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Abstract

We consider the problem of multiway clus-
tering in the presence of unknown degree
heterogeneity. Such data problems arise
commonly in applications such as recom-
mendation system, neuroimaging, commu-
nity detection, and hypergraph partitions
in social networks. The allowance of de-
gree heterogeneity provides great flexibility
in clustering models, but the extra com-
plexity poses significant challenges in both
statistics and computation. Here, we de-
velop a degree-corrected tensor block model
with estimation accuracy guarantees. We
present the phase transition of clustering
performance based on the notion of an-
gle separability, and we characterize three
signal-to-noise regimes corresponding to dif-
ferent statistical-computational behaviors.
In particular, we demonstrate that an intrin-
sic statistical-to-computational gap emerges
only for tensors of order three or greater.
Further, we develop an efficient polynomial-
time algorithm that provably achieves exact
clustering under mild signal conditions. The
efficacy of our procedure is demonstrated
through both simulations and analyses of
Peru Legislation dataset.

1 INTRODUCTION

Multiway arrays have been widely collected in var-
ious fields including social networks (Anandkumar
et al., 2014), neuroscience (Wang et al., 2017), and
computer science (Koniusz and Cherian, 2016). Ten-
sors effectively represent the multiway data and
serve as the foundation in higher-order data anal-
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ysis. One data example is from multi-tissue multi-
individual gene expression study (Wang et al., 2019;
Hore et al., 2016), where the data tensor consists of
expression measurements indexed by (gene, individ-
ual, tissue) triplets. Another example is hypergraph
network (Ghoshdastidar and Dukkipati, 2017; Ghosh-
dastidar et al., 2017; Ahn et al., 2019; Ke et al., 2019)
in social science. A K-uniform hypergraph can be
naturally represented as an order-K tensor, where
each entry indicates the presence of K-way hyper-
edge among nodes (a.k.a. entities). In both examples,
identifying the similarity among tensor entities is im-
portant for scientific discovery.

We study the problem of multiway clustering based
on a data tensor. The goal of multiway clustering
is to identify a checkerboard structure from a noisy
data tensor. Figure 1 illustrates the noisy tensor and
the underlying checkerboard structures discovered
by multiway clustering methods. In the hypergraph
example, the multiway clustering aims to identify
the underlying block partition of nodes based on
their higher-order connectivities; therefore, we also
refer to the clustering as higher-order clustering. The
most common model for higher-order clustering is
called tensor block model (TBM) (Wang and Zeng,
2019), which extends the usual matrix stochastic
block model (Abbe, 2017) to tensors. Matrix analysis
tools, however, are sub-optimal for higher-order clus-
tering. Developing tensor tools for solving block mod-
els has received increased interest recently (Wang and
Zeng, 2019; Chi et al., 2020; Han et al., 2020).

Classical tensor block model suffers from drawbacks
to model real world data in spite of the popularity.
The key underlying assumption of block model is that
all nodes in the same community are exchangeable;
i.e., the nodes have no individual-specific parame-
ters apart from the community-specific parameters.
However, the exchangeability assumption is often
non-realistic. Each node may contribute to the data
variation by its own multiplicative effect. We call the
unequal node-specific effects the degree heterogeneity.
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Figure 1: Examples for order-3 TBM with and without
degree correction. Both TBM and dTBM have four
communities on each mode, while dTBM allows a richer
structure with degree heterogeneity.

Such degree heterogeneity appears commonly in so-
cial networks. Ignoring the degree heterogeneity may
seriously mislead the clustering results. For example,
regular block model fails to model the member affilia-
tion in Karate Club network (Bickel and Chen, 2009)
without addressing degree heterogeneity.

The degree-corrected tensor block model (dTBM) has
been proposed recently to account for the degree het-
erogeneity (Ke et al., 2019). The dTBM combines a
higher-order checkerboard structure with degree pa-
rameter θ = (θ(1), . . . ,θ(p))T to allow heterogeneity
among p nodes. Figure 1 compares the underlying
structures of TBM and dTBM with the same number
of communities. The dTBM allows varying values
within the same community, thereby allowing a richer
structure. To solve dTBM, we project clustering ob-
jects to a unit sphere and perform iterative clustering
based on angle similarity. We refer to the algorithm
as the spherical clustering; detailed procedures are
in Section 4. The spherical clustering avoids the esti-
mation of nuisance degree heterogeneity. The usage
of angle similarity brings new challenges to the theo-
retical results, and we develop new polar-coordinate
based techniques in the proofs.

Our Contributions. The primary goal of this pa-
per is to provide both statistical and computational
guarantees for dTBM. Our main contributions are
summarized below.

• We develop a general dTBM and establish the
identifiability for the uniqueness of clustering using
the notion of angle separability.

• We present the phase transition of clustering perfor-
mance with respect to three different statistical and
computational behaviors. We characterize, for the
first time, the critical signal-to-noise (SNR) thresh-

olds in dTBMs, revealing the intrinsic distinctions
among (vector) one-dimensional clustering, (matrix)
biclustering, and (tensor) higher-order clustering.
Specific SNR thresholds and algorithm behaviors
are depicted in Figure 2.

• We provide an angle-based algorithm that achieves
exact clustering in polynomial time under mild con-
ditions. Simulation and data studies demonstrate
the outperformance of our algorithm compared with
existing higher-order clustering algorithms.

The last two contributions, to our best knowledge,
are new to the literature of dTBMs.

Related Work. Our work is closely related to but
also distinct from several lines of existing research.
Table 1 summarizes the most relevant models.

Block model. Block models such as stochastic block
model (SBM) and degree-corrected SBM have been
widely used for matrix clustering problems. See the
review paper (Abbe, 2017) and the references therein.
The (non-degree) tensor block model (TBM) is a
higher-order extension of SBM, and its statistical-
computational properties are investigated in recent
literatures (Wang and Zeng, 2019; Han et al., 2020;
Ghoshdastidar et al., 2017). Extending results from
non-degree to degree-corrected model is highly chal-
lenging. Our dTBM parameter space is equipped
with angle-based similarity and nuisance degree pa-
rameters. The extra complexity makes the Cartesian
coordinates based analysis (Han et al., 2020) non-
applicable to our setting. Towards this goal, we have
developed a new polar coordinates based analysis
to control the model complexity. We also develop a
new angle-based iteration algorithm to achieve opti-
mal clustering rates without the need of estimating
nuisance degree parameters.

Degree-corrected block model. The hypergraph degree-
corrected block model (hDCBM) and its variant have
been proposed in the literature (Ke et al., 2019; Yuan
et al., 2018). For this popular model, however, the
optimal statistical-computational rates remain an
open problem. Our main contribution is to provide
a sharp statistical and computational critical phase
transition in dTBM literature. In addition, our al-
gorithm results in a faster exponential error rate, in
contrast to the polynomial rate in Ke et al. (2019).
The original hDCBM (Ke et al., 2019) is designed for
binary observations only, and we extend the model to
both continuous and binary observations. We believe
our results are novel and helpful to the community.
See Figure 2 for overview of our results.

Global-to-local algorithm strategy. Our methods gen-
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Figure 2: SNR thresholds for statistical and computational limits in order-K dTBM with dimension (p, ..., p) and
K ≥ 2. The SNR gap between statistical possibility and computational efficiency exists only for tensors with K ≥ 3.

Gao et al. (2018) Han et al. (2020) Ghoshdastidar et al. (2017) Ke et al. (2019) Ours
Allow tensors of arbitrary order × √ √ √ √

Allow degree heterogeneity
√ × √ √ √

Singular-value gap-free clustering
√ √ × × √

Misclustering rate (for order K∗) - exp(−pK/2) p−1 p−2 exp(−pK/2)

Table 1: Comparison between previous methods with our method. ∗We list the result for order-K tensors with K ≥ 3
and general number of communities r = O(1).

eralize the recent global-to-local strategy for matrix
learning (Gao et al., 2018; Chi et al., 2019; Yun
and Proutiere, 2016) to tensors (Han et al., 2020;
Ahn et al., 2018; Kim et al., 2018). Despite the
conceptual similarity, we address several fundamen-
tal challenges associated with this non-convex, non-
continuous problem. We show the insufficiency of the
conventional tensor HOSVD (De Lathauwer et al.,
2000), and we develop a weighted higher-order initial-
ization that relaxes the singular-value gap separation
condition. Furthermore, our local iteration leverages
the angle-based clustering in order to avoid explicit es-
timation of degree heterogeneity. Our bounds reveal
the interesting interplay between the computational
and statistical errors. We show that our final esti-
mate provably achieves the exact clustering within
only polynomial-time complexity.

