition, we will focus on the extreme case where the weights are constrained to the
ternary alphabet {�1, 0, 1}, though there is no reason that our methods cannot be applied
to arbitrary alphabets.

Our proposed algorithm will quantize a given neuron independently of other neurons.
Beyond making the analysis easier this has the practical benefit of allowing us to easily
parallelize quantization across neurons in a layer. If we denote a neuron as w 2 RN` , we
will sucessively quantize the weights in w in a greedy data-dependent way. Let X 2 Rm⇥N0

be our data matrix, and let �(`�1)
, e�(`�1) denote the analog and quantized neural networks

up to layer `� 1 respectively.

In the first layer, the aim is to achieve Xq =
N0P
t=1

qtXt ⇡
N0P
t=1

wtXt = Xw by selecting, at

the t
th step, qt so the running sum

tP
j=1

qjXj tracks its analog
tP

j=1
wjXj as well as possible

in an `2 sense. That is, at the t
th iteration, we set

qt := argmin
p2{�1,0,1}

k
tX

j=1

wjXj �
t�1X

j=1

qjXj � pXtk22.

It will be more amenable to analysis, and to implementation, to instead consider the equiv-
alent dynamical system where we quantize neurons in the first layer using

u0 : = 0 2 Rm
,

qt : = argmin
p2{�1,0,1}

kut�1 + wtXt � pXtk22, (2)

ut : = ut�1 + wtXt � qtXt.

One can see, using a simple substitution, that ut =
Pt

j=1(wjXj � qjXj) is the error vector

at the tth step. Controlling it will be a main focus in our error analysis. An interesting way
of thinking about (2) is by imagining the analog, or unquantized, walk as a drunken walker

7

Lybrand and Saab

and the quantized walk is a concerned friend chasing after them. The drunken walker can
stumble with step sizes wt along an avenue in the direction Xt but the friend can only move
in steps whose lengths are encoded in the alphabet A.

In the subsequent hidden layers, we follow a slightly modified version of (2). Letting
Y := �(`�1)(X), eY := e�(`�1)(X) 2 Rm⇥N` , we quantize neurons in layer ` by

u0 : = 0 2 Rm
,

qt : = argmin
p2{�1,0,1}

kut�1 + wtYt � peYtk22, (3)

ut : = ut�1 + wtYt � qt
eYt.

We say the vector q 2 RN` is the quantization of w. In this work, we will provide a theoretical
analysis for the behavior of (2) and leave analysis of (3) for future work. To that end, we
re-emphasize the critical role played by the state variable ut defined in (2). Indeed, we have
the identity kXw �Xqk2 = kuN0k2. That is, the two neurons w, q act approximately the
same on the batch of data X only provided the state variable kuN0k2 is well-controlled.
Given bounded input {(wt, Xt)}t, systems which admit uniform upper bounds on kutk2 will
be referred to as stable. When the Xt are random, and in our theoretical considerations
they will be, we remark that this is a much stronger statement than proving convergence to
a limiting distribution which is common, for example, in the Markov chain literature. For a
broad survey of such Markov chain techniques, one may consult Meyn and Tweedie (2012).
The natural question remains: is the system (2) stable? Before we dive into the machinery
of this dynamical system, we would like to remark that there is a concise form solution for
qt. Denote the greedy ternary quantizer by Q : R ! {�1, 0, 1} with

Q(z) = argmin
p2{�1,0,1}

|z � p|.

Then we have the following.

Lemma 1 In the context of (2), we have for any Xt 6= 0 that

qt = Q
✓
wt +

X
T
t ut�1

kXtk22

◆
. (4)

Proof This follows simply by completing a square. Provided Xt 6= 0, we have by the
definition of qt

qt = argmin
p2{�1,0,1}

kut�1 + (wt � p)Xtk22 = argmin
p2{�1,0,1}

(wt � p)2 + 2(wt � p)
X

T
t ut�1

kXt�1k22

= argmin
p2{�1,0,1}

✓
(wt � p) +

X
T
t ut�1

kXt�1k22

◆2

�
✓
X

T
t ut�1

kXt�1k22

◆2

.

Because the former term is always non-negative, it must be the case that the minimizer is

Q
⇣
wt +

XT
t ut�1

kXtk22

⌘
.

8

A Greedy Algorithm for Quantizing Neural Networks

Any analysis of the stability of (2) must necessarily take into account how the vectors
Xt are distributed. Indeed, one can easily cook up examples which give rise to sequences of
ut which diverge rapidly. For the sake of illustration consider restricting our attention to
the case when kXtk2 = 1 for all t. The triangle inequality gives us the crude upper bound

kX(w � q)k2 
N0X

t=1

|wt � qt|kXtk2 = kw � qk1.

Choosing q to minimize kw�qk1, or any p-norm for that matter, simply reduces back to the
MSQ quantizer where the weights within w are quantized independently of one another,
namely qt = Q(wt). It turns out that one can e↵ectively attain this upper bound by
adversarially choosing Xt to be orthogonal to ut�1 for all t. Indeed, in that setting we have
exactly the MSQ quantizer

qt : = Q
�
wt +X

T
t ut�1

�
= Q(wt),

ut : = ut�1 + (wt � qt)Xt.

Consequentially, by repeatedly appealing to orthogonality,

kutk22 = kut�1 + (wt � qt)Xtk22 = kut�1k22 + (wt � qt)
2kXtk22 =

tX

j=1

(wj � qj)
2
.

Thus, for generic vectors w, and adversarially chosen Xt, the error kutk2 scales like
p
t.

Importantly, this adversarial construction requires knowledge of ut�1 at “time” t, in order
to construct an orthogonal Xt. In that sense, this extreme case is rather contrived. In
an opposite (but also contrived) extreme case, all of the Xt are equal, and therefore Xt is
parallel to ut�1 for all t, the dynamical system reduces to a first order greedy ⌃� quantizer

qt = Q
�
wt +X

T
t ut�1

�
= Q

0

@wt +
t�1X

j=1

wj � qj

1

A ,

ut = ut�1 + (wt � qt)Xt. (5)

Here, when wt 2 [�1, 1], one can show by induction that kutk2  1/2 for all t, a dramatic
contrast with the previous scenario. For more details on ⌃� quantization, see for example
Inose et al. (1962); Daubechies and DeVore (2003).

Recall that in the present context the signal we wish to approximate is not the neuron
w itself, but rather Xw. The goal therefore is not to minimize the error kw�qk2 but rather
to minimize kX(w� q)k2, which by construction is the same as kuN0k2. Algebraically that
means carefully selecting q so that w � q is in or very close to the kernel, or null-space,
of the data matrix X. This immediately suggests how overparameterization may lead to
better quantization. Given m data samples stored as rows in X 2 Rm⇥N0 , having N0 � m

or alternatively having dim(Span{x1, . . . , xm}) ⌧ N0 ensures that the kernel of X is large,
and one may attempt to design q so that the vector w � q lies as close as possible to the
kernel of X.

9

Lybrand and Saab

5. Main Results

We are now ready to state our main result which shows that (2) is stable when the input
data X are Gaussian. The proofs of the following theorems are deferred to Section 9, as
the proofs are quite long and require many supporting lemmata.

Theorem 2 Suppose X 2 Rm⇥N0 has independent columns Xt ⇠ N (0,�2
Im⇥m), w 2 RN0

is independent of X and satisfies wt 2 [�1, 1] and dist(wt, {�1, 0, 1}) > " for all t. Then,
with probability at least 1� C exp(�cm log(N0)) on the draw of the data X, if q is selected
according to (2) we have that

kXw �Xqk2
kXwk2

.
p
m log(N0)

kwk2
, (6)

where C, c > 0 are constants that depend on " in a manner that is made explicit in the
statement of Theorem 14.

Proof Without loss of generality, we’ll assume � = 1/
p
m since this factor appears in

both numerator and denominator of (6). Theorem 14 guarantees with probability at least
1 � Ce

�cm log(N0) that kuN0k2 = kXw � Xqk2 . p
m log(N0). Using Lemma 8, we have

kXwk2 & kwk2 with probability at least 1� 2 exp(�cnormm). Combining these two results
gives us the desired statement.

For generic vectors w we have kwk2 /
p
N0, so in this case Theorem 2 tells us that up to

logarithmic factors the relative error decays like
p
m/N0. As it stands, this result suggests

that it is su�cient to have N0 � m to obtain a small relative error. In Section 9, we address
the case where the feature data Xt lay in a d-dimensional subspace to get a bound in terms
of d rather than m. In other words, this suggests that the relative training error depends
not on the number of training samples m but on the intrinsic dimension of the features d.
See Lemma 16 for details.

Our next result shows that the quantization error is well-controlled in the span of the
training data so that the quantized weights generalize to new data.

Theorem 3 Define X,w and q as in the statement of Theorem 2 and further suppose that
N0 � m. Let X = U⌃V T be the singular value decomposition of X, and let z = V g where
g ⇠ N (0,�2

zIm⇥m) is drawn independently of X,w. In other words, suppose z is a Gaussian
random variable drawn from the span of the training data xi. Then with probability at least
1� Ce

�cm log(N0) � 3 exp(�c
00
m) we have

|zT (w � q)| .
✓

�zm

�(
p
N0 �

p
m)

◆
�m log(N0). (7)

Proof To begin, notice that the error bound in Theorem 14 easily extends to the set
X

T (BN0
1) := {y 2 RN0 : y =

Pm
i=1 aixi, kak1  1} with a simple yet pessimistic argument.

