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Abstract

We present a novel method for reducing the computational complexity of rigorously
estimating the partition functions (normalizing constants) of Gibbs (Boltzmann)
distributions, which arise ubiquitously in probabilistic graphical models.
A major obstacle to practical applications of Gibbs distributions is the need to
estimate their partition functions. The state of the art in addressing this problem is
multi-stage algorithms, which consist of a cooling schedule, and a mean estimator
in each step of the schedule. While the cooling schedule in these algorithms
is adaptive, the mean estimation computations use MCMC as a black-box to
draw approximate samples. We develop a doubly adaptive approach, combining
the adaptive cooling schedule with an adaptive MCMC mean estimator, whose
number of Markov chain steps adapts dynamically to the underlying chain. Through
rigorous theoretical analysis, we prove that our method outperforms the state of the
art algorithms in several factors: (1) The computational complexity of our method
is smaller; (2) Our method is less sensitive to loose bounds on mixing times, an
inherent component in these algorithms; and (3) The improvement obtained by our
method is particularly significant in the most challenging regime of high-precision
estimation. We demonstrate the advantage of our method in experiments run on
classic factor graphs, such as voting models and Ising models.

1 Introduction

The Gibbs (Boltzmann) distribution is a family of probability distributions of exponential form. First
introduced in the context of statistical mechanics [25], Gibbs distributions are now ubiquitous in
a variety of other disciplines, such as chemistry [24, 31], economics [1, 54] and machine learning.
Gibbs distributions are typically used to model the global state of a system as a function of a collection
of interdependent random variables, each representing local states in the system. The dependencies
∗ r© indicates randomized ordering and equal contribution.
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in the system are modeled by a Hamiltonian function, and the probability distribution is inversely
proportional to exponent of the Hamiltonian scaled by the temperature (see eq. (1) § 1.1).

Gibbs distributions provide potent statistical inference tools in many machine learning applications.
They appear in probabilistic graphical models [41, 49, 51], including restricted Boltzmann machines
[43, 66], Markov random fields [40, 47], and Bayes networks [32], and are applied in the analysis of
images and graphical data [21, 23, 44, 65], topic modeling (LDA) [27, 53, 57, 62], and more [2, 13,
18, 19, 26, 30, 48, 56, 58, 68].

A major obstacle in applying the Gibbs distribution in practice is the need to compute, or estimate, its
partition function (normalizing constant), henceforth written GPF. The partition function is defined
over the Cartesian product of supports of a (typically large) number of variables, making exact
computation intractable. Furthermore, due to interdependence of variables, exact sampling is not
practically feasible, thus Markov-chain Monte-Carlo (MCMC) solutions for this problem have been
extensively studied [6, 22, 29, 34, 37, 39, 42, 52, 63, 67].

Like other MCMC methods, here various heuristics are used. The most well-known heuristics are
the annealed importance sampling [39, 52, 64] or convergence diagnostics methods [10, 11, 20, 61].
Unfortunately, these methods are often error-prone, as their correctness is only proven asymptotically,
without rigorous mathematical analysis to bound their estimation error with finite samples. In fact,
theoretical findings have shown that with no prior knowledge of relevant measures, such as the
variance of importance weights in annealed importance sampling, or upper bounds on mixing or
relaxation times for diagnostic methods, these methods are either unreliable or computationally
intractable (see [52, section 4] or [8, 33]).

On the other hand, theoreticians study this problem by designing Fully Polynomial Randomized
Approximation Schemes (FPRAS) (see problem 1). The state of the art FPRAS for estimating the
GPF is a multi-stage algorithm involving a sequence of functions at various temperatures, such that
the expectation of the product of these functions, or the product of the expectations of said functions,
is the GPF. FPRAS’s are proven to produce (approximate) solutions w.h.p., but their performance
guarantees rely on available upper-bounds on various measures such as variances of estimators or
mixing times of Markov chains. In static algorithms, these upper-bounds are given a priori, and
adaptive2 algorithms estimate them dynamically, while increasing the sample size until desired
properties are mathematically guaranteed. Thus, adaptive algorithms are less sensitive to looseness of
known upper-bounds, more robust, often faster, and more easily applied to various settings.

Most of the research on designing FPRAS’s for the GPF is focused on designing adaptive algorithms
to produce sequences (cooling schedules) with minimum length while keeping the variances of
estimators small (thus removing the need to have a-priori known bounds on variances). In contrast,
the computation of the sequence of mean estimates, which dominates the total computation cost, is
done by black-box MCMC estimators, with a priori known upper bounds on the mixing times of the
chains. These upper bounds are often loose, and improving them for particular models is a challenging
active area of research [4, 5, 9, 12, 28, 63]. In order to complement the adaptive cooling schedule and
reduce dependence on a priori bounds on Markov chains’ mixing times, it seems necessary to design
an adaptive procedure with theoretical guarantees for MCMC-mean estimation.

