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ABSTRACT

Learning accurate classifiers for novel categories from very few examples, known
as few-shot image classification, is a challenging task in statistical machine learning
and computer vision. The performance in few-shot classification suffers from the
bias in the estimation of classifier parameters; however, an effective underlying bias
reduction technique that could alleviate this issue in training few-shot classifiers
has been overlooked. In this work, we demonstrate the effectiveness of Firth bias
reduction in few-shot classification. Theoretically, Firth bias reduction removes the
O(N−1) first order term from the small-sample bias of the Maximum Likelihood
Estimator. Here we show that the general Firth bias reduction technique simplifies
to encouraging uniform class assignment probabilities for multinomial logistic
classification, and almost has the same effect in cosine classifiers. We derive an
easy-to-implement optimization objective for Firth penalized multinomial logistic
and cosine classifiers, which is equivalent to penalizing the cross-entropy loss
with a KL-divergence between the uniform label distribution and the predictions.
Then, we empirically evaluate that it is consistently effective across the board for
few-shot image classification, regardless of (1) the feature representations from
different backbones, (2) the number of samples per class, and (3) the number of
classes. Furthermore, we demonstrate the effectiveness of Firth bias reduction on
cross-domain and imbalanced data settings. Our implementation is available at
https://github.com/ehsansaleh/firth_bias_reduction.

1 INTRODUCTION

Few-shot image classification is the practice of learning accurate classifiers using a small number
of labeled samples (Fei-Fei et al., 2006; Vinyals et al., 2016; Wang and Hebert, 2016; Finn et al.,
2017; Snell et al., 2017; Wang et al., 2020). It has a wide range of applications from face and gesture
recognition (Pfister et al., 2014) to visual navigation in robotics (Finn et al., 2017). Essentially,
modern few-shot classification methods can be viewed as a combination of learning (1) a strong
feature representation through a backbone network (e.g., Verma et al. (2019); Gidaris et al. (2019);
Tian et al. (2020)), and (2) an accurate small-sample classifier (e.g., Wang and Hebert (2016); Chen
et al. (2019)). Therefore, two key questions arise in few-shot image classification: (1) How can we
obtain a strong feature representation? and (2) How can we train accurate classifiers using a small
number of samples? There have been many existing methods addressing the former question using a
host of different techniques (Snell et al., 2017; Rusu et al., 2019; Verma et al., 2019; Mangla et al.,
2020). Here we focus on the less-explored second question. For our purposes, we will use standard
feature representations and methods for training the backbone model for few-shot classification. That
still leaves us with a severe classifier problem than most people realize.

There is a substantial difficulty with training a classifier using a small number of samples. In
particular, with very few samples, standard classification machinery is biased. In other words,
although the Maximum Likelihood Estimators (MLEs) are statistically consistent and asymptotically
normal (Fahrmeir and Kaufmann, 1985), it is well-established that MLEs are biased for a small
number of N samples, with bias of O(N−1) (Cox and Snell, 1968; Box, 1971; Whitehead, 1986; Firth,
1993). Since common logistic regression models are a type of MLEs, they are also biased (Schaefer,
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1983; Cordeiro and McCullagh, 1991; Firth, 1993; Steyerberg et al., 1999). Such biases increase the
error rate of the few-shot trained classifiers, and so are important in few-shot learning.

In fact, there is a standard solution for bias prevention by modifying the ordinary MLEs – known
as Firth’s Penalized Maximum Likelihood Estimator (PMLE) (Firth, 1993). In the case of the
exponential family of distributions, Firth has a simplified form that penalizes the likelihood by
Jeffrey’s invariant prior (Firth, 1993; Poirier, 1994), which is proportional to the determinant of the
Fisher Information Matrix F . For logistic and cosine classifiers (Chen et al., 2019) which are widely
used in few-shot classification, since they belong to the exponential family, Firth bias reduction can
be further cast as adding a log-determinant penalty (log(det(F ))) to the cross-entropy loss. While
such standard strategies can control the bias in classifiers trained with very few samples, they have
not been utilized in few-shot image classification tasks.

In this paper, we show that using Firth bias reduction produces reliable improvements in a wide
range of circumstances. We achieve this by deriving a simplified yet effective Firth formulation that
penalizes the Kullback–Leibler (KL) divergence between the uniform distribution of classes and the
predictions, for both multinomial logistic regression models and cosine classifiers. Note that common
regularization techniques (such as L2-regularization and label smoothing (Szegedy et al., 2016))
cannot reduce the estimation bias of classifier weights in small-sample regimes (Liu et al., 2020) as
the Firth penalty does; these regularization techniques are mainly used to control model complexity
of deep neural networks for training feature extractor backbones in large-sample regimes.

More concretely, our results indicate that the improvements produced by Firth bias reduction for
few-shot image classification tasks are consistent across the board (1) on a wide range of feature
representations, (2) with both balanced and imbalanced data, (3) for both single-layer and multi-layer
classifiers, (4) for both logistic and cosine classifiers, and (5) over multiple datasets and problems.
Importantly, we found Firth bias reduction to consistently yield statistically significant and positive
improvements, and we did not observe any performance penalty for utilizing it. Such improvements
are on the order of 0.5-2.5% and up to 3% in challenging tasks with large number of classes.