With probability at least 1� Ce
�cm log(N0), for any y 2 X

T (BN0
1) one has

|yT (w � q)| =

�����

mX

i=1

aix
T
i (w � q)

����� 
mX

i=1

|ai||xTi (w � q)|

.
mX

i=1

|ai|�m log(N0)  �m log(N0). (8)

10

A Greedy Algorithm for Quantizing Neural Networks

Now for z as defined in the statement of this theorem define p := ↵
⇤
z, where

↵
⇤ := argmax

↵�0
↵

subject to ↵z 2 X
T (BN0

1).

If it were the case that ↵⇤
> 0 then we could use (8) to get the bound

|zT (w � q)| = 1

↵⇤ kp
T
X(w � q)k2 .

�m log(N0)

↵⇤ .

So, it behooves us to find a strictly positive lower bound on ↵
⇤. By the assumption that

z = V g, there exists h 2 Rm so that X
T
h = z. Since N0 > m, XT is injective almost

surely and therefore h is unique. Setting v := khk�1
1 h, observe that X

T
v = khk�1

1 z andPm
i=1 vi = 1. It follows that ↵⇤ � khk�1

1 . To lower bound khk�1
1 , note

khk�1
1 kzk2 = kXT

vk2 � min
kyk1=1

kXT
yk2 �

✓
min

k⌘k2=1
kXT

⌘k2
◆

min
kyk1=1

kyk2

& �(
p
N0 �

p
m) min

kyk1=1
kyk2 =

�(
p
N0 �

p
m)p

m
. (9)

The penultimate inequality in the above equation follows directly from well-known bounds
on the singular values of isotropic subgaussian matrices that hold with probability at least
1�2 exp(�c

0
m) (see Vershynin 2018). To make the argument explicit, note that XT = �G,

where G 2 RN0⇥m is a matrix whose rows are independent and identically distributed
gaussians with E[gigTi] = Im⇥m and are thus isotropic. Using Lemma 8 we have with
probability at least 1� exp(�cnormm/4) that kzk2 = kV gk2 = kgk2 . �z

p
m. Substituting

in (9), we have

khk�1
1 & �(

p
N0 �

p
m)

�zm
.

Therefore, putting it all together, we have with probability at least 1 � Ce
�cm log(N0) �

3 exp(�c
00
m)

|zT (w � q)| .
✓

�zm

�(
p
N0 �

p
m)

◆
�m log(N0).

Remark 4 In the special case when �z = �
p
N0/m, i.e. when E[kzk22|V] = Ekxik22 = �

2
N0

and N0 � m, the bound in Theorem 3 reduces to

�
p
N0m

�(
p
N0 �

p
m)

�m log(N0) . �m
3/2 log(N0).

Furthermore, when the row data are normalized in expectation, or when �
2 = N

�1
0 , this

bound becomes m3/2 log(N0)p
N0

.

11

Lybrand and Saab

Remark 5 Under the low-dimensional assumptions in Lemma 16, the bound (7) and the
discussion in Remark 4 apply when m is replaced with d.

Remark 6 The context of Theorem 3 considers the setting when the data are overparam-
eterized, and there are fewer training data points used than the number of parameters. It
is natural to wonder if better generalization bounds could be established if many training
points were used to learn the quantization. In the extreme setting where m � N0, one could
use a covering or "-net like argument. Specifically, if a new sample z were " close to a
training example x, then |(z � x)Tw|  kz � xkkwk . "

p
N0. Such an argument could be

done easily when the number of training points is large enough that it leads to a small ".
On the other hand, the curse of dimensionality stipulates that for this argument to work it
would require an exponential number of training points, e.g., of order (1")

d if the training
data were in a d-dimensional subspace and did not exhibit any further structure. We choose
to focus on the overparametrized setting instead, but think that investigating the “interme-
diate” setting, where one has more training data coming from a structured d-dimensional
set than parameters, is an interesting avenue for future work.

Our technique for showing the stability of (2), i.e., the boundedness of kX(w � q)k2,
relies on tools from drift analysis. Our analysis is inspired by the works of Pemantle and
Rosenthal (1999) and Hajek (1982). Given a real valued stochastic process {Yt}t2N, those
authors give conditions on the increments�Yt := Yt�Yt�1 to uniformly bound the moments,
or moment generating function, of the iterates Yt. These bounds can then be transformed
into a bound in probability on an individual iterate Yt using Markov’s inequality. Recall
that we’re interested in bounding the state variable ut induced by the system (2) which
quantizes the first layer of a neural network. In situations like ours it is natural to analyze
the increments of ut since the innovations (wt, Xt) are jointly independent. To invoke
the results of Pemantle and Rosenthal (1999); Hajek (1982) we’ll consider the associated
stochastic process {kutk22}t2[N0]. Beyond the fact that our intent is to control the norm of
the state variable, it turns out that stability analyses of vector valued stochastic processes
typically involve passing the process through a real-valued and oftentimes quadratic function
known as a Lyapunov function. There is a wide variety of stability theorems which require
demonstrating certain properties of the image of a stochastic process under a Lyapunov
function. For example, Lyapunov functions play a critical role in analyzing Markov chains
as detailed in Menshikov et al. (2016). However, there are a few details which preclude
us from using one of these well-known stability results for the process {kutk22}t2[N0]. First,
even though the innovations (wt, Xt) are jointly independent the increments

�kutk22 = (wt � qt)
2kXtk22 + 2(wt � qt)hXt, ut�1i (10)

have a dependency structure encoded by the bit sequence q. In addition to this, the bigger
challenge in the analysis of (2) is the discontinuity inherent in the definition of qt. Addressing
this discontinuity in the analysis requires carefully handling the increments on the events
where qt is fixed.

Based on our prior discussion, towards the end of Section 4, it would seem that for
generic data sets the stability of (2) lies somewhere in between the behavior of MSQ and
⌃� quantizers, and that behavior crucially depends on the “dither” terms XT

t ut�1. For the
sake of analysis then, we will henceforth make the following assumptions.

12

A Greedy Algorithm for Quantizing Neural Networks

Assumption 1 The sequence (wt, Xt)t defined on the probability space (⌦,F ,P) is adapted
to the filtration Ft. Further, all Xt and wt are jointly independent.

Assumption 2 kW (`)k1 = supi,j |W
(`)
i,j |  1.

Assumption 1’s stipulation that the Xt are independent of the weights is a simplifying
relaxation, and our proof technique handles the case when the wt are deterministic. The
joint independence of the Xt could be realized by splitting the global population of training
data into two populations where one is used to train the analog network and another to train
the quantization. In the hypotheses of Theorem 2 it is also assumed that the entries of the
weight vector wt are su�ciently separated from the characters of the alphabet {�1, 0, 1}.
We want to remark that this is simply an artifact of the proof. In succinct terms, the proof
strategy relies on showing that the moment generating function of the increment �kutk22
is strictly less than 1 conditioned on the event that kut�1k2 is su�ciently large. In the
extreme case where the weights are already quantized to {�1, 0, 1}, this aforementioned
event is the empty set since the state variable ut is identically the zero function. As such,
the conditioning is ill-defined. To avoid this technicality, we assume that the neural network
we wish to quantize is not already quantized, namely dist(wt, {�1, 0, 1}) > " for some " > 0
and for all t 2 [N`]. The proof technique could easily be adapted to the case where the wt

are deterministic and this hypothesis is violated for O(1) weights with only minor changes
to the main result, but we do not include these modifications to keep the exposition as
clear as possible. Assumption 2 is quite mild, and can be realized by scaling all neurons
in a given layer by kWk�1

1 . Choosing the ternary vector q according to the scaled neuron
kWk�1

1 w, any bound of the form kX(kWk�1
1 w � q)k2  ↵ immediately gives the bound

kX(w�kWk1q)k2  ↵kWk1. In other words, at run time the network can use the scaled
ternary alphabet {�kWk1, 0, kWk1}.

6. Numerical Simulations

We present three stylized examples which show how our proposed quantization algorithm
a↵ects classification accuracy on three benchmark data sets. In the following tables and
figures, we’ll refer to our algorithm as Greedy Path Following Quantization, or GPFQ for
short. We look at classifying digits from the MNIST data set using a multilayer perceptron,
classifying images from the CIFAR10 data set using a convolutional neural network, and
finally looking at classifying images from the ILSVRC2012 data set, also known as ImageNet,
using the VGG16 network (Simonyan and Zisserman, 2014). We trained both networks
using Keras (Chollet et al., 2015) with the Tensorflow backend on a a 2020 MacBook Pro
with a M1 chip and 16GB of RAM. Note that for the first two experiments our aim here is
not to match state of the art results in training the unquantized neural networks. Rather,
our goal is to demonstrate that given a trained neural network, our quantization algorithm
yields a network that performs similarly. Below, we mention our design choices for the
sake of completeness, and to demonstrate that our quantization algorithm does not require
any special engineering beyond what is customary in neural network architectures. We
have made our code available on GitHub at https://github.com/elybrand/quantized_
neural_networks.