In this work we develop a doubly adaptive FPRAS, combining the adaptive cooling schedule with
adaptive MCMC mean estimator that dynamically adapts the number of Markov chain steps to
the observed underlying chain. Through rigorous theoretical analysis, we prove that our method
outperforms the state of the art algorithms in several factors: (1) The computational complexity of
our method is smaller; (2) Our method is less sensitive to loose bounds on mixing times, an inherent
component in these algorithms; and (3) The improvement obtained by our method is particularly
significant in the most challenging regime of high precision estimates. We demonstrate the advantage
of our method in experiments run on classic factor graphs, such as voting and Ising models [5, 7, 15].

1.1 Preliminaries and Prior Work

Assume a sample space Ω, Hamiltonian function H : Ω→ {0} ∪ [1,∞), and inverse temperature
parameter β ∈ R, referred to as inverse temperature. The Gibbs distribution on Ω, H(·), and β is

2The usage of the word “adaptive” here refers to algorithms which draw samples progressively and adapt
their sample complexity based on empirical estimates until desired conditions are met, as it has been used in
[34, 42] (see § 1.1), and should not confused with the work of [60].
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then characterized by probability law

∀x ∈ Ω : πβ(x)
.
=

1

Z(β)
exp
(
−βH(x)

)
. (1)

Here Z(β) is the normalizing constant or Gibbs partition function (GPF) of the distribution, with

Z(β)
.
=
∑
x∈Ω

exp
(
−βH(x)

)
. (2)

Estimating the GPF Z(β), is computationally challenging, since typically the size of Ω is exponential
in the number ofvariables, and the values of random terms in the sum have large variance (due to the
exponential). The following problem has been extensively studied, and is the focus of this paper.

Problem 1. Given a domain Ω, a Hamiltonian function H , and a parameter β, design a Fully
Polynomial Randomized Approximation Scheme (FPRAS) for estimating the partition function
Z(β)

.
=
∑
x∈Ω exp

(
−βH(x)

)
. In other words, for user-supplied ε, the task is to produce an estimate

Ẑ(β), such that with probability at least 1 − δ, we have (1 − ε)Z(β) ≤ Ẑ(β) ≤ (1 + ε)Z(β), in
time polynomial in 1/ε, ln(1/δ), and all other problem parameters (e.g., the number of vertices in an
Ising model, or neurons in an RBM).

All known scalable solutions to this problem rely on Monte-Carlo Markov-chain (MCMC) methods,
and their execution cost is dominated by the total number of Markov chain steps they execute. We
therefore follow past work, and analyze our algorithms in terms of number of the Markov chain steps.

TPA-Based Adaptive Cooling Schedules Building on extensive earlier work [6, 22, 67], the
current state of the art is due to Huber and Schott [35], with Kolmogorov’s sharper analysis [42].
They introduce the paired product estimator (PPE), see definition 1.1, and apply the tootsie-pop
algorithm (TPA) to adaptively compute a near-optimal cooling schedule, i.e., a sequence of inverse
temperatures β0 < β1 < · · · < β`−1 < β` satisfying β` = β, and that Z(β0) is easy to compute,
e.g., β0 = 0 is often convenient, since Z(0) = |Ω|. We thus define Q .

= Z(β)/Z(β0) and estimate it
using the paired product estimator.

Definition 1.1 (PPE [34]). Assume a cooling schedule β0, β1, . . . , β`. For each pair (βi, βi+1) in
the schedule, we define two random variables, Xi ∼ πβi and Yi ∼ πβi+1

, all independent, and
we then define fβi,βi+1

.
= exp

(
−βi+1−βi

2 H(Xi)
)

and gβi,βi+1

.
= exp

(βi+1−βi
2 H(Yi)

)
. It is easy

to verify that E[fβi,βi+1
] = Z(βi+βi+1

2 )/Z(βi), and E[gβi,βi+1
] = Z(βi+βi+1

2 )/Z(βi+1). We then
define F .

=
∏k
i=1 fβi,βi+1

, G .
=
∏k
i=1 gβi,βi+1

. Letting µ̂ and ν̂ denote empirical estimates of E[F ]

and E[G], respectively, the paired product estimator (PPE) is Q̂ .
= µ̂/ν̂ .

Denote by Vrel[X]
.
= E[X2]/E[X]2 − 1 = V[X]/E[X]2 the relative variance of a random variable X .

The TPA schedule [35, 36] is generated by an adaptive algorithm, which, by a proper setting of
parameters, outputs a cooling schedule guaranteeing constant Vrel[F ] and Vrel[G] (see alg. 3 in the
supplementary material). Kolmogorov [42] presents a tighter analysis of Huber’s TPA method, and
proves that with slight modifications (see alg. 4. in the Appendix) the schedule has a shorter length,
while preserving constant relative variance for the paired product estimators (see thm. 1.1). In this
paper, we use Kolmogorov’s algorithm, and we denote it by TPA(k, d). For completeness, both of
Huber’s and Kolmogorov’s versions of TPA are presented in the Appendix.

We will use the following result in our analysis:

Theorem 1.1 ([42]). Let Hmax
.
= maxx∈ΩH(x), using TPA(k, d), k = Θ(logHmax) and d = 16

to generate cooling schedule (β0, β1, . . . , β`). W.h.p., we have ` = Θ(log(Q) log(Hmax)) and
Vrel[F ]+1 =

∏`
i=1(Vrel[fβi,βi+1

]+1) = Θ(1) and Vrel[G]+1 =
∏`
i=1(Vrel[gβi,βi+1

]+1) = Θ(1).

