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ABSTRACT
Federated learning (FL) nowadays involves heterogeneous com-
pound learning tasks as cognitive applications’ complexity increases.
For example, a self-driving system hosts multiple tasks simultane-
ously (e.g., detection, classification, segmentation, etc.) and expects
FL to retain life-long intelligence involvement. However, our anal-
ysis demonstrates that, when deploying compound FL models for
multiple training tasks on a GPU, certain issues arise: (1) As differ-
ent tasks’ skewed data distributions and corresponding models cause
highly imbalanced learning workloads, current GPU scheduling
methods lack effective resource allocations; (2) Therefore, existing
FL schemes, only focusing on heterogeneous data distribution but
runtime computing, cannot practically achieve optimally synchro-
nized federation. To address these issues, we propose a full-stack FL
optimization scheme to address both intra-device GPU scheduling
and inter-device FL coordination for multi-task training. Specifi-
cally, our works illustrate two key insights in this research domain:
(1) Competitive resource sharing is beneficial for parallel model
executions, and the proposed concept of “virtual resource” could
effectively characterize and guide the practical per-task resource uti-
lization and allocation. (2) FL could be further improved by taking
architectural level coordination into consideration. Our experiments
demonstrate that the FL throughput could be significantly escalated.
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Figure 1: Federated Learning with Multi-Tasks

1 INTRODUCTION
Federated learning (FL) is a distributed training methodology allow-
ing multiple computing devices to jointly train cognitive tasks with-
out sharing private data [4]. As the deployment of intelligent appli-
cations is widely spreading in ever complex scenarios, FL becomes
the essential technique for gathering individual computing resources
and maintaining intelligence involvement timely. Meanwhile, the
complexity of these applications is also getting far more complicated.
As shown in Fig. 1: each device (e.g., an self-driving system) may
hosts different FL tasks (e.g., detection, classification, etc.) [1]; each
task involves a specific deep neural network model (DNN) or partial
structures; and highly-biased data volume are distributed per task to
train. Although some heterogeneous FL methods have resolved the
algorithmic challenges for federation convergence regarding hetero-
geneous model coordination and parameter matching across unique
devices [1], the practical imbalanced training workload per task may
cause potential issues inside the computing architecture in each de-
vice. Taking GPU as the major FL computing unit, there are already
some existing parallelism methods (e.g., CUDA MPS [7], MIG [2])
to coordinate the resource allocation for concurrent model training.
However, facing the considerable workload imbalance and dynamics
in multi-task FL scenarios, these methods lack sufficient manage-
ment granularity and generally suffer from considerable parallelism
contention and resource under-utilization.

Therefore, different from conventional FL works, this work dives
into the GPU architectural level with the particular scheduling issue
of multi-task FL deployment and re-examine the FL coordination
problem. Specifically, we are focusing on two major challenges: (1)
How to demystify the practical resource utilization and parallelism
contention for multi-task model training, and therefore guide the
GPU scheduling? (2) How to re-invent the FL scheme by taking the
architecture-level GPU scheduling into consideration?

By tackling these challenges, we propose a full-stack multi-task
FL optimization scheme, which addresses both intra-device GPU
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Figure 2: Temporal and Spatial GPU Scheduling Schemes

scheduling with a competitive resource sharing scheme; and inter-
device FL coordination with realistic GPU runtime synchroniza-
tion. Experiments show that we could greatly enhance the GPU
resource utilization, and in turn improve the overall intra-device train-
ing throughput by 2.16⇥⇠2.38⇥ and inter-device FL coordination
throughput by 2.53⇥⇠2.80⇥ in complex multi-task FL scenarios.

