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Barto, 2018). Formally, a POMDP is defined by a tuple

(S,A,Z, T ,O, R, γ,H). S is the state space. A is the

action space. Z is the observation space. At each time

step t, the agent receives an observation ot ∈ Z following

the observation function O ∶ S → Z and selects an action

at ∈ A. The transition function T maps the action at and

the current state st to a distribution over the next state st+1,

i.e., T ∶ S ×A → ∆(S). The agent receives a real-valued

reward rt according to a reward function R ∶ S ×A → R.

The agent’s goal is to maximize the return ∑H

t=0 γ
t
rt, where

γ is the discount factor and H is the horizon.

In a queryable environment, in addition to observations rep-

resenting its surrounding, an agent also receives a response

from the knowledge source upon issuing a query. Formally,

the observation space Z = Zenv × Zq is composed of Zenv

and Zq, representing the agent’s surrounding and the re-

ponse to a query, respectively.

Similarly, at each step, the agent’s action space A = Aphy ∪

Aq is composed of the physical action space Aphy supported

by classical RL environments (e.g., navigational actions,

toggle, grasp) and the query action space Aq .

Response Space Zq and Query Action Space Aq: As a

controllable starting point for this research, we equip the

environments with a queryable oracle knowledge source.

Specifically, whenever receiving a sequence of tokens as

a query, the oracle replies with a sequence of tokens. To

consider the compositionality of language while reducing

the burden of precise natural language generation, we define

a template format for queries and responses. This design is

also compatible with our plan of extending the knowledge

source to more natural forms like databases.

A query is defined as a 3-tuple of <func, adj, noun>.

In this 3-tuple, func is a function word selected from words

like where’s, what’s and how’s, which indicates the

function of a query (e.g., inquire about an object’s loca-

tion or affordances). The combination of an adjective (adj)

and a noun enables to refer to a unique object within the

environment.

Given a query, the oracle replies with a sequence of tokens.

For this, the oracle has access to a set of “knowledge facts”

associated with a particular instantiation of the environment.

The knowledge facts are key-value pairs, where keys are

the aforementioned 3-tuple of <func, adj, noun> and

values are sequences of tokens. If a given query matches

a key in the set of knowledge facts, the oracle will return

the corresponding value. Otherwise, the oracle returns the

message I don’t know.

Crucially, the set of knowledge facts is much larger than

necessary and irrelevant information is, by design, accessi-

ble to the agent. For instance, when tasked to find Mary’s

toy, information about Tim and Tim’s toy is also available if

queried. Gathering irrelevant information may lead to confu-

sion and subsequent sub-optimal decisions. Moreover, some

tasks require multi-hop information gathering (e.g., Object

in Box), in which the agent must ask follow-up questions to

get all information needed to solve it.

Information Sufficiency: Practically, agents that can query

have two main advantages. First, for environments contain-

ing sufficient information to be solved via exhaustive explo-

ration, querying can provide a more natural and effective

way to gather information (e.g., reducing the policy length).

Second, for environments that only provide partial informa-

tion (e.g., an agent must recognize and avoid danger tiles by

trial-and-error, but danger tiles are randomly assigned per

episode), only querying will lead to successful completion

of the tasks.

To study both advantages, we augment BabyAI (Chevalier-

Boisvert et al., 2019) and TextWorld (Côté et al., 2018)

with a queryable knowledge source. We design tasks where

the environment contains sufficient information, but we

add knowledge facts which can help the agent to reduce

exploration if used adequately. In addition, we design other

tasks where agents can only succeed when they are able to

query. We provide details next.

2.2. Q-BabyAI

We first introduce Q-BabyAI, an extension of the BabyAI

environment (Chevalier-Boisvert et al., 2019). We devise

four level 1 tasks, namely Object in Box, Danger, Go to

Favorite and Open Door. In Fig. 2, we provide examples

of agents querying the knowledge source for each of the

level 1 tasks after receiving the goal instruction for that

episode. The four tasks permit to study the two advantages

mentioned above.

Specifically, both the Object in Box and Danger tasks can

only be solved 100% of the time when querying is used

to reveal the necessary knowledge — opening the wrong

box or stepping on the danger tile terminates the game. In

contrast, for the Go to Favorite and Open Door tasks, an

agent can exhaust the environment to accomplish the goals.

However, querying the knowledge source can greatly boost

the agent’s efficiency in both tasks. To prevent agents from

memorizing solutions (e.g., Mary’s toy is in the red box),

we randomly place objects and tiles in the environment, as

well as shuffle the entity names and colors in every episode.

For the Object in Box and Danger tasks, we use a single-

room setting to separate the difficulties of navigation and

querying. In the Go to Favorite and Open Door tasks, we

use a multi-room setting. It is worth noting that in the Open

Door task, only querying at specific locations (i.e., next to

doors) can result in meaningful answers.