Our main contributions include (1) deriving a generalized expression for Firth bias reduction in few-
shot multinomial logistic regression models, and providing geometrical insight into its effect on the
classification probability space; (2) evaluating the efficacy of the Firth penalized multinomial logistic
model in few-shot scenarios, with both balanced and imbalanced data distributions; (3) showing that
Firth bias reduction can be extended beyond typical logistic models, and can be successfully adopted
in cosine classifiers; and (4) providing an empirical comparison of Firth bias reduction with common
regularizers such as L2 and label smoothing.

2 BACKGROUND

Mathematical Notations: In this work, we assume a multinomial logistic regression model for the
classifier, with a total of J + 1 classes {0, 1, 2, · · · , J}. The logistic regression weights for class j
is denoted as βj (1 f j f J). The class j = 0 is the reference class with zero logistic regression

weights. We assume to have a total number of N samples D = {(x1, y1), · · · , (xN , yN )}. The ith

target yi is the one-hot encoding of the ith label. The assignment probability of the ith sample to class
j is denoted as Pi,j :

Pi,j := Pr(yi = j|xi) =
eβ

⊺

j
xi

1 +
�J

j′=1 e
β⊺

j′
xi
. (1)

The likelihood of the sample set D given the weights β is denoted as Pr(y|x;β):

Pr(y|x;β) =
N
�

i=1

J
�

j=1

1[yi = j] · Pi,j , (2)

where 1[·] denotes the binary indicator function. Therefore, the logistic log-likelihood function
Llogistic is defined as

Llogistic :=

N
�

i=1

J
�

j=0

1[yi = j] · log(Pi,j). (3)
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noisy denominator, making it biased. Figure 1 shows that β̂Firth is close to the true parameter β∗ for

all sample sizes, whereas β̂MLE has a significant bias away from β∗ for small N . To further validate
that the MLE bias is indeed of O(N−1), we plotted the MLE bias against the sample size in the
log-log scale in Figure 1, which shows that it is closely following a line with a negative unit slope.

3 FIRTH BIAS REDUCTION IN LOGISTIC AND COSINE CLASSIFIERS

In logistic models, the penalized likelihood function proposed by Firth is equivalent to imposing
Jeffreys’ prior (Poirier, 1994) on the parameters and making a maximum a posteriori estimation. In
particular, Firth bias reduction encourages models with “large” F by multiplying the likelihood by
det(F ). This penalty degenerates when det(F ) = 0. We work in the highest dimensional subspace
where F has full rank, and use det(F |r) to denote the product of all r non-zero eigenvalues of F ,
obtaining

Pr(β|x, y) =
1

Z
· Pr(y|x;β) · det(F |r)1/2, (7)

where Z is a normalization constant and det(F |r)1/2 is the Jeffery’s prior. Taking the log of both
sides yields the log-posterior as a sum of the logistic log-likelihood function and the Firth bias
reduction term:

L := log(Pr(β|x, y)) = Llogistic + LFirth, (8)

where we have

LFirth :=
λ

2
log(det(F |r)) + cte. (9)

The definition of LFirth was left ambiguous up to a constant with respect to β to facilitate the Firth bias
reduction term’s interpretation and avoid the definition of similar terms. Furthermore, λ controls for
the impact of the Firth term on the outcome relative to Llogistic. We then apply a series of derivation
steps to simplify Equation (9), which are left to Section A in the Appendix. Finally, the Firth bias
reduction term can be expressed as

LFirth = λ ·
1

N

N
�

i=1

� J
�

j=0

�

β
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j xi − log

J
�

j′=0

e
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""

= λ ·
1

N

N
�

i=1

� J
�

j=0

log(Pi,j)

"

. (10)

For the cosine classifier, the proof that log(det(F )) simplifies to Equation (10) involves straightfor-
ward manipulation of the proof for the logistic classifier, and is left to Section B in the Appendix. The
normalization of the βj weights in the cosine classifier turns into a pure scale term in the optimization,
and for a cosine classifier, scaling of the βj weights does not affect predictions. Therefore, this term
should be ignored, and the bias reduction term effectively becomes the same as Equation (10).

Interpreting the Firth Bias Reduction for Logistic Models: It is well known that Jeffery’s prior
shrinks the parameter estimates towards zero, which is equivalent to encouraging uniform class
assignment probabilities (Firth, 1993; Bull et al., 2002). We take an alternative approach to reach the

same conclusion in the following. By re-arranging Equation (10), one can see the
�J

j=0 log(Pi,j)
term as a scaled average over a uniform distribution of classes:

LFirth ∝
1

N

N
�

i=1

� J
�

j=0

1

J + 1
· log(Pi,j)

"

=
−1

N

N
�

i=1

�

CE
"

U[0,J]∥Pi

"

"

. (11)

Therefore, we can abuse the notation, and redefine the coefficient λ and the constant to have

LFirth = λ ·
−1

N

N
�

i=1

DKL(U[0,J]∥Pi) + cte. (12)

This means that by dropping the constants, the optimization objective L can be rewritten as

L =
−1

N

N
�

i=1

�

CE(yi∥Pi) + λ ·DKL(U[0,J]∥Pi)

"

. (13)
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Since the KL-divergence and the FIM define an information geometry and a Riemanian metric on
probabilistic measure spaces (Nielsen, 2020), a geometrical insight into Equation (13) is provided in
Figure A5 in the Appendix as well.

Firth Bias Reduction vs. Common Regularization: While this insight brings Firth bias reduction
closer to the common regularization techniques (e.g., L2-regularization), it is worth noting that (1)
common regularization techniques mainly focus on controling model complexity, instead of reducing
small-sample estimation bias; (2) Firth bias reduction operates on a much lower-dimensional target
distribution space, unlike L2 which operates in the high-dimensional parameter space; (3) Firth uses
the same kind of metric as the logistic loss; and (4) Firth bias reduction is dimensionally consistent
like the Natural Gradients (Amari, 1998; Pascanu and Bengio, 2013), whereas L2 is not.