Notation. We use lower-case letters (e.g., a, b)
for scalars, lower-case boldface letters (e.g., a,θ)
for vectors, upper-case boldface letters (e.g., X,Y )
for matrices, and calligraphy letters (e.g., X ,Y) for
tensors of order three or greater. We use 1p to
denote a vector of length p with all entries to be
1. We use | · | for the cardinality of a set and
1{·} for the indicator function. For an integer
p ∈ N+, we use the shorthand [p] = {1, 2, ..., p}.
For a length-p vector a, we use a(i) ∈ R to denote
the i-th entry of a, and use aI to denote the sub-
vector by restricting the indices in the set I ⊂ [p].
We use ∥a∥ =


i a

2(i) to denote the ℓ2-norm,
∥a∥1 =


i |ai| to denote the ℓ1 norm of a. For two

vector a, b of the same dimension, we denote the
angle between a, b by cos (a, b) = ⟨a, b⟩ / ∥a∥ ∥b∥ ,
where ⟨a, b⟩ is the inner product of two vectors
and cos (a, b) ∈ [−1, 1]. We make the convention
that cos (a, b) = cos

�
aT , bT


. Let Y ∈ Rp1×···×pK

be an order-K (p1, ..., pK)-dimensional tensor. We
use Y(i1, . . . , iK) to denote the (i1, . . . , iK)-th en-
try of Y. The multilinear multiplication of a tensor

S ∈ Rr1×···×rK by matrices Mk ∈ Rpk×rk results in
an order-d (p1, . . . , pK)-dimensional tensor X

X = S ×1 M1 × · · · ×K MK ,

where the entries of X are defined by X (i1, . . . , iK) =
(j1,...,jK) S(j1, . . . , jK)M1(i1, j1) · · ·MK(iK , jK).

For a matrix Y , we use Yi: (respectively, Y:i) to
denote the i-th row (respectively, i-th column) of
the matrix. Similarly, for an order-3 tensor, we use
Y::i to denote the i-th matrix slide of the tensor.
We use Ave(·) to denote the operation of taking
averages across elements and Matk(·) to denote
the unfolding operation that reshapes the tensor
along mode k into a matrix. For a symmetric
tensor Y ∈ Rp×···×p, we omit the subscript and

use Mat(Y) ∈ Rp×pK−1

to denote the unfolding.
For two sequences {ap}, {bp}, we denote ap ≲ bp
or ap = O(bp) if limp→∞ ap/bp ≤ c for some
constant c ≥ 0, ap = o(bp) if limp→∞ ap/bp = 0, and
ap = Ω(bp) if both bp ≲ ap and ap ≲ bp. Throughout
the paper, we use the terms “community” and
“clusters” exchangeably.

2 MODEL FORMULATION

2.1 Degree-corrected Tensor Block
Model

Suppose we have an order-K data tensor Y ∈
Rp×···×p. For ease of notation, we focus on symmetric
tensors in this section. Assume there exist r ≥ 2 dis-
joint communities among the p nodes. We represent
the community assignment by a function z : [p] → [r],
where z(i) = a for i-th node that belongs to the
a-th community. Then, z−1(a) = {i ∈ [p] : z(i) = a}
denotes the set of nodes that belong to the a-th com-
munity, and |z−1(a)| denotes the number of nodes
in the a-th community. Let θ = (θ(1), . . . , θ(p))T

denote the degree heterogeneity for p nodes. We con-
sider the order-K dTBM (Ke et al., 2019),

Y(i1, . . . , iK) = S(z(i1), . . . , z(iK))

K∏
k=1

θik+E(i1, . . . , iK),



where S ∈ Rr×···×r is an order-K tensor collect-
ing the block means among communities, and E ∈
Rp×···×p is a noise tensor consisting of indepen-
dent zero-mean sub-Gaussian entries with variance
bounded by σ2. The unknown parameters are z, S,
and θ. The dTBM can be equivalently written in a
compact form of tensor-matrix product:

EY = S ×1 ΘM ×2 · · · ×K ΘM , (1)

where Θ = diag(θ(1), ..., θ(p)) ∈ Rp×p is a diagonal
matrix, M ∈ {0, 1}p×r

is the membership matrix
associated with community assignment z such that
M(i, j) = 1{z(i) = j}. By definition, each row
of M has one copy of 1’s and 0’s elsewhere. Note
that the discrete nature of M renders our model (1)
more challenging than Tucker decomposition. We
call a tensor Y an r-block tensor with degree θ if
Y admits (1). We are particularly interested in
high-dimensional regime where p grows whereas r =
O(1). The extension to general asymmetrical dTBM
is obtained via replacing (M ,Θ) in (1) by mode-
specific parameters (Mk,Θk) for every mode k ∈ [K].
Here, we give two special cases of dTBM.

Example 1 (Gaussian TBM). Let θ(i) = 1 for all
i ∈ [p] and E be a noise tensor with i.i.d. N(0, σ2)
entries. Our dTBM reduces to a non-degree Gaus-
sian TBM (Wang and Zeng, 2019; Han et al., 2020),
which is widely used in previous clustering algo-
rithms (Wang and Zeng, 2019; Chi et al., 2020).

Example 2 (Binary dTBM). Consider a K-uniform
hypergraph H = (V,E), where V = [p] collects the
nodes with r disjoint communities and E collects all
the K-way hyperedges. Let Y ∈ {0, 1}p×···×p denote
the adjacency tensor, where the entries encode the
presence or absence of hyperdeges among p nodes.
Specifically, let Y(i1, ..., iK) = 1 if (i1, ..., iK) ∈ E,
otherwise, Y(i1, ..., iK) = 0, for all (i1, . . . , iK) ∈
[p]K . The equation (1) models EY with degree het-
erogeneity and subgaussianity parameter σ2 = 1/4.

2.2 Identifiability under Angle Gap

The goal of clustering is to estimate the partition
function z from model (1). For ease of notation, we
focus on symmetric tensors; the extension to non-
symmetric tensors are similar. We use P to denote
the following parameter space for (z,S,θ),

P =

{
(z,S,θ) : θ ∈ Rp

+, for a ∈ [r],
c1p

r
≤ |z−1(a)| ≤ c2p

r
,

c3 ≤ ∥Mat(S)a:∥ ≤ c4,
∥∥θz−1(a)

∥∥
1
= |z−1(a)|

}
, (2)

where ci > 0’s are universal constants. We briefly
describe the rationale of the constraints in (2). First,

the entrywise positivity constraint on θ ∈ Rp
+ is

imposed to avoid sign ambiguity between entries in
θz−1(a) and S. This constraint allows the trigonomet-
ric cos to describe the angle similarity in the Assump-
tion 1 below and Sub-algorithm 2 in Section 4. Note
that the positivity constraint can be achieved without
sacrificing model flexibility, by using a slightly larger
dimension of S in the factorization (1); see Supple-
ment A.1. Second, recall that the quantity |z−1(a)|
denotes the number of nodes in a-th community. The
constants c1, c2 in the |z−1(a)| bound assume the
roughly balanced size across r communities. Third,
the constants c3, c4 in the magnitude of Mat(S)a:
requires no purely zero slide in S, so the core tensor
S is not trivially reduced to a lower rank. Lastly, the
ℓ1 normalization ∥θz−1(a)∥1 = |z−1(a)| is imposed to
avoid the scalar ambiguity between θz−1(a) and S.
This constraint, again, incurs no restriction to model
flexibility but makes our presentation cleaner. See
Supplement A.2 for the parameter space comparison
with previous work (Gao et al., 2018; Han et al., 2020;
Ke et al., 2019).

We now provide the identifiability conditions for our
model before estimation procedures. When r = 1,
the decomposition (1) is always unique (up to cluster
label permutation) in P , because dTBM is equivalent
to the rank-1 tensor family under this case. When
r ≥ 2, the Tucker rank of signal tensor EY in (1) is
bounded by, but not necessarily equal to, the number
of blocks r (Wang and Zeng, 2019). Therefore, one
can not apply the classical identifiability conditions
for low-rank tensors to dTBM. Here, we introduce a
key separation condition on the core tensor.

Assumption 1 (Angle gap). Let S = Mat(S). As-
sume the minimal gap between normalized rows of
S is bounded away from zero; i.e., for r ≥ 2,

∆min := min
a ̸=b∈[r]


Sa:

∥Sa:∥
− Sb:

∥Sb:∥

 > 0. (3)

We make the convention ∆min = 1 for r = 1. Equiva-
lently, (3) says that none of the two rows in S are par-
allel; i.e., maxa ̸=b∈[r] cos (Sa:, Sb:) = 1−∆2

min/2 < 1.
The quantity ∆min characterizes the non-redundancy
among clusters measured by angle separation. De-
nominators involved in definition (3) are well posed
because of the lower bound on ∥Sa:∥ in (2). The
following theorem shows that the angle separation
is sufficient and necessary for the identifiability of
dTBM.

Theorem 1 (Model identifiability). Consider the
dTBM with r ≥ 2. The parameterization (1) is

4



unique in P up to cluster label permutations, if and
only if Assumption 1 holds.

The identifiability guarantee for the dTBM is more
appealing than classical Tucker model. In the Tucker
model, the factor matrix M is identifiable only up to
orthogonal rotations. In contrast, our model does not
suffer from rotational invariance. This property ben-
efits the interpretation of dTBM in practice.

3 THEORETICAL LIMITS

In this section, we study the statistical and compu-
tational limits of dTBM. We propose signal-to-noise
ratio (SNR),

SNR := ∆2
min/σ

2 = pγ , (4)

with varying γ ∈ R that quantifies different regimes
of interest. We call γ the signal exponent. Intuitively,
a larger SNR, or equivalently a larger γ, benefits the
clustering in the presence of noise. With quantifica-
tion (4), consider following parameter space,

P(γ) = P∩{S satisfies SNR condition (4) with γ}. (5)

The 1-block dTBM does not belong to the space
P(γ) when γ < 0 by Assumption 1. Our goal is to
characterize the clustering accuracy with respect to
γ. Let ẑ and z be the estimated and true clustering
functions in family (2). Define the misclustering error
by

ℓ(ẑ, z) =
1

p
min
π∈Π



i∈[p]

1{ẑ(i) ̸= π ◦ z(i)},

where π : [r] → [r] is a permutation of cluster labels, ◦
denotes the composition operation, and Π denotes the
collection of all possible permutations. The infinitum
over all permutations accounts for the ambiguity in
cluster label permutation.