2 PRELIMINARY
To achieve the optimal performance of multi-task FL, we need to
coordinate two computational aspects: (a) Intra-device GPU sched-
uling and utilization. Due to heterogeneous models parallel, this
requires a resource allocation method that allocates the optimal
resource to achieve optimal multi-task deployment on GPU and
achieve maximum instantaneous throughput. (b) Inter-device FL
coordination, which expects all devices in the cluster to perform
synchronized parameter fusion, and each device could fully utilize
the global synchronization cycle to train as much data as possible.
GPU Resource Allocation and Scheduling: As deploying the afore-
mentioned multi-task FL into individual devices, the major comput-
ing unit – GPU is facing a complex scheduling issue to host multiple
training models. Currently, there are two major resource allocation
and scheduling schemes: Temporal scheduling in Fig. 2 (a) isolates
GPU resources into sequential time slices for individual tasks (e.g.,
round-robin [8]). Each task takes the whole GPU resource in its
time slice without interfering with others [3]. Spatial scheduling in
Fig. 2 (b) processes multiple GPU tasks in parallel by assigning a
sub-set of streaming multiprocessors (SMs) to individual tasks as
independent processing threads [5]. Latest GPU scheduling technolo-
gies are still within these schemes, such as NVIDIA Multi-Instance
GPU (MIG) [2], Multi-Process Service (MPS) [7].

Although spatial scheduling is more preferred by its parallelism,
there occurs competitive resource sharing between tasks. It is used
to describe the complex interactions between concurrent tasks within
a single GPU, such as the resource contention between similar com-
puting operators from different training models, or the resource
under-utilization caused by insufficient resource allocation. How-
ever, it is still a newly emerging design consideration. Therefore,
how to demystify it to achieve optimal resource allocation and bring
it into a large-scale FL is our major research motivation.
Multi-Task FL involves many factors: � devices in a federation
cluster have � tasks, and the 8C⌘ task corresponds to a specific DNN
model structure, and a data set of ⇡8, 9 on 9C⌘ device. Each model

locally trains its weight parameters of,8, 9 to pursuit the minimum
accuracy loss across different tasks, and fuse individual task’s model
with each other (based on their assignment training data set’s portion
across all devices) in every global synchronization cycle [6]:8>>>><
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In FL, the local computing workload –$8, 9 is specified by the task
model size"8, 9 and the assigned batch size ⌫8, 9 . Through adjusting
$8, 9 and corresponding resource allocations in a GPU, we are ex-
pecting to achieve the maximum throughput with parallel multi-task
deployment per cycle and improve the overall FL speed.

3 INTRA-DEVICE GPU SCHEDULING
WITH COMPETITIVE RESOURCE SHARING

In this section, we analyze the competitive resource sharing mecha-
nism and identify the particular computing issue, and thus propose a
multi-task dedicated GPU scheduling method.

3.1 Competitive Resource Sharing Analysis
Baseline Example of Spatial Scheduling: Fig. 2 (b) indicates a fully
isolated spatial resource allocation approach, which is achieved by
a very recent GPU scheduling technique (i.e., MPS). It assigns an
exclusive set of hardware SMs per model (represented as a series
of operators) to perform parallel computing, as shown in Fig. 3 1�.
However, such an exclusive resource assignment lacks certain flexi-
bility as some small operators in the model will not fully occupy the
assigned resources, thus causing certain under-utilization.
Spatial Resource Sharing: Instead of exclusive resource allocation,
we could enhance the GPU utilization by enabling operators from
parallel models with complementary sizes to share certain resources,
as shown in Fig. 3 2�. In runtime GPU scheduling, this is be done by
assigning a resource budget to individual models. Thus, the overall
resource assignment could exceed 100% due to overlapped assign-
ment of physical SMs. However, by assigning the resource budget,
the physical resource allocation dynamics is not well studied yet, as
models may compete for shared resources.
Excessive Contention Overhead: As we increase the shared re-
sources by making more overlapped resources assignments in Fig. 3
3�, task models compete for resources more fiercely, leading to re-
source competition and considerable contention overhead. This is
the major research focus of our analysis.
Extreme Contention Kills Parallelism: The resource contention is-
sue is not only causing overhead. Here, when large operators exist,
it is hard to achieve complementary resource assignment and thus
the scheduling mechanism is pushed back to temporal scheduling
as shown in Fig. 3. Therefore, in addition to complementary opera-
tors, special attention is also required for such cases, which further
increases the analysis complexity of competitive resource sharing.