Firth Bias Reduction vs. Label Smoothing: Notice that the original form of label smoothing used
for training in large-sample regimes (Szegedy et al., 2016) has the same formulation as the simplified
Firth penalty term in Equation (12) for multinomial logistic classifiers. However, Firth bias reduction
is inherently different in that it reduces the classifier estimation bias in the small-sample regimes,
whereas label smoothing penalizes over-confident predictions when training deep neural networks
with large amounts of samples. Generally, the Firth bias reduction term (i.e., log(det(F ))) is not the
same as the label smoothing penalty (i.e., DKL(U∥Pi)) for deep neural networks. Additional analysis
and empirical comparisons are provided in Section 4.4 and Section G in the Appendix.

4 EXPERIMENTAL RESULTS

Here we show that for a wide range of experiments, Firth bias reduction is a reliable source of small yet
useful improvements in the performance. Since we report improvements for a wide range of methods
and settings, the absolute accuracy improvements were reported. These absolute improvements
sometimes constitute significantly to the baseline accuracy in terms of relative importance.

Datasets: We perform experiments on four widely-used and publicly available benchmarks: mini-
ImageNet (Vinyals et al., 2016), CIFAR-FS (Bertinetto et al., 2019), tiered-ImageNet (Ren et al.,
2018), and CUB (Wah et al., 2011). Each dataset consists of non-overlapping base, validation, and
novel classes. The detailed class splits are described in Section D in the Appendix. Following the
standard practice (Chen et al., 2019), we train feature backbones on base classes, cross-validate
bias reduction coefficients on validation classes, and train classifiers and measure test accuracy over
multiple trials on novel classes.

Implementation Details: Details regarding the setup, implementation, statistical significance, and
reducing the effect of randomized factors are covered in Appendix Section D.

Baselines and Evaluation Metric: Non-penalized classifiers are used as the baseline in all exper-
iments to compare Firth bias reduction and L2-regularization. Absolute accuracy improvements
over the baseline averaged across multiple trials are used as the evaluation metric in all experiments.
Relative improvements are also shown in the Appendix, which demonstrate similar behaviors.

Summary of Results: Section 4.1 shows the efficacy of Firth bias reduction on standard feature
backbones (ResNets with varying depth) and single-layer logistic classifiers. Section 4.2 shows and
argues that Firth bias reduction outperforms L2-regularization on few-shot classification tasks. Next,
we investigate the driving factor in Firth’s improvement in Section 4.3, and show evidence for the
efficacy of Firth’s bias suppression property. We also show that Firth bias reduction can be effectively,
and without any modifications, applied to imbalanced data distribution settings. Section 4.4 com-
pares Firth bias reduction against label smoothing variants, and shows that Firth outperforms label
smoothing. In Section 4.5 Firth bias reduction is applied to modern few-shot methods with advanced
feature backbones (i.e., WideResNet trained with strong regularization (Mangla et al., 2020)) and
cosine classifiers. Experiments with additional feature backbones (DenseNet and MobileNet (Wang
et al., 2019)) are included in Appendix Section F. Finally, Section 4.6 demonstrates that Firth bias
reduction produces reliable improvements over the state-of-the-art feature calibration method (Yang
et al., 2021). Our collective results clearly indicate a consistent pattern of improvements over a large
array of (1) feature representations, (2) datasets, (3) classification ways, (4) number of shots, (5)
types of classifiers, and (6) with both balanced and imbalanced data distributions.
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mini-ImageNet → CUB tiered-ImageNet → CUB

Way Shot Before After Improvement Before After Improvement

10 1 37.14 37.40 ± 0.13 0.26 ± 0.03 64.36 64.52 ± 0.16 0.15 ± 0.04

10 5 59.77 60.77 ± 0.12 1.00 ± 0.04 86.23 86.66 ± 0.10 0.43 ± 0.02

15 1 30.22 30.37 ± 0.09 0.15 ± 0.03 57.73 57.74 ± 0.13 0.01 ± 0.01

15 5 52.73 53.84 ± 0.10 1.12 ± 0.03 82.16 83.05 ± 0.09 0.90 ± 0.02

Table 1: The cross-domain experiments for the DC method with and without Firth bias reduction.
The columns containing the novel set accuracy obtained by DC and Firth penalized DC methods are
tagged Before and After, respectively. Each setting (a combination of way, shot, and method) was
tested with and without data augmentation (addition of 750 samples), and the maximum accuracy was
reported. Note that the confidence intervals are much smaller for the improvement column, thanks to
the random-effect matching procedure we used in this study. The Before confidence intervals were
similar to the After confidence intervals, and thus not repeated due to space constraints.

Appendix Section H and Table A5. This further supports the observation that Firth bias reduction
yields small but reliable improvements under different methods.