13

https://github.com/elybrand/quantized_neural_networks
https://github.com/elybrand/quantized_neural_networks

Lybrand and Saab

Our implementations for these simulations di↵er from the presentation of the theory
in a few ways. First, we do not restrict ourselves to the particular ternary alphabet of
{�1, 0, 1}. In practice, it is much more useful to replace this with the equispaced alphabet
A = ↵ ⇥ {�1 + 2j

M�1 : j 2 {0, 1, . . . ,M � 1}} ⇢ [�↵,↵], where M is fixed in advance and
↵ is chosen by cross-validation. Of course, this includes the ternary alphabet {�↵, 0,↵} as
a special case. The intuition behind choosing the alphabet’s radius ↵ is to better capture
the dynamic range of the true weights. For this reason we choose for every layer ↵` =

C↵median({|W (`)
i,j |}i,j) where the constant C↵ is fixed for all layers and is chosen by cross-

validation. Thus, the cost associated with allowing general alphabets A is storing a floating
point number for each layer (i.e., ↵`) and N` ⇥N`+1 bit strings of length log2(2M + 1) per
layer as compared to N` ⇥N`+1 floats per layer in the unquantized setting.

6.1 Multilayer Perceptron with MNIST

We trained a multilayer perceptron to classify MNIST digits (28 ⇥ 28 images) with two
hidden layers. The first layer has 500 neurons, the second has 300 neurons, and the output
layer has 10 neurons. We also used batch normalization layers (Io↵e and Szegedy, 2015)
after each hidden layer and chose the ReLU activation function for all layers except the last
where we used softmax. We trained the unquantized network on the full training set of
60, 000 digits without any preprocessing. 20% of the training data was used as validation
during training. We then tested on the remaining 10, 000 images not used in the training
set. We used categorical cross entropy as our loss function during training and the Adam
optimizer—see Kingma and Ba (2014)—for 100 epochs with a minibatch size of 128. After
training the unquantized model we used 25, 000 samples from the training set to train the
quantization. We used the same data to quantize each layer rather than splitting the data for
each layer. For this experiment we restricted the alphabet to be ternary and cross-validated
over the alphabet scalar C↵ 2 {1, 2, . . . , 10}. The results for each choice of C↵ are displayed
in Figure 1a. As a benchmark we compared against a network quantized using MSQ, so
each weight was quantized to the element of A that is closest to it. As we see in Figure 1a,
the MSQ quantized network exhibits a high variability in its performance as a function of
the alphabet scalar, whereas the GPFQ quantized network exhibits more stable behavior.
Indeed, for a number of consecutive choices of C↵ the performance of the GPFQ quantized
network was close to its unquantized counterpart. To illustrate how accuracy was a↵ected
as subsequent layers were quantized, we ran the following experiment. First, we chose the
best alphabet scalar C↵ for each of the MSQ and GPFQ quantized networks separately. We
then measured the test accuracy as each subsequent layer of the network was quantized,
leaving the later ones unchanged. The median time it took to quantize a network was 288
seconds, or about 5 minutes. The results for MSQ and GPFQ are shown in Figure 1b.
Figure 1b demonstrates that GPFQ is able to “error correct” in the sense that quantizing
a later layer can correct for errors introduced when quantizing previous ones. We also
remark that in this setting we replace 32 bit floating point weights with log2(3) bit weights.
Consequentially, we have compressed the network by a factor of approximately 20, and yet
the drop in test accuracy for GPFQ was minimal. Further, this quick calculation assumes we
use log2(3) bits to represent those weights which are quantized to zero. However, there are
other important consequences for setting weights to zero. From a hardware perspective, the

14

A Greedy Algorithm for Quantizing Neural Networks

benefit is that forward propagation requires less energy due to there being fewer connections
between layers. From a software perspective, multiplication by zero is an incredibly stable
operation.

6.2 Convolutional Neural Network with CIFAR10

Even though our theory was phrased in the language of multilayer perceptrons it is easy
to rephrase it using the vocabulary of convolutional neural networks. Here, neurons are
kernels and the data are patches from the full images or their feature data in the hidden
layers. These patches have the same dimensions as the kernel. Matrix convolution is defined
in terms of Hilbert-Schmidt inner products between the kernel and these image patches.
In other words, if we were to vectorize both the kernel and the image patches then we
could take the usual inner product on vectors and reduce back to the case of a multilayer
perceptron. This is exactly what we do in the quantization algorithm. Since every channel
of the feature data has its own kernel we quantize each channel’s kernel independently.

(a) (b)

Figure 1: Comparison of GPFQ and MSQ quantized network performance on MNIST using
a ternary alphabet. Figure 1a illustrates how the top-1 accuracy on the test set
behaves for various alphabet scalars C↵. Figure 1b demonstrates how the two
quantized networks behave as each fully connected layer is successively quantized
using the best alphabet scalar C↵ for each network. We only plot the layer indices
for fully connected layers as these are the only layers we quantize.

We trained a convolutional neural network to classify images from the CIFAR10 data
set with the following architecture

2⇥ 32C3 ! MP2 ! 2⇥ 64C3 ! MP2 ! 2⇥ 128C3 ! 128FC ! 10FC.

15

Lybrand and Saab

Here, 2⇥N C3 denotes two convolutional layers with N kernels of size 3⇥ 3, MP2 denotes
a max pooling layer with kernels of size 2⇥2, and nFC denotes a fully connected layer with
n neurons. Not listed in the above schematic are batch normalization layers which we place
before every convolutional and fully connected layer except the first. During training we
also use dropout layers after the max pooling layers and before the final output layer. We
use the ReLU function for every layer’s activation function except the last layer where we
use softmax. We preprocess the data by dividing the pixel values by 255 which normalizes
them in the range [0, 1]. We augment the data set with width and height shifts as well as
horizontal flips for each image. Finally, we train the network to minimize categorical cross
entropy using stochastic gradient descent with a learning rate of 10�4, momentum of 0.9,
and a minibatch size of 64 for 400 epochs. For more information on dropout layers and
pooling layers see, for example, Hinton et al. (2012) and Weng et al. (1992), respectively.

We trained the unquantized network on the full set of 50, 000 training images. For
training the quantization we only used the first 5, 000 images from the training set. As
we did with the multilayer perceptron on MNIST, we cross-validated the alphabet scalars
C↵ over the range {2, 3, 4, 5, 6} and chose the best scalar for the benchmark MSQ network
and the best GPFQ quantized network separately. Additionally, we cross-validated over
the number of elements in the quantization alphabet, ranging over the set M 2 {3, 4, 8, 16}
which corresponds to the set of bit budgets {log2(3), 2, 3, 4}. The median time it took to
quantize the network using GPFQ was 1830 seconds, or about 30 minutes. The results of
these experiments are shown in Table 1. In particular, the table shows that the performance
of GPFQ degrades gracefully as the bit budget decreases, while the performance of MSQ
drops dramatically. In this experiment, the best bit budget for both MSQ and GPFQ
networks was 4 bits, or 16 characters in the alphabet. We plot the test accuracies for the
best MSQ and the best GPFQ quantized network as each layer is quantized in Figure 2a.
Both networks su↵er from a drop in test accuracy after quantizing the second layer, but
(like in the first experiment) GPFQ recovers from this dip in subsequent layers while MSQ
does not. Finally, to illustrate the di↵erence between the two sets of quantized weights in
this layer we histogram the weights in Figure 2b.

6.3 VGG16 on Imagenet Data

The previous experiments were restricted to settings where there are only 10 categories
of images. To illustrate that our quantization scheme and our theory work well on more
complex data sets we considered quantizing the weights of VGG16 (Simonyan and Zis-
serman, 2014) for the purpose of classifying images from the ILSVRC2012 validation set
(Russakovsky et al., 2015). This data set contains 50,000 images with 1,000 categories.
Since 90% of all weights in VGG16 are in the fully connected layers, we took a similar route
as Gong et al. (2014) and only considered quantizing the weights in the fully connected
layers. We preprocessed the images in the manner that the ImageNet guidelines specify.
First, we resize the smallest edge of the image to 256 pixels by using bicubic interpolation
over 4 ⇥ 4 pixel neighborhoods, and resizing the larger edge of the image to maintain the
original image’s aspect ratio. Next, all pixels outside the central 224⇥224 pixels are cropped

16

A Greedy Algorithm for Quantizing Neural Networks

CIFAR10 Top-1 Test Accuracy
Bits C↵ Analog GPFQ MSQ

2 0.8922 0.7487 0.1347
3 0.8922 0.7350 0.1464

log2(3) 4 0.8922 0.6919 0.0991
5 0.8922 0.5627 0.1000
6 0.8922 0.3515 0.1000
2 0.8922 0.7522 0.2209
3 0.8922 0.8036 0.2800

2 4 0.8922 0.7489 0.1742
5 0.8922 0.6748 0.1835
6 0.8922 0.5365 0.1390
2 0.8922 0.7942 0.4173
3 0.8922 0.8670 0.3754

3 4 0.8922 0.8710 0.5014
5 0.8922 0.8567 0.5652
6 0.8922 0.8600 0.5360
2 0.8922 0.8124 0.4525
3 0.8922 0.8778 0.7776

4 4 0.8922 0.8879 0.8443
5 0.8922 0.8888 0.8291
6 0.8922 0.8810 0.7831

Table 1: This table documents the test accuracies for the analog and quantized neural
networks on CIFAR10 data for the various choices of alphabet scalars C↵ and bit
budgets.