Having the four level 1 tasks defined, we increase the diffi-
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tive head πadj(⋅∣hx) ∶ R
l
→ ∆(Vadj), and a noun head

πnoun(⋅∣hx) ∶ R
l
→ ∆(Vnoun). Here, ∆(X) represents

a distribution with support X , Aphy is the physical action

space, and Vfunc, Vadj, Vnoun are the function word, adjective,

and noun vocabulary spaces.

The switch head decides whether the agent executes a phys-

ical action or issues a query. Conceptually, the agent first

samples a value z according to πswitch(⋅∣hx). If z = 0, the

agent will sample a physical action aphy from πphy(⋅∣hx)
which is subsequently executed. In contrast, if z = 1, the

agent will issue the query [wfunc, wadj, wnoun] by sampling a

function word wfunc, an adjective wadj, and a noun wnoun in-

dependently from πfunc(⋅∣hx), πadj(⋅∣hx), and πnoun(⋅∣hx).
Note that the query action space Aq is large, which makes

RL training challenging. We provide detailed statistics in

Appendix A.

To alleviate issues due to the large action space, we adopt

a pointer network (See et al., 2017) to generate queries.

Specifically, the pointer network is restricted to ‘point’ to

words occurring in the notebook. This ensures that the

generated query uses words that are related to the already

gathered information (details in Sec. 3.2).

In addition, to deal with delayed and sparse rewards, we

propose an episodic exploration method which further in-

centivizes an agent to ask questions that are related to the

task at hand (details in Sec. 3.3).

3.1. Notebook

In the following, we discuss the notebook’s construction

and describe the computation of the encoding hs.

Notebook construction: Let F (for facts) denote the note-

book, which is a non-parametric memory. Formally, F is

a set of disjoint sets, i.e., F = {Ai}
∣F ∣−1
i=0 and Ai ∩ Aj =

∅,∀i ≠ j. For each set Ai, each element v ∈ Ai represents

either a response from the oracle or the task instruction.

At the beginning of each episode, the notebook F is ini-

tialized with a singleton A0 = {v0} that contains the task

instruction v0, i.e., F = {{v0}}. When an agent receives

a new response vi ≠ ∅, we first find all sets that contain

information related to vi in the notebook. Formally, we con-

struct an index set S that consists of the indices of related

sets, i.e., S = {j∣∃v ∈ Aj s.t. Sim(vi, v) ≥ α}, where

Sim(u, v) ∈ [0, 1] is a similarity function and α ∈ [0, 1]
is a threshold. We study both the uni-gram and bi-gram sim-

ilarity (Kondrak, 2005). If S is not empty, we combine all

the related sets and the new response vi to obtain a new set

Ak. Formally, Ak = ⋃j∈S Aj ∪ {vi}, where k = minj∈S j.

Then, all sets {Aj}j∈S are replaced with the new set Ak. If

the index set S is empty, we add Ak = {vi} to F , where k

is the next available index. Importantly, note that the task

instruction v0 is always part of the set A0.

Notebook encoding: To discard noisy information coming

from responses unrelated to the task at hand, the AFK agent

only considers the set A0 which contains the task instruc-

tion v0. We use a recurrent neural network fnote (Cho et al.,

2014) to encode each ‘note’ in A0, i.e., for each vi ∈ A0

(i ∈ {1, . . . , ∣A0∣}), we have hi = fnote(vi) ∈ R
∣vi∣×l,

where ∣vi∣ is the number of words in vi and l is the hidden

dimension. To further encode the instruction related notes

(i.e., A0) as a whole, we use a Deep Set model fset (Za-

heer et al., 2017), i.e., hs = fset([h1, . . . , h∣A0∣]) ∈ R
l
,

where hs is the resulting encoding. In addition, the input

observation o
env

is encoded via a neural network fobs, i.e.,

ho = fobs(o
env

) ∈ R
l
, where ho is the resulting observation

encoding. An aggregator module is used to combine ho and

hs, i.e., hx = fatt(ho, hs) ∈ R
l
.

3.2. Pointer Mechanism for Language Generation

To address the challenge of a combinatorially growing action

space, we develop a pointer mechanism for the policies πadj

and πnoun. Concretely, the pointer mechanism restricts the

AFK agent queries to use only the words appearing in the

set A0.

We achieve this by first applying a mask before computing

the policy distributions πadj and πnoun, i.e., πadj and πnoun

only have non-zero probability for adjectives and nouns in

the instruction related set of notes A0. We use the generation

process of the noun as an example. Let mnoun denote the

number of nouns in A0, and let hw ∈ R
mnoun×l denote the

word encodings of all nouns in A0. Using attention queries

q ∈ R
l

and keys k ∈ R
mnoun×l such that

q = hx ⋅Wq, and k = hw ⋅Wk, (1)

with learnable parameters Wq,Wk ∈ R
l×l

, we compute the

attention enoun over all nouns in A0 as

enoun = softmax(q ⋅ k
T
) ∈ R

mnoun . (2)

A distribution over the noun vocabulary, i.e., Vnoun, is then

constructed from enoun. Specifically, for each word w ∈

Vnoun, we have πnoun(w) = ∑mnoun

i=1 e
i
nounI[d(i) = w], where

d(i) maps the index i to the corresponding word in A0 and

e
i
noun represents the i-th element of enoun. I is the indicator

function. The pointer mechanism for πadj is constructed

similarly. We defer details to Appendix C.