In Sections 3.1 and 3.2, we provide the lower bounds
of ℓ(ẑ, z) for general Gaussian dTBMs (1) with-
out symmetric assumptions. For general (asymmet-
ric) Gaussian dTBMs, we assume Gaussian noise

E(i1, . . . , iK)
i.i.d.∼ N(0, σ2), and we extend the pa-

rameter space (2) to allow K clustering functions
(zk)k∈[K], one for each mode. For notational simplic-
ity, we still use z and P(γ) for this general (asymmet-
ric) model. All lower bounds should be interpreted
as the worst-case results across K modes.

3.1 Statistical Critical Values

The statistical limit means the minimal SNR required
for solving dTBMs with unlimited computational cost.
Our following result shows the minimax lower bound
of SNR for exact recovery in dTBM.

Theorem 2 (Statistical lower bound). Consider gen-
eral Gaussian dTBMs under the parameter space
P(γ) with K ≥ 1. Assume r ≲ p1/3. If the signal ex-
ponent satisfies γ < −(K − 1), then, every estimator
ẑstat obeys

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑstat, z)] ≥ 1.

Theorem 2 demonstrates the impossibility of exact
recovery of the assignment when γ < −(K − 1) in
the high-dimensional regime p → ∞ for fixed r. The
proof is information-theoretical, and therefore the
results apply to all statistical estimators, including
but not limited to, maximum likelihood estimation
(MLE) (Wang and Zeng, 2019) and trace maximiza-
tion (Ghoshdastidar and Dukkipati, 2017). As we
will show in Section 4, the SNR threshold −(K−1) is
also a minimax upper bound, because MLE achieves
exact recovery when γ > −(K − 1). Hence, the
boundary γstat := −(K − 1) is the critical value for
statistical performance of dTBM.

3.2 Computational Critical Values

The computational limit means the minimal SNR
required for exactly recovery with polynomial-time
computational cost. An important ingredient to es-
tablish the computational limits is the hypergraphic
planted clique (HPC) conjecture (Zhang and Xia,
2018; Brennan and Bresler, 2020). The HPC conjec-
ture indicates the impossibility of fully recovering the
planted cliques with polynomial-time algorithm when
the clique size is less than the number of vertices in
the hypergraph. The formal statement of HPC de-
tection conjecture is provided in Supplement C.4.
Under the HPC conjecture, we establish the SNR
lower bound that is necessary for any polynomial-time
estimator to achieve exact clustering.

Theorem 3 (Computational lower bound). Con-
sider general Gaussian dTBMs under the parameter
space P(γ) with K ≥ 2. Assume HPC conjecture
holds. If the signal exponent γ < −K/2, then, every
polynomial-time estimator ẑcomp obeys

lim inf
p→∞

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑcomp, z)] ≥ 1.

Theorem 3 indicates the impossibility of exact recov-
ery by polynomial-time algorithms when γ < −K/2.
Therefore, γcomp := −K/2 is the critical value for
computational performance of dTBM. In Section 4,
we will show the condition γ > −K/2 suffices for
our proposed polynomial-time estimator. Thus,
γcomp := −K/2 is the critical value for computa-
tional performance of dTBM.



Remark 1 (Statistical-computational gaps). Now,
we have established the phase transition of exact clus-
tering under order-K dTBM by combing Theorems 2
and 3. Figure 2 summarizes our results of critical
SNRs when K ≥ 2. Particularly, dTBM reduces to
matrix degree-corrected model when K = 2, and
the statistical and computational bounds show the
same critical value. When K = 1, dTBM reduces
to the degree-corrected sub-Gaussian mixture model
(GMM). Earlier work (Lu and Zhou, 2016) implies
that polynomial-time algorithms are able to achieve
the statistical minimax lower bound in GMM. Hence,
the statistical-to-computational gap emerges only for
higher-order tensors with K ≥ 3, which reveals the
intrinsic distinctions among (vector) one-dimensional
clustering, (matrix) biclustering, and (tensor) higher-
order clustering. We also find that the extra com-
plexity from θ does not render the estimation of z
qualitatively harder; see comparison of our phase
transition with non-degree TBM (Han et al., 2020).

4 ALGORITHM

In this section, we present an efficient polynomial-
time clustering algorithm under mild SNR. The pro-
cedure takes a global-to-local approach. See Figure 3
for illustration. The global step finds the basin of at-
traction with polynomial miclustering error, whereas
the local iterations improve the initial clustering to
exact recovery. Both steps are critical to obtain a
satisfactory algorithm output.

ground truth
basin of attraction
weighted higher-order
initialization
angle-based iteration

Figure 3: Illustration of our global-to-local algorithm.

4.1 Initialization

We start with weighted higher-order clustering algo-
rithm as initialization. We take an order-3 symmetric
tensor as illustration for insight. Consider noiseless
case with X = EY and X = Mat(X ). By model (1),
for all i ∈ [p], we have

θ(i)−1Xi: = [Mat(S ×2 ΘM ×3 ΘM)]z(i): .

This implies that, all node i belonging to a-th com-
munity (i.e., z(i) = a) share the same normalized
mean vector θ(i)−1Xi:, and vice versa. Intuitively,
one can apply k-means clustering to the vectors
{θ(i)−1Xi:}i∈[p], which leads to main idea of our
Sub-algorithm 1. Specifically, our initialization con-
sists of denoising step and clustering step. The de-
noising step (lines 1-2 in Sub-algorithm 1) estimates

X from Y by a double projection spectral method.
The double projection improves usual matrix spec-
tral methods in order to alleviate the noise effects for
K ≥ 3 (Han et al., 2020). The clustering step (lines 3-
5 in Sub-algorithm 1) performs the weighted k-means
clustering. The choice of weights is to bound the
k-means objective function by the Frobenius-norm ac-
curacy of X̂ . Unlike existing clustering algorithm (Ke
et al., 2019), we apply the clustering on the unfolded

tensor X̂ rather than on the factors Û . This strategy
relaxes the singular-value gap condition (Gao et al.,
2018; Han et al., 2020). Full procedures are provided
in Sub-algorithm 1.

We now establish the misclustering error rate of ini-
tialization. We call θ is balanced if the relative
extent of heterogeneity is comparable across clusters
in that

min
a∈[r]

∥θz−1(a)∥ = (1 + o(1))max
a∈[r]

∥θz−1(a)∥. (6)

Note that, the assumption (6) does not preclude
degree heterogeneity. Indeed, within each of the clus-
ters, the highest degree can be θ(i) = Ω(p), whereas
the lowest degree can be θ(i) = O(1).

Theorem 4 (Error for weighted higher-order initial-
ization). Consider the general sub-Gaussian dTBM
with i.i.d. noise under the parameter space P
and Assumption 1. Assume θ is balanced and
mini∈[p] θ(i) ≥ c for some constant c > 0. Let z(0) de-
note the output of Sub-algorithm 1. With probability
going to 1, we have

ℓ(z(0), z) ≲ rKp−K/2/SNR. (7)

Remark 2 (Comparison to previous results). For
fixed SNR, our initialization error rate with K = 2
agrees with the initialization error rate O(p−1) in
matrix models (Gao et al., 2018). Furthermore, in
the special case of non-degree TBMs with θ1 = · · · =
θp = 1, we achieve the same initial misclustering error
O(p−K/2) as in non-degree models (Han et al., 2020).
Theorem 4 implies the advantage of our algorithm
in achieving both accuracy and model flexibility.

Remark 3 (Failure of conventional tensor HOSVD).
If we use conventional HOSVD for tensor denoising;
that is, we use Upre in place of Û in line 2, then
the misclustering rate becomes O(p−1) for all K ≥ 2.
This rate is substantially worse than our rate (7).

4.2 Angle-based Iteration

Our Theorem 4 has shown the polynomially decay-
ing error rate from our initialization. Now we im-
prove the error rate to exponential decay using local



Algorithm: Multiway spherical clustering for degree-corrected tensor block model

Sub-algorithm 1: Weighted higher-order initialization

Input: Observation Y ∈ Rp×···×p, cluster number r, relaxation factor η > 1 in k-means clustering.
1: Compute factor matrix Upre = SVDr(Mat(Y)) and the (K−1)-mode projection Xpre = Y×1UpreU

T
pre×2 · · ·×K−1

UpreU
T
pre.

2: Compute factor matrix Û = SVDr(Mat(Xpre)) and denoised tensor X̂ = Y ×1 ÛÛT ×2 · · · ×K ÛÛT .

3: Let X̂ = Mat(X̂ ) and S0 = {i ∈ [p] : ∥X̂i:∥ = 0}. Set ẑ(i) randomly in [r] for i ∈ S0.

4: For all i ∈ Sc
0, compute normalized rows X̂s

i: := ∥X̂i:∥−1X̂i:.
5: Solve the clustering ẑ : [p]→ [r] and centroids (x̂j)j∈[rk] using weighted k-means, such that

∑

i∈Sc
0

∥X̂i:∥2∥X̂s
i: − x̂ẑ(i)∥2 ≤ η min

x̄j ,j∈[r],z̄(i),i∈Sc
0

∑

i∈Sc

∥X̂i:∥2∥X̂s
i: − x̄z̄(i)∥2.