17

Lybrand and Saab

(a) (b)

Figure 2: Figure 2a shows how the top-1 test accuracy degrades as we quantize layers
successively and leave remaining layers unquantized for the best MSQ and the
best GPFQ quantized networks according to the results in Table 1. We only plot
the layer indices for fully connected and convolutional layers as these are the only
layers we quantize. Figure 2b is a histogram of the quantized weights for the
MSQ and GPFQ quantized networks at the second convolutional layer.

out. The image is then saved with red, green, blue (RGB) channel order1. Finally, these
processed images are further preprocessed by the function specified for VGG16 in the Keras
preprocessing module. For this experiment we restrict the GPFQ quantizer to the alphabet
{�1, 0, 1}. We cross-validate over the alphabet scalar C↵ 2 {2, 3, 4, 5}. 1500 images were
randomly chosen to learn the quantization. To assess the quality of the quantized network
we used 20000 randomly chosen images disjoint from the set of images used to perform the
quantization and measured the top-1 and top-5 accuracy for the original VGG16 model,
GPFQ, and MSQ networks. The median time it took to quantize VGG16 using GPFQ was
15391 seconds, or about 5 hours. The results from this experiment can be found in Table
2. Remarkably, the best GPFQ network is able to get within 0.65% and 0.42% of the top-1
and top-5 accuracy of the analog model, respectively. In contrast, the best MSQ model
can do is get within 1.24% and 0.56% of the top-1 and top-5 accuracy of the analog model,
respectively. Importantly, as we saw in the previous two experiments, here again we observe
a notable instability of test accuracy with respect to C↵ for the MSQ model whereas for the
GPFQ model the test accuracy is more well-controlled. Moreover, just as in the CIFAR10
experiment, we see in these experiments that GPFQ networks uniformly outperform MSQ
networks across quantization hyperparameter choices in both top-1 and top-5 test accuracy.

1. We would like to thank Caleb Robinson for outlining this procedure in his GitHub repo found at https:
//github.com/calebrob6/imagenet_validation.

18

https://github.com/calebrob6/imagenet_validation
https://github.com/calebrob6/imagenet_validation

A Greedy Algorithm for Quantizing Neural Networks

ILSVRC2012 Test Accuracy
C↵ Analog

Top-1
Analog
Top-5

GPFQ
Top-1

GPFQ
Top-5

MSQ Top-
1

MSQ Top-
5

2 0.7073 0.8977 0.6901 0.8892 0.68755 0.88785
3 0.7073 0.8977 0.70075 0.8935 0.69485 0.8921
4 0.7073 0.8977 0.69295 0.89095 0.66795 0.8713
5 0.7073 0.8977 0.68335 0.88535 0.53855 0.77005

Table 2: This table documents the test accuracy across 20000 images for the analog and
quantized VGG16 networks on ILSVRC2012 data for the various choices of alpha-
bet scalars C↵ using the alphabet {�1, 0, 1} and 1500 training images to learn the
quantized weights.

7. Future Work

Despite all of the analysis that has gone into proving stability of quantizing the first layer
of a neural network using the dynamical system (2) and isotropic Gaussian data, there
are still many interesting and unanswered questions about the performance of this quan-
tization algorithm. The above experiments suggest that our theory can be generalized to
account for non-Gaussian feature data which may have hidden dependencies between them.
Beyond the subspace model we consider in Lemma 16, it would be interesting to extend
the results to apply in the case of a manifold structure, or clustered feature data, whose
intrinsic complexities can be used to improve the upper bounds in Theorem 2 and Theorem
3. Furthermore, it would be desirable to extend the analysis to address quantizing all of the
hidden layers. As we showed in the experiments, our set-up naturally extends to the case of
quantizing convolutional layers. Another extension of this work might consider modifying
our quantization algorithm to account for other network models like recurrent networks.
Finally, we observed in Theorem 2 that the relative training error for learning the quantiza-
tion decays like log(N0)

p
m/N0. We also observed in the discussion at the end of Section 4

that when all of the feature data Xt were the same our quantization algorithm reduced to a
first order greedy ⌃� quantizer. Higher order ⌃� quantizers in the context of oversampled
finite frame coe�cients and bandlimited functions are known to have quantization error
which decays polynomially in terms of the oversampling rate. One wonders if there exist
extensions of our algorithm, perhaps with a modest increase in computational complexity,
that achieve faster rates of decay for the relative quantization error. We leave all of these
questions for future work.

8. Proofs: Supporting Lemmata

This section presents supporting lemmata that characterize the geometry of the dynamical
system (2), as well as standard results from high dimensional probability which we will use
in the proof of the main technical result, Theorem 14, which appears in Section 9. Outside
of the high dimensional probability results, the results of Lemmas 9, 11 and 12 consider the
behavior of the dynamical system under arbitrarily distributed data.

19

Lybrand and Saab

Lemma 7 Vershynin (2018) Let g ⇠ N(0,�2) . Then for any ↵ > 0

P (g � ↵)  �

↵
p
2⇡

e
� ↵2

2�2 .

Lemma 8 Vershynin (2018) Let g ⇠ N(0, Im⇥m) be an m-dimensional standard Gaussian
vector. Then there exists some universal constant cnorm > 0 so that for any ↵ > 0

P
���kgk2 �

p
m
�� � ↵

�
 2e�cnorm↵2

.

Lemma 9 Suppose that |wt| < 1/2. Then

{Xt 2 Rm : qt = 1} = B

✓
1

1� 2wt
ut�1,

1

1� 2wt
kut�1k2

◆
,

: = B(ũt�1, kũt�1k2),

{Xt 2 Rm : qt = �1} = B

✓
�1

1 + 2wt
ut�1,

1

1 + 2wt
kut�1k2

◆
,

: = B(ût�1, kût�1k2)

Proof When qt = 1, (4) implies that

X
T
t

kXtk22
ut�1 �

1

2
� wt () (1� 2wt)kXtk22 � 2XT

t ut�1  0. (11)

Since |wt| < 1/2, 1� 2wt > 0. After dividing both sides of (11) by this factor, and recalling
that ũt�1 := (1� 2wt)�1

ut�1, we may complete the square to get the equivalent inequality

kXt � ũt�1k22  kũt�1k22.

An analogous argument shows the claim for the level set {Xt : qt = �1}.

Remark 10 When w >
1
2 or w < �1

2 , the algebra in the proof tells us that the set of
X

0
ts for qt = 1 (resp. qt = �1) is actually the complement of B (ũt�1, kũt�1k2), (resp. the

complement of B (ût�1, kût�1k2)). For the special case when wt = ±1/2 these level sets are
half-spaces.

Lemma 11 Suppose 0 < wt < 1, and Xt a random vector in Rm \ {0}. Then

PXt

✓
(wt � qt)

2 + 2(wt � qt)
X

T
t ut�1

kXtk22
> ↵

���Ft�1

◆

=

8
>><

>>:

µy

⇣
↵�(wt+1)2

2(wt+1) ,
↵�(wt�1)2

2(wt�1)

⌘
↵ < �wt � w

2
t

µy

⇣
↵�w2

t
2wt

,
↵�(wt�1)2

2(wt�1)

⌘
�wt � w

2
t  ↵  wt � w

2
t

0 ↵ > wt � w
2
t

where µy is the probability measure over R induced by the random variable y := XT
t ut�1

kXtk22
.

20

A Greedy Algorithm for Quantizing Neural Networks

Figure 3: Visualizations of the level sets when ut�1 = 3e1, qt = 1 (blue), qt = �1 (orange),
and qt = 0 (green) when wt = 0.2 (left) and wt = 0.8 (right). These are the
regions that must be integrated over when calculating the moment generating
function of the increment �kutk22.

Proof Let Ab denote the event that qt = b for b 2 {�1, 0, 1}. Then by the law of total
probability

P
⇣
(wt � qt)

2 + 2(wt � qt)y > ↵

���Ft�1

⌘

=
X

b2{�1,0,1}

P
⇣
(wt � b)2 + 2(wt � b)y > ↵ and Ab

���Ft�1

⌘
.

Therefore, we need to look at each summand in the above sum. Well, qt = 0 precisely when
�1/2� wt  y  1/2� wt. So we have

P
⇣
w

2
t + 2wty > ↵ and A0

���Ft�1

⌘
= P

✓
y >

↵� w
2
t

2wt
and � 1/2� wt  y  1/2� wt

���Ft�1

◆

=

8
><

>:

µy (�1/2� wt, 1/2� wt) ↵ < �wt � w
2
t

µy

⇣
↵�w2

t
2wt

, 1/2� wt

⌘
�wt � w

2
t  ↵  wt � w

2
t

0 ↵ > wt � w
2
t

.

Next, qt = 1 precisely when y > 1/2� wt. Noting that wt � 1 < 0, we have

P
⇣
(wt � 1)2 + 2(wt � 1)y > ↵ and A1

���Ft�1

⌘

= P
✓
y <

↵� (wt � 1)2

2(wt � 1)
and y > 1/2� wt

���Ft�1

◆

=

(
µy

⇣
1/2� wt,

↵�(wt�1)2

2(wt�1)

⌘
↵  wt � w

2
t

0 ↵ > wt � w
2
t

.

21

Lybrand and Saab

Finally, qt = �1 precisely when y < �1/2� wt. So we have

P
⇣
(wt + 1)2 + 2(wt + 1)y > ↵ and A�1

���Ft�1

⌘

= P
✓
y >

↵� (wt + 1)2

2(wt + 1)
and y < �1/2� wt

���Ft�1

◆

=

(
µy

⇣
↵�(wt+1)2

2(wt+1) ,�1/2� wt

⌘
↵  �wt � w

2
t

0 ↵ > �wt � w
2
t

.

