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Abstract—With the fast development of deep neural networks
(DNNs), many real-world applications are adopting multiple
models to conduct compound tasks, such as co-running clas-
sification, detection, and segmentation models on autonomous
vehicles. Such multi-tenant DNN inference cases greatly exacer-
bate the computational complexity and call for comprehensive
collaboration for graph-level operator scheduling, runtime-level
resource awareness, as well as hardware scheduler support.
However, the current scheduling support for such multi-tenant
inference is still relatively backward. In this work, we propose a
resource-aware scheduling framework for efficient multi-tenant
DNN inference on GPU, which automatically coordinates DNN
computing in different execution levels. Leveraging the unified
scheduling intermediate representation and the automated ML-
based searching algorithm, optimal schedules could be generated
to wisely adjust model concurrency and interleave DNN model
operators, maintaining a continuously balanced resource utiliza-
tion across the entire inference process, and eventually improving
the runtime efficiency. Experiments show that we could consis-
tently achieve 1.3×∼1.7× speed-up, comparing to regular DNN
runtime libraries (e.g., CuDNN, TVM) and particular concurrent
scheduling methods (e.g., NVIDIA Multi-Stream).

I. INTRODUCTION

As deep neural networks (DNNs) have demonstrated supe-

rior performance in vast cognitive tasks [1–3], the expecta-

tions for DNN-powered intelligence have grown rapidly over

the past few years. In addition to the real-time needs of

DNN optimization regarding its deep structures and heavy

workloads [4–6], recent real-world applications further require

multi-tenant DNN computation for even compound tasks [7–

9]. For example, it is critical for an autonomous driving system

to inference multiple DNN models simultaneously on the same

hardware for segmentation [10], detection [11], and classi-

fication [12]. And for larger-scale cases, such multi-tenant

computing necessity also emerges in cloud computing clus-

ters and industrial-level data centers for resource utilization

improvement, drawing significant attention from intelligence

services providers, such as Microsoft and NVIDIA [13–15].

The multi-tenant DNN inference exacerbates the com-

putational complexity on top of existing DNN problems.

However, the corresponding computing support is still rela-

tively backward. As the major platform for the multi-tenant

This work is partially supported by NSF CNS-2003211 and CNS-1939380.
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Fig. 1. Scheduling for Multi-tenant DNN Inference on a Single GPU

inference — current GPUs’ computing strategies are still

limited to traditional approaches of sequential execution (e.g.,

MPI-processing [16]) and parallel/concurrent execution1 (e.g.,

NVIDIA multi-Stream execution [17]).

As demonstrated in Fig. 1, these limited strategies cannot

achieve satisfying performance for multi-tenant DNN infer-

ence: (a) Although the sequential execution dedicates the

entire GPU’s resource to each model and achieves the shortest

per-model inference latency as shown in Fig. 1 (a), continuous

resource under-utilization is inevitable due to the single-

operator execution (e.g., conv, pooling), not to mention the

cumulative overall runtime latency. (b) For the concurrent

execution in Fig. 1 (b), though indispensable parallelism for

multiple models earns latency optimization to a certain degree,

it hasn’t touched the particular computing complexity in multi-

tenant DNN inference. Taking the first round of convolution

from the three DNN models (i.e., A1, B1, C1) as an example,

simple parallelism would introduce considerable contention
overhead as operators can compete for computing resources

simultaneously. While looking into later stages of this concur-

1We treat “parallel” and “concurrent” as the same meaning in our work,
according to the definition of “concurrency” in the NVIDIA document [17].



rent execution, GPU under-utilization strikes back due to the

unbalanced scheduling for different model depths.

Thus, to strive for optimal runtime latency and resource

utilization, the multi-tenant DNN inference raises particular

GPU scheduling requirements not only for analyzing and

relieving local operator contention, but also for managing

global model concurrency balance as per model structure

divergence. Bringing this “local-global” need into the existing

DNN execution stack as shown in Fig. 2, we can see that, it

calls for comprehensive collaboration from the graph-level
operator scheduling, the runtime-level resource awareness,

as well as the hardware scheduler support. However, most

existing DNN scheduling methods are limited in a single-level

optimization scope. For example, many works are proposed

singularly for low-level intra-operator optimization, such as

loop tiling and unrolling [18–20]; Similarly, many graph-based

scheduling works focus only on high-level inter-operator fu-

sion/substitution optimization [21–23]. As a result, neglecting

one or the other, these methods fail to meet the cross-level

scheduling requirement by the multi-tenant DNN inference.