Output: Initial clustering z(0) ← ẑ.

Sub-algorithm 2: Angle-based iteration

Input: Observation Y ∈ Rp×···×p, initialization z(0) : [p]→ [r] from Sub-algorithm 1, iteration number T .
6: for t = 0 to T − 1 do
7: Update the block tensor S(t) via S(t)(a1, ..., aK) = Ave{Y(i1, . . . , iK) : z(t)(ik) = ak, k ∈ [K]}.
8: Calculate reduced tensor Yd ∈ Rp×r×···×r via

Yd(i, a2, . . . , aK) = Ave{Y(i, i2, . . . , iK) : z(t)(ik) = ak, k ̸= 1}.

9: Let Y d = Mat(Yd) and J0 = {i ∈ [p] :
∥∥Y d

i:

∥∥ = 0}. Set z(t+1)(i) randomly in [r] for i ∈ J0.

10: Let S(t) = Mat(S(t)). For all i ∈ Jc
0 update the cluster assignment by

z(i)(t+1) = argmax
a∈[r]

cos
(
Y d
i: , S(t)

a:

)
.

11: end for
Output: Estimated clustering z(T ) ∈ [r]p.

iterations. We propose an angle-based local itera-
tion to improve the outputs from Sub-algorithm 1.
To gain the intuition, consider an one-dimensional
degree-corrected clustering problem with data vec-
tors xi = θ(i)sz(i) + ϵi, i ∈ [p], where si’s are known
cluster centroids, θ(i)’s are unknown positive degrees,
and z : [p] → [r] is the cluster assignment of interest.
The angle-based k-means algorithm estimates the
assignment z by minimizing the angle between data
vectors and centroids; i.e.,

z(i) = argmax
a∈[r]

cos(xi, sa), for all i ∈ [p].

The classical Euclidean-distance based cluster-
ing (Han et al., 2020) fails to recover z in the pres-
ence of degree heterogeneity, even under noiseless
case. In contrast, the angle-based k-means clustering
achieves accurate recovery without explicit estima-
tion of θ. Our Sub-algorithm 2 shares the same spirit
as angle-based k-means, except that we use estimated

centroids s
(t)
a in place of sa based on estimated as-

signment in previous iterations. See Sub-algorithm 2
for full procedures.

We now establish the misclustering error rate of iter-
ations under the stability assumption.

Definition 1 (Locally linear stability). Define the
ε-neighborhood of z by N (z, ε) = {z̄ : ℓ(z̄, z) ≤ ε}.
Let z̄ : [p] → [r] be a clustering function. The degree
is ε-locally linearly stable if and only if

sin(p(z̄), pθ(z̄)) ≲ ε∆min, for all z̄ ∈ N (z, ε), (8)

where p(z̄) = (|z̄−1(1)|, . . . , |z̄−1(r)|)T and pθ(z̄) =
(∥θz̄−1(1)∥1, . . . , ∥θz̄−1(r)∥1)T .
Roughly speaking, the vector p(z̄) represents the
raw cluster sizes, and pθ(z̄) represents the relative
cluster sizes weighted by degrees. The local stability
holds trivially for ε = 0 based on the construction of
parameter space (2). The condition (8) controls the
impact of node degree to the pθ(·) with respect to
the misclassification rate ε and angle gap.

Theorem 5 (Error for angle-based iteration). Con-
sider the setup as in Theorem 4. Suppose r = O(1)

and SNR ≥ C̃p−K/2 log p for some sufficiently large
constant C̃. Assume the local linear stability of de-
gree holds in the neighborhood N (z, ε) for all ε ≤ E0

and some E0 ≥ Č log−1 p with some positive con-
stant Č. Let z(t) denote the t-th iteration output
in Sub-algorithm 2 with initialization z(0) from Sub-
algorithm 1. With probability going to 1, there exists
a contraction parameter ρ ∈ (0, 1) such that



ℓ(z, ẑ(t+1)) ≲ SNR−1 exp

(
−pK−1SNR

rK−1

)

︸ ︷︷ ︸
statistical error

+ ρtℓ(z, z(0)).︸ ︷︷ ︸
computational

error

The iteration error is decomposed into two parts:
statistical error and computational error. The statis-
tical error is unavoidable with noisy data regardless
t, whereas the computational error decays in an ex-
ponential rate as the number of iterations t → ∞.
Theorem 5 implies that, with probability going to
1, our estimate z(T ) achieves exact recovery within
polynomial iterations; more precisely,

z(T ) = π ◦ z, for all T ≳ log1/ρ p,

for some permutation π ∈ Π. Hence, our combined
algorithm is computationally efficient as long as SNR
≳ p−K/2 log p. Note that, ignoring the logarithmic
term, the minimal SNR requirement, p−K/2, coin-
cides with the computational lower bound in Theo-
rem 3. Therefore, our algorithm is optimal regarding
the signal requirement and lies in the sharpest com-
putationally efficient regime in Figure 2.

5 NUMERICAL STUDIES

We evaluate the performance of our algorithm1 in this
section. We report average errors and standard devia-
tions across 30 replications in each experiment. Clus-
tering accuracy is assessed by clustering error rate
(CER, i.e., one minus rand index). Note that CER
between (ẑ, z) is equivalent to misclustering error
ℓ(ẑ, z) up to constant multiplications (Meilă, 2012),
and lower CERs indicate better performances.

We generate order-3 tensors with assortative (Gao
et al., 2018) core tensors to control SNR; i.e., we
set Saaa = s1 for a ∈ [r] and others be s2, where
s1 > s2 > 0. Let α = s1/s2. We set α close to
1 such that 1 − α = o(p). In particular, we have
α = 1+Ω(pγ/2) with γ < 0 by Assumption 1 and def-
inition (4). Hence, we easily adjust SNR via varying
α. The assortative setting is proposed for simulations,
and our algorithm is applicable for general tensors
in practice. The cluster assignment z is randomly
generated with equal probability across r clusters
for each mode. Without further explanation, we
generate degree heterogeneity θ from absolute nor-
mal distribution by θ(i) = |Xi| + 1 − 1/

√
2π with

|Xi| i.i.d.∼ N(0, 1), i ∈ [p] and normalize θ to satisfy
(2). We set σ2 = 1 for Gaussian data.

5.1 Verification of Theoretical Results

The first experiment verifies statistical-computational
gap described in Section 3. Consider the Gaussian

1The R package and data used are available at
https://cran.r-project.org/package=dTBM.
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Figure 4: SNR phase transitions for clustering in dTBM
with p = {80, 100}, r = 5 under (a) matrix case with γ ∈
[−1.2,−0.4] and (b) tensor case with γ ∈ [−2.1,−1.4].
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Figure 5: CER versus signal exponent (γ) for ini-
tialization only and for combined algorithm. We set
p = {80, 100}, r = 5, γ ∈ [−2.1,−1.4] under (a) Gaussian
models and (b) Bernoulli models.

model with p = {80, 100}, r = 5. We vary γ in
[−1.2,−0.4] and [−2.1,−1.4] for matrix (K = 2)
and tensor (K = 3) clustering, respectively. Note
that finding MLE under dTBM is computationally
intractable. We approximate MLE using an oracle
estimator, i.e., the output of Sub-algorithm 2 initial-
ized from true assignment. Figure 4a shows that both
our algorithm and oracle estimator start to decrease
around the critical value γstat = γcomp = −1 in ma-
trix case. In contrast, Figure 4b shows a significant
gap in the phase transitions between the algorithm
estimator and oracle estimator in tensor case. The
oracle error rapidly decreases to 0 when γstat = −2,
whereas the algorithm estimator tends to achieve ex-
act clustering when γcomp = −1.5. Figure 4 confirms
the existence of the statistical-computational gap in
our Theorems 2 and 3.

The second experiment verifies the performance guar-
antees of two algorithms: (i) weighted higher-order
initialization; (ii) combined algorithm of weighted
higher-order initialization and angle-based iteration.
We consider both the Gaussian and Bernoulli models
with p = {80, 100}, r = 5, γ ∈ [−2.1,−1.4]. Figure 5
shows the substantial improvement of combined algo-
rithm over initialization, especially under weak and
intermediate signals. This phenomenon agrees with
the error rates in Theorems 4 and 5 and confirms the
necessity of the local iterations.



5.2 Comparison with Other Methods

We compare our algorithm with higher-order cluster-
ing methods below:

• HOSVD: HOSVD on data tensor and k-means on
the rows of the factor matrix;

• HOSVD+: HOSVD on data tensor and k-means
on the ℓ2-normalized rows of the factor matrix;

• HLloyd (Han et al., 2020): High-order clustering
algorithm developed for non-degree TBM;

• SCORE (Ke et al., 2019): Tensor-SCORE for
clustering developed for binary tensors.

Among the four alternative algorithms, the SCORE

is the closest method to ours. We set the tuning
parameters of SCORE as in previous literature (Ke
et al., 2019). The methods SCORE and HOSVD+

are designed for dTBM (1), whereas HOSVD and
HLloyd are designed for non-degree models. We con-
duct two experiments to assess the impacts of (i) sig-
nal strength and (ii) degree heterogeneity under Gaus-
sian and Bernoulli models with p = 100, r = 5. We
call our algorithm as dTBM in comparison.