3.3. Episodic Exploration

To deal with delayed and sparse rewards, inspired by Savi-

nov et al. (2019), we develop an episodic exploration mech-

anism to encourage the agent to ask questions related to the

task at hand.
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Tasks No Query
Query

Baseline
AFK (Ours)

Lv. 1

♣ 50.5±2.0 49.8±1.2 100.0±0.0
♠ 68.3±2.4 73.8±1.2 100.0±0.0
♦ 98.9±0.8 99.3±0.3 100.0±0.0
♥ 99.7±0.3 85.3±22.3 100.0±0.0

Lv. 2

♣♠ 0.0±0.0 0.0±0.0 90.3±1.8
♣♦ 0.1±0.1 0.6±0.5 94.3±2.3
♣♥ 0.0±0.0 0.0±0.0 99.0±0.4
♠♦ 0.4±0.1 0.2±0.2 100.0±0.0
♠♥ 0.0±0.0 0.0±0.0 0.0±0.0
♦♥ 84.1±0.3 94.0±3.3 98.7±0.2

Lv. 3

♣♠♦ 0.0±0.0 0.0±0.0 0.15±0.2
♣♠♥ 0.0±0.0 0.0±0.0 0.0±0.0
♣♦♥ 0.0±0.0 0.0±0.0 2.1±0.8
♠♦♥ 4.3±1.0 4.4±0.8 4.8±0.9

Lv. 4 ♣♠♦♥ 0.0±0.0 0.0±0.0 0.0±0.1

Table 1. Success rate (%) on Q-BabyAI. ♣: Object in Box, ♠:

Danger, ♦: Go to Favorite, ♥: Open Door.

Tasks No Query Query Baseline AFK (Ours)

♦ 30.2±1.5 26.7±1.5 16.8±6.7
♥ 26.2±0.9 36.8±1.0 20.6±0.2

Table 2. Number of steps required to solve a task. ♦: Go to Fa-

vorite, ♥: Open Door.

At each time step, the agent receives reward r = r
env

+ b,

where r
env

is the external reward and b is the bonus reward.

A positive bonus reward b is obtained whenever a query’s

response vi ≠ ∅ expands the agent’s knowledge about the

task, i.e., A0. The reward is only given for new information.

Formally,

b = β(I[(vi ∈ A0) ∧ (vi ∉ A
′

0)]), (3)

where vi denotes a new response returned by the oracle, and

A
′

0 denotes the set from the previous game step containing

the task instruction v0. β > 0 is a scaling factor and I is the

indicator function.

4. Experimental Results

In this section, we present the experimental setup, evaluation

protocol, and our results on Q-BabyAI and Q-TextWorld.

Experimental Setup: We adopt the publicly available

BabyAI and TextWorld code released by the authors
1,2

as

our non-query baseline system, denoted as No Query. We

consider a vanilla query agent (Kovac et al., 2021) (Query

Baseline), in which query heads are added to the baseline

agent to generate language queries. We refer to the pro-

1
BabyAI: github:mila-iqia/babyai

2
TextWorld: github:xingdi-eric-yuan/qait public

Task No Query Query Baseline AFK (Ours)

Take 1 75.1±4.1 73.5±5.8 85.1±2.9
Take 2 24.0±6.6 13.7±8.5 61.9±6.5

Take 1 Cut 24.6±1.0 22.9±3.6 43.5±15.9
Take 2 Cut 0.0±0.0 0.0±0.0 0.0±0.0

Table 3. Success rate (%) on Q-TextWorld.

Task
AFK w/o
Notebook

AFK w/o
Pointer

Mechanism

AFK w/o
Episodic

Exploration

AFK
(Ours)

♣ 50.0±0.8 49.4±0.7 49.8±0.7 100.0±0.0
♠ 99.1±0.2 100.0±0.0 93.8±0.7 100.0±0.0
♦ 99.2±0.4 99.7±0.2 99.3±0.2 100.0±0.0
♥ 85.1±1.0 100.0±0.0 77.8±0.7 100.0±0.0
♣♥ 48.5±1.9 90.5±1.4 50.0±1.8 99.0±0.4

Mean 76.4 87.9 74.1 99.8

Table 4. Ablation Study. Success rate (%) on Q-BabyAI. ♣: Ob-

ject in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.

posed agent via AFK, which is the agent with 1) notebook,

2) pointer mechanism, and 3) episodic exploration.