5 RELATED WORK

Bias Reduction of the MLE: A myriad of statistical work has been proposed to mitigate the small-
sample bias of the MLE under different settings (Anderson and Richardson, 1979; Kenward and
Roger, 1997; Bull et al., 2002; Kosmidis and Firth, 2009). Originally, the asymptotic bias of MLE was
shown to be of O(N−1), with N being the sample size (Firth, 1993). To counter such an estimation
bias, many approaches have existed. To name a few, (1) additive penalization terms to the main
logistic loss were proposed to reduce the MLE’s bias (Firth, 1993; Bull et al., 2002; Greenland and
Mansournia, 2015), and (2) some methods have been proposed to directly approximate and remove
such a small sample bias (Cox and Hinkley, 1979). While the latter approach may sound appealing,
estimating the MLE’s bias can be impractical. For instance, in few-shot scenarios, a perfect separation
of the classes may be achievable, causing the logistic MLE to be unbounded (Heinze and Schemper,
2002). On the other hand, the penalization methods do not modify the estimated parameters directly,
and instead gently push for a preference towards less biased estimates. Such penalization methods
can be generally applicable to a vast array of models.

Theoretically, Firth’s PMLE reduces the bias by removing the leading O(N−1) term from the MLE’s
bias (Firth, 1993) – a property that does not exist in common regularization techniques such as
L2-regularization. Furthermore, PMLE of the logistic model has been shown to have smaller variance
than MLE as well (Copas, 1988; Kosmidis and Firth, 2009). Firth’s PMLE has been well studied for
binomial logistic regression (Firth, 1993), and applied and tested against other penalization techniques
in other fields (Rainey and McCaskey, 2015; Muchlinski et al., 2016; Rahman and Sultana, 2017).

Additional related work on few-shot image classification was left to Appendix Section C.

6 CONCLUSION

We show that Firth bias reduction consistently improves the accuracy across the board in few-shot
classification regardless of (1) the employed feature backbone, (2) the number of classes and samples,
and (3) the dataset and problem setting. Furthermore, our experiments show that Firth bias reduction
can improve the performance of the cosine classifiers, and is applicable to imbalanced and cross-
domain few-shot settings without any necessary modifications. Overall, our evaluations suggest that
Firth bias reduction is a useful and general bias reduction tool that has been missing in few-shot
classification, and should be incorporated in few-shot classification tasks for accuracy improvements.
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A FIRTH BIAS REDUCTION FOR FEW-SHOT MULTINOMIAL LOGISTIC

REGRESSION

Table A2 summarizes the notations used throughout the main paper and here. Given a dataset of N
samples D = {(x1, y1), (x2, y2), · · · , (xN , yN )}, the multinomial logistic model for a total of J + 1
classes can be formulated as

log

�

Pr(y = j|xi)

Pr(y = 0|xi)

"

= β
⊺

j xi, j ∈ {1, 2, · · · , J}, (A14)

where class j = 0 was chosen as the reference class in the log odds ratio. In other words, w.l.o.g. we
assume β0 = 0 in this formulation. Given the decision rule in Equation (A14), we can write

Pi,0 =
1

1 +
�J

j′=1 e
β⊺

j′
xi
, Pi,j =

eβ
⊺

j
xi

1 +
�J

j′=1 e
β⊺

j′
xi

∀1 f j f J. (A15)

Under this notation, the log-likelihood would be Llogistic =
�N

i=1

�J
j=0 1[yi = j] · log(Pi,j). The

data matrix XD is given as

XD := [x1 x2 · · · xN ]d×N . (A16)

Also, X := XD ¹ IJ where the ¹ operator denotes the Kronecker matrix product, and the J-
dimensional identity matrix is denoted as IJ .

Firth (1993) has established that the bias of logistic regression can be removed by maximizing the
sum of (1) the log-likelihood Llogistic and (2) the log-determinant of the Fisher Information Matrix
(FIM). For our purposes, this presents some challenges: we have a few number of samples and the
FIM determinant is zero. Instead, we use the product of all non-zero eigenvalues of the FIM as its
“amended determinant”. To obtain this efficiently, we need to know the specific structure of the FIM.

It is important in what follows that the FIM can be defined as the matrix product

F(dJ)×(dJ) = X
⊺

(dJ)×(NJ) ·M(NJ)×(NJ) ·X(NJ)×(dJ), (A17)

where M is a block-diagonal matrix whose ith diagonal block is denoted as Mi. We leave the
definition of X and Mi to the “FIM Formulation for Logistic Regression” subsection. Next, we focus
on:

• Determinant Amendment and Constant Dropping: Generically, we show that

log(det(F |NJ)) =

N
�

i=1

log(det(Mi)) + cte, (A18)

where det(F |NJ) is an amended version of det(F ).

• Efficient Computation of log(det(Mi)): Next, we show that

log(det(Mi)) =

J
�

j=0

log(Pi,j). (A19)

Combining these two points will lead us to the simplified Firth bias reduction objective:

LFirth = λ ·
1

N

N
�

i=1

J
�

j=0

log(Pi,j). (A20)

Determinant Amendment and Constant Dropping: Having F = X⊺ ·M ·X prompts us to utilize
the SVD of X as

XNJ×dJ = UNJ×NJ · SNJ×dJ · V ⊺

dJ×dJ . (A21)

Therefore, the FIM can be written as F = V ·
"

S⊺ ·K · S
"

· V ⊺, where K := U⊺ ·M · U . Since V

and U are rotation matrices, we can write det(F ) = det(S⊺ ·K · S), and

det(K) = det(M) =

N
�

i=1

det(Mi). (A22)
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Notation Description

J + 1 Total Number of Classes in Multinomial Logistic Regression

βj The Logistic Regression Weights for Class j (j ∈ {1, 2, · · · , J})