We investigate the effects of signal to clustering per-
formance by varying γ ∈ [−1.5,−1.1]. Figure 6 shows
the consistent outperformance of our method dTBM

among all algorithms. The sub-optimality of SCORE

and HOSVD+ indicates the necessity of local itera-
tions on the clustering. Furthermore, Figure 6 shows
the inadequacy of non-degree algorithms in the pres-
ence of mild degree heterogeneity. The only excep-
tion is the slightly better performance of HLloyd

over HOSVD+ under Gaussian model. However,
we find the advantage of HLloyd disappears with
higher degree heterogeneity; see Supplement B. The
experiment demonstrates the benefits of addressing
heterogeneity in higher-order clustering tasks.

The last experiment investigates the effects of de-
gree heterogeneity to clustering performance. We
use the same setting as in the first experiment in the
Section 5.2, except that we fix the signal exponent
γ = −1.2 and generate the degree heterogeneity θ
from Pareto distribution prior to normalization. The
density function of Pareto distribution is f(x|a, b) =
abax−(a+1)1{x ≥ b}, where a is called shape param-
eter. We vary the shape parameter a ∈ [3, 6] and
choose b such that EX = a(a− 1)−1b = 1 for X fol-
lowing Pareto(a, b). Note that a smaller a leads to a
larger variance in θ and hence a larger degree hetero-
geneity. Figure 7 demonstrates the stability of degree-
corrected algorithms (dTBM, SCORE, HOSVD+)
over the entire range of degree heterogeneity under
consideration. In contrast, non-degree algorithms
(HLloyd, HOSVD) show poor performance with

large heterogeneity, especially in Bernoulli cases.
This experiment, again, highlights the benefit of ad-
dressing degree heterogeneity in clustering.

a. b.

Algorithm Ours HLloyd HOSVD HOSVD+ SCORE
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Figure 7: CER versus shape parameter in degree (de-
noted a ∈ [3, 6]) for different methods with p = 100, r =
5, γ = −1.2 under (a) Gaussian and (b) Bernoulli models.

5.3 Peru Legislation Data Analysis

We apply our method to the legislation networks in
the Congress of the Republic of Peru (Lee et al., 2017).
Because of the frequent political power shifts in the
Peruvian Congress during 2006-2011, we choose to
focus on the data for the first half of 2006-2007 year.
The dataset records the co-sponsorship of 116 legis-
lators from top 5 parties and 802 bill proposals. We
reconstruct legislation network as an order-3 binary
tensor Y ∈ {0, 1}116×116×116, where Yijk = 1 if the
legislators (i, j, k) have sponsored the same bill, and
Yijk = 0 otherwise. True party affiliations of legis-
lators are provided and serve as the ground truth.
We apply various higher-order clustering methods
to Y with r = 5. Table 2 shows that our dTBM

achieves the best performance compared to others.
The second best method is the two-stage algorithm
HLloyd, followed by the spectral methods SCORE

and HOSVD+. The result is consistent with simula-
tions under moderate heterogeneity.

Method dTBM HOSVD+ HLloyd SCORE

CER 0.116 0.213 0.149 0.199

Table 2: Clustering errors (measured by CER) for various
methods in the analysis of Peru Legislation dataset.
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Supplementary Material:
Multiway Spherical Clustering via Degree-Corrected

Tensor Block Models

A PARAMETER SPACE

Here, we provide the parameter space comparison with previous works and extra explanation for the positvity
constraint of degree parameters.

A.1 Positivity of Degree Parameters

Here we provide an example to show the positivity constraints on θ incurs no loss on the model flexibility.
Consider an order-3 dTBM with core tensor S = 1 and degree θ = (1, 1,−1,−1)T . We have the mean
tensor

X = S ×1 ΘM ×2 ΘM ×3 ΘM ,

where Θ = diag(θ) and M = (1, 1, 1, 1)T . Note that X ∈ R4×4×4 is a 1-block tensor with mixed-signed
degree θ, and the mode-3 slices of X are

X::1 = X::2 = −X::3 = −X::4 =




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 .

Now, instead of original decomposition, we encode X as a 2-block tensor with positive-signed degree.
Specifically, we write

X = S ′ ×1 Θ
′M ′ ×2 Θ

′M ′ ×3 Θ
′M ′,

where Θ′ = diag(θ′) = diag(1, 1, 1, 1), the core tensor S ′ ∈ R2×2×2 has mode-3 slices, and the membership
matrix M ′ ∈ {0, 1}4×2 defines the clustering z′ : [4] → [2],

S ′
::1 = −S ′

::2 =


1 −1
−1 1


, M ′ =




1 0
1 0
0 1
0 1


 .

The triplet (z′,S ′,θ′) lies in our parameter space (2). In general, we can always reparameterize a block-r
tensor with mixed-signed degree using a block-2r tensor with positive-signed degree. Since we assume r = O(1)
throughout the paper, the splitting does not affect the error rates of our interest.

A.2 Parameter Space Comparison with Previous Work

Table 3 indicates that our parameter space is flexible compared to existing work. The balanced community
assumption is mild in literature. In fact, our simulation requires only the positive community size (i.e.,
mina∈[r] |z−1(a)| ≥ 1) but no balanced community assumptions; see Section 5. The outperformance of dTBM
shows the robustness of our algorithm to the imbalanced communities.

B ADDITIONAL EXPERIMENTS

We provide extra simulation results for the comparison with other higher-order clustering algorithms. We
use the same setting as in the first experiment in the Section 5.2, except that we now generate the degree
heterogeneity θ from Pareto distribution with shape parameter a prior to normalization. We consider the
Gaussian model under low (a = 6) and high (a = 2) degree heterogeneity. Figure 8 shows that the errors for
non-degree algorithms (HLloyd, HOSVD) increases with degree heterogeneity. In addition, the advantage
of HLloyd over HOSVD+ disappears with higher degree heterogeneity. This experiment supports the
conclusion we obtained in Section 5.2.



Assumptions in parameter space Gao et al. (2018) Han et al. (2020) Ke et al. (2019) Ours
Balanced community size

√ √ √ √
Balanced degree parameters

√
-

√ √
Flexible in-group connections × √ × √
Gap among cluster centers In-between cluster difference Euclidean gap Eigen gap Angle gap

Table 3: Comparison of parameter space of previous works with our work.
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Figure 8: CER comparison versus signal exponent (denoted γ) under (a) low (shape parameter a = 6) (b) high (shape
parameter a = 2) degree heterogeneity. We set p = 100, r = 5, γ ∈ [−1.5,−1.1] under Gaussian model.

C PROOFS

We provide the proofs for all the theorems in our main paper. In each sub-section, we first show the proof of
main theorem and then collect the useful lemmas in the end.

C.1 Notation

Before the proofs, we first introduce the notation used throughout the appendix and the generalized dTBM
without symmetric assumptions. The parameter space and minimal gap assumption are also extended for the
generalized dTBM.

Preliminaries.

1. For mode k ∈ [K], denote the mode-k tensor matricizations by

Yk = Matk (Y) , Sk = Matk (S) , Ek = Matk (E) , Xk = Matk (X ) .

2. For a vector a, let as := a/ ∥a∥ denote the normalized vector. We make the convention that as = 0 if
a = 0.

3. For a matrix A ∈ Rn×m, let A⊗K := A⊗ · · · ⊗A ∈ RnK×mK

denote the Kronecker product of K copies
of matrices A.

4. For a matrix A, let ∥A∥σ denote the spectral norm of matrix A, which is equal to the maximal singular
value of A; let λk(A) denote the k-th largest singular value of A; let ∥A∥F denote the Frobenius norm of
matrix A.

5. For two sequence a and b, let a ≍ b if there exist two positive constants c, C such that cb ≤ a ≤ Cb.

Model extension to generalized dTBM.

The general order-K (p1, . . . , pK)-dimensional dTBM model with rk communities and degree heterogeneity
13



θk = �θk(i)� ∈ Rpk
+ is represented by

Y = X + E , where X = S ×1 Θ1M1 ×2 · · · ×K ΘKMK , (9)

where Y ∈ Rp1×···×pK is the data tensor, X ∈ Rp1×···×pK is the mean tensor, S ∈ Rr1×···×rK is the core
tensor, E ∈ Rp1×···×pK is the noise tensor consisting of independent zero-mean sub-Gaussian entries with
variance bounded by σ2, Θk = diag(θk), and Mk ∈ {0, 1}pk×rk is the membership matrix corresponding to
the assignment zk : [pk] → [rk], for all k ∈ [K].

For ease of notation, we use {zk} to denote the collection {zk}Kk=1, and {θk} to denote the collection {θk}Kk=1.
Correspondingly, we consider the parameter space for the triplet ({zk},S, {θk}),

P({rk}) =

({zk},S, {θk}) :

θk ∈ Rp
+,

c1pk
rk

|z−1
k (a)| ≤ c2pk

rk
, c3 ≤ ∥Sk,a:∥ ≤ c4, ∥θk,z−1

k (a)∥1 = |z−1
k (a)|, a ∈ [rk], k ∈ [K]


.

We call the degree heterogeneity {θk} is balanced if for all k ∈ [K],

min
a∈[r]

∥θk,z−1
k (a)∥ = (1 + o(1))max

a∈[r]
∥θk,z−1

k (a)∥.