We follow the original training protocols used in BabyAI

and TextWorld. Specifically, we train all agents in Q-

BabyAI environments with proximal policy optimization

(PPO) (Schulman et al., 2017) for 20M - 50M environment

steps, depending on the tasks’ difficulty. For Q-TextWorld

agents, we use the Deep Q-Network (Mnih et al., 2013; Hes-

sel et al., 2018) and the agents are trained for 500K episodes.

We provide implementation details in Appendix C.

Evaluation Protocol: In Q-BabyAI, the policy is evalu-

ated in an independent evaluation environment every 50

model updates and each evaluation consists of 500 evalu-

ation episodes. To ensure a fair and rigorous evaluation,

we follow the evaluation protocols suggested by Hender-

son et al. (2017); Colas et al. (2018) and report the ‘final

metric’. The final metric is the average evaluation success

rate of the last ten models in the training process, i.e., av-

erage success rate of the last 5000 evaluation episodes. In

Q-TextWorld, we report the final running average training

scores with a window size of 1000. Note, in each episode,

entities are randomly spawned preventing agents from mem-

orizing training games. All experiments are repeated five

times with different random seeds.

Q-BabyAI Results: We first compare our AFK agent with

baselines on all level 1 and level 2 tasks of Q-BabyAI. The

final metrics and standard deviation of average evaluation

success rate are reported in Tab. 1. As shown in Tab. 1, for

level 1 and level 2 tasks, the AFK agent achieves signifi-

cantly higher success rates than the baselines, particularly

in Object in Box (♣) and Danger (♠) where information
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the target tasks (Tab. 1).

Query Quality: To gain more insights, we study the quality

of the queries issued by an agent. Each episode of our tasks

is associated with a set of queries Qt which are useful for

solving the task. If an agent issues a query q ∈ Qt, the

query is considered ‘good.’ We refer to the number of good

queries (not counting duplicates) and total number of queries

(counting duplicates) generated by the agent in one episode

as ng and ntot. We report the average precision, recall, and

F1 score (Sasaki, 2007) of the generated queries over 200

evaluation episodes. Specifically, precision =
ng

ntot
, recall =

ng

∣Qt∣
, and F1 score is the harmonic mean of precision and

recall. As shown in Tab. 6, the AFK agent achieves high F1

scores across various tasks. In contrast, the Query Baseline

converges to a policy that does not issue any query and thus

has zero precision and recall in all tasks. This demonstrates

AFK’s ability to learn to ask relevant questions.

5. Related Work

Information Seeking Agents: In recent years a host of

works discussed building of information seeking agents.

Nguyen & Daume (2019) propose to leverage an oracle

in 3D navigation environments. The oracle is activated in

response to a special signal from the agent and provides a

language instruction describing a subtask the agent could

follow. Kovac et al. (2021) design grid-world tasks similar

to ours, but focus on the social interaction perspective. For

instance, some agents are required to emulate their social

peers’ behavior to successfully communicate with them.

Potash & Suleman (2019) propose a game setting which

requires agents to ask sequences of questions efficiently to

guess the target sentence from a set of candidates. Yuan

(2021); Nakano et al. (2021) propose agents that can gen-

erate sequences of executable commands (e.g., Ctrl+F a

token) to navigate through partially observable text environ-

ments for information gathering. The line of research on

curiosity-driven exploration and intrinsic motivation shares

the same overall goal to seek information (Oudeyer et al.,

2007; Oudeyer & Kaplan, 2007). A subset of them, count-

based exploration methods, count the visit of observations or

states and encourage agents to gather more information from

rarely experienced states (Bellemare et al., 2016; Ostrovski

et al., 2017; Savinov et al., 2019; Liu et al., 2021). Our

work also loosely relates to the active learning paradigm,

where a system selects training examples wisely so that it

achieves better model performance, while also consuming

fewer training examples (Cohn et al., 1994; Bachman et al.,

2017; Fang et al., 2017). Different from existing work, we

aim to study explicit querying behavior using language. We

design tasks where querying behavior can either greatly

improve efficiency or is needed to succeed.

In a concurrent work, Nguyen et al. (2022) propose a frame-

work tailored to 3D navigation environments: agents can

query an oracle to obtain useful information (e.g., current

state, current goal and subgoal). They show that navigation

agents can take advantage of an assistance-requesting policy

and improve navigation in unseen environments.

Reinforcement Learning with External Knowledge:

Training reinforcement learning agents which use external

knowledge sources also received attention recently (He et al.,

2017; Bougie & Ichise, 2017; Kimura et al., 2021; Argerich

et al., 2020; Zhong et al., 2020). Various forms of external

knowledge sources are considered. He et al. (2017) consider

a set of documents as external knowledge source. An agent

needs to learn to read the documents to solve a task. Bougie

& Ichise (2017) consider environment information obtained

by an object detector as external knowledge. They show

that the additional information form the detector enables

agents to learn faster. Kimura et al. (2021) consider a set

of detailed instructions as knowledge source. They propose

an architecture to aggregate the given external knowledge

with the RL model. The aforementioned works assume

the external knowledge is given and the agent doesn’t need

to learn to query. In contrast, we consider a task-agnostic

interactive knowledge source. In our Q-BabyAI and Q-

TextWorld environments, an agent must learn to actively

execute meaningful queries in language to solve a task.