Summing these three piecewise functions yields the result.

Lemma 12 When �1 < wt < 0, we have

PXt

✓
(wt � qt)

2 + 2(wt � qt)
X

T
t ut�1

kXtk22
> ↵

���Ft�1

◆

=

8
>><

>>:

µy

⇣
↵�(wt+1)2

2(wt+1) ,
↵�(wt�1)2

2(wt�1)

⌘
↵ < wt � w

2
t

µy

⇣
↵�(wt+1)2

2(wt+1) ,
↵�w2

t
2wt

⌘
wt � w

2
t  ↵  �wt � w

2
t

0 ↵ > �wt � w
2
t

.

Corollary 13 If kXtk22  B with probability 1, then �kutk22  B/4 with probability 1.

Proof Using (2), this follows from the identity

�kutk22 = kXtk22
✓
(wt � qt)

2 + 2(wt � qt)
X

T
t ut�1

kXtk22

◆
 B

✓
(wt � qt)

2 + 2(wt � qt)
X

T
t ut�1

kXtk22

◆
.

Applying Lemma 11 (or Lemma 12) on the latter quantity with ↵ = |wt| � w
2
t and recog-

nizing that |wt|� w
2
t  1/4 when wt 2 [�1, 1] yields the claim.

9. Proofs: Core Lemmata

We start by proving our main result, Theorem 14, and its extension to the case where
feature vectors live in a low-dimensional subspace, Lemma 16. The proof of Theorem 14

relies on bounding the moment generating function of �kutk22
���Ft�1, which in turn requires a

number of results, referenced in the proof and presented thereafter. These lemmas carefully
deal with bounding the above moment generating function on the events where qt is fixed.
Given ut�1 and qt = b, Lemma 9 tells us the set of directions Xt which result in qt = b and
these are the relevant events one needs to consider when bounding the moment generating
function. Lemma 17 handles the case when qt = 0, Lemma 18 handles the case when qt = 1,
and Lemma 19 handles the case when qt = �1.

22

A Greedy Algorithm for Quantizing Neural Networks

Theorem 14 Suppose that for t 2 N, the vectors Xt ⇠ N (0,�2
Im⇥m) are independent and

that wt 2 [�1, 1] are i.i.d. and independent of Xt, and define the event

A" := {dist(wt, {�1, 0, 1}) < "} .

Then there exist positive constants cnorm, C�, and Csup, such that with � := C�
C2

sup�
2m log(N0)

,

and ⇢, " 2 (0, 1) satisfying ⇢̃ := ⇢+ e
C�/4P(A") < 1, the iteration (3) satisfies

P
�
kutk22 > ↵

�
 ⇢̃

t
e
��↵ +

1� ⇢̃
t

1� ⇢̃
e

C�
4 +�(��↵) + 2e� log(N0)(cnormC2

supm�1)
. (12)

Above, C > 0 is a universal constant and � := C
e8C��2m2 log2(N0)

⇢2"2 .

Proof The proof technique is inspired by Hajek (1982). Define the events

Ut :=

(
sup

j2{1,...,t}
kXjk2  Csup�

p
m

⇣p
log(N0) + 1

⌘)
.

Using a union bound and Lemma 8, we see that UC
N0

happens with low probability since

P

sup
t2[N0]

kXtk2 > Csup�
p
m

⇣p
log(N0) + 1

⌘!

 2N0e
�cnormC2

supm log(N0) = 2e� log(N0)(cnormC2
supm�1)

.

We can therefore bound the probability of interest with appropriate conditioning.

P
�
kutk22 � ↵

�
 P

⇣
kutk22 � ↵

���UN0

⌘
P(UN0) + P(UC

N0
).

Looking at the first summand, for any � > 0, we have by Markov’s inequality

P
⇣
kutk22 � ↵

���UN0

⌘
P(UN0)  e

��↵E[e�kutk22
���UN0]P(UN0)

= e
��↵E[e�kutk22 UN0

]

= e
��↵E

h
e
�kut�1k22e��kutk22 UN0

i

= e
��↵E

h
E
h
e
�kut�1k22e��kutk22 UN0

���Ft�1

ii
.

We expand the conditional expectation given the filtration into a sum of two parts

E
h
e
�kut�1k22e��kutk22 UN0

���Ft�1

i
= E

h
e
�kut�1k22e��kutk22 UN0 AC

" and kut�1k22��

���Ft�1

i

+ E
h
e
�kut�1k22e��kutk22 UN0 A" or kut�1k22<�

���Ft�1

i
.

Towering expectations, the expectation over Xt of the first summand is bounded above by
⇢e

�kut�1k22 Ut�1 for all wt on the event A
C
" using Lemmas 17, 18, and 19. Therefore, the

same bound is also true for the expectation over wt. As for the second term, we have

E
h
e
�kut�1k22e��kutk22 UN0 A" or kut�1k22<�

���Ft�1

i
=

E
h
e
�kut�1k22e��kutk22 UN0 kut�1k22<�

���Ft�1

i
+ E

h
e
�kut�1k22e��kutk22 UN0 A" and kut�1k22��

���Ft�1

i

23

Lybrand and Saab

For both terms, we can use the uniform bound on the increments as proven in Corollary
13. The first term we can bound by e

�C2
sup�

2m log(N0)/4e��  e
C�/4e�� . As for the second,

expecting over the draw of wt gives us

E
h
e
�kut�1k22e��kutk22 UN0 A" and kut�1k22��

���Ft�1

i
 e

�C2
sup�

2m log(N0)/4e
�kut�1k22 Ut�1P(A")

 e
C�/4e

�kut�1k22 Ut�1P(A").

Therefore, we have

P
�
kutk22 > ↵

�

 e
��↵

⇣⇣
⇢+ e

C�/4P (A")
⌘
E[e�kut�1k22 Ut�1] + e

��+C�/4
⌘
+ 2e� log(N0)(cnormC2

supm�1)

= e
��↵

⇣
⇢̃E[e�kut�1k22 Ut�1] + e

��+C�/4
⌘
+ 2e� log(N0)(cnormC2

supm�1)
.

Proceeding inductively on E[e�kut�1k22] yields the claim.

Remark 15 To simplify the bound in (12), assuming we have ⇢̃, " / 1 and ↵ & � /
�
2
m

2 log2(N0) we have

P
�
kutk22 � ↵

�
 e

��↵ + e
C�
4 +�(��↵) + 2e� log(N0)(cnormC2

supm�1)
,

= e
�C�m log(N0)

C2
sup + e

C�
4 �C0 C�m log(N0)

C2
sup + 2e� log(N0)(cnormC2

supm�1)
,

 Ce
�cm log(N0).

This matches the bound on the probability of failure we give in Theorem 2.

Lemma 16 Suppose X = ZA where Z 2 Rm⇥d satisfies Z
T
Z = I, and A 2 Rd⇥N0 has

i.i.d. N (0,�2) entries. In other words, suppose the feature data Xt are Gaussians drawn
from a d-dimensional subspace of Rm. Then with the remaining hypotheses as Theorem 14
we have with probability at least 1� Ce

�cd log(N0) � 3 exp(�c
00
d)

kXw �Xqk2 . �d log(N0).

Proof We will show that running the dynamical system (2) withXt is equivalent to running
a modified version of (2) with the columns of A, denoted At. Then we can apply the result
of Theorem 14. By definition, we have

u0 : = 0 2 Rm
,

qt : = Q
✓
wt +

X
T
t ut�1

kXtk22

◆
,

ut : = ut�1 + wtXt � qtXt.

24

A Greedy Algorithm for Quantizing Neural Networks

In anticipation of subsequent applications of change of variables, let Z = U⌃V T 2 Rm⇥d

be the singular value decomposition of Z where U 2 Rm⇥m and V 2 Rd⇥d are orthogonal
matrices and ⌃ 2 Rm⇥d decomposes as

⌃ =


Id⇥d

0

�
.

Since ut is a linear combination of X1, . . . , Xt for all t it follows that ut is in the column
space of Z. In other words, ut = Z(ZT

Z)�1
Z

T
ut := Z⌘t. We may rewrite the above

dynamical system in terms of At, ⌘t as

u0 : = 0 2 Rm
,

qt : = Q
✓
wt +

A
T
t Z

T
Z⌘t�1

kZAtk22

◆

= Q
✓
wt +

A
T
t ⌘t�1

kAtk22

◆

Z⌘t : = Z⌘t�1 + wtZAt � qtZAt

() ⌘t = ⌘t�1 + wtAt � qtAt

So, in other words, we’ve reduced to running (2) but now with the state variables ⌘t�1 2 Rd

in place of ut�1 and with At in place of Xt. Applying the result of Theorem 14 yields the
claim.

Lemma 17 Let Xt ⇠ N (0,�2
Im⇥m) and dist(wt, {�1, 0, 1}) � ". Define the event

U :=
n
kXtk2  Csup�

p
m log(N0)

o
,

and set � := C�
C2

sup�
2m log(N0)

, where C� 2 (0, cnorm
12) is some constant and cnorm is as in

Lemma 8. Then there exists a universal constant C > 0 so that with � := CeC��2m log(N0)
⇢"�

E
h
e
��kutk22 qt=0 U kut�1k2��

���Ft�1

i
 ⇢.