Kolmogorov [42] nearly matches known lower bounds when given oracle access to near-independent
samples, but leaves open the possibility of better use of the dependent sequence of samples generated
by MCMC chains. This fertile ground is ill-explored, since if an approximate sampling oracle draws
samples by running a chain for T steps, there is a factor T potential improvement.

3



MCMC Mean-Estimator Huber and Schott [35] assume unit-cost for exact sampling from each
πβi , and Kolmogorov [42] extends their analysis to include the complexity of generating approximate
samples with standard MCMC processes, assuming a priori upper-bounds on their mixing times. The
main contribution of our paper is a specialized, adaptive, multiplicative MCMC-mean estimator for
the TPA-based PPE. Our method is significantly more efficient than using standard black-box MCMC
sampling for this problem, thus we improve the best-known method for estimating the GPF.

LetM be an ergodic Markov chain with state space S and stationary distribution π. Let τmix(ε)
denote the ε-mixing time ofM, and define τmix

.
= τmix(1/4). Letting λ denote the second largest

absolute eigenvalue ofM’s transition matrix, the relaxation time ofM is τrx
.
= (1− λ)−1, and it is

related to the mixing time τmix, by
(
τrx(M)− 1

)
ln(2) ≤ τmix(M) ≤

⌈
τrx(M) ln

(
2/√πmin

)⌉
[45].

Let T be an upper bound on max{τrx(M), τmix(M)}.
Consider any i.i.d. sampling concentration bound like Chebyshev’s, Hoeffding’s, or Bernstein’s
inequalities [50], with, say, sample complexity mε. Using MCMC as a black-box sampling tool,
we obtain the same precision estimation guarantees, with a computational cost of mε · τmix(ε/mε),
which is equal to mε log(mε · ε−1) · T in the absence of exact values for τmix.

Other concentration bounds compute the average over the entire trace of a Markov chain, and their
complexity is dependent on known upper-bounds on the relaxation time [14, 38, 46, 50, 55], or
function specific mixing time [59]. Note that since log( 1

2ε )(τrx − 1) ≤ τmix(ε) ≤ log( 1
επmin

)τrx,
using these bounds is often more efficient, saving at least log(mε) steps.

Recently, Cousins et al. [16] introduce a novel Markov chain statistical measure, the inter-trace
variance. The inter-trace variance depends on both the function being estimated and the dependency
structure between nearby samples in the chain, and unlike the mixing time, it can be efficiently
estimated from data. By using progressive sampling, Cousins et al. show an additive MCMC mean
estimator whose complexity is proved in terms of inter-trace variance and they show it it less sensitive
to prior knowledge of the input parameters, such as relaxation time and trace variance. Unfortunately
due to a few technical problems, their result can not directly be used with the TPA method. Thus, in
order to obtain a doubly adaptive algorithm for problem 1, we tailor their techniques to our setting,
which requires developing new algorithms and analysis tools.

1.2 Our Main Contributions

• We present a specialized mean estimator method that significantly improves the state of the art
computational complexity of computing the partition function of Gibbs distribution.

• While all rigorous MCMC-based estimates depend on some a priori knowledge of the Markov
chain properties (such as bounds on its mixing or relaxation time), the complexity of our method is
less dependent on these a priori bounds, and decays gracefully as they become looser.

• The improvement of our method is particularly significant in the more challenging high precision
regime, where the goal is to compute estimates with very small multiplicative error.

• Our method improves the computational cost of prior work by replacing standard black-box
MCMC mean estimators with an adaptive MCMC estimator, specially tailored to this problem.

• The analysis of our method relies on a novel notion of sample variance in a sequence of observa-
tions obtained by Markov chains runs, which we term the relative trace variance.

• We demonstrate the practicality of our method through experiments on Ising and voting models.

2 Algorithms
In this section, we develop two doubly-adaptive fully polynomial randomized approximation schemes
providing more efficient algorithmic solutions to problem 1. The proof of all of the lemmas and
theorems are presented fully in the supplementary material.

Notation and Setting Parameters We use the following notation throughout: We use capital letters
to denote upper-bounds. e.g., T denotes an upper-bound on max(τmix, τrx), and Λ denotes a upper-
bound on the second absolute eigenvalue λ. We use GH,β to denote any Markov chain with Gibbs
stationary distribution πβ , eq. (1). Having the Hamiltonian H , we denote its maximum and minimum
values as Hmax and Hmin, i.e., Hmax

.
= maxx∈Ω{H(x)} and Hmin

.
= minx∈Ω{H(x)}. Having a

schedule (β0, β1, . . . , β`), the paired product estimators fβi,βi+1
, gβi,βi+1

, F =
⊗`

i=1 fβi,βi+1
and
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G =
⊗`

i=1 gβi,βi+1 are as in definition 1.1. When writing (β0, β1, . . . , β`) = TPA(k, d), we mean the
cooling schedule is obtained from running alg. 4 in the Appendix, and we always set k = logHmax

and d = 64, as these parameters are shown to produce a near-optimal schedule w.h.p. [42].