Question Generation and Information Retrieval: Ques-

tion generation is a thriving direction at the intersection of

multiple areas like natural language processing and infor-

mation retrieval. In the machine reading comprehension

literature, Du et al. (2017); Yuan et al. (2017); Jain et al.

(2018) propose to reverse question answering: given a docu-

ment and a phrase, a model is required to generate a ques-

tion. The question can be answered by the phrase using

the document as context. In later work, Scialom & Staiano

(2020) define curiosity-driven question generation. Query

reformulation is a technique which aims to obtain better an-

swers from the knowledge source (e.g., a search engine) by

training agents to modify questions (Nogueira & Cho, 2017;

Buck et al., 2018). Another loosely related area is multi-hop

retrieval (Das et al., 2018; Xiong et al., 2021; Feldman &

El-Yaniv, 2019), where a large scale supporting knowledge

source is involved and systems must gather information in

a sequential manner. Inspired by these works, we leverage

properties of language such as compositionality, to help

form a powerful query representation that is manageable by

RL training.

6. Limitations and Future Work

In this section, we conclude by discussing limitations of this

work and future directions.
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Environments: As an initial attempt to study agents that

learn to query knowledge sources with language, we settled

on oracle-based knowledge sources. This ensures better

experimental controllability and reproducibility. However,

it can be improved in multiple directions.

1. Beyond the use of hand-crafted key-value pairs as the

knowledge source, a set of more realistic knowledge

sources can be considered. For instance, databases

can be queried using similar template language (Zhong

et al., 2017); an information retrieval system or a pre-

trained question answering system can be used to ex-

tract knowledge from large scale language data (Lewis

et al., 2021; Borgeaud et al., 2021); a search engine is

naturally queryable (Nakano et al., 2021); pre-trained

language models can be queried via prompt engineer-

ing (Huang et al., 2022); humans can also be a great

knowledge source (Kovac et al., 2021).

2. The query grammar can be extended to be more natural

and informative (e.g., Where’s Mary’s toy and

where can I find it?).

3. We plan to include tasks that require non-linear rea-

soning. This will further decrease agents’ incentive

to memorize an optimal trajectory, and presumably

increase generalizability.

Agent design: For agents, future directions include:

1. When the state space is large (e.g., in Q-TextWorld),

agents sometimes keep on querying different question

to exploit the exploration bonus. This demands a better

reward assignment strategy, since agents performing in

more complex environments may encounter this issue

too.

2. It is worth exploring other structured knowledge rep-

resentations (Ammanabrolu & Hausknecht, 2020) and

parametric memories (Weston et al., 2015; Munkhdalai

et al., 2019) beyond the notebook we used.

3. Asking questions essentially serves to reduce entropy.

One could further use exploration strategies that maxi-

mize information gain (Houthooft et al., 2016).

Overall, we are excited by the challenges and opportuni-

ties posed by agents that are able to learn to query external

knowledge while acting in their environments. We strive

to call attention from researchers for the development of

agents capable of querying external knowledge sources —

we believe this is a strong and natural skill. We make an ini-

tial effort towards this goal, which hopefully can be proven

to be valuable and helpful to the community.
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Zhong, V., Rocktäschel, T., and Grefenstette, E. Rtfm:

Generalising to novel environment dynamics via reading.

In ICLR, 2020.





Asking for Knowledge (AFK)

Tasks ∣Qt∣ # of rooms room size
Early

Terminate

Lv. 1

♣ 3 1 9×9 True

♠ 1 1 7×7 True

♦ 2 9 5×5 False

♥ 1 2 7×7 False

Lv. 2

♣♠ 5 2 7×7 True

♣♦ 4 9 5×5 True

♣♥ 5 2 7×7 True

♠♦ 3 2 7×7 True

♠♥ 2 2 7×7 True

♦♥ 4 9 5×5 False

Lv. 3

♣♠♦ 5 2 7×7 True

♣♠♥ 6 3 7×7 True

♣♦♥ 5 9 5×5 True

♠♦♥ 4 3 7×7 True

Lv. 4 ♣♠♦♥ 7 9 7×7 True

Table 8. Statistics of each task in Q-BabyAI. ♣: Object in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.

Instruction: You find yourself at friend’s house and you are both hungry!

Collect some parsley to prepare a delicious meal. Ask Charlie to know

where to find each ingredient and for the recipe directions.

Description: You are in a kitchen. A messy kind of place.