Proof Recall �kutk22 = kutk22 � kut�1k22 = (wt � qt)2kXtk22 + 2(wt � qt)hXt, ut�1i. Let us
first consider the case when |wt| < 1

2 . We will further assume that wt > 0, since there is
the symmetry between ût�1 and ũt�1 under the mapping wt ! �wt. Before embarking on
our calculus journey, let us make some key remarks. First, on the event U , we can bound
the increment above by �kutk22  (wt � qt)2C2

sup�
2
m log(N0) + 2(wt � qt)hXt, ut�1i. So,

it behooves us to find an upper bound for E
⇥
e
2�wthXt,ut�1i

U qt=0 kut�1k2�� |Ft�1
⇤
. Since

the exponential function is non-negative, we can always upper bound this expectation by
removing the indicator on U . In other words,

E
h
e
2�wthXt,ut�1i

U qt=0 kut�1k2��

���Ft�1

i
 E

h
e
2�wthXt,ut�1i

qt=0 kut�1k2��

���Ft�1

i
. (13)

25

Lybrand and Saab

Figure 4: Plotted above is a figure depicting the various regions of integration involved in
the derivation of the upper bound for Lemma 17 for the particular case when
wt = 0.3 and ut = 3e1. Moving from left to right, the region in red corresponds
to equation (14), the region in yellow to region R as in equation (20), the region
in green to region S as in equation (26), and the region in blue to region T as in
equation (23).

26

A Greedy Algorithm for Quantizing Neural Networks

Since we’re indicating on an event where kut�1k2 � �, we will need to handle the events
where hXt, ut�1i > 0 with some care, since without an a priori upper bound on kut�1k
the moment generating function restricted to this event could explode. Therefore, we’ll
divide the region of integration into 4 pieces which are depicted in Figure 4. Because of the
abundance of notation in the following arguments, we will denote � := kut�1k2�� .

Let’s handle the easier event first, namely where hXt, ut�1i  0. Here, we have

E
h
e
2�hXt,ut�1i

� qt=0 hXt,ut�1i<0

���Ft�1

i
=

(2⇡�2)�m/2
�

Z

B(ût�1,kût�1k)C\{hx,ut�1i0}
e
2�wthx,ut�1ie

�1
2�2 kxk22 dx. (14)

By rotational invariance, we may assume without loss of generality that ut�1 = kut�1k2e1,
where e1 2 Rm is the first standard basis vector. In that case, the constraint hXt, ut�1i < 0
is equivalent to Xt,1 < 0, where Xt,1 is the first component of Xt. Using Lemma 9, it
follows that the set of Xt for which qt = 0 and Xt,1 < 0 is simply {x 2 Rm : x1 
0}\B (�kût�1k2e1, kût�1k2)C , where the negative sign here comes from the fact that ût�1 =
�(1 + 2wt)ut�1. That means we can rewrite (14) as

(2⇡�2)�m/2
�

Z

B(�kût�1k2e1,kût�1k)C\{x10}
e
2�wtkut�1kx1�

x21
2�2 e

�1
2�2

P
j�2 x

2
j dx.

Perhaps surprisingly, we can a↵ord to use the crude upper bound on this integral by simply
removing the constraint that x 2 B(�kût�1k2e1, kût�1k)C . Iterating the univariate integrals
then gives us

(2⇡�2)�m/2
�

Z

B(�kût�1k2e1,kût�1k)C\{x10}
e
2�wtkut�1kx1�

x21
2�2 e

�1
2�2

P
j�2 x

2
j dx

 (2⇡�2)�1/2
�

Z 0

�1
e
2�wtkut�1kx1�

x21
2�2 dx1

Z

Rm�1
(2⇡�2)�

m�1
2 e

�1
2�2

P
j�2 x

2
j dx2 . . . dxm

= (2⇡�2)�1/2
�

Z 0

�1
e
2�wtkut�1kx1�

x21
2�2 dx1 = (2⇡�2)�1/2

�

Z 1

0
e
�2�wtkut�1kx1�

x21
2�2 dx1.

(15)

We complete the square and use a change of variables to reformulate (15) as

(2⇡�2)�1/2
�e

2�2�2w2
t kut�1k22

Z 1

0
e
� 1

2�2 (x1+2�2�wtkut�1k2)
2

dx1

= (2⇡�2)�1/2
�e

2�2�2w2
t kut�1k22

Z 1

2�2�wtkut�1k2
e
� x21

2�2 dx1. (16)

Since the lower limit of integration is positive and large when kut�1k2 is, we can use a tail
bound as in Lemma 7 to upper bound (16) by

��

2�2�wtkut�1k2
p
2⇡

 ��

�2�"kut�1k2
=

�C
2
sup�m log(N0)

C�"kut�1k2
, (17)

27

Lybrand and Saab

where the first inequality follows from |wt| � " and the equality follows from
� = C�

C2
sup�

2m log(N0)
.

Now we handle the moment generating function on the event that hXt, ut�1i � 0. Again,
using rotational invariance to assume ut�1 = kut�1k2e1, we have by Lemma 9 that the event
to integrate over is {x 2 Rm : x1 � 0} \B (kũt�1k2e1, kũt�1k2)C . Notice that iterating the
integrals gives us

E
h
e
2�hXt,ut�1i

� qt=0 hXt,ut�1i�0

���Ft�1

i

= (2⇡�2)�m/2
�

Z

B(ũt�1,kũt�1k)C\{x1�0}
e
2�wtkut�1kx1� 1

2�2 kxk22 dx

= (2⇡�2)�1/2
�

Z 1

0
e
2�wtkut�1kx1�

x21
2�2

Z

B
⇣
0,
p

(2x1kũt�1k2�x2
1)

+
⌘C

(2⇡�2)�
m�1

2 e
� 1

2�2

Pm
j=2 x

2
j dx2 . . . dxmdx1, (18)

with the notation (z)+ = max{z, 0} for z 2 R. Consequentially, we can rephrase (18) into a
more probabilistic statement. Below, let �j ⇠ N (0, 1) denote i.i.d. standard normal random
variables. Then (18) is equal to

(2⇡�2)�1/2
�

Z 1

0
e
2�wtkut�1kx1�

x21
2�2 P

0

@�
2
m�1X

j=1

�
2
j � 2x1kũt�1k2 � x

2
1

1

A dx1. (19)

The probability appearing in (19) will decay exponentially provided 2x1kũt�1k2 � x
2
1 is

su�ciently large. To that end, we will divide up this half-space into the following regions.
Let C0 � 16 be a constant and define the sets R := {x 2 Rm : 0  x1  C0�2m

kũt�1k2 },
S := {x 2 Rm : C0�2m

kũt�1k2  x1  kũt�1k2}, and T := {x 2 Rm : kũt�1k2  x1}. Figure 4
gives a visual depiction of this decomposition. Then we have

E
h
e
2�hXt,ut�1i

� qt=0 hXt,ut�1i�0

���Ft�1

i
= (2⇡�2)�m/2

�

Z

B(ũt�1,kũt�1k)C\R

e
2�wtkut�1kx1� 1

2�2 kxk22 dx

+ (2⇡�2)�m/2
�

Z

B(ũt�1,kũt�1k)C\S

e
2�wtkut�1kx1� 1

2�2 kxk22 dx

+ (2⇡�2)�m/2
�

Z

B(ũt�1,kũt�1k)C\T

e
2�wtkut�1kx1� 1

2�2 kxk22 dx.

For the integral over R, we will use the näıve upper bound

P

0

@�
2
m�1X

j=1

�
2
j � 2x1kũt�1k2 � x

2
1

1

A  1.

28

A Greedy Algorithm for Quantizing Neural Networks

This gives us

(2⇡�2)�m/2
�

Z

B(ũt�1,kũt�1k)C\R
e
2�wtkut�1kx1� 1

2�2 kxk22 dx

 (2⇡�2)�1/2
�

Z C0�
2m

kũt�1k2

0
e
2�wtkut�1kx1� 1

2�2 x
2
1 dx1

= (2⇡�2)�1/2
�e

2�2�2w2
t kut�1k22

Z C0�
2m

kũt�1k2
�2�wt�2kut�1k2

�2�wt�2kut�1k2
e
� 1

2�2 x
2
1 dx1. (20)

The upper limit of integration is negative since kut�1k22 � 3C0C2
sup�

2m log(N0)
2C�"

� C0|1�2wt|
2�wt

.
Under this assumption, we can upper bound the integral with a Riemann sum. As the
maximum of the integrand occurs at the upper limit of integration, we bound (20) with

(2⇡�2)�1/2
�
e

�1
2�2

✓
C2
0�4m2

kũt�1k22
� 4C0�

4m�wtkut�1k2
kũt�1k2

◆

C0�
2
m

kũt�1k2
. (21)

Recognizing that kut�1k2
kũt�1k2 = |1 � 2wt|  3 and recalling that � = C�

C2
sup�

2m log(N0)
we can

further upper bound by

�e
2C0��2mwt|1�2wt|C0�m

kũt�1k2
p
2⇡

 �3C0e

6C0C�
C2
sup log(N0)�m

kut�1k2
. (22)

As was the case for R, we can use the bound P
⇣
�
2Pm�1

j=1 �
2
j � 2x1kũt�1k2 � x

2
1

⌘
 1 over

T too. Completing the square in the exponent as we usually do gives us

(2⇡�2)�m/2
�

Z

B(ũt�1,kũt�1k)C\T
e
2�wtkut�1kx1� 1

2�2 kxk22 dx

 (2⇡�2)�1/2
�e

2�2w2
t �

2kut�1k22
Z 1

kũt�1k2�2�wt�2kut�1k2
e

�x21
2�2 dx1. (23)