Pi,j Classification Probability of Sample i Belonging to Class j

Pi The ith Sample’s Soft Classification Probabilities

N Number of Samples

D = {(xi, yi)}
N
i=1 Logistic Regression Sample Dataset

yi The One-Hot Encoding of the Label yi

1[a = b] The Binary Indicator Function (i.e., 1 when a = b and 0 otherwise)

F The Fisher Information Matrix

d Dimension of the Features

IJ The J × J Identity Matrix

A¹B The Kronecker Product of Matrix A by Matrix B

1r×c The All Ones Matrix with r Rows and c Columns

β̂MLE The Maximum Likelihood Estimator (MLE)

Llogistic The Logistic Log-Likelihood Function

LFirth The Firth Bias Reduction Function

λ The Firth Bias Reduction Coefficient

CE(p∥q) The Cross-Entropy of p and q

DKL(p∥q) The KL Divergence of p and q

U[0,J] The Uniform Class Assignment Probabilities

det(A|r) The Amended Determinant of the Degenerate Matrix A with at most r
Non-zero Eigenvalues (See Section A in the Appendix)

Table A2: The mathematical notations used throughout the paper.

As we have d > N for most few-shot tasks, the matrix S can be viewed in the following form:

SNJ×dJ =
�

ŜNJ×NJ 0
�

, (A23)

where Ŝ is a diagonal square matrix. Since Ŝ⊺ = Ŝ, we have

S⊺ ·K · S =







�

Ŝ ·K · Ŝ

"

NJ×NJ

0

0 0






. (A24)

Equation (A24) and det(F ) = det(S⊺ ·K · S) show why det(F ) is zero. For mitigation, we replace
det(F ) with the product of the non-zero eigenvalues of F , namely det(F |NJ), and call it the

“amended determinant” of F . Thanks to F = V ·
"

S⊺ ·K · S
"

· V ⊺, even the amended determinants

det(F |NJ) and det(S⊺ ·K · S|NJ) are the same:

det(F |NJ) = det(S⊺ ·K · S|NJ) = det(Ŝ ·K · Ŝ) = det(M) · det(Ŝ2). (A25)
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KL

K
L

Figure A5: Firth bias reduction is effectively the same as minimizing the KL divergence to the
uniform class probabilities for logistic regression. Here, Pi denotes the predicted distribution of
classes for the sample xi, and U denotes the uniform distribution of classes. The logistic objective
minimizes the KL-divergence between the true label yi and Pi, while Firth bias reduction LFirth tries
to tie Pi with a KL divergence rope to the uniform distribution over the classes.

Could det(F |NJ) be zero? The answer is “not” generically; det(M) is generically positive as we

will show det(Mi) =
�J

j=0 Pi,j later in Equation (A28). Also, det(Ŝ2) > 0 holds with probability

1 for continuous data distributions. In fact, det(Ŝ2) can only be zero when the data contains linearly
dependant samples, which happens with zero probability for non-atomic data distributions. Therefore,
we have

log(det(F |NJ)) =

N
�

i=1

log(det(Mi)) + log(det(Ŝ2)). (A26)

This is the same as Equation (A18): since the log(det(Ŝ2)) term is independent of the model’s
parameters, we can treat it as an optimization constant and drop it.

Efficient Computation of log(det(Mi)): We define the soft predictions of the ith sample (excluding

the reference class) as Pi,1:J :=
�

Pi,1 · · · Pi,J

�⊺

. Given Mi’s definition in Equation (A31), we

can write

Mi = Diag(Pi,1:J)− Pi,1:J · P
⊺

i,1:J . (A27)

Next, we use the Matrix-Determinant Lemma (Harville, 1998) to compute det(Mi):

det(Mi) = det(Diag(Pi,1:J)) · (1− P
⊺

i,1:J · Diag(Pi,1:J) · Pi,1:J)

= (

J
�

j=1

Pi,j) · (1− P
⊺

i,1:J1J×1) = (

J
�

j=1

Pi,j) · Pi,0 =

J
�

j=0

Pi,j . (A28)

Taking the log will give us Equation (A19).

The FIM Formulation for Logistic Regression: Elementary methods established that the FIM of
the logistic classifier is composed of J × J block matrices, each with a dimension of d× d (where d
is the dimension of the features). These block matrices can be expressed as

Fj,j =

N
�

i=1

Pi,j · (1− Pi,j) · xi · x
⊺

i ∀ 1 f j f J,

Fj,k = −

N
�

i=1

Pi,j · Pi,k · xi · x
⊺

i ∀ 1 f j ̸= k f J. (A29)
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Setting Hyper-parameter Value

All Standard Backbone
Experiments

Learning Rate 0.005

Mini-batch Size 10

Number of Classes 16

Optimizer SGD

Train-Heldout Splits 90%-10%

Backbones ResNet 10, 18, 34, 50, 101

Balanced Data Experiments
in Sections 4.1 and 4.2 in the

Main Paper

Number of Shots 1, 5, 10, 15, 20, 25

Firth Coefficients Set* 0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10

L2 Coefficients Set** 0, 1, 3, 10, 30, 100, 300, 1000

Imbalanced Data Experiments
in Section 4.3 in the Main

Paper

7.5-Shot Class Distribution 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8,
16, 16, 16, 16

15-Shot Class Distribution 1, 1, 5, 5, 9, 9, 13, 13, 17, 17,
21, 21, 25, 25, 29, 29

Experiments in
Sections 4.1, 4.2, and 4.3 in
the Main Paper with 1-Layer

Logistic Classifier

Number of Epochs 400

Classifier Architecture Features→Classes→Softmax

Number of Trials More than 800

Experiments in
Section E.2 with 3-Layer

Logistic Classifier

Number of Epochs 100

Classifier Architecture Features→100→ReLU→50
→ReLU →Classes→Softmax

Number of Trials More than 400

Table A3: Experimental settings used for the standard backbone experiments. The table is partitioned
into 5 sections, where the first section shows the global hyper-parameters used in all standard
backbone experiments. The same set of Firth bias reduction and L2 regularization coefficients
were used for all validation experiments. *The Firth regularization coefficients were chosen for
Equation (13) in the main paper. **We defined the L2-regularization as the mean squared value of
all classifier parameters, which is why the normalized set of coefficients seems large. The typical
unnormalized regularization coefficients can be obtained by dividing these normalized coefficients by
the number of classifier parameters.