You see a closed fridge. You can make out an oven. Look over there!

a counter. The counter is wooden. However, the counter, like an empty

counter, has nothing on it. Oh! Why couldn’t there just be stuff on it? You

can see a stove. The stove appears to be empty. You see a griller. Is this

what you came to TextWorld for? This... griller?

There is a cookbook on the floor.

Inventory: You are carrying: a knife.

Notebook: {”You find yourself . . . for the recipe directions.”}

Action 1: ask Charlie where’s the parsley

Feedback: The parsley is in the oven.

Notebook: {”You find yourself . . . for the recipe directions.”, ”The parsley

is in the oven.”}

Action 2: open oven

Feedback: Opened.

Action 3: take parsley

Feedback: Taken.

Action 4: ask Charlie how to cut the parsley

Feedback: The parsley needs to be sliced. Use a knife to cut it.

Notebook: {”You find yourself . . . for the recipe directions.”, ”The parsley

is in the oven.”, ”The parsley needs to be sliced. Use a knife to cut it.”}

Action 5: slice parsley

Feedback: Sliced.

Done after 5 steps. Score 1/1.

Figure 5. An excerpt from a Q-TextWorld game.

visible to the agent right from the start (e.g., on the table), or

hidden inside some container that needs to be opened first

(e.g., in the fridge). The player can ask the oracle where it

can find a particular object (e.g., Ask Charlie
3
where’s

hot pepper?). In return, the oracle will indicate where

the object can be found (e.g., Hot pepper is in the

fridge.).

Take [1/2] + Cut: This task extends Take [1/2] as the ingre-

dients also need to be cut in the right way (i.e., chopped,

sliced, or diced). Each cutting type is achieved by a

different action command (i.e., chop X, slice X, or dice

X) while the player is holding a knife in their inventory.

The player can also ask the oracle how to process a par-

ticular ingredient (e.g., Ask Charlie how to cut the

hot pepper?
4
). In return, the oracle will indicate which

type of cutting is needed (e.g., Hot pepper needs to

be sliced, use a knife to cut it). Note, in the

reported games, the player always start with a kitchen knife

in their inventory.

B. Modeling Details

In this section, we provide detailed information regarding

our agents. In Appendix B.1, we describe our agent used for

the Q-BabyAI environments. In Appendix B.2, we describe

our agent used for the Q-TextWorld environments.

3
In Q-TextWorld, the oracle is named Charlie.

4
Nonessential words can be omitted, e.g., Ask Charlie

how hot pepper?
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General information

Word vocabulary size 835
# Function word (∣Vfunc∣) 7
# Adjective (∣Vadj∣) 38
# Noun (∣Vnoun∣) 45
# holders 6
# ingredients 42
# cuttable ingredients 26

Take 1

# recipes 42
# configurations 1242
Avg. instruction length 33.75 ± 0.44
Avg. walkthrough length 1.49 ± 0.50
Avg. nb. entities 8.63 ± 0.96
Avg. observation length 150.94 ± 65.43
Avg. valid actions per step 4.90 ± 1.29

Take 2

# recipes 1722
# configurations 1332156
Avg. instruction length 36.48 ± 0.60
Avg. walkthrough length 3.01 ± 0.70
Avg. nb. entities 10.69 ± 1.22
Avg. observation length 141.76 ± 57.56
Avg. valid actions per step 5.83 ± 1.65

Take 1 Cut

# recipes 17576
# configurations 1026
Avg. instruction length 33.80 ± 0.40
Avg. walkthrough length 2.50 ± 0.50
Avg. nb. entities 9.37 ± 0.84
Avg. observation length 143.00 ± 59.30
Avg. valid actions per step 5.45 ± 1.70

Take 2 Cut

# recipes 274625000
# configurations 859620
Avg. instruction length 36.61 ± 0.55
Avg. walkthrough length 5.00 ± 0.71
Avg. nb. entities 11.67 ± 1.13
Avg. observation length 138.59 ± 50.04
Avg. valid actions per step 7.73 ± 2.54

Table 9. Statistics of the Q-TextWorld environment.

B.1. AFK— Q-BabyAI

Observation Encoder (fobs): Following

BabyAI (Chevalier-Boisvert et al., 2019), the envi-

ronment observation o
env

of Q-BabyAI is a 7 × 7 × 4

symbolic observation that contains a partial and local

egocentric view of the environment and the direction of

the agent. To encode o
env

, we use a convolutional neural

network (CNN). Following Chevalier-Boisvert et al. (2019),

the observation encoder consists of three convolutional

layers. The first convolutional layer has 128 filters of size

8 × 8 and stride 8. The second and third convolutional

layers have 128 filters of size 3 × 3 and stride 1. Batch

normalization and ReLU unit are applied to the output

of each layer. At the end, a 2D pooling layer with filter

size 2 × 2 is applied to obtain the representation ho of 256

dimensions.

Word Encoder (fnote): Following Chevalier-Boisvert et al.