In this work, we propose a runtime-aware scheduling
framework for efficient multi-tenant DNN inference on GPU,

which automatically coordinates concurrent DNN computing

in different execution levels. As shown in Fig. 1 (c), the

proposed method could take both the local operator contention

and the global model structural divergence into consideration.

The final scheduling method wisely adjusts model concurrency

by interleaving operators for less contention overhead, main-

taining a continuously balanced resource utilization across the

entire inference process, and eventually improving the runtime

efficiency. To achieve such a scheduling target, we make the

following contributions:

• We first abstract the multi-tenant DNN inference schedul-
ing as a fine-grained concurrency control problem. In-

corporating the GPU multi-stream and synchronization

mechanisms, multiple concurrency control levels are

identified in the GPU inference flow to provide the

fundamental support for the scheduling optimization;

• Based on the problem abstraction, a unified scheduling
Intermediate Representation (IR) is specified to formulate

the scheduling factors by taking both graph-level and the

runtime-level execution mechanism into consideration,

and eventually build a structural search space for the final

scheduling optimization;

• In the established scheduling search space, we transform

multi-tenant scheduling into an optimization problem and

propose an automated ML-based searching algorithm to

find the optimal scheduling strategy on GPU. Specifically,

the GPU runtime resource is profiled and adopted as the

searching cost, granting the whole solution with expected

runtime awareness.

We conduct extensive experiments across a wide range

of multi-tenant inference scenarios. The results show that

our method could consistently achieve 1.3×∼1.7× accelera-

tion than the common deep learning runtime libraries (e.g.,

Deep Learning Frameworks

Graph Optimization

Runtime Optimization

Operator Optimization

Layer, Data Flow Definition

Op Fusion, Graph Substitution

Op Dispatch, Kernel Invoke

Tiling, Unrolling, Reordering 

VGG ResNets InceptionV3…

Op1

Op2

Op3 sc
he

du
le

r

Fig. 2. DNN execution stack. Our work proposes a graph- and runtime-level
cross-layer scheduling framework for multi-tenant inference optimization.

CuDNN, TVM) and other concurrent scheduling methods

(e.g., NVIDIA Multi-Stream). Meanwhile, benefited from the

end-to-end search method design, our method could be eas-

ily applied onto 10s of multi-tenant combinations and GPU

platforms with short search time (∼2mins), demonstrating the

great scalability of our automated scheduling framework.

II. BACKGROUNDS AND MOTIVATION

A. Cross-Level Scheduling through DNN Execution Stack

We first expand the backgrounds of DNN execution stack

as shown in Fig. 2, that is composed of multiple architecture

levels [18]: (a) The top framework level includes different

deep learning development frameworks, such as TensorFlow

and PyTorch, that define various DNN model structures.

(b) The graph level untangles model structures to abstract

individual operators and identify the data processing flow as

directed acyclic graphs (DAG) [21]. Graph-based optimization

is thus introduced into this level to achieve operator fusion

and sub-graph substitution, and therefore reduce memory ac-

cess/operator invoking overheads, etc. (c) Down to the runtime
level, it controls when and how operators are dispatched

onto physical computing units and is critical in our balanced

resource utilization. This is usually done by the native black-

box GPU scheduler, but we could leverage certain APIs

to adjust the dispatching results. In our work, we use the

“stream” [17] and “synchronization” [24] APIs to achieve fine-

grained operator concurrency control as we will show later. (d)
The operator level is the bottom level that conduct per-operator

execution, such as tiling, unrolling, reordering, etc., to improve

the computing efficiency. Such intra-operator optimization has

a distinct scope and is orthogonal to the concurrent operator

scheduling, and thus is not considered in this work.

Motivation: As existing single-level works (e.g., graph-

alone, operator-alone) can hardly offer comprehensive solu-

tion, we aim to bridge different levels in this work and build a

cross-level scheduling framework to improve the multi-tenant

inference performance from graph to runtime.
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Fig. 3. Overview of Our Proposed Automated Scheduling Strategy Search Framework.

B. Resource Contention in Multi-Tenant DNN Inference

Resource contention is a specific challenge emerging in the

multi-tenant inference. Different from single-model inference

which usually faces under-utilization issues, resource con-

tention reflects the operator competition for limited hardware

resources. Specifically, there are two types of contention that

are commonly known: computing contention and memory con-
tention. Generally, convolutional operators tend to be compute-

bound as it involves mostly FLOPs-intensive computing, while

the operators like pooling/residual connections are usually

memory-bound. When executed concurrently, same type of

operators can saturate the corresponding resources, and cause

slower execution speed due to the limited size of shared

memory and L1 cache, memory bandwidth, etc.