3.2 Competitive Resource Sharing
Coordination with Virtual Resource

Motivated by the analysis above, we propose a new prospect of
resource allocation for multi-task GPU computing — “virtual re-
source” management to guide optimal runtime configuration.
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Figure 3: Competitive GPU Resource Sharing with Multi-Task DNN Training

Definition of Virtual Resource: As mentioned above, when schedul-
ing the runtime resource assignment, a resource budget is applied
to each task model. However, as the overall budget exceeds 100%
of physical resources, the intrinsic allocation mechanism is not well
studied. Thus, we extend such resource budget concept into virtual
resource to illustrate the composition degree of competition.

As shown in Fig. 3 (right side), the virtual resource is a number be-
tween (0%⇠100%) ⇥(� > 5 C0B:B). For example, when deploying two
task models, the virtual resource could reach as high as 200%. Find-
ing an optimal virtual resource could manage an appropriate parallel
resource competition and sharing, achieving optimal throughput.
Virtual Resource Specification for Optimal Multi-task Resource

Allocation: To manage the competitive resource sharing of complex
multi-task models, it needs to clarify the actual competitive resource
sharing performance based on virtual resource. Thus, we propose a
machine learning approach to estimate the GPU throughput % based
on a series of task models’ virtual resource ' assignment and corre-
sponding task models’ workload $ . Moreover, it is also necessary
to identify the computing factors �8 [10] of different task models
"8 , such as computing characteristics (FLOPS) and memory access.
Then we multiply these factors with the batch size ⌫8 to represent the
8C⌘ task model’s workload $8 . Please note that, a larger batch size
could make the task model have larger operators or overall larger
workload, so the task model could occupy more resource in parallel
deployment. We take the workload (represented by �8 ⇤ ⌫8 ) and the
virtual resource allocation ('8 for "8 ) as the machine learning’s
input. As each task model competes with other models when sharing
the resource, we should consider the common impact between task
models in parallel to estimate task models’ throughput % . Therefore,
we combine �8 ⇤ ⌫8 and '8 between different task models as the final
inputs. So we construct a multi-input and multi-output prediction
machine learning model, and formulate it as following:

%1, ..,%8 = %A4 ( (�1 ⇤ ⌫1,'1), (�2 ⇤ ⌫2,'2), ..., (�8 ⇤ ⌫8 ,'8 )) . (2)
We profile extensive multi-task training cases to fit the parameters

of the prediction model. We record the corresponding throughput
when changing the virtual resource allocation '1 to '8 and batch size
⌫1 to ⌫8 respectively and use this recording as supervised informa-
tion to train the prediction model [9]. Thus, the actual composition
of competition and sharing could be effectively illustrated in Fig. 3.
By analysing competitive resource sharing, we demystify the prac-
tical resource utilization and parallelism contention for multi-task

model training with virtual resource. And through establishing the
relationship between virtual resource and throughput, we achieve
the optimal multi-task intra-device GPU scheduling.

4 INTER-DEVICE MULTI-TASK
FEDERATED LEARNING COORDINATION

Based on the intra-device virtual resource management, we further
bring it into the inter-device FL cluster and rethink the FL coordina-
tion from a GPU scheduling perspective.
Coordination Design Motivation: Our goals are to make each device
could be fully utilized during each synchronization cycle when multi-
task models parallel in each device, and meanwhile maximize the
overall GPU throughput to accelerate the overall FL training speed.

We achieve the first goal using the Eq. 2 through adjusting mis-
match between the ratio of different tasks’ data volume ⇡ and the
ratio of different tasks’ workload $ . For the second goal, we adjust
the resource allocation according to the workload which is influ-
enced by batch size to obtain the maximum throughput. And the
goals can be formulated by the following objectives:(

$1 942C8E4 1 : min
Õ

8
Õ

9
|⇡8 |
|⇡9 | �

$8
$9

,

$1 942C8E4 2 : max
Õ

8 %1, ..,%8 .
(3)