Since � <
1

6�2  1
2�2wt|1�2wt| the lower limit of integration is positive, so we can use a

Gaussian tail bound as in Lemma 7 to bound (23) by

��p
2⇡ (kũt�1k2 � 2�wt�

2kut�1k2)
e

�1
2�2 (kũt�1k22�4�wt�2kut�1k2kũt�1k2)

=
��p

2⇡ (kũt�1k2 � 2�wt�
2kut�1k2)

e

�kut�1k
2
2

2�2

✓
1

|1�2wt|2
� 4�wt�

2

|1�2wt|

◆

. (24)

As � <
1

12�2  1
4wt�2|1�2wt| the exponent appearing in (24) is negative. Bounding the

exponential by 1 then gives us the upper bound

��p
2⇡ (kũt�1k2 � 2�wt�

2kut�1k2)
=

��

kut�1k2
⇣

1
|1�2wt| �

2wtC��2

C2
sup�

2m log(N0)

⌘

 ��

kut�1k2
⇣
1
3 � 2C�

C2
supm log(N0)

⌘ . (25)

29

Lybrand and Saab

Now, for S we can use the exponential decay of the probability appearing in (19). To make

the algebra a bit nicer, we can upper-bound this probability by P
⇣
�
2Pm�1

j=1 �
2
j � x1kũt�1k

⌘

since on S we have 0  x1  kũt�1k2. Setting ⌫ := 1
�
p
m�1

p
x1kũt�1k, Lemma 8 tells us for

x1 � C0�2m
kũt�1k

P

0

@

vuut
m�1X

j=1

�2j �
p
m� 1⌫

1

A  2 exp(�cnorm(⌫ � 1)2(m� 1)).

To simplify our algebra, we remark that for any c > 0,

e
�c(m�1)(z�1)2  e

�c
2 (m�1)z2

,

provided z � 4. By our choice of C0, this happens to be the case on S, as C0�2m
kũt�1k  x1 

kût�1k and so

⌫
2 � x1kũt�1k2

�2m
� C0.

This gives us the upper bound on the probability

P

0

@�
2
m�1X

j=1

�
2
j � 2x1kũt�1k2 � x

2
1

1

A  2 exp(�cnorm(m� 1)⌫2/2)

= 2 exp

✓
�cnormx1kũt�1k2

2�2

◆
.

Consequentially, we can bound the integral over S as follows

(2⇡�2)�1/2
�

Z

B(ũt�1,kũt�1k)C\S
e
2�wtkut�1kx1�

x21
2�2 P

0

@�
2
m�1X

j=1

�
2
j � 2x1kũt�1k2 � x

2
1

1

A dx1

 2 · (2⇡�2)�1/2
�

Z kũt�1k

C0�
2m

kũt�1k

e
2�wtkut�1kx1�

x21
2�2�

cnormx1kût�1k2
2�2 dx1

= 2 · (2⇡�2)�1/2
�

Z kũt�1k

C0�
2m

kũt�1k

e

⇣
2�wtkut�1k2�

cnormkũt�1k
2�2

⌘
x1�

x21
2�2

dx1. (26)

Setting 2⇣ := cnormkũk2 � 4��2
wtkut�1k, we have that (26) is equal to

2 · (2⇡�2)�1/2
�

Z kũt�1k

C0�
2m

kũt�1k

e

�2⇣x1
2�2 � x21

2�2 dx1 = 2 · (2⇡�2)�1/2
�e

⇣2

2�2

Z kũt�1k

C0�
2m

kũt�1k

e
�1
2�2 (x1+⇣)2

dx1

 2 · (2⇡�2)�1/2
�e

⇣2

2�2

Z 1

C0�
2m

kũt�1k
+⇣

e

�x21
2�2 dx1. (27)

30

A Greedy Algorithm for Quantizing Neural Networks

We remark that ⇣ > 0 if �2�wt+
cnorm

2|1�2wt|�2 > 0 which holds since � <
cnorm
12�2 <

cnorm
4wt|1�2wt|�2 .

Therefore, the lower limit of integration is positive and we can use a Gaussian tail bound
as in Lemma 7 to upper bound (27) by

�2�e
�1
2�2

✓
C2
0�4m2

kũt�1k2
+2

C0�
2m⇣

kũt�1k2

◆

p
2⇡
⇣
C0�2m
kũt�1k + ⇣

⌘  �2�p
2⇡⇣

=
�4�

p
2⇡kut�1k2

⇣
cnorm
|1�2wt| � 4��2wt

⌘ (28)

 �4�

kut�1k2
⇣
cnorm

3 � 4C�
C2

supm log(N0)

⌘ . (29)

Putting it all together, and remembering to add back in the factor e
�C2

sup�
2m log(N0)w2

t =

e
C�w2

t  e
C� we have previously ignored, we’ve bound E

h
e
��kutk22 � qt=0 U kut�1k2��

���Ft�1

i

from above with

�e
C�C

2
sup�m log(N0)

C�"kut�1k2| {z }
(17)

+
�3C0e

6C0C�
C2
sup log(N0)

+C�
�m

kut�1k2| {z }
(22)

+
�e

C��

kut�1k2
⇣
1
3 � 2C�

C2
supm log(N0)

⌘

| {z }
(25)

+
�4�eC�

kut�1k2
⇣
cnorm

3 � 4C�
C2

supm log(N0)

⌘

| {z }
(28)

. �e
C��m log(N0)

kut�1k2"
.

So, when |wt| < 1/2 and kut�1k2 � � & �m log(N0)
⇢" the claim follows.

Now, let’s consider the case when wt � 1/2. Then it must be, by Lemma 9, that
Xt 2 B(ũt�1, kũt�1k2) \B(ût�1, kût�1k2)C . By non-negativity of the exponential function,
we can always upper-bound the moment generating function by instead integrating over
Xt 2 B(ût�1, kût�1k2)C \ {x1  0}. Pictorially, one can see this by looking at the subfigure
on the right in Figure 3. In this scenario, we’re integrating over the region in green. The
upper bound we’re proposing is derived by ignoring the constraint from the blue region on
the left half-space. Using this upper bound we can retrace through the steps we took to
bound the integrals over R,S, and T with only minor modifications and obtain the desired
result. By symmetry, an analogous approach will work for wt  �1/2.

Lemma 18 With the same hypotheses as Lemma 17,

E
h
e
��kutk22 � qt=1 U kut�1k2��

���Ft�1

i
 ⇢.

Proof To begin, let’s consider the case when wt < 1/2. Recalling that ũt�1 = 1
1�2wt

ut�1,
and arguing as we did at the beginning of the proof of Lemma 17, Lemma 9 tells us

E
h
e
��kutk22 � qt=1 U kut�1k2��

���Ft�1

i

 (2⇡�2)�m/2
�e

�C2
sup�

2m log(N0)(wt�1)2
Z

B(ũt�1,kũt�1k2)

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx.

31

Lybrand and Saab

As before, we have denoted � := kut�1k2�� for conciseness. Using rotational invariance,
we may assume that ut�1 = kut�1k2e1. Just as we did in Lemma 17, expressing this integral
as nested iterated integrals gives us the probabilistic formulation

�e
�C2

sup�
2m log(N0)(wt�1)2

p
2⇡�

2kũt�1k2Z

0

e
2�(wt�1)kut�1kx1� 1

2�2 x
2
1P

0

@�
2
m�1X

j=1

�
2
j  2x1kũt�1k2 � x

2
1

1

A dx1,

where, as before, the �j ⇠ N (0, 1) are i.i.d. standard normal random variables. So, consider
decomposing the above integral into the following two pieces. Set R := {x 2 Rm : 0  x1 
C1�2m
kũt�1k2 } and S := {x 2 Rm : C1�2m

kũt�1k2  x1  2kũt�1k2} where C1 2 (0, 1) is a fixed constant.
Then on R we have by Lemma 8

P

0

@
m�1X

j=1

g
2
j  (m� 1)

✓
1

�2(m� 1)
(2x1kũt�1k2 � x

2
1)

◆1

A

 P

0

@
m�1X

j=1

g
2
j  (m� 1)

✓
1

�2(m� 1)
(2x1kũt�1k2)

◆1

A  2e�c(1�C1)2(m�1)
.

Setting aside the factor e
�C2

sup�
2m log(N0)(wt�1)2 for the moment, we have that the integral

over R is equal to

(2⇡�2)�1/2
�

Z C1�
2m

kũt�1k2

0
e
2�(wt�1)kut�1kx1� 1

2�2 x
2
1P

0

@�
2
m�1X

j=1

�
2
j  2x1kũt�1k2 � x

2
1

1

A dx

 (2⇡�2)�1/2
�2e

�c(1�C1)2(m�1)
Z C1�

2m
kũt�1k2

0
e
2�(wt�1)kut�1kx1� 1

2�2 x
2
1dx1

= (2⇡�2)�1/2
�2e

�c(1�C1)2(m�1)
e
2�2�2(wt�1)2kut�1k22

Z C1�
2m

kũt�1k2
+2��2(1�wt)kut�1k2

2��2(1�wt)kut�1k2
e
� 1

2�2 x
2
1dx1.