Motivation: Thus, multi-tenant scheduling is a finer con-

currency control problem, which not only concerns under-

utilization but also contention issues.

C. Scheduling Complexity in Multi-Tenant DNN Inference

Moreover, multi-tenant inference optimization have a much

larger complexity: (a) From a spatial perspective for inference

parallelism, on each single execution stage, the overall amount

of operators from different models is much more significant

than a single-model scheduling scope. (b) From a temporal

perspective, through the whole execution process, different

model structures and depths also raise considerable schedul-

ing challenges to maintain consistent and balanced resource

utilization and improve the runtime latency. Therefore the

design/search space of the scheduling strategy for multi-tenant

DNN inference becomes ever complex, and conventional man-

ual tuning or heuristic-based methods are hard to scale and

reach satisfying performance.

Motivation: In addition to other design motivations, we

will eventually solve this problem by proposing an efficient

search space representation and leverage automated ML-based

methodologies to coordinate massive operators for optimal

resource utilization and runtime latency.

III. THE SCHEDULING FRAMEWORK

A. Fine-grained Scheduling Problem Abstraction

This work targets at efficient multi-tenant DNN inference

on GPUs. Considering the applications such as autonomous

driving systems, we specify it as a compound task consisting

of N independent DNN models sharing the same input for

different inference sub-tasks. Demonstrated as Fig. 3 (a), each

DNN inference sub-task consists of a series of operators, such

as conv, bn, relu, pooling, etc, which must be performed in

certain order according to the data flow dependency. While

across DNN models, operators are independent and thus could

be flexibly scheduled with certain degrees of concurrency. Our

optimization objective is to minimize the overall latency of N
inference sub-tasks, which is the overall time from the earliest

starting time of the tasks to the latest ending time.

The key of multi-tenant scheduling is to manage the concur-

rency for consistent and balanced resource utilization. There-

fore, we abstract the multi-tenant DNN inference scheduling

as a fine-grained concurrency control problem through the

following steps: (a) Achieving the stream-level concurrency:

We allocate one GPU processing stream for each model to

achieve the concurrency (Fig. 3 (b)). However, even with

certain concurrency, native GPU stream-based scheduling dis-

patches operators without dedicated scheduling management.

(b) Finer-grained stage splitting: To achieve finer-grained

operator-level concurrency control, we insert synchronization

barriers, namely pointers, to split each stream’s operator

sequence into several shorter stages (Fig. 3 (c)). Such stage

splittings ensure the operators to only share the assigned

resources in the same stage, thus supporting the stage-level

concurrency control. (c) Stage-level concurrency control: By

adjusting where the pointers are inserted, we could control how

many operators are assigned in each stage. This enable us to

reduce or increase the concurrency in a fine-grained manner

to manage the resource utilization (Fig. 3 (d)). (d) Intra-stage
operator invoking optimization: After deciding the scheduling

strategy, our final step is the scheduling deployment. During



this implementation, we also optimize the operator invoking

logic to prevent the invoking overhead of early streams from

stalling later ones (3-e), as we will introduce later.

B. Unified Intermediate Representation Design

As a multi-tenant DNN inference task consists of N par-

allelable models: M1,M2, ...,MN . We represent each DNN

model by one stand-alone operator sequence2:

M1 : [1, 2, ..., a],

M2 : [1, 2, ..., b],

MN : [1, 2, ..., c],

(1)

where M indicates a DNN model, each number in one list

indicates one operator’s index, and a (or b, c) is the largest

index of the DNN’s operators.

Stream: To satisfy the sequential dependency per model, we

assign each model to one stand-alone GPU processing stream:

Si ← Mi, i ∈ (1, 2, ..., N), (2)

where Si indicates the i-th stream. An example with three

streams is shown in Fig. 3 (b). Operators in one stream can

only be launched sequentially, while operators in different

streams could be executed concurrently.

The multi-stream mechanism enables the maximum con-

currency of DNN inference streams. However, as aforemen-

tioned, scheduling by streams alone can only have stream-level
concurrency control, which is still coarse-grained and does

not suffice to manage each operator’s associated concurrency

during its life span. To control the concurrency in a finer

granularity, we then use synchronization barriers to split each

stream’s full sequence into several shorter stages.