We first introduce a novel MCMC-based multiplicative mean estimation procedure RELMEANEST
(see alg. 1), and analyze its computational complexity in terms of a new quantity, which we coin the
relative trace variance (see definition 2.1). RELMEANEST receives as input a Markov chainM, a
function f , and precision parameters ε and δ, and it outputs a multiplicative estimate of the expected
value of the function w.r.t. the stationary distribution of the Markov chain. For simplicity, we may
refer to it as RELMEANEST(M, f), leaving out the precision parameters.

Letting (β0, β1, . . . , β`) = TPA(k, d), we first present PARALLELTRACEGIBBS, in which we invoke
both RELMEANEST(GH,βi , fβi,βi+1

) and RELMEANEST(GH,βi , gβi,βi+1
) for each i = 1, 2, . . . , `− 1.

We then present an often-more-efficient algorithm, SUPERCHAINTRACEGIBBS, which invokes
RELMEANEST once each on F and G on a “super” product chain (see definition 2.2). We
prove correctness of both PARALLELTRACEGIBBS and SUPERCHAINTRACEGIBBS, and bound their
complexity in terms of the relative trace variance of the estimators. Furthermore, we prove
SUPERCHAINTRACEGIBBS improves the computational complexity of the state of the art [42] (thm. 2.4
and corollary 2.6). Both of these algorithms have low dependence on tightness of mixing time: They
receive as input an upper-bound on mixing or relaxation time T , but we show for ε ≥ ε0 their
computation complexity is dominated by the true relaxation time τrel (of each Gibbs chain or the
product chain).

2.1 Relative trace variance and RELMEANEST

In this section we introduce a new variance notion, the relative trace variance, which captures the
computational complexity of MCMC-mean estimation with multiplicative precision guarantees. The
relative trace variance depends on both the chainM and the function f , and it generalizes the relative
variance, defined as Vrel[f ]

.
= V[f ]/E[f ]2, which depends only on f , and is used in i.i.d. regimes.

Definition 2.1 (Relative Trace Variance). For arbitrary τ , consider a trace of length τ of a Markov
chainM, and a real-valued function f . OnM, we define the relative trace variance of f as

ReltrvτM[f ]
.
=

E[f̄( ~X1:τ )
2
]

(E[f̄( ~X1:τ )])2
− 1 ,

where ~X1:τ
.
= X1, X2, . . . , Xτ is a trace of length τ ofM, and f̄( ~X1:τ )

.
= ( 1

τ )
∑τ
i=1 f(Xi). We

may drop the subscript when the chain is clear from the context.

The above definition is similar to what Cousins et al. coined as the inter-trace variance, denoted
by trv(τ)(M, f), which they showed it captures MCMC-mean estimation with additive precision
guarantees [16]. In fact, the two terms are related as

ReltrvτM[f ] =
trv(τ)(M, f)

(E[f̄( ~X1:τ )])2
.

Note that the two terms are not easily convertible without knowing the mean, E[f̄( ~X1:τ )].
Lemma 2.1. For any τ we have

ReltrvτM[f ] ≤ Vrel[f ] . (3)
Furthermore, for τ ≥ τrx(M) we have,

ReltrvτM[f ] = O

(
τrx(M)

τ
Reltrv

τrx(M)
M [f ]

)
. (4)

Lemma 2.1 enables us to compare the computational complexity of our algorithms with the state
of the art [42]. In particular, using (3), we show our results improve the state of the art (which is in
terms of Vrel), and using (4), we show that for high-precision estimations, the sample complexity of
our algorithms only depends on τrx, which improves the state of the art (which is in term of T ).

The relative trace variance is a better analysis tool for estimating the GPF, because, unlike the inter-
trace variance, it leads directly to relative error bounds, rather than absolute error bounds.We now
present some definitions which can also be found in standard MCMC textbooks, e.g., [45].
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Definition 2.2 (Product Chain and Tensor Product Function). Consider k Markov chains {Mi}ki=1

each defined on state space Si and assume real valued functions {fi : Si → R}ki=1. The product chain
M⊗1:k is defined on the Cartesian product of Si as follows: at any stepM⊗1:k chooses i with probability
ωi (thus

∑k
i=1 ωi = 1), and moves from (x1, x2, . . . , xi, . . . , xk) to (x1, x2, . . . , yi, . . . , xk), with

the transition probability of moving from xi to yi inMi. The tensor product of {fi}ki=1, denoted by⊗
1:k fi, is defined as

(⊗
1:k fi

)
(x1, x2, . . . , xk) =

∏k
i=1 fi(xi).

RELMEANEST Let T denote an upper bound on the relaxation time of a Markov chain M.
RELMEANEST receives T , M, f and precision parameters ε and δ as input. Before it starts col-
lecting samples, it runs the chain for a warm start (§ 2.1 of alg. 1). Starting from a minimum sample
size m↓, it runsM for T ·m↓ steps, and collect samples X1, X2, . . . , XT ·m↓ . It then computes for
j = 1, 2, . . . ,m↓, f̄j

.
=
∑j·T
i=(j−1)·T+1 f(Xi); using them, it calculates an empirical estimate of the

mean, µ̂, and an empirical estimation for the trace variance ofM and f , v̂. Based on these estimates,
we derive an upper-bound on the current trace variance ui and relative error ε̂×i , and check whether
is smaller than the user-specified error ε (lines 18-19). If so, we return the current mean estimate,
otherwise we double the sample size and repeat.