(2019), we use a gated recurrent unit (GRU) (Chung et al.,

2014) to perform word encoding. Specifically, for each

vi ∈ A0, we have hi = fgru(vi) ∈ R
∣vi∣×l, where ∣vi∣ is

the number of words in vi and l = 128 is the encoding

dimension.

Aggregator (fatt): Following the No Query base-

line (Chevalier-Boisvert et al., 2019), the aggregator consists

of FiLM (Perez et al., 2018) modules, fFiLM, followed by

a long short term memory (LSTM) fLSTM (Hochreiter &

Schmidhuber, 1997). That is, fatt = fLSTM ◦ fFiLM. Specifi-

cally, we stack two FiLM modules. Each FiLM module has

128 filters with size 3 × 3 and the output dimension is 128.

The LSTM has 128 units.

Physical Action and Query Heads

(πswitch, πphy, πfun, πadj, πnoun): The switch head πswitch,

physical action head πphy, and function word head πfun are

two-layer MLPs with 64 units in each layer. The output

dimension of πswitch, πphy, πfun are 2, 7, 2. πadj and πnoun

are single-head pointer networks (Sec. 3.2) with hidden

dimension l = 128.

B.2. AFK— Q-TextWorld

Text Encoder (fobs, fnote): Due to the nature of the Q-

TextWorld environment, where all inputs are in pure text, we

share the two encoders (i.e., fobs and fnote) in our text agent.

We use a transformer-based text encoder, which consists

of an embedding layer and a transformer block (Vaswani

et al., 2017). Specifically, we tokenize an input sentence

(either a text observation or an entry in the notebook) with

the spaCy tokenizer.
5

We convert the sequence of tokens

into 128-dimensional embeddings, the embedding matrix is

initialized randomly.

The transformer block consists of a stack of 4 convolutional

layers, a self-attention layer, and a 2-layer MLP with a

ReLU non-linear activation function in between. Within the

block, each convolutional layer has 128 filters, with a kernel

size of 7. The self-attention layers use a block hidden size

of 128, with 4 attention heads. Layer normalization (Ba

et al., 2016) is applied after each layer inside the block. We

merge positional embeddings into each block’s input.

Given an input o ∈ R
∣o∣

, where ∣o∣ denotes the number of

tokens in o, the encoder produces a representation ho ∈

R
∣o∣×H

, with H = 128 the hidden size.

5
https://spacy.io/
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In practice, we use mini-batches to parallelize the training.

Following standard NLP methods, we use special padding

tokens when the number of tokens within a batch are dif-

ferent, we use masks to prevent the model from taking the

padding tokens into computation. A text input o will be

associated with a mask mo ∈ R
∣o∣

.

Note for all the three agent variants (i.e., No Query, Query

Baseline and AFK), we use the concatenation of [feedback,

description, inventory] as the input to fobs. See examples of

feedback, description and inventory text in Fig. 5.

Aggregator (fatt): To aggregate two input encodings P ∈

R
∣P ∣×H

and Q ∈ R
∣Q∣×H

, we use the standard multi-head

attention mechanism (Vaswani et al., 2017). Specifically, we

use P as the query, Q as the key and value. This results in an

output PQ ∈ R
∣P ∣×H

, where at every time step i ∈ [0, ∣P ∣),

P
i
Q is the weighted sum of Q, the weight is the attention

of P
i

on Q. We refer readers to Vaswani et al. (2017) for

detailed information.

We apply a residual connection on top of the multi-head

attention mechanism in order to maintain the original infor-

mation contained in P . Specifically,

hPQ = Tanh(Linear([PQ;P ])), (4)

where hPQ ∈ R
∣P ∣×H

, brackets [⋅; ⋅] denote vector con-

catenation.

We denote the above attention layer as

hPQ = Attention(P,Q). (5)

Using two of such layers (without sharing parameters), we

aggregate three inputs: hobs ∈ R
∣obs∣×H

, htask ∈ R
∣task∣×H

and hs ∈ R
∣note∣×H

, where ∣obs∣, ∣task∣ and ∣note∣ denote

the number of tokens in a text observation, the number of

tokens in the instruction, and the number of nodes in the

notebook:

hobs,task = Attention(hobs, htask),

hx = Attention(hobs,task, hs).
(6)

Here, hobs,task ∈ R
∣obs∣×H

, hx ∈ R
∣obs∣×H

.

Action Generator (πfunc, πadj, πnoun): In Q-TextWorld, all

actions follow the same format of <func, adj, noun>.

Therefore, the query action space Aq and the physical action

space Aphy are shared (i.e., the vocabularies are shared). We

use a three-head module to generate three vectors. Their

sizes correspond to the function word, adjective, and noun

vocabularies. The generated vectors are used to compute an

overall Q-value.

Taking the aggregated representation hx ∈ R
∣obs∣×H

as in-

put, we first compute its masked average, using the mask of

the text observation. This results in hs ∈ R
H

.