(30)

We remark that the lower limit of integration is strictly positive. Therefore, using a Riemann
approximation to the integral and knowing that the maximum of the integral occurs at the
lower limit of integration bounds (30) above by

�2e
�c(1�C1)2(m�1) C1�m

kũt�1k2
p
2⇡

. (31)

32

A Greedy Algorithm for Quantizing Neural Networks

On S, we use the bound P
⇣Pm�1

j=1 g
2
j  (m� 1)

⇣
1

�2(m�1)(2x1kũt�1k2 � x
2
1)
⌘⌘

 1 to get

(2⇡�2)�1/2
�⇥ (32)

2kũt�1k2Z

C1�
2m

kũt�1k2

e
2�(wt�1)kut�1kx1� 1

2�2 x
2
1 ⇥ P

0

@
m�1X

j=1

g
2
j  (m� 1)

✓
1

�2(m� 1)
(2x1kũt�1k2 � x

2
1)

◆1

A dx1

 (2⇡�2)�1/2
�

2kũt�1k2Z

C1�
2m

kũt�1k2

e
2�(wt�1)kut�1kx1� 1

2�2 x
2
1dx1

= �e
2�2�2(wt�1)2kut�1k22

Z 2kũt�1k2+2��2(1�wt)kut�1k2

C1�
2m

kũt�1k2
+2��2(1�wt)kut�1k2

(2⇡�2)�1/2
e
� 1

2�2 x
2
1dx1. (33)

Since the lower limit of integration is strictly positive, we can use a Gaussian tail bound as
in Lemma 7 to upper bound (32) by

��e
� 1

2�2

✓
C2
1�4m2

kũt�1k22
+4�(1�wt)C1�4m

kut�1k2
kũt�1k2

◆

⇣
C1�2m
kũt�1k2 + 2��2(1� wt)kut�1k2

⌘p
2⇡

 ��p
2⇡2��2(1� wt)kut�1k

. (34)

To summarize, we have shown, at least when wt < 1/2, that

E
h
e
��kutk22 � qt=1 U

���Ft�1

i

 �e
�C2

sup�
2m log(N0)(wt�1)22e�c(1�C1)2(m�1) C1�m

kũt�1k2
p
2⇡| {z }

(31)

+
�e

�C2
sup�

2m log(N0)(wt�1)2
�p

2⇡2��2(1� wt)kut�1k| {z }
(34)

 �e
�C2

sup�
2m log(N0)(wt�1)2

kut�1k2

✓
2�m|1� 2wt|p

2⇡
+

�p
2⇡2��2(1� wt)

◆

 �e
�C2

sup�
2m log(N0)(wt�1)2

kut�1k2

⇣
6�m+

�

��2"

⌘

 �e
4C��m log(N0)

kut�1k2

✓
6

log(N0)
+

1

C�"

◆

. ��m log(N0)

kut�1k2"
. (35)

Therefore, when kut�1k2 � � & CeC��m log(N0)
⇢" , (35) is bounded above by ⇢ as desired.

Now, let’s consider the case when wt > 1/2. In this scenario, we can express the
expectation as

E
h
e
��kutk22 � qt=1 U

���Ft�1

i

 e
�C2

sup�
2m log(N0)(wt�1)2(2⇡�2)�m/2

�

Z

B(ũt�1,kũt�1k2)C

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx.

33

Lybrand and Saab

Using the exact same approach as in the proof of Lemma 17, we can partition the domain
of integration into the following pieces:

Z

B(ũt�1,kũt�1k2)C

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx =

Z

B(ũt�1,kũt�1k2)C\{x1�kũt�1k}

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx

+

Z

B(ũt�1,kũt�1k2)C\{�kũt�1kx1�C�2m
kũt�1k

}

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx

+

Z

B(ũt�1,kũt�1k2)C\{��C�2m
kũt�1k

x10}

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx

+

Z

B(ũt�1,kũt�1k2)C\{0x1}

e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx.

The same arguments from the proof of Lemma 17 apply here with only minor modifications.
Namely, an argument exactly like that given for (14) gives us

Z

B(ũt�1,kũt�1k2)C\{0x1}
e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx  �

��2"kut�1k
.

Similarly, the chain of logic used to derive (25) gives us
Z

B(ũt�1,kũt�1k2)C\{x1�kũt�1k}
e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx  �

kut�1k2
⇣
1
3 � 2C�

C2
supm log(N0)

⌘ .

Calculations for the derivation of (28) give us
Z

B(ũt�1,kũt�1k2)C\{�kũt�1kx1�C�2m
kũt�1k

}
e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx

 4�

kut�1k2
⇣
cnorm

3 � 4C�
C2

supm log(N0)

⌘ .

Finally, the same reasoning that was used to derive (22) gives us

Z

B(ũt�1,kũt�1k2)C\{��C�2m
kũt�1k

x10}
e
2�(wt�1)xTut�1e

�1
2�2 kxk22 dx  3C0e

6C0C�
C2
sup log(N0)�m

kut�1k2
.

Following the remainder of the proof of Lemma 17 in this scenario gives us the result when
wt > 1/2.

Lemma 19 With the same hypotheses as Lemma 17

E
h
e
��kutk22 qt=�1 U kut�1k2��

���Ft�1

i
 ⇢.

34

A Greedy Algorithm for Quantizing Neural Networks

Proof The proof is e↵ectively the same as that for Lemma 18.

Acknowledgments

This work was supported in part by National Science Foundation Grant DMS-2012546 and
a UCSD senate research award.

References

Miklos Ajtai. The shortest vector problem in l2 is np-hard for randomized reductions.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
10–19, 1998.

Pierre Baldi and Roman Vershynin. The capacity of feedforward neural networks. Neural
networks, 116:288–311, 2019.

Wojciech Banaszczyk. A beck—fiala-type theorem for euclidean norms. European Journal
of Combinatorics, 11(6):497–500, 1990.

Wojciech Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex
bodies. Random Structures & Algorithms, 12(4):351–360, 1998.

Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science, pages 3–10. IEEE, 2010.

Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The gram-schmidt
walk: a cure for the banaszczyk blues. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 587–597, 2018.

François Chollet et al. Keras. https://keras.io, 2015.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov. Towards
a constructive version of banaszczyk’s vector balancing theorem. arXiv preprint
arXiv:1612.04304, 2016.

Ingrid Daubechies and Ron DeVore. Approximating a bandlimited function using very
coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order.
Annals of mathematics, 158(2):679–710, 2003.

Ronen Eldan and Mohit Singh. E�cient algorithms for discrepancy minimization in convex
sets. arXiv preprint arXiv:1409.2913, 2014.

35

https://keras.io

Lybrand and Saab

Apostolos A Giannopoulos. On some vector balancing problems. Studia Mathematica, 122
(3):225–234, 1997.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. In International Conference on Machine Learning,
pages 1737–1746, 2015.

Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied probability, pages 502–525, 1982.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and hu↵man coding. arXiv preprint
arXiv:1510.00149, conference paper at ICLR, 2016.

Nicholas JA Harvey, Roy Schwartz, and Mohit Singh. Discrepancy without partial color-
ings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2014.

Geo↵rey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

Hi Inose, Y Yasuda, and Jun Murakami. A telemetering system by code modulation-�-
�modulation. IRE Transactions on Space Electronics and Telemetry, (3):204–209, 1962.

Sergey Io↵e and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.
Compression of deep convolutional neural networks for fast and low power mobile appli-
cations. arXiv preprint arXiv:1511.06530, conference paper at ICLR, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

36

A Greedy Algorithm for Quantizing Neural Networks

Tamara G Kolda and Dianne P O’leary. A semidiscrete matrix decomposition for latent
semantic indexing information retrieval. ACM Transactions on Information Systems
(TOIS), 16(4):322–346, 1998.

Richard Kueng and Joel A Tropp. Binary component decomposition part ii: The asymmet-
ric case. arXiv preprint arXiv:1907.13602, 2019.

Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. nature, 521(7553):436,
2015.

Laszlo Lovasz, Joel Spencer, and Katalin Vesztergombi. Discrepancy of set-systems and
matrices. European Journal of Combinatorics, 7(2):151–160, 1986.

Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on
the edges. SIAM Journal on Computing, 44(5):1573–1582, 2015.

Mikhail Menshikov, Serguei Popov, and Andrew Wade. Non-homogeneous random walks:
Lyapunov function methods for near-critical stochastic systems, volume 209. Cambridge
University Press, 2016.

Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer
Science & Business Media, 2012.

Robin Pemantle and Je↵rey S Rosenthal. Moment conditions for a sequence with negative
drift to be uniformly bounded in lr. Stochastic Processes and their Applications, 82(1):
143–155, 1999.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

Thomas Rothvoss. Constructive discrepancy minimization for convex sets. SIAM Journal
on Computing, 46(1):224–234, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Jurgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

37

Lybrand and Saab

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Joel Spencer. Six standard deviations su�ce. Transactions of the American mathematical
society, 289(2):679–706, 1985.

Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

Peisong Wang and Jian Cheng. Fixed-point factorized networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4012–4020, 2017.

Juyang Weng, Narendra Ahuja, and Thomas S Huang. Cresceptron: a self-organizing
neural network which grows adaptively. In [Proceedings 1992] IJCNN International Joint
Conference on Neural Networks, volume 1, pages 576–581. IEEE, 1992.

38

	Introduction
	Contributions

	Notation
	Background
	Algorithm and Intuition
	Main Results
	Numerical Simulations
	Multilayer Perceptron with MNIST
	Convolutional Neural Network with CIFAR10
	VGG16 on Imagenet Data

	Future Work
	Proofs: Supporting Lemmata
	Proofs: Core Lemmata