We also consider the generalized Assumption 1 on angle gap.

Assumption 2 (Generalized angle gap). Recall Sk = Matk(S). We assume the minimal gap between
normalized rows of Sk is bounded away from zero for all k ∈ [K]; i.e.,

∆min := min
k∈[K]

min
a ̸=b∈[rk]

Ss
k,a: − Ss

k,b:

 > 0.

Similarly, let SNR = ∆2
min/σ

2 with the generalized minimal gap ∆2
min defined in Assumption 2. We define

the regime
P(γ) = P({rk}) ∩ {S satisfies SNR = pγ and pk ≍ p, for all k ∈ [K]}.

C.2 Proof of Theorem 1

Proof of Theorem 1. To study the identifiability, we consider the noiseless model with E = 0. Assume there
exist two parameterizations satisfying

X = S ×1 Θ1M1 ×2 · · · ×K ΘKM ′
K = S ′ ×1 Θ

′
1M

′
1 ×2 · · · ×K Θ′

KM ′
K , (10)

where ({zk},S, {θk}) ∈ P({rk}) and ({z′k},S ′, {θ′
k}) ∈ P({r′k}) are two sets of parameters. We prove the

sufficient and necessary conditions separately.

(⇐) For the necessity, it suffices to construct two distinct parameters up to cluster label permutation, if the
model (9) violates Assumption 2. Without loss of generality, we assume

Ss
1,1: − Ss

1,2:

 = 0.

If S1,1: is a zero vector, construct θ′
1 such that θ′

1,z−1
1 (1)

≠ θ1,z−1
1 (1). Let {z′k} = {zk}, S ′ = S, and θ′

k = θk

for all k = 2, . . . ,K. Then the triplet ({z′k},S ′, {θ′
k}) is distinct from ({zk},S, {θk}) up to label permutation.

Similar conclusion holds when S1,2: is a zero vector.

If neither S1,1: nor S1,2: is a zero vector, there exists a positive constant c such that S1,1: = cS1,2:. Thus,
there exists a core tensor S0 ∈ Rr1−1×···×rK such that

S = S0 ×1 CR, where C = diag(1, c, 1, ..., 1) ∈ Rr1×r1 , R =



1 0
1 0
0 1r1−2


 ∈ Rr1×(r1−1).
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Let D = diag(1 + c, 1, ..., 1) ∈ Rr1−1×r1−1. Consider the parameterization

M ′
1 = M1R, S ′ = S0 ×1 D, θ′1(i) =





1
1+cθ1(i) i ∈ z−1

1 (1),
c

1+cθ1(i) i ∈ z−1
1 (2),

θ1(i) otherwise,

and M ′
k = Mk,θ

′
k = θk for all k = 2, . . . ,K. Then we have constructed a triplet ({z′k},S ′, {θ′

k}) that is
distinct from ({zk},S, {θk}) up to label permutation.

(⇒) For the sufficiency, it suffices to show that all possible triplets ({z′k},S ′, {θ′
k}) are identical to

({zk},S, {θk}) up to label permutation if the model (9) satisfies Assumption (2). We show the unique-
ness of the three parameters, {Mk}, {S}, {θk} separately.

First, we show the uniqueness of Mk for all k ∈ [K]. Without loss of generality, we consider k = 1 and show
the first mode membership matrix; i.e., M ′

1 = M1P1 where P1 is a permutation matrix. The conclusion for
k ≥ 2 can be showed similarly and thus omitted.

Consider an arbitrary node pair (i, j). If z1(i) = z1(j), then we have ∥Xs
1,z1(i):

−Xs
1,z1(j):

∥ = 0 and thus

∥(S′)s1,z′
1(i):

− (S′)s1,z′
1(j):

∥ = 0 by Lemma 1. Then, by Assumption (2), we have z′1(i) = z′1(j). Conversely, if

z1(i) ̸= z1(j), then we have
Xs

1,i: −Xs
1,j:

 ≠ 0 and thus
(S′)s1,z′

1(i):
− (S′)s1,z′

1(j):

 ≠ 0 by Lemma 1. Hence,

we have z′1(i) ̸= z′1(j). Therefore, we have proven that z′1 is identical zi up to label permutation.

Next, we show the uniqueness of θk for all k ∈ [K] provided that zk = z′k. Similarly, consider k = 1 only, and
omit the procedure for k ≥ 2.

Consider an arbitrary j ∈ [p1] such that z1(j) = a. Then for all the nodes i ∈ z−1
1 (a) in the same cluster of j,

we have
X1,z1(i):

X1,z1(j):
=

X ′
1,z1(i):

X ′
1,z1(j):

, which implies
θ1(j)

θ1(i)
=

θ′1(j)
θ′1(i)

. (11)

Let θ′1(j) = cθ1(j) for some positive constant c. By equation (11), we have θ′1(i) = cθ1(i) for all i ∈ z−1
1 (a).

By the constraint ({zk},S ′, {θ′
k}) ∈ P({rk}), we have



j∈z−1
1 (a)

θ′1(j) = c


j∈z−1
1 (a)

θ1(j) = 1,

which implies c = 1. Hence, we have proven θ1 = θ′
1 provided that z1 = z′1.

Last, we show the uniqueness of S; i.e., S ′ = S ×1 P
−1
1 ×2 · · · ×K P−1

K , where Pk’s are permutation matrices
for all k ∈ [K]. Provided z′k = zk,θ

′
k = θk, we have M ′

k = MkPk and Θ′
k = Θk for all k ∈ [K].

Let Dk =

(Θ′

kM
′
k)

T (Θ′
kM

′
k)
−1

(Θ′
kM

′
k)

T , k ∈ [K]. By the parameterization (10), we have

S ′ = X ×1 D1 ×2 · · · ×K DK

= S ×1 D1Θ1M1 ×1 · · · ×K DKΘKMK

= S ×1 P
−1
1 ×2 · · · ×K P−1

K .

Therefore, we finish the proof of Theorem 1.

Useful Lemma for the Proof of Theorem 1

Lemma 1 (Motivation of angle-based clustering). Consider the signal tensor X in the generalized dTBM (9)
with ({zk},S, {θk}) ∈ P({rk}) and rk ≥ 2. Then, for any k ∈ [K] and index pair (i, j) ∈ [pk]

2, we have

Ss
k,zk(i):

− Ss
k,zk(j):

 = 0 if and only if
Xs

k,zk(i):
−Xs

k,zk(j):

 = 0.
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Proof of Lemma 1. Without loss of generality, we prove k = 1 only and drop the subscript k in Xk,Sk for
notational convenience. By tensor matricization, we have

Xj: = θ1(j)Sz1(j): [Θ2M2 ⊗ · · · ⊗ΘKMK ]
T
.

Let M̃ = Θ2M2 ⊗ · · · ⊗ΘKMK . Notice that for two vectors a, b and two positive constants c1, c2 > 0, we
have

∥as − bs∥ = ∥(c1a)s − (c2b)
s∥ .

Thus it suffices to show the following statement holds for any index pair (i, j) ∈ [p1]
2,

Ss
z1(i):

− Ss
z1(j):

 = 0 if and only if


Sz1(i):M̃

T
s

−

Sz1(j):M̃

T
s = 0.

(⇐) Suppose


Sz1(i):M̃

T
s

−

Sz1(j):M̃

T
s = 0. There exists a positive constant c such that Sz1(i):M̃

T =

cSz1(j):M̃
T . Note that

Sz1(i): = Sz1(i):M̃
T


M̃


M̃TM̃

−1

,

where M̃TM̃ is an invertiable diagonal matrix with positive diagonal elements. Thus, we have Sz1(i): =

cSz1(j):, which implies
Ss

z1(i):
− Ss

z1(j):

 = 0.

(⇒) Suppose
Ss

z1(i):
− Ss

z1(j):

 = 0. There exists a positive constant c such that Sz1(i): = cSz1(j):, and thus

Sz1(i):M̃
T = cSz1(j):M̃

T , which implies


Sz1(i):M̃

T
s

−

Sz1(j):M̃

T
s = 0.

Therefore, we finish the proof of Lemma 1.