Algorithm 1 RELMEANEST
1: procedure RELMEANEST
2: Input: Markov chain M, upper-bound on relaxation time T , real-valued function f with range [a, b], letting R = b − a,

multiplicative precision ε, error probability δ.
3: Output: Multiplicative approximation µ̂ of µ = Eπ[f ].

4: T ←
⌈

1+Λ
1−Λ ln

√
2
⌉

; Λ′ ← ΛT . Choose T to be an upperbound on relaxation time

5: I ← 1 ∨
⌊

log2

(
bR
2a2 ·

(1−ε)2
(1+ε)ε

)⌋
; α← (1+Λ′)R ln 3I

δ (1+ε)

(1−Λ′)bε ; m0 ← 0 . Initialize sampling schedule

6: Tunif ←
⌈
T · ln(1/πmin)

⌉
; ( ~X0,1, ~X0,2)←MTunif (⊥) . Warm-start two chains for Tunif steps from arbitrary ⊥ ∈ Ω

7: for i ∈ 1, 2, . . . , I do
8: mi ←

⌈
αri
⌉

. Total sample count at iteration i; r is the geometric ratio (constant, usually 2) size
9: for j ∈ (mi−1 + 1), . . . ,mi do

10: ( ~Xj,1, ~Xj,2)← (T steps ofM starting at ~Xj−1,1, ~Xj−1,2) . Run two independent copies ofM for T steps

11: f̄( ~Xj,1)← 1

T

T∑
t=1

f
(
~Xj,1(t)

)
; f̄( ~Xj,2)← 1

T

T∑
t=1

f
(
~Xj,2(t)

)
. Average f over T -traces

12: end for

13: µ̂i ←
1

2mi

mi∑
i=1

(
f( ~Xj,1) + f( ~Xj,2)

)
; v̂i ←

1

2mi

mi∑
i=1

(
(f( ~Xj,1)− f( ~Xj,2)

)2
. Compute empirical mean; trace variance

14: ui ← v̂i +
(11 +

√
21)(1 + Λ′/

√
21)R2 ln 3I

δ

(1− Λ′)mi
+

√
(1 + Λ′)R2v̂i ln 3I

δ

(1− Λ′)mi
. Variance upper bound

15: ε̂+
i ←

10R ln 3I
δ

(1− Λ′)mi
+

√
(1 + Λ′)ui ln 3I

δ

(1− Λ′)mi
. Apply Bernstein bound

16: µ̂×i ←
(µ̂i − ε̂+

i ) ∨ a+ (µ̂i + ε̂+
i ) ∧ b

2
. Optimal mean estimate

17: ε̂×i ←
((µ̂i + ε̂+

i ) ∧ b− (µ̂i − ε̂+
i ) ∨ a

2µ̂×i
. Empirical relative error bound

18: if (i = I) ∨ (ε̂×i ≤ ε) then . Terminate if accuracy guarantee is met
19: return µ̂×i
20: end if
21: end for
22: end procedure

The following theorem, shows the correctness of RELMEANEST and bounds its complexity.

Theorem 2.2 (Efficiency and Correctness of RELMEANEST). With probability at least 1 − δ,
RELMEANEST will output µ̂ satisfying (1 − ε)µ̂ ≤ µ ≤ (1 + ε)µ̂. Furthermore, with probabil-
ity at least 1− δ

3I , the total Markov chain steps of RELMEANEST, m̂, obeys

m̂ ∈ O

ln

(
ln b

aε

δ

)(
T ·R
µε

+
τrxReltrvτrx

ε2

) . (5)
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2.2 Doubly adaptive algorithms: SUPERCHAINTRACEGIBBS and PARALLELTRACEGIBBS

Let (β0, β1, . . . , β`) = TPA(k, d), and consider a family of Gibbs chains GH,βi , each corresponding
to some βi, and the paired product estimators F =

⊗`
i=1 fβi,βi+1

G =
⊗`

i=1 gβi,βi+1
. The TPA

method is designed to ensure Vrel of the estimators are bounded, which can be employed by concen-
tration bounds (e.g., Chebyshev’s bound) to guarantee the multiplicative error is bounded with high
probability for a given sample size.

In order to generalize the same machinery for samples generated from a Markov chain using
RELMEANEST, we need to bound the two terms appearing in eq. (5), which dominate the com-
putational complexity of RELMEANEST. We refer to the first term, T ·R/µ, as the range term, and to
the term τrxReltrvτrx as the trace variance term. Note that as ε becomes smaller, the trace variance
term dominates the sample complexity of RELMEANEST, thus dependence on loose bounds T and R
is dominated by dependence on true and a priori unknown values τrx and Reltrvτrx .

In order to ensure that the ranges of estimators are small, we prove that the length of each inverse-
temperature interval in the TPA schedule is w.h.p. small. Having a schedule (β0, β1, . . . , β`) we define
and use the following notation: for 0 ≤ i ≤ `− 1, interval length ∆i

.
= βi+1− βi, maximum interval

length ∆max
.
= maxi ∆i, and total length ∆

.
= β` − β0 .