Pointer: We use pointers to annotate the appropriate posi-

tions where we insert synchronization barriers. An illustrated

pointer-based stage splitting is shown in Fig. 3 (c)(d). Taking

the first stream as an example, a pointer set with three pointers

divides the first stream sequence into four shorter ones:

ρ1 : (3, 5, 7) + S1 : [1, 2, 3, ..., 9, 10] =

S
′
1 : [1, 2, 3], [4, 5], [6, 7], [8, 9, 10],

(3)

where ρ1 is the pointer indexes, S1 is the original operator

sequence, and S
′
1 is the split sequence with synchronization

barriers inserted. Each pointer set splits one stream sequence

into several shorter ones, thus enabling a finer-grained concur-

rency scheduling.

Stage: Between each two pointers, the launched operators form

a stage. Due to the sync barriers, all operators in the same

stage must all finish so as to step into the next stage. Thus, by

controlling how many operators are launched in each stage,

we could precisely manage the concurrency in the most fine-

grained operator level. An example is given in Fig. 3 (d). By

2For multi-branch models like ResNets, we also serialize the operators into
one sequential sequence as their intra-model concurrency is limited. Such a
representation enables us to better optimize the inter-model concurrency in
the multi-tenant inference scenario.

inserting the first synchronization barrier, we could enable six

operators to concurrently execute in the first stage:

Stage 1 : [S1(1, 2, 3), S2(1), S3(1, 2)]. (4)

By contrast, we could also reduce the concurrency in the

second stage by assigning no operators in the third stream:

Stage 2 : [S1(4, 5), S2(2), S3(None)]. (5)

Similarly, all stages can be generated with a desired concur-

rency, thus enabling operator-level concurrency control.

Schedule: The final scheduling strategy is composed of mul-

tiple stages in the synchronization barriers’ ordering, which is

represented as a multi-stage nested list:

Schedule τ : [Stage 1, Stage 2, Stage 3, ...], (6)

where τ indicate the composed scheduling strategy, which can

have multiple stages, depending on the number of synchro-

nization barriers (i.e., pointers) we used to split each stream

sequence. Fig. 3 (d) shows an example that uses three sync

pointers for four stages. More synchronization enables finer-

grained concurrency control, but at the price of potentially

higher synchronization overhead.

C. Automated Scheduling Search

The IR design explicitly defines the scheduling factor and

the corresponding strategy for multi-tenant GPU inference.

However, it is still challenging to identify the particular

scheduling controls given various compound tasks with un-

certain DNN structures. As aforementioned, considering the

complexity, manual schedule tuning can take considerable

efforts and also cannot scale with more complicated models’

combination and varied GPU platforms. Therefore, we propose

to use an ML-based search approach to solve the scheduling

problem in an automated manner.

Formulation: Formally, our primary search target is to find an

optimal scheduling strategy that yields the lowest latency:

τ∗ = argmin
τ

f(τ), for τ ∈ Dτ , (7)

where τ∗ is the optimal scheduling strategy, f is the cost model

that evaluates the latency of the current schedule τ , and Dτ

is the search space of all potential schedules. Specifically, to

solve this search problem, three basic components need to be

clarified, namely, the search space, the cost model and the

searching algorithm.

ML Search 
Algorithm

Original 
Schedule Space

Condensed 
Input Space

Cost Model

Optimal ScheduleX

GPU 
Profiling

1:1 Mapping Function

4.1ms, 3.8ms, 5.3ms…

…

Non-structural, 
Hard to optimize

Structural, Easy to optimize

Fig. 4. The automated scheduling search framework overview.



Search Space is supposed to enumerate all possible scheduling

strategy candidates. To represent such a search space, we

adopt the scheduling factors from the proposed IR design (i.e.,

streams, pointers and stages).

As defined in Eq. 6, τ can be formulated as a nested list and

can be treated as a graph-level scheduling strategy. Although

such a nested list is easy to understand and facilitates the

deployment process onto GPU, the list-based search space

Dτ is non-structural with varied list lengths and can be hard

to directly optimize. To solve this problem, we leverage the

one-to-one mapping property between pointer indexes ρ and

the schedule lists τ , and shrink the search space to a lower-

dimensional pointer index matrix by building an 1:1 schedule

mapping function, as shown in Fig. 4:

ρ∗ = argmin
ρ

f(τ),

s.t. τ = T (G, ρ), for ρ ∈ Dρ.
(8)

Here the scheduling generation function T (·) generates one

schedule τ based on two inputs: the graph G and the pointer

matrix ρ. As G is usually fixed in a given task, the schedule

generation function T (·) maps each pointer matrix to one

schedule. Thus, searching schedule could be transformed to

searching the pointer index matrix, the latter of which has a

much more structural input space. By such transformation, we

could thus greatly reduce the optimization difficulty.