Specifically, for the first objective, we can understand its principle
using the relation between ⇡ and $ . When a task model has larger
data volume ⇡, we improve its workload through increasing batch
size to make this task model occupy more resource, so that this task
model can consume correspondingly more amount of data during
each synchronization cycle. Conversely, when a task model has
smaller ⇡ , we decrease its workload, so that more resources can be
occupied by other task models with larger ⇡. Therefore, achieving
co-scheduling of the multi-task FL coordination can be transformed
into leveraging the workload adjustment and resource allocation to
satisfy the above two objectives.
Multi-task FL Coordination: This multi-task coordination problem
is hard due to the various resource allocation for different model
combination and data imbalance between different tasks, so we
adopt a greed optimization method to find the optimal batch size
and resource allocation. We first search the optimal workload $ of
each task, and the $ can be represented by the � ⇤ ⌫. So we can
search for the batch size ⌫ to optimize the second objective. This
objective only has one variable ⌫, and we can solve the ⌫ for each
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Figure 4: Intra-Device Multi-Task GPU Throughput

task in a closed form. Then, we use the optimal batch size as one
of the input to search the optimal resource allocation using Eq. 2
to maximize intra-device throughput. Using this two-step greedy
scheduling method, we can quickly find the optimal batch size and
resource allocation to achieve FL coordination.

Using the proposed method, we achieve inter-device multi-task
FL coordination with realistic GPU runtime synchronization while
enhancing the intra-device overall throughput.

5 EXPERIMENTAL EVALUATION
Experimental Setup: We construct various multi-task FL scenar-
ios with following DNN models: VGG16 (V16), ResNet18 (R18),
ResNet50 (R50), ResNet101 (R101) MobileNet_v3 (M3), Shuf-
fleNet_v2 (S2) DensNet121 (D121). The selection of models has
a rich diversity, covering different computational and memory re-
quirements and having distinctive model depths with operator num-
bers. We evaluate three multi-task settings. D121+V16+R101 is
a heavy multi-task training with larger computational workload.
R18+M3+S2 is lighter since M3 and S2 are often deployed on mo-
bile. R50+V16+M3 is a hybrid type and the requirements for each
task in this combination vary. For simplicity, we evaluate the same
batch size (128) for all the combinations. We evaluate the multi-task
training on the CIFAR10 dataset and use the NVIDIA Titan V GPU.
Baseline and Metrics: We consider three baseline strategies. (1) Tem-
poral: The default blackbox CUDA scheduler; (2) Fully-Isolated:
Using MPS to allocate dedicated SMs equally to each process; (3)
Fully sharing: Each task could compete and utilize all SMs (MPS de-
fault). We use two metrics to evaluate the performance: raw through-

put ) and fairness throughput )5
1. All methods’ throughput are

normalized to show the relative acceleration ratio.
Overall Speed-up: Our resource allocation method could consistently
yield 2.16⇥ to 2.38⇥ speed-up compared to the temporal sequential
training baseline across all three settings. Although the Spatial Iso-
lated and Fully Sharing solution also yields a certain speed-up than
Temporal baselines, but its acceleration ratio is much less than ours.
Meanwhile, our approach achieves higher acceleration on Fairness
Throughput. This is because it is easier for small models to get GPU
resources by resource allocation. Without a good resource allocation,

1Raw throughput is the direct summation of all models’ training throughput (img/s),
while fairness throughput is a normalized throughput metric by each model’s stand-
alone throughput when running alone. By such normalization, we treat each model’s
speedup/slowness with fair importance.
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Figure 5: Inter-Device Average Throughput
in a Federated Learning Synchronization Cycle

such as fully sharing, large models will take up resources for a long
time, thus affecting the throughput of small models.
Inter-Device Multi-task FL Coordination: We use a FL system
with several devices, each devices have three tasks with different
model structure and imbalance data volume. We consider the same
baseline strategies and assign the same batch size (128) for these
baseline methods. We give the the average throughout and fairness
throughput in one synchronization cycle of all devices, and the
results show in the Fig. 5. From the Fig. 5, we can find that we
achieve 2.53⇥ to 2.80⇥ speed-up compared to the baseline methods.
More interestingly, we achieve faster acceleration on the inter-device
as opposed to the intra-device acceleration. This is because the joint
optimization of batch size and resource allocation allows our method
to utilize GPU resources during the whole synchronization cycle,
but the baseline methods can not fully utilize causing imbalance
between workload and data volume.

6 CONCLUSION
In this work, we propose a full-stack multi-task FL optimization
scheme, which addresses both intra-device GPU scheduling with a
novel competitive resource sharing scheme; and inter-device multi-
task FL coordination with realistic GPU runtime synchronization.
Experiments show that we could greatly enhance the GPU resource
utilization, and improve the overall training throughput.
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