Number of Shots Confidence Penalty Improvements Firth Improvements

5 0.13 ± 0.13 % 0.23 ± 0.06 %

10 0.52 ± 0.14 % 0.73 ± 0.07 %

15 0.57 ± 0.18 % 1.00 ± 0.07 %

Table A4: Comparing Firth bias reduction against the confidence penalty label smoothing
technique. The confidence penalty is defined as a DKL(Pi∥U) regularization term, whereas Firth
bias reduction for logistic and cosine classifiers reduces to a DKL(U∥Pi) penalty. The experimental
setting is the same as Figure A7 with the ResNet-10 backbone. This suggests that the improvements
obtained by Firth are the result of its bias suppression property, and Firth cannot be replaced by
standard label smoothing techniques.

state-of-the-art WideResNet (Zagoruyko and Komodakis, 2016) features trained with strong reg-
ularization techniques (manifold mixup) and additional self-supervision (Mangla et al., 2020), or
further calibrated via feature transformations (Yang et al., 2021), for logistic and cosine classifiers.
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No Artificial Samples 750 Artificial Samples

Way Shot Before After Improvement Before After Improvement

10 1 59.44 60.07 ± 0.16 0.63 ± 0.04 61.85 61.90 ± 0.17 0.05 ± 0.02

10 5 80.52 80.85 ± 0.12 0.33 ± 0.03 79.66 80.07 ± 0.13 0.42 ± 0.04

15 1 52.68 53.35 ± 0.13 0.67 ± 0.03 54.57 54.62 ± 0.14 0.05 ± 0.02

15 5 75.18 75.64 ± 0.11 0.46 ± 0.03 73.88 74.40 ± 0.11 0.53 ± 0.04

Table A5: The Firth bias reduction accuracy improvements on the tiered-ImageNet dataset
when 0 or 750 artificial samples were generated from the calibrated normal distribution in Yang
et al. (2021).

Before After Improvement Before After Improvement

5-way 10-way

1-shot 74.96 75.03 ± 0.19 0.07 ± 0.01 61.46 61.49 ± 0.13 0.03 ± 0.00

5-shot 87.43 87.48 ± 0.13 0.06 ± 0.00 77.73 77.83 ± 0.10 0.10 ± 0.00

10-shot 89.83 89.88 ± 0.11 0.05 ± 0.00 81.52 81.64 ± 0.09 0.11 ± 0.00

15-way 20-way

1-shot 53.45 53.47 ± 0.10 0.02 ± 0.00 47.78 47.79 ± 0.07 0.01 ± 0.00

5-shot 70.70 70.99 ± 0.07 0.28 ± 0.00 65.26 65.60 ± 0.03 0.34 ± 0.00

10-shot 75.37 75.71 ± 0.06 0.34 ± 0.00 70.57 70.99 ± 0.02 0.42 ± 0.00

Table A6: The Firth bias reduction improvements on the CIFAR-FS dataset shown in Figure 4 in
the main paper. “Before” stands for the novel set accuracy without having any Firth bias reduction,
and “After” stands for the novel set accuracy after applying Firth bias reduction. Note that the
confidence intervals are much smaller for the improvement column, thanks to the random-effect
matching procedure we used in this study. The “Before” confidence intervals were similar to the
“After” confidence intervals, and thus not repeated due to space constraints.

It is safe to conclude that Firth bias reduction reliably offers a small but useful improvement in
accuracy for few-shot classifiers.

Additional Implementation Details for Section 4.3 in the Main Paper: We used two non-uniform
count vectors with different average counts, 7.5 (scheme 1) and 15 (scheme 2), to generate the datasets
in both validation and novel sets. The count vector with the average of 7.5-shots had 4 classes for each
count from the geometric sequence {2, 4, 8, 16}, and the count vector with the average of 15-shots
had 2 classes for each count from the arithmetic sequence {1, 5, 9, 13, 17, 21, 25, 29}. The same
1-layer logistic classifier of Sections 4.1 and 4.2 was used in Section 4.3 in the main paper.

Table A3 summarizes the hyper-parameters used in all the standard backbone experiments. Also,
Figure A8 shows the relative accuracy improvements corresponding to Figure A7. Figure A12
contains the validation accuracy versus Firth coefficient λ for the experiments of Figure 2 and
Figure A7.