Cost Model: With the search space defined, we then require a

cost model f(τ) to evaluate the performance of each schedule

candidate. There are two major ways to construct the cost

model: modeling-based or profile-based. The modeling-based

method [22] builds hardware-specific modeling to estimate the

real runtime performance, which is efficient but can be inaccu-

rate in complex scenarios. The profiling-based method [18] is

more accurate but requires physical hardware execution, which

can be more time-consuming if the search space is very large.

Algorithm 1 Coordinate Descent Search Algorithm.

1: Input: The IR of N models M [N ], the number of pointers

in each model P , the rounds of search R.

2: Output: The optimal pointer matrix ρ [N,P ].
3: Initialize a dictionary D{schedule:cost} to store records.

4: for rounds r = 1 to R do
5: for model i = 1 to N do
6: Sample M candidates ρ1:M [i] for the i-th row.

7: for the m-th candidate ρm[i] do
8: Profile the latency latm by multiple runs.

9: Append {ρm : latm} to the records D.

10: end for
11: Update the i-th row ρ[i] of pointer matrix to the one

with the lowest latency by argmin(latm).
12: end for
13: end for
14: Sort the global records D by the profiled latency.

15: Return the schedule ρ with the globally lowest latency.

In this work, we use the profiling-based cost model since

our empirical case study shows that, our searching time can

be maintained at small scale (∼mins) benefited from our ded-

icated search space abstraction. Therefore, the profiling-based

model can give accurate runtime-aware performance cost and

lead to better search performance in our case. For the cost

model implementation, we leverage our built infrastructure,

which could efficiently generate and deploy each candidate

schedule onto the target GPU and obtained the profiled latency

during multiple averaged runs. The averaged latency is then

used as the cost of each candidate schedule.

Search Algorithm: With the input space and cost model

defined, we could then use ML-based methods to search for

the optimal schedule with the minimal latency.

In this work, we mainly implement two search algorithms,

the random search and the coordinate descent search. The

random search method samples scheduling solutions (different

pointer matrices) randomly from the search space and profiles

their latency as the cost. A memory module will record all

schedules and costs, and after certain rounds of search, the

algorithm will return the schedule with the lowest latency. As

we will show later, though the random search algorithm is

simple, it could greatly reduce the multi-tenant runtime latency

by large margins, highlighting the advantages of our problem

abstraction and the search framework design.

Based on a similar process, the coordinate descent search

algorithm improves the sampling efficiency by adopting a

coordinate-alternated search philosophy. The overview of the

coordinate descent search algorithm is shown in Algorithm 1.

It treats different streams’ pointer index vectors (rows in the

pointer matrix) as different coordinates. Then it alternatively

finds the optimal pointer index vector for each coordinate,

during when other coordinates’ solution are kept as the pre-

vious optimal one. The optimal pointer index vectors for all

streams are updated for each round, and after certain rounds,

the algorithm returns the optimal schedule from all previously

searched schedules. Generally, the coordinate descent search

algorithm could yield slightly performance than random search

algorithm. But both methods could yield near optimal schedule

solutions within short time, as we will evaluate later.

D. Implementation Optimization

After determining the optimal schedule, we can deploy

the schedule onto the GPUs. This is done by invoking the

Stream 0: [1, 2, 3], Stream 1: [4, 5, 6], Stream 2: [7, 8, 9]

Issuing Order = [1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9]

Stream 0: [1, 2, 3], Stream 1: [4, 5, 6], Stream 2: [7, 8, 9]

Issuing Order = [1 -> 4 -> 7 -> 2 -> 5 -> 8 -> 3 -> 6 -> 9]

Stalls Stream 1

Stalls Stream 2 No Significant Stalls

Stall1= 102.75usStall1= 102.75us

Stream 0

Stream 1
Stream 2

Main 
Thread

(a) Depth First Issuing (DFS) (b) Breadth First Issuing (DFS)

Stall2 = 177.27 us
Stall1 = 51.23us

Stall2 = 68.08 us
Stall1 = 102.75us

Fig. 5. Long-sequence operator invoking by DFS can significantly stall other
streams. We optimize the scheduler logic to BFS issuing to reduce such stall.