C.3 Proof of Theorem 2

Proof of Theorem 2. We will prove a more general conclusion than the main paper by allowing growing rk’s.
Consider the generalized dTBM (9) in the special case that pk = p and rk = r for all k ∈ [K]. Specifically,
we will show that, under the assumptions K ≥ 1, r ≲ p1/3 and SNR condition

∆2
min

σ2
≲

rK−1

pK−1
, or equivalently, γ ≤ −(K − 1)(1 + logp r),

the desired conclusion in Theorem 2 holds; i.e, for all k ∈ [K], every estimator ẑk,stat obeys

sup
({zk},S,{θk})∈P(γ)

E [pℓ(ẑk,stat, zk)] ≥ 1. (12)

Since the inequality (12) is a minimax lower bound, it suffices to show the inequality holds for a particular
({zk},S, {θk}) ∈ P(γ). Specifically, we consider the estimation problem based on a particular parameter
point ({zk},S, {θk}) with the following three properties:

(i) θk(i) = 1 for all i ∈ [p]; (ii) ∆min ≲
p
r

−K−1
2

σ; (iii) |z−1
k (a)| = p

r
∈ Z+ for all a ∈ [r], (13)

for all k ∈ [K]. Furthermore, we define a subset of indices Tk ⊂ [pk], k ∈ [K] in order to avoid the complication
of label permutation. Based on Han et al. (2020, Proof of Theorem 6), we consider the minimax rate over the
restricted family of ẑk’s for which the following three conditions are satisfied:

(iv) ẑk(i) = zk(i) for all i ∈ Tk; (v) |T c
k | ≍

p

r
; (vi) min

π∈Π



i∈[p]

1{ẑk(i) ̸= π◦zk(i)} =


i∈[p]

1{ẑk(i) ̸= zk(i)},
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for all k ∈ [K]. The construction of T is precisely the same as Han et al. (2020, Proof of Theorem 6). Then,
following the proof of Gao et al. (2018, Theorem 2), for all k ∈ [K], we have

inf
ẑk

sup
zk

Eℓ(ẑk, zk) ≳
1

r3|T c
k |



i∈T c
k

inf
ẑk

{P[ẑk(i) = 2|zk(i) = 1] + P[ẑk(i) = 1|zk(i) = 2]} , (14)

where ẑk and zk on the left hand side denote the generic clustering functions in P(γ), zk on the right hand
side denotes a particular parameter satisfying properties (i)-(vi), and the infimum on the right hand side is
taken over the restricted family of ẑ satisfying (iv)-(vi). Here, the factor r3 = r · r2 in (14) comes from two
sources: r2 ≍

�
r
2


comes from the multiple testing burden for all pairwise comparisons among r clusters; and

another r comes from the number of elements |T c
k | ≍ p/r to be clustered.

Next, we need to find the lower bound of the rightmost side in (14). For simplicity, we show the bound for
the mode-1 case k = 1 only. We drop the subscripts 1 in z1, T1,S1,θ1 and omit the repeated procedures for
the cases of k = 2, . . . ,K.

We consider the hypothesis test based on model (9). First, we reparameterize the model under the construc-
tion (13)

xa = [Mat1 (S ×2 M2 ×3 · · · ×K MK)]a: , for all a ∈ [r],

where xa’s are centroids in RpK−1

. Without loss of generality, we consider the lower bound for the summand
in (14) for i = 1. The analysis for other i ∈ T c are similar. For notational simplicity, we suppress the subscript
i and write y, θ, z in place of y1, θ1 and z(1), respectively. The equivalent vector problem for assessing the
summand in (14) is

y = θxz + e, (15)

where θ ∈ R+ and z ∈ {1, 2} are unknown parameters, x1,x2 ∈ RpK−1

are given centroids, and e ∈ RpK−1

consists of i.i.d. N(0, σ2) entries. Then, we consider the hypothesis testing under the model (15):

H0 : z = 1, v.s. Hα : z = 2.

Note that the profile log-likelihood with respect to z is

L(z, θ(z);y) ∝ − inf
θ>0

∥y − θxz∥2 ∝ cos2(y,xz)1{⟨y,xz⟩ > 0},

and the MLE’s of θ and z are

θ̂MLE = θ̂(ẑMLE) =
⟨y,xẑMLE

⟩
∥xẑMLE∥2

∨ 0, ẑMLE = argmax
a∈{1,2}

{cos(y, xa) ∨ 0} .

Then, the decision rule ẑMLE ∈ {1, 2} based on profile log-likelihood ratio is defined as

ẑMLE =





1 if cos(y,x1) ≥ cos(y,x2) and ⟨y,x1⟩ > 0,

2 if cos(y,x1) < cos(y,x2) and ⟨y,x2⟩ > 0,

1 or 2 with equal probability otherwise.

(16)

The Neyman-Pearson Lemma implies

inf
ẑ
{P[ẑ = 2|z = 1] + P[ẑ = 1|z = 2]} = P[ẑMLE = 1|z = 2] + P[ẑMLE = 2|z = 1]. (17)

By symmetric, it suffices to bound P[ẑMLE = 1|z = 2]. Using (16), we obtain

P[ẑMLE = 1|z = 2] = P [cos(θx2 + e,x1) ≥ cos(θx2 + e,x2) and ⟨θx2 + e,x1⟩ > 0]

(∗)
≥ P


e,

xs
1 − xs

2

∥xs
1 − xs

2∥


≥ θ

2
∥x2∥∥xs

1 − xs
2∥⟩


−
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P

⟨e,xs

1⟩ ≤ −θ

2
∥x2∥

�
2− ∥xs

1 − xs
2∥2



(∗∗)
= Φ


θ

2
∥x2∥ (2− ∥xs

1 − xs
2∥2)


− Φ


θ

2
∥x2∥ ∥xs

1 − xs
2∥

, (18)

where Φ(·) denotes the CDF for standard normal distribution. Here step (∗) is based on the inequality

P(A ∪B) ≥ P(A)− P(Bc) and the identity 1− ⟨xs
1,x

s
2⟩ = 1

2 ∥xs
1 − xs

2∥2; and step (∗∗) is based on isotropic
property of i.i.d. Gaussian distribution


e,

xs
1 − xs

2

∥xs
1 − xs

2∥


∼ N(0, σ2), ⟨e,xs

1⟩ ∼ N(0, σ2).

By construction (13) of ({zk},S, {θk}) with three properties and lower bound mina∈[r] ∥Sa:∥ ≥ c3 in the

definition of P(γ), we have θ∗ = 1, ∥x2∥ ≥ ∥S2:∥mina∈[r]

θz−1(a)

K−1
≳

�
p
r

(K−1)/2
. Also, note that under

the construction (13)

cos(x1,x2) =
⟨x1,x2⟩
∥x1∥ ∥x2∥

=
(p/r)K−1 ⟨S1:,S2:⟩

(p/r)K−1 ∥S1:∥2


(p/r)K−1 ∥S2:∥2
= cos(S1:,S2:),

which implies ∥xs
1 − xs

2∥ = ∥Ss
1: − Ss

2:∥ = ∆min ≤ 1. Therefore, the equation (18) is lower bounded by

P[ẑMLE = 1|z = 2] ≥ P
p

r

(K−1)/2

∆min ≲ N(0, 1) ≲
p
r

(K−1)/2

≥ C > 0, (19)

where the existence of strictly positive constant C is based on the SNR assumption (13). Combining (14),
(17) and (19) yields

inf
ẑ1

sup
({zk},S,{θk})∈P(γ)

Eℓ(ẑ1, z1) ≳ C > 0,

and henceforth for all k ∈ [K]
inf
ẑk

sup
({zk},S,{θk})∈P(γ)

E [pℓ(ẑk, zk)] ≥ 1.

C.4 Proof of Theorem 3

Proof of Theorem 3. The idea of proving computational hardness is to show the computational lower bound
for a special class of degree-corrected tensor clustering model with K ≥ 2. We construct the following special
class of higher-order degree-corrected tensor clustering model. For a given signal level γ ∈ R and noise
variance σ, define a rank-2 symmetric tensor S ∈ R3×···×3 subject to

S = S(γ) =



1
1
1



⊗K

+ σp−γ/2




1
−1
0



⊗K

. (20)

Then, we consider the signal tensor family

Pshifted(γ) = {X : X = S ×1 M1 ×2 · · · ×K MK , Mk ∈ {0, 1}p×3 is a membership matrix that

satisfies |Mk( : , i)| ≍ p for all i ∈ [3] and k ∈ [K]}.

We claim that the constructed family satisfies the following two properties:

(i) For every γ ∈ R, Pshifted(γ) ⊂ P(γ), where P(γ) is the degree-corrected cluster tensor family (5).

(ii) For every γ ∈ R, {X − 1: X ∈ Pshifted(γ)} ⊂ Pnon-degree(γ), where Pnon-degree(γ) denotes the sub-family
of rank-one tensor block model constructed in the proof of Han et al. (2020, Theorem 7).
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The verification of the above two properties is provided in the end of this proof.

Now, following the proof of Han et al. (2020, Theorem 7), when γ < −K/2, every polynomial-time algorithm

estimator (M̂k)k∈[K] obeys

lim inf
p→∞

sup
X∈Pnon-degree(γ)

P(∃k ∈ [K], M̂k ̸= Mk) ≥ 1/2, (21)

under the HPC Conjecture 1. The inequality (21) implies

lim inf
p→∞

sup
X∈Pnon-degree(γ)

max
k∈[K]

E[pℓ(zk, ẑk)] ≥ 1.

Based on properties (i)-(ii), we conclude that

lim inf
p→∞

sup
X∈P(γ)

max
k∈[K]

E[pℓ(zk, ẑk)] ≥ 1.

We complete the proof by verifying the properties (i)-(ii). For (i), we verify that the angle gap for the core
tensor S in (20) is on the order of σp−γ/2. Specifically, write 1 = (1, 1, 1) and e = (1,−1, 0). We have

Mat(S) =



Vec(1⊗K−1) + σp−γ/2Vec

�
e⊗(K−1)



Vec(1⊗K−1)− σp−γ/2Vec
�
e⊗(K−1)



Vec(1⊗K−1)


 .

Based on the orthogonality ⟨1, e⟩ = 0, the minimal angle gap among rows of Mat(S) is

∆2
min(S) ≍ tan2(Mat(S)1:,Mat(S)3:) =

∥e∥2
∥1∥2

2(K−1)

σ2d−γ ≍ σ2d−γ .

Therefore, we have shown that Pshifited(γ) = P(γ). Finally, the property (ii) follows directly by comparing
the definition of S in (20) with that in the proof of Han et al. (2020, Theorem 7).