Lemma 2.3. Let z(β)
.
= ln

(
Z(β)

)
, and let βi, βi+1 be two consecutive points generated by

TPA(k, d). For arbitrary ε ≥ 0, we have:
1. P(z(βi)− z(βi+1) ≤ ε) ≥ (1− exp(−εk/d))d.
2. P

(
∆i ≥ ε/E[H(x)]

)
≤ d exp(−εk/d), where E[H(x)] is taken w.r.t. x ∼ πβi+1 .

SUPERCHAINTRACEGIBBS Let G⊗ the product of GH,βis with uniform weights i.e., ωi = 1
` , ∀i (see

definition 2.2). SUPERCHAINTRACEGIBBS calls RELMEANEST(G⊗, F ) and RELMEANEST(G⊗, G),
with appropriate parameters, and simply outputs the ratio of the two estimates (see alg. 2, left).

Algorithm 2 SUPERCHAINTRACEGIBBS and PARALLELTRACEGIBBS

1: procedure SUPERCHAINTRACEGIBBS(. . . )
2: (β0, β1, . . . , β`)← TPA(k, d)a

3: ε′ ← ε
2+ε

; δ′ ← δ
2

4: for i ∈ 1, 2, . . . , ` do
5: fi(x)

.
= exp(−βi+1−βi

2
H(x))

6: gi(x)
.
= exp(

βi−βi−1

2
H(x))

7: end for
8: F

.
=

⊗`
i=1 fi; G

.
=

⊗`
i=1 gi

9: G⊗ ←
⊗`

i=1 GH,βi , with ωi = 1
`
, ∀i

10: Rf ← exp(−β−β0
2

Hmin)− exp(−β−β0
2

Hmax)

11: Rg ← exp(β−β0
2

Hmax)− exp(β−β0
2

Hmin)

12: µ̂← RELMEANEST(G⊗, Rf , T, F, ε′, δ′)
13: ν̂ ← RELMEANEST(G⊗, Rg, T,G, ε′, δ′)
14: return Ẑ ← ν̂

µ̂

15: end procedure

16: procedure PARALLELTRACEGIBBS(. . . )
17: (β0, β1, . . . , β`) = TPA(k, d)

18: ε′ ←
√̀
1+ε−1√̀
1+ε+1

; δ′ ← δ
2`

19: for i ∈ 1, 2, . . . ` do
20: fi(x)

.
= exp(−βi+1−βi

2
H(x))

21: gi−1(x)
.
= exp(

βi−βi−1

2
H(x))

22: Rf ← exp(−βi+1−βi
2

Hmin)− exp(−βi+1−βi
2

Hmax)

23: Rg ← exp(
βi+1−βi

2
Hmax)− exp(

βi+1−βi
2

Hmin)
24: µ̂i ← RELMEANEST(Gi, Rf , Ti, fi, ε′, δ′)
25: ν̂i ← RELMEANEST(Gi, Rg, Ti, gi, ε′, δ′)
26: end for
27: return Ẑ ←

∏`
i=1

ν̂i
µ̂i

28: end procedure

ak = Θ(logHmax) and d = 64 as in [42]

We now show the correctness and efficiency of SUPERCHAINTRACEGIBBS. Let τprx denote G⊗’s
true (and unknown) relaxation time and T a known upper-bound on it (T ≥ τprx), ε and δ are user
specified precision parameters. For simlicity of presentation we use the following notation to refer to
relative ranges: relR = Range(F )/µ+ Range(G)/ν, where µ = E[F ] and ν = E[G] .
Theorem 2.4. With probability at least 1− δ, it holds that the total number m̂ of Markov chain steps
taken by SUPERCHAINTRACEGIBBS is upper-bounded by

Õ

(
ln

(
1

δ

)(
T · relR

ε
+
τprx ·

(
Reltrv

τprx
G⊗ (F ) + Reltrv

τprx
G⊗ (G)

)
ε2

))
.

Lemma 2.5. Defining α1 =
√

Z(β0)
Z(β0−∆max) , we have: Range(F )

µ ≤ α1

√
Q

exp(∆Hmin) and

Range(G)
ν ≤ α1

√
exp(∆Hmax)

Q .
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PARALLELTRACEGIBBS SUPERCHAINTRACEGIBBS TPA + PPE [42]

`
2
∑̀
i=1

τi

(
Reltrv

τi
GH,βi

(fi) + τprx
(
Reltrv

τprx [F ] + Reltrv
τprx [G]

)
ln
q lnHmax

ε

∑̀
i=1

Ti ·
(
Vrel(F ) + Vrel(G)

)
Reltrv

τi
GH,βi

(gi)

)
= O

(
`max{τi}i=1:`

)
= O

ln
q lnHmax

ε

∑̀
i=1

Ti


Table 1: Comparison of the number of Markov chain steps, when ε is adequately small. In all columns, a
multiplicative factor of 1/ε2 is omitted to ease presentation, and q = lnQ. Note that computational complexity
of both PARALLELTRACEGIBBS and SUPERCHAINTRACEGIBBS only depends on true relaxation times, denoted
by τi, and the TPA + PPE method’s complexity is dependent on their upper bounds, denoted by Ti.