Fig. 6. Runtime Performance of the Proposed Automated Scheduling Framework. We mainly compare the acceleration ratio with three baselines: CuDNN-
based sequential execution (CuDNN-Seq), TVM-based sequential execution (TVM-Seq), Stream-based parallel execution (Stream-parallel). Here Ours-R and
Ours-G denotes the performance of our framework with random search and coordinate descent search. Test Platform: Titan V GPU.

GPU kernels according to each stage’s IR. In multi-stream

execution, the operator invoking is controlled by a main

thread and invoking each operator takes a small duration of

time. Although individually small, an inappropriate invoking

sequence can also influence the latency, especially in high-

concurrency stages with many operators.
Fig. 5 (a) showcase one example of operator invoking-

caused stall. The default scheduler utilizes a depth-first (DFS)

issue logic that issues all operator sequentially in one stream to

ensure the operator dependency is maintained, and then iterates

overall all streams. However, when there are multiple operators

in the beginning streams, operators in the later streams can be

significantly stalled due to the accumulated operator invoking

overhead. To relieve such stall, we optimize the default DFS

logic into a breadth-first (BFS) strategy. Fig. 5 (b) illustrates

the BFS logic, which issues one operator from each stream

interleavingly, and then iterates until all operators are issued.

In such cases, all streams get similar invoking priority, and

the operator dependency is also maintained in each stream.

As a result, we could greatly reduce the operator invoking

overhead for the later streams. Fig. 5 shows an example

which we could reduce the stall from 102.75 → 51.23us and

177.27 → 51.23us for Stream-1 and Stream-2.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

Model Zoo for Multi-Tenant Combination: We construct var-

ious multi-tenant scenarios by leveraging the following neural

network models: AlexNet (Alex), VGG16 (V GG), ResNet18

(R18), ResNet34 (R34), ResNet50 (R50) and ResNet101

(R101). These models have distinctive model depths with

operator numbers varying from 7 ∼ 20 to 86 ∼ 216. In

addition, operators from different models also have particular

computing and memory requirements. For example, the convo-

lution operators have a wide range of computing complexity,

e.g., from 32 ∼ 64 filters per layer to 256 ∼ 512 filters per

layer. Therefore, each different multi-tenant combination based

on the above models will pose its unique resource utilization

imbalance challenges and has distinctive optimal scheduling

strategies, mimicking the varied and complex multi-tenant

scenarios of real-world applications.

Evaluation and Comparison Baselines: Three popular base-

line scheduling strategies are considered.

• CuDNN-Seq [25]: The default strategy supported by the

NVIDIA CuDNN library, which runs the multi-tenant

inference sequentially;

• TVM-Seq [18]: A operator-level optimization method

that adopts the TVM library [18] to search for the opti-

mal kernel for each operator. However, without runtime

support, it can only run these kernels sequentially;

• Stream-Parallel [17]: The concurrent execution strategy

from native GPU multi-stream support [17]. It assigns

models to different streams and leverages the default GPU

scheduler to schedule the execution sequence.

Inference Setup: We conduct neural network inference on

ImageNet [1] that has an image scale of 224x224x3 with single

batch size to mimic the inference in practical applications

such as autonomous driving. Two NVIDIA GPU platforms

are utilized: Titan V of Volta architecture, P6000 of Pascal

architecture. For all latency measurement, we record the

averaged latency (ms) by profiling the same number of runs

for our method and the baselines.

B. Speed-Up Evaluation

We first compare the inference latency of the baselines and

our methods. The results are shown in Fig. 6. All methods’

latency is normalized by the CuDNN-Seq baseline to show the

relative acceleration ratio. Five multi-tenant settings, which

cover a wide range of multi-tenant combinations are built

up. For example, Alex + V GG + R18 which is a relatively

simple ones (10∼30 operators), and R18+R50+R101 whose

operator numbers can over 200 is the most complex one, etc.

For our method, we show both search algorithms’ performance

in our framework – the random search (Ours-Random) and

coordinate descent search (Ours-Coor).

Overall Speed-up: It can be observed that our scheduling

framework could consistently yield 1.3× ∼ 1.6× speed-up

compared to the sequential baselines across all five model

combinations. Although the Stream-Parallel solution also

yields a certain speed-up than CuDNN-Seq, its acceleration

ratio is only 1.1× ∼ 1.3×, which is much less than ours.