Useful Definition and Conjecture for Theorem 3

Definition 2 (Hypergraphic planted clique (HPC) detection). Consider an order-K hypergraph H = (V,E)
where V = [p] collects vertices and E collects all the order-K edges. Let Hk(p, 1/2) denote the Erdős-Rényi
K-hypergraph where the edge (i1, . . . , iK) belongs to E with probability 1/2. Further, we let HK(p, 1/2, κ)
denote the hyhpergraph with planted cliques of size κ. Specifically, we generate a hypergraph from Hk(p, 1/2),
pick κ vertices uniformly from [p], denoted K, and then connect all the hyperedges with vertices in K. Note
that the clique size κ can be a function of p, denoted κp. The order-K HPC detection aims to identify whether
there exists a planted clique hidden in an Erdős-Rényi K-hypergraph. The HPC detection is formulated as
the following hypothesis testing problem

H0 : H ∼ HK(p, 1/2) versus H1 : H ∼ HK(p, 1/2, κp).

Conjecture 1 (HPC conjecture). Consider the HPC detection problem in Definition 2. Suppose the sequence
{κp} such that lim supp→∞ log κp/ log

√
p ≤ (1 − τ). Then, for every sequence of polynomial-time test

{φp} : H → {0, 1} we have

lim inf
p→∞

PH0
(φp(H) = 1) + PH1

(φp(H) = 0) ≥ 1

2
.

C.5 Proof of Theorem 4

Proof of Theorem 4. We prove Theorem 4 under the symmetric dTBM (1) with parameters (z,S,θ). We
drop the subscript k in the matricizations Mk,Xk,Sk. For simplicity, let ẑ denote the output, ẑ(0), of
Sub-algorithm 1.
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First, by Lemma 4, there exists a positive constant such that minz(i)̸=z(j)

Xs
i: −Xs

j:

 ≥ c0∆min. By the
balance assumption on θ and Lemma 7, we have

min
π∈Π



i:ẑ(i)̸=π(z(i))

θ(i)2 ≤


i∈SI

θ(i)2 + 4


i∈S

θ(i)2, (22)

where
S0 = {i : ∥X̂i:∥ = 0}, S = {i ∈ Sc

0 : ∥x̂ẑ(i) −Xs
i:∥ ≥ c0∆min/2}.

On one hand, note that for any set P ∈ [p],



i∈P

∥Xi:∥2 =


i∈P

∥θ(i)Sz(i):(ΘM)T,⊗(K−1)∥2

≥


i∈P

θ(i)2 min
a∈[r]

∥Sa:∥2λ2(K−1)
r (ΘM)

≳


i∈P

θ(i)2pK−1r−(K−1),

where the last inequality follows Lemma 5, the assumption that mini∈[p] θ(i) ≥ c, and the constraint
mina∈[r]∥Sa:∥ ≥ c3 in the parameter space (2). Thus, we have



i∈P

θ(i)2 ≲


i∈P

∥Xi:∥2p−(K−1)rK−1. (23)

On the other hand, note that



i∈S

∥Xi:∥2 ≤ 2


i∈S

∥X̂i:∥2 + 2


i∈S

∥X̂i: −Xi:∥2 (24)

≤ 8

c20∆
2
min



i∈S

∥X̂i:∥2∥x̂ẑ(i) −Xs
i:∥2 + 2∥X̂ − X∥2F (25)

≤ 16

c20∆
2
min



i∈S

∥X̂i:∥2

∥x̂ẑ(i) − X̂s

i:∥2 + ∥X̂s
i: −Xs

i:∥2

+ 2∥X̂ − X∥2F (26)

≤ 16(1 + η)

c20∆
2
min



i∈S

∥X̂i:∥2∥X̂s
i: −Xs

i:∥2 + 2∥X̂ − X∥2F (27)

≤

16(1 + η)

c20∆
2
min

+ 2


∥X̂ − X∥2F (28)

≲


16(1 + η)

c20∆
2
min

+ 2


pK/2r + pr2 + rK


σ2, (29)

where inequalities (24) and (26) follow from the triangle inequality, (25) follows from the definition of S, (27)
follows from the update rule of k-means in Step 5 of Sub-algorithm 1, (28) follows from Lemma 2, and the
last inequality (29) follows from Lemma 6. Also, note that



i∈S0

∥Xi:∥2 =


i∈S0

∥X̂i: −Xi:∥2 ≤ ∥X̂ − X∥2F ≲

pK/2r + pr2 + rK


σ2, (30)

where the equation follows from the definition of S0. Therefore, combining the inequalities (22), (23), (29),
and (30), we have

min
π∈Π



i:ẑ(i)̸=π(z(i))

θ(i)2 ≲



i∈S

∥Xi:∥2 +


i∈S0

∥Xi:∥2

p−(K−1)rK−1

≲
σ2rK−1

∆2
minp

K−1


pK/2r + pr2 + rK


.
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With the assumption that mini∈[p] θ(i) ≥ c, we finally obtain the result

ℓ(z, z) ≲
1

p
min
π∈Π



i:ẑ(i)̸=π(z(i))

θ(i)2 ≲
rKp−K/2

SNR
,

where the last inequality follows from the definition SNR = ∆2
min/σ

2.

Useful Corollary of Theorem 4

Corollary 1 (Initial misclustering loss). Under the setup of Theorem 4, assume SNR ≥ C̃p−K/2 log p for
some positive universal constant C̃ and σ2 = 1. With probability going to 1, the misclustering loss for the
initialization is upper bounded as

L(0) =
1

p



i∈[p]

θ(i)


b∈[r]

1

z(0)(i) = b


∥[Sπ(0)(z(i)):]

s − [Sb:]
s∥2 ≤ C̄∆2

min

C̃r log p
,

where π(0) minimizes the initial misclustering error; i.e., π(0) = argminπ∈Π


i∈[p] 1


z(0)(i) ̸= π ◦ z(i)


, and

C̄ > 1 is a positive universal constant.

Proof of Corollary 1. Without loss of generality, we assume π(0) is the identity mapping such that π(0)(a) = a
for all a ∈ [r]. Note that Xs

i: have only r different values. We let Xs
a = Xs

i: for all i such that z(i) = a, a ∈ [r].

Notice that

∥Xi:∥2 ≳ pK−1r−(K−1) and ∥Xi: − X̂i:∥2 ≤ ∥X̂ − X∥2F ≲ pK/2r + pr2 + rK .

Therefore, when p is large enough, we have



i∈[p]

∥Xi:∥2∥X̂s
i − x̂z(0)(i)∥2 ≲



i∈[p]


∥Xi:∥2 − ∥Xi: − X̂i:∥2


∥X̂s

i: − x̂z(0)(i)∥2

≲


i∈[p]

∥X̂i:∥2∥X̂s
i: − x̂z(0)(i)∥2

≲ η


i∈[p]

∥X̂i:∥2∥X̂s
i: −Xs

i:∥2

≲ ∥X̂ − X∥2F
≲ pK/2r + pr2 + rK . (31)

Hence, we have



i∈[p]

∥X̂s
i: − x̂z(0)(i)∥2 ≲



i∈[p]

θ(i)2∥X̂s
i − x̂z(0)(i)∥2

≲
rK−1

pK−1



i∈[p]

∥Xi:∥2∥X̂s
i: − x̂z(0)(i)∥2

≲
rK−1

pK−1


pK/2r + pr2 + rK


, (32)

where the first inequality follows from the assumption mini∈[p] θ(i) ≥ c, the second inequality follows from
the inequality (23), and the last inequality comes from the inequality (31).

Next, we consider the following quantity,



i∈[p]

θ(i)∥Xs
i: − x̂z(0)(i)∥2 ≲



i∈[p]

θ(i)2∥Xs
i: − X̂s

i:∥2 +


i∈[p]

θ(i)2∥X̂s
i: − x̂z(0)(i)∥2
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≲


i∈[p]

θ(i)2

∥Xi:∥2
∥Xi: − X̂i:∥2 +



i∈[p]

θ(i)2∥X̂s
i: − x̂z(0)(i)∥2

≲
rK−1

pK−1


pK/2r + pr2 + rK


, (33)

where the first inequality follows from the assumption of θ(i) and triangle inequality, the second inequality
follows from Lemma 2, and the last inequality follows from (32). In addition, with Theorem 4 and the
condition SNR ≳ p−K/2 log p, for all a ∈ [r], we have

|z−1(a) ∩ (z(0))−1(a)| ≥ |z−1(a)| − pℓ(z(0), z) ≳
p

r
− p

log p
≳

p

r
,

when p is large enough. Therefore, for all a ∈ [r], we have

∥x̂a −Xs
a∥2 =


i∈z−1(a)∩(z(0))−1(a)

Xs
i: − x̂z(0)(i)

2

|z−1(a) ∩ (z(0))−1(a)|

≲
r

p




i∈[p]

∥Xs
i: − X̂s

i:∥2 +


i∈[p]

∥X̂s
i: − x̂z(0)(i)∥2




≲
rK

pK


pK/2r + pr2 + rK


, (34)

where the last inequality follows from the inequality (32).

Finally, we obtain

L(0) =
1

p



i∈[p]

θ(i)


b∈[r]

1

z(0)(i) = b


∥[Sz(i):]

s − [Sb:]