Additional Implementation Details for Section 4.5 in the Main Paper: In the experiments carried
out in Section 4.5 in the main paper, a 1-layer cosine classifier was used. Also, for the Firth
bias-reduced cosine classifier, the regularization coefficient was tuned for each (N, J) pair, with
N representing the number of samples per class and J being the number of classes. For J-way
classification on the novel set when J happened to be larger than the number of classes in the
validation set (Jval), the coefficient tuned for Jval-way classification was adopted.
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Before After Improvement Before After Improvement

5-way 10-way

1-shot 65.17 65.59 ± 0.18 0.41 ± 0.02 50.38 50.64 ± 0.11 0.26 ± 0.01

5-shot 82.60 83.04 ± 0.12 0.44 ± 0.01 71.15 71.91 ± 0.10 0.76 ± 0.02

10-shot 86.82 87.04 ± 0.09 0.22 ± 0.01 77.34 77.87 ± 0.08 0.52 ± 0.01

15-way 20-way

1-shot 42.65 42.85 ± 0.08 0.20 ± 0.01 37.56 37.76 ± 0.07 0.20 ± 0.00

5-shot 63.73 64.76 ± 0.07 1.03 ± 0.01 58.35 59.52 ± 0.04 1.17 ± 0.01

10-shot 70.87 71.71 ± 0.05 0.84 ± 0.01 66.06 67.12 ± 0.03 1.06 ± 0.01

Table A7: The Firth bias reduction improvements on the mini-ImageNet dataset shown in
Figure 4 in the main paper. “Before” stands for the novel set accuracy without having any Firth bias
reduction, and “After” stands for the novel set accuracy after applying Firth bias reduction. Note that
the confidence intervals are much smaller for the improvement column, thanks to the random-effect
matching procedure we used in this study. The “Before” confidence intervals were similar to the
“After” confidence intervals, and thus not repeated due to space constraints.

For the standard backbone experiments on mini-Imagenet, we trained more than 384,000 3-layer
and 768,000 1-layer logistic classifiers for the balanced data settings. For the imbalanced settings
on mini-Imagenet, we trained more than 64,000 3-layer and 128,000 1-layer logistic classifiers.
For the cosine classifier experiments, we trained over 1.92, 1.92, and 3.36 million classifiers for
mini-ImageNet, CIFAR-FS, and tiered-ImageNet datasets, respectively.

E ADDITIONAL EXPERIMENTS ON THE STANDARD BACKBONES

E.1 ADDITIONAL LOGISTIC CLASSIFIER EXPERIMENTS

The experiments of Figure 2 were repeated to perform 16-way classification using a logistic classifier
on tiered-ImageNet and CIFAR-FS in Figure A13. Moreover, 5-way and 10-way classification was
tested for mini-ImageNet in Figure A6 in the same setting as Figure 2. The results show that Firth
improvements always exist and it is even more effective as the number of classes increases.

E.2 3-LAYER LOGISTIC CLASSIFIERS FOR THE STANDARD BACKBONES

We conducted the same experiments as in Sections 4.1 and 4.2 in the main paper but with a 3-
layer logistic classifier. Again, we see consistent accuracy improvements for the Firth bias-reduced
classifier over the non-penalized (baseline) classifier in Figure A7. This further supports the idea
that Firth bias reduction boosts the performance of any reasonable classifier. Needless to say,
L2-regularization is not effective as shown in Figure A7.

Furthermore, the imbalanced few-shot classification in Section 4.3 in the main paper was repeated
with the 3-layer logistic classifier in Figure A10. Again for both schemes, the Firth penalized
classifier has larger accuracy improvement than the classifier penalized with the KL-divergence to the
non-uniform prior over the class probabilities. This further validates the effectiveness of Firth bias
reduction in reducing the parameter estimation bias present in the few-shot setting.

F ADDITIONAL FEATURE BACKBONES

To test the Firth bias reduction technique for additional backbones, we used pre-trained DenseNet
and MobileNet backbones on tiered-ImageNet from Wang et al. (2019). The accuracy improvements
of Firth penalized logistic classifier over the baseline averaged over 10,000 trials are plotted in
Figure A11. Regardless of the number of classes, the improvements are always positive.

25



Published as a conference paper at ICLR 2022

Before After Improvement Before After Improvement

5-way 10-way

1-shot 73.50 73.64 ± 0.25 0.14 ± 0.03 61.20 61.44 ± 0.16 0.24 ± 0.01

5-shot 88.00 88.31 ± 0.12 0.30 ± 0.01 79.41 80.01 ± 0.11 0.60 ± 0.01

10-shot 90.94 91.14 ± 0.10 0.21 ± 0.01 83.88 84.47 ± 0.09 0.58 ± 0.01

15-way 20-way

1-shot 53.90 53.97 ± 0.15 0.07 ± 0.01 48.81 48.96 ± 0.11 0.15 ± 0.01

5-shot 73.33 74.21 ± 0.09 0.88 ± 0.01 68.58 69.71 ± 0.08 1.13 ± 0.01

10-shot 78.70 79.57 ± 0.08 0.86 ± 0.01 74.58 75.74 ± 0.07 1.16 ± 0.01

50-way 100-way

1-shot 33.91 34.13 ± 0.06 0.22 ± 0.01 24.80 25.00 ± 0.03 0.20 ± 0.00

5-shot 52.60 54.71 ± 0.05 2.10 ± 0.01 41.03 43.59 ± 0.03 2.56 ± 0.01

10-shot 59.67 61.94 ± 0.04 2.27 ± 0.01 47.77 50.81 ± 0.02 3.04 ± 0.01

150-way

1-shot 20.37 20.56 ± 0.02 0.19 ± 0.00

5-shot 34.89 37.54 ± 0.01 2.65 ± 0.01

10-shot 41.04 44.28 ± 0.01 3.25 ± 0.01

Table A8: The Firth bias reduction improvements on the tiered-ImageNet dataset shown in
Figure 4 in the main paper. “Before” stands for the novel set accuracy without having any Firth bias
reduction, and “After” stands for the novel set accuracy after applying Firth bias reduction. Note that
the confidence intervals are much smaller for the improvement column, thanks to the random-effect
matching procedure we used in this study. The “Before” confidence intervals were similar to the
“After” confidence intervals, and thus not repeated due to space constraints.