Specifically, the action generator consists of four multi-layer

perceptrons (MLPs):

hshared = ReLU(Linearshared(hs)),

Qfunc = Linearfunc(hshared),

Qadj = Linearadj(hshared),

Qnoun = Linearnoun(hshared).

(7)

Here, Qfunc ∈ R
∣func∣

, Qadj ∈ R
∣adj∣

, Qnoun ∈ R
∣noun∣

. ∣func∣,
∣adj∣, and ∣noun∣ denote the vocabulary size of function

words, adjectives, and nouns.

In order to alleviate the difficulties caused by a large action

space, similar to the pointer mechanism in the Q-BabyAI

agent, we apply masks over vocabularies when sampling

actions. In the masks, only tokens appearing in the current

notebook are labeled as 1, i.e., the text agent only performs

physical interaction with objects noted in its notebook. It

also only asks questions about objects it has heard of.

Finally, we compute the Q-value of an action <u, v, w>:

Q<u,v,w> = (Qu +Qv +Qw)/3, (8)

where u, v and w are tokens in the function word, adjective,

and noun vocabulary.

C. Implementation Details

In this section, we provide implementation and training

details of our agents. In Appendix C.1, we provide im-

plementation details for our agent used for the Q-BabyAI

environments. In Appendix C.2, we provide implementation

details for our agent used for the Q-TextWorld environments.

C.1. AFK— Q-BabyAI

We closely follow the training procedure of the publicly

available code of the BabyAI No Query agent (Chevalier-

Boisvert et al., 2019). We train our AFK and all base-

lines with PPO (Schulman et al., 2017). Specifically,

we use the Adam (Kingma & Ba, 2015) optimizer with

learning rate 0.0001. We update the model every 2560

environment steps. The batch size is 1280. The PPO

epoch is 4 and the discount factor is 0.99. We use 64

parallel processes for collecting data from the environ-

ment. The scaling factor β of the episodic exploration

bonus is set to 0.1 for all experiments. For all experi-

ments, we study uni-gram and bi-gram similarity mod-

els and report the better results. We tuned the episodic-

exploration scaling factor β ∈ {0.001, 0.01, 0.1, 0.5}, hid-

den size of the pointer network l ∈ {32, 64, 128, 256},

learning rate ∈ {10
−5
, 10

−4
, 10

−3
}, and similarity function

∈ {uni-gram, bi-gram}. We train all agents with 5 different

random seeds: [24, 42, 123, 321, 3407].
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No Query Query Baseline AFK (Ours)

Tasks Succ.(%) Eps. Len. Succ.(%) Eps. Len. Succ.(%) Eps. Len.

Lv. 1

♣ 50.5±0.6 5.9±0.1 49.8±1.1 6.0±0.1 100.0±0.0 10.8±0.1

♠ 68.3±0.8 8.2±0.0 73.8±0.9 8.3±0.1 100.0±0.0 10.4±0.0

♦ 98.9±0.4 30.2±1.5 99.3±0.2 26.7±1.5 100.0±0.0 16.8±6.7

♥ 99.7±0.2 26.2±0.9 85.3±1.1 36.8±1.0 100.0±0.0 20.6±0.2

Lv. 2

♣♠ 0.0±0.0 43.3±0.7 0.0±0.0 44.1±0.6 90.3±1.8 15.5±0.3

♣♦ 0.1±0.1 224.8±0.4 0.6±0.5 224.3±0.5 94.3±2.3 18.8±0.3

♣♥ 0.0±0.0 98.0±0.0 0.0±0.0 98.0±0.0 99.0±0.4 32.3±0.6

♠♦ 0.4±0.1 90.8±1.3 0.2±0.2 91.4±1.1 100.0±0.0 14.5±0.0

♠♥ 0.0±0.0 76.8±2.1 0.0±0.0 79.5±1.7 0.0±0.0 79.0±0.9

♦♥ 10.8±1.6 202.9±4.0 10.2±2.1 203.2±5.1 98.7±0.2 66.9±3.2

Lv. 3

♣♠♦ 0.0±0.0 91.8±1.1 0.0±0.0 92.2±0.6 0.15±0.2 85.8±1.4

♣♠♥ 0.0±0.0 93.9±3.4 0.0±0.0 102.5±3.5 0.0±0.0 109.4±2.3

♣♦♥ 0.0±0.0 225.0±0.0 0.0±0.0 225.0±0.0 2.1±0.8 220.9±1.1

♠♦♥ 4.3±1.0 99.3±2.9 4.4±0.8 97.7±3.0 4.8±0.9 105.0±2.0

Lv. 4 ♣♠♦♥ 0.0±0.0 96.6±8.1 0.0±0.0 150.5±7.5 0.0±0.1 177.2±9.2

Table 10. Evaluation success rate and episode length on Q-BabyAI. ♣: Object in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.