Using lemma 2.5 and thm. 2.4, we identify ε0 such that for ε ≤ ε0 the trace variance term in will the
dominate computational complexity of SUPERCHAINTRACEGIBBS. In order to make a fair comparison
with the state of the art [42] we employ eq. (3) of lemma 2.1. Finally we use thm. 1.1 and conclude:

Corollary 2.6. Let α1 be as in lemma 2.5, τmax
.
= maxi τi and ε0

.
= (τprx/T ) ·(√

exp(∆Hmin)
Q +

√
Q

exp(∆Hmax)

)
· α1. When ε ≤ ε0, the number of Markov chain steps of

SUPERCHAINTRACEGIBBS is dominated by Õ(`τmax) .

PARALLELTRACEGIBBS For i = 1, 2, . . . , ` − 1, PARALLELTRACEGIBBS (alg. 2, right) runs
RELMEANEST(GH,βi , fβi,βi+1) and RELMEANEST(GH,βi , gβi,βi+1) independently. We show the com-
putational complexity of PARALLELTRACEGIBBS in thm. 2.7.

For i = 1, 2, . . . , `, assume τi is the true (unknown) relaxation time of GH,βi and Ti is a known bound
on it. For simplicity of presentation we use the following notations: relRi

.
= Range(fβi,βi+1)/µi +

Range(gβi−1,βi)/νi, where µi = E(fβi,βi+1) and νi = E(gβi,βi+1).

Theorem 2.7 (Efficiency of PARALLELTRACEGIBBS). With probability at least 1 − δ, it holds that
the total number m̂ of Markov chain steps taken by PARALLELTRACEGIBBS is upper-bounded by

Õ

(
log

(
`

δ

)∑̀
i=1

(
` · Ti · relRi

ε
+
`2

ε2
τi ·
(

ReltrvτiGH,βi
(fβi,βi+1) + ReltrvτiGH,βi

(gβi−1,βi)
)))

.

Furthermore, for all 1 ≤ i ≤ `, Range(fβi,βi+1)/µi ≤ `1/ log(n) and Range(gβi−1,βi)/νi ≤
`α0(i)/ logn, where α0(i) = (Hmax/2E[H(x)])− 1, for x ∼ πβi .

PARALLELTRACEGIBBS and SUPERCHAINTRACEGIBBS make different computational complexity
tradeoffs. PARALLELTRACEGIBBS is usually slower than SUPERCHAINTRACEGIBBS, because in each
iteration i = 1, 2, . . . , `, the mean estimator must acquire a higher-precision estimate so that all
estimators together achieve an ε-δ relative-error guarantee. Relaxation times (true values and their
upper-bounds) appear in a sum in the complexity of PARALLELTRACEGIBBS, whereas they appear
in a maximum in SUPERCHAINTRACEGIBBS (

∑`
i=1 τi vs. maxi=1,...,` τi). Furthermore, dominance

of the trace variance terms in both of these algorithms occur at different values of ε. A comparison
of the complexity of these algorithms, in the high-precision regime, with Kolmogorov’s TPA + PPE
(which uses MCMC as a black box) is presented in table 1.

3 Experimental Results

In this section we report our experiment results, comparing the performance of the two versions of
our doubly adaptive method (alg. 2), to the performance of the state of the art algorithm in [42].

Setup. We run the experiments using the single site Gibbs sampler (known also as the Glauber
dynamics) on two different factor graph models:

(A) The Ising model on 2D lattices. Having a 2-dimension lattice of size n× n, the Hamiltonian
is defined on n2 random variables having values ±1 and their dependency is represented by the
Hamiltonian: H(x) = −

∑
(i,j)∈E 1(x(i) = x(j)). We run the algorithms on lattices of sizes 2× 2,
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3 × 3, 4 × 4, and 6 × 6. For each lattice, the parameter β ≥ 0 is chosen below the critical inverse
temperature at which it undergoes a phase transition. We use known mixing time bounds for high
temperature Ising models [3] (see fig. 1 and A.6. of supplementary material).

(B) The logical voting model. For a parameter n , we have 2n + 1 random variables: the query
variable Q ∈ {−1, 1}, and the voter variables T1, T2, . . . , Tn and F1, F2, . . . , Fn all in {0, 1}. The
factors have 2n+ 1 weights, ω, ωTi , ωFi , i = 1, . . . , n. The Hamiltonian is:

H(Q,T, F ) = ωQmax
i
Ti − ωQmax

i
Fi +

n∑
i=1

ωTiTi +
n∑
i=1

ωFiFi , where ω, ωTi , ωFi ∈ [−1, 1]

The parameters are reported in fig. 2. We follow De Sa et al. [17] and use hierarchy width to derive
upper bounds on mixing times. To make a fair comparison, we always run the TPA algorithms
once, and with the parameters given in [42]. At each iteration of RELMEANEST, the sample size is
extended with geometric ratio 1.1 (see alg. 1 line 8). All code is available at https://github.com/
zysophia/Doubly_Adaptive_MCMC.