G COMPARING FIRTH BIAS REDUCTION AGAINST STANDARD LABEL

SMOOTHING TECHNIQUES

To demonstrate that Firth bias reduction cannot simply be replaced with label smoothing, we tested
two advanced variants of label smoothing that are superior to the original version as proposed
by Pereyra et al. (2017). The first variant, called confidence penalty, uses the entropy of the classifier’s
output (or equivalently, reverses the direction of the KL divergence in the original version of label
smoothing (Szegedy et al., 2016)); and the second variant, called unigram label smoothing, uses prior
distribution over the classes instead of uniform, which has been shown to be advantageous when
the output labels’ distribution is imbalanced in Pereyra et al. (2017). Note that both variants were
investigated for training a full deep neural network with a feature extractor backbone in large-sample
regimes in Pereyra et al. (2017). Our experiments in Figure 3 evaluate the effect of unigram label
smoothing when training the classifier in the small-sample regime.

We also performed more experiments in the same setting to compare Firth bias reduction against
confidence penalty regularization. As summarized in Table A4, in all the settings Firth bias reduction
has larger significant improvements than the confidence penalty technique. This further supports the
value of using Firth bias reduction and the fact that its impact on few-shot classification cannot be
reproduced with well-known and widely-used label smoothing techniques.
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Before After Improvement Before After Improvement

ResNet10 ResNet18

1-shot 7.96 7.97 ± 0.06 0.01 ± 0.01 7.57 7.58 ± 0.05 0.01 ± 0.01

5-shot 8.22 8.23 ± 0.06 0.01 ± 0.01 7.94 7.95 ± 0.06 0.01 ± 0.01

10-shot 8.19 8.24 ± 0.05 0.06 ± 0.05 8.01 8.15 ± 0.05 0.14 ± 0.06

15-shot 8.21 8.36 ± 0.05 0.15 ± 0.06 8.09 8.47 ± 0.05 0.38 ± 0.06

20-shot 8.22 8.51 ± 0.05 0.28 ± 0.06 8.15 8.75 ± 0.06 0.60 ± 0.06

25-shot 8.25 8.51 ± 0.05 0.25 ± 0.06 8.27 8.92 ± 0.05 0.65 ± 0.06

ResNet34 ResNet50

1-shot 7.47 7.48 ± 0.05 0.01 ± 0.01 7.51 7.52 ± 0.05 0.01 ± 0.01

5-shot 7.69 7.70 ± 0.05 0.01 ± 0.01 7.73 7.78 ± 0.05 0.05 ± 0.05

10-shot 7.73 7.96 ± 0.05 0.23 ± 0.05 7.83 8.59 ± 0.05 0.76 ± 0.06

15-shot 7.79 8.22 ± 0.05 0.43 ± 0.06 7.89 9.02 ± 0.05 1.13 ± 0.06

20-shot 7.87 8.41 ± 0.05 0.55 ± 0.06 8.15 9.67 ± 0.06 1.52 ± 0.06

25-shot 7.97 8.54 ± 0.05 0.57 ± 0.06 8.44 10.71 ± 0.06 2.27 ± 0.06

ResNet101

1-shot 7.63 7.65 ± 0.05 0.02 ± 0.02

5-shot 7.81 7.88 ± 0.05 0.07 ± 0.05

10-shot 7.96 8.81 ± 0.05 0.86 ± 0.06

15-shot 8.10 9.50 ± 0.05 1.40 ± 0.06

20-shot 8.37 10.29 ± 0.06 1.91 ± 0.06

25-shot 8.74 10.62 ± 0.06 1.88 ± 0.06

Table A9: The Firth bias reduction improvements on the mini-ImageNet dataset shown in
Figure 2 in the main paper. “Before” stands for the novel set accuracy without having any Firth bias
reduction, and “After” stands for the novel set accuracy after applying Firth bias reduction. Note that
the confidence intervals are much smaller for the improvement column, thanks to the random-effect
matching procedure we used in this study. The “Before” confidence intervals were similar to the
“After” confidence intervals, and thus not repeated due to space constraints. It is worth noting that we
deliberately did not engineer strong features for this experiment (stronger feature backbone results
are shown in Sections 4.5 and 4.6 in the main paper). This diversifies Firth’s performance portfolio,
demonstrating its robustness to the strength of the feature backbones; even with weak features, Firth
bias reduction substantially improves the accuracy with high relative improvements as shown here
and in Figure A8.

H ADDITIONAL COMPARISON WITH STATE OF THE ART

Table A5 summarizes the accuracy improvements obtained by integrating Firth bias reduction with
the distribution calibration method (Yang et al., 2021) under different shots and ways on the tiered-
ImageNet dataset. This method calibrates the features to follow a normal distribution, and generates
artificial samples from the estimated normal distribution as data augmentation to aid few-shot
classification. In its state-of-the-art setting, the features are transformed using Tukey transformations,
750 artificial samples are generated per class, and a logistic classifier is used. We tested Firth bias
reduction in two scenarios: (1) state-of-the-art setting without generating artificial samples from the
calibrated distribution; and (2) state-of-the-art setting with 750 artificial samples generated per class,
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