Higher Speed-up in Highly Non-balanced Scenarios: It is

worth noting that our method achieves the highest acceleration

ratio, i.e., 1.5× and 1.6×, on the two most challenging

scenarios R18 + R34 + R101 and R18 + R50 + R101.



TABLE I
SCALABILITY EVALUATION (BS=1, 224X224, GPU: TITAN-V W/ VOLTA ARCH, LATENCY: MS)

#Models Names CuDNN-Seq TVM-Seq Stream-Parallel Ours-R Ours-C

2
×m

o
d

el
s VGG + R18 3.989 3.898 3.638 3.096 (1.29×) 2.912 (1.37×)

R18 - R34 4.673 3.453 3.743 3.382 (1.38×) 3.128 (1.49×)

R34 + R50 6.688 5.785 5.449 4.725 (1.41×) 4.478 (1.49×)

R50 + R101 10.75 10.435 8.588 8.385 (1.28×) 8.203 (1.31×)

3
× VGG + R18 + R50 7.674 7.637 6.522 5.639 (1.36×) 5.587 (1.37×)

R18 + R34 +R50 8.344 6.949 6.301 5.404 (1.54×) 5.096 (1.63×)

5
×

VGG + R18 + R34 +R50 + R101 17.962 16.742 12.848 10.91 (1.65×) 10.42 (1.72×)

However, the Stream-Parallel performs poorly (only 1.1×) in

these two settings. The reason is that such two multi-tenant

combinations introduce extremely distinctive model lengths

from 29 operators (ResNet18) to 200 operators (ResNet101),

which brings significant resource imbalance between early and

later stages across the entire processing. The native hardware

scheduler in Stream-Parallel cannot take this into consideration

and push all operators into the beginning stages, and thus

cannot balance the resource utilization effectively. Therefore,

it can only reach limited acceleration ratio.

Illustration of our Resource Balance Mechanism: In contrast

to the hardware scheduler in Stream-Parallel, our method

could effectively find a better scheduling solution via our

pointer-based barrier insertion and automated search algorithm

and hence achieves higher speed-up in the highly unbalanced

scenarios. We visualize the kernel invoke timeline of our

scheduling strategy on the R18 + R50 + R101 scenario, as

is depicted in Fig. 7, to reveal the mechanism. The number

of operators issued in each stage is symbolically denoted

by the length of each colored block. The results show that

our searched scheduling could effectively reduce the number

of operators in the early stages to avoid potential resource

contention and leave more operators into the later stages to

enhance resource utilization. As such, our scheduling enables

optimal resource utilization and finally achieves significantly

lower latency performance than the Stream-Parallel solution.

Analysis on GPU Utilization Enhancement: We further pro-

filed and checked the GPU runtime statistics to analyze and

compare the overall GPU utilization with different scheduling

strategies. Fig. 8 demonstrates the utilization statistics com-

parison between CuDNN-Sequential, Stream-Parallel, and Our

scheduling strategy. We use the number of active warps per

Fig. 7. Illustration of our Resource Balance Mechanism: Our method could
find a balanced schedule to avoid both contention and under-utilization, thus
achieving better performance than sequential and native parallel solutions.

second as an indicator of GPU utilization information [26]. As

is observed, our scheduling strategy averagely obtains 1.5×
utilization enhancement than the sequential schedule, which

is consistent with our speed-up performance.

C. Scalability and Generality Performance

In this section, the scalability and generality of our auto-

mated scheduling framework are evaluated.

Scalability with Varied Number of Tenants: We evaluate the

scalability of our scheduling framework with varied number

of model inference on one single GPU. Specifically, we test

on three settings: 2× models, 3× models, and 5× models with

seven multi-tenant combinations in total.

The overall latency is shown in Table I, which reveals that

our framework could scale well with the different number

of tenants. Our framework could consistently obtain 1.3×
to 1.7× acceleration than the sequential baseline across all

benchmarks. Especially, in the five-model combination setting,

we achieve the lowest runtime latency 10.42 ms, which is 7.5
ms lower than CuDNN-Seq (17.96 ms), and 2.4 ms lower than

Stream-Parallel (12.85 ms), demonstrating the huge potential

of our framework in accelerating practical applications.

Generality with Different GPUs: We then evaluate the gen-

erality of our scheduling framework with different GPU

platforms. We test five multi-tenant settings on a different

GPU: NVIDIA P6000 of Pascal architecture. The P6000 GPU

is the last version before Titan-V and has slightly lower

peak computing performance (12.6 vs. 14.9 TFLOPS). As

the overall performance in Table II shows, our scheduling

framework also yield significant performance gain (1.25× to

1.47× acceleration) on the different GPU platform.

Fig. 8. Enhanced GPU Utilization Statistics. The number of active warps per
second shows that our schedule could yield continuously better SM utilization.



TABLE II
GENERALITY EVALUATION (BS=1, 224X224, GPU: P6000 W/ PASCAL ARCH, LATENCY: MS)

Models CuDNN-Seq TVM-Seq Stream-Parallel Ours-Rand Ours-Coor

Alex + VGG + R18 5.754 5.523 4.694 4.225 (1.36×) 4.126 (1.39×)

VGG + R18 + R50 9.687 8.978 8.524 7.739 (1.25×) 7.425 (1.30×)

R18 + R34 +R50 9.884 9.352 7.714 7.031 (1.41×) 6.727 (1.47×)

R18 + R34 + R101 14.278 13.256 11.833 11.08 (1.29×) 10.463 (1.36×)

R18 + R50 + R101 15.785 14.631 12.32 11.246 (1.40×) 10.711 (1.47×)

Advantage of Automated Searching: The above evaluations

demonstrate that our framework could produce an optimal

scheduling with better resource utilization and higher runtime

speed. In addition, the experiments results also reflect one

of the most promising advantage of our framework – easy-
to-scale. With the automated search algorithm design, our

framework could automatically find the optimal scheduling

strategies for varied number of tenants, distinct multi-model

combinations, and different GPU platforms, significantly re-

lieving the scheduling complexity and manual tuning efforts.

D. Search Algorithm Comparison and Overhead Analysis

In this section, we compare the search algorithms and

analyze their introduced off-line running cost.

Search Algorithm Comparison: Fig. 9 compares two search

algorithms’ performance through their searching latency. The

blue line (Naive-Parallel) illustrates the native stream-based

scheduling performance. The green line (Ours-Coor) denotes

the scheduling latency with coordinate descent search while

the red line (Ours-Rand) shows the random search results.

The same search rounds are conducted in the evaluations.

The results indicate that the coordinate search generally has

better performance than random search in the four multi-

tenant conditions. Especially, in complex scenarios like Fig. 9

(d), random search may generate infeasible solutions that

are filtered out and leave only few solutions, and thus have

slightly worse performance than coordinate descent search.

Fig. 9. The Search Algorithm Comparison.

TABLE III
THE FRAMEWORK RUNNING OVERHEAD (TITAN-V).

#Search Rounds 100 300 500 1000

Alex + VGG + R18 ∼9.8s ∼28.9s ∼51.4s ∼1min35s

VGG + R18 + R50 ∼10.3s ∼27.1s ∼48.9s ∼1min28s

R18 + R50 + R101 ∼16.2s ∼45.3s ∼1min32s ∼2min42s

Nevertheless, both our search methods outperform the stream-

based parallel solution by a large margin across all cases.

Framework Overhead Analysis: Our framework could usually

yield near optimal schedule solutions within short search time.

The framework’s running time is demonstrated in Table III.

We profile the coordinate descent search with different search

rounds from 100 to 1000, which are general settings for most

aforementioned multi-tenant scenarios. As the results show,

our framework’s running overhead maintains in the range

of ten seconds to several minutes at most. Meanwhile, as

such automated schedule can be pre-conducted offline given a

defined multi-tenant scenario, we consider such offline tuning

overhead is highly acceptable.

V. CONCLUSION

In this work, we tackle the multi-tenant inference opti-

mization problem on GPU. Differently from single-model

inference optimization, multi-tenant computation brings sig-

nificantly higher compute complexity. To solve such compute

complexity, we build an automated scheduling framework

for multi-tenant inference optimization. Specifically, We first

abstract the multi-tenant DNN inference scheduling as a

fine-grained concurrency control problem, and implement the

concurrency control by utilizing stream and synchronization

based mechanisms. Based on the problem abstraction, we then

formulate the DNN compute graphs and the scheduling factors

with a unified IR design. Based on that, we formally define the

scheduling search space. In the established scheduling search

space, we transform multi-tenant scheduling into an optimiza-

tion problem and propose an automated ML-based searching

algorithm to find the optimal scheduling strategy. Experiments

demonstrate our method could yield near optimal performance

within short time, and meanwhile surpass previous scheduling

method by 1.3× ∼ 1.7× acceleration.
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