(a) β = .01, 3×3 lattice (b) β = .002, 6×6 lattice (c) relative errors

Figure 1: Comparison of sample complexity and precision 1
ε

on Ising models. See also the A.6. of the
supplementary material

Results: Our experiments demonstrate the practical advantages of our doubly adaptive method,
validating our theoretical analysis.

(1) We first compare the complexity of our algorithms to Kolmogorov’s algorithm. Our experiments
show the superiority of both versions of our methods on different models and various sets of
parameters. Figure 1 demonstrates the superiority of our methods on the Ising model for various
sets of parameters, and in figs. 2a and 2c for the voting model, when ε is fixed and Z(β) is varying
(fig. 2c), and when Z is fixed and ε is varying (fig. 2a). All of these hold while the precision of our
algorithms beats [42] as ε→ 0 (fig. 1c).

(2) To demonstrate the advantage of using the relative trace variance, in contrast to the relative
variance, we run both of our algorithms using a simpler mean estimator which only uses progressive
sampling, and we compare the results. This is done by setting T ← 1 in line 4 of RELMEANEST. In
Figure 2b, we show the effectiveness of trace averaging, since both SUPERCHAINTRACEGIBBS and
PARALLELTRACEGIBBS beat their simplified versions (T ← 1) after 1/ε passes a certain threshold.
This is consistent for different parameters of the voting model.

(3) Comparing the performance of SUPERCHAINTRACEGIBBS and PARALLELTRACEGIBBS, we
observe that in all of our experiments SUPERCHAINTRACEGIBBS has better performance than
PARALLELTRACEGIBBS. In fig. 2b, we show the trace variance term PARALLELTRACEGIBBS becomes
dominant earlier as 1/ε grows, thus it performs better in this perspective. This is consistent with our
theoretical findings, because the ranges of estimators in PARALLELTRACEGIBBS are smaller than the
ranges used in SUPERCHAINTRACEGIBBS.
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(a) Complexity vs. ε comparison
against TPA + PPE [42].

(b) Comparison of our algorithms
and the effect of trace variance.

(c) Complexity vs. Z(β);
ε = 0.025 comparison
against TPA + PPE [42].

Figure 2: Experiments on voting models. In (a) and (b) the parameters are β = 0.1, n = 3, ω = 0.9, ωT =
〈0.2, 0.5, 0.1〉 and ωF = −〈0.8, 0.2, 0.9〉. In (c), we have n = 5, and the weights and β are picked randomly
to generate models with various values of Z(β).

4 Conclusions: advantages and limitations of proposed algorithms

We develop a doubly-adaptive MCMC-based estimator for the partition function of Gibbs distributions,
which resolves a major impediment of prior methods that use MCMC as a black-box sampler. We
show, both theoretically and experimentally, that our method requires substantially fewer MCMC
steps than the state-of-the-art method. The better performance is due to several factors, which all
stem from the use of an adaptive MCMC mean estimator instead of a standard "black-box" MCMC
estimate. The complexity of the adaptive MCMC process depends on the (smaller) trace, rather than
stationary, relative variances, and on relaxation times instead of mixing times. It is also less sensitive
to weak upper-bounds on mixing and relaxation times.

In particular, Kolmogorov’s method requires Θ( /̀ε2) approximately independent samples, where ` is
the length of cooling schedule. This requires tight convergence (total variance distance of O(ε

2
/`)

from stationary) for each sample, which adds a multiplicative ln `
ε2 , with ` = Θ(lnQ lnHmax), to

its complexity (see column 3 of table 1 and [42], theorem 9). In contrast, our doubly adaptive method
only depends on relaxation times, which do not depend on ε.

Limitations. While significantly improving the state of the art, our methods suffer from a several
limitations. In SUPERCHAINTRACEGIBBS, the major limitation is the dependence on the relative
ranges of F and G, which can be large, especially when the Hamiltonian range is large. Another issue
is that the product chain’s mixing time is dominated by `max{τi}`i=1, as opposed to

∑`
i=1 τi. While

PARALLELTRACEGIBBS circumvents these issues by estimating each factor of the telescoping product
independently, it fails to beat SUPERCHAINTRACEGIBBS’s efficiency in general, due both to the union
bound and the higher-precision guarantees required for each subproblem. Improving performance
further will likely require new estimators with smaller ranges and relative trace variances.

Statement of Broader Impact. While probabilistic graphical models as other machine learning
methods that rely on MCMC estimations continue to grow in importance and popularity. But running
the MCMC to theoretical convergence guarantees is often prohibitively expensive, while running it
to apparent convergence is methodologically unsound, particularly in the modern context, where
public confidence in machine learning systems is continuously eroded by ethical, accuracy, and safety
failures. Our work attempts to bridge the gap between the definite, elegant and theoretically sound
analytic methods, and efficiency-focused practical utility, as we seek to reduce proof-burden, while
maintaining theoretical guarantees of accuracy, with adaptive methods that bound efficiency in terms
of (potentially unknown) convergence rate metrics and variances.
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and Eli Upfal are supported by NSF grant RI-1813444 and DARPA/AFRL grant FA8750. The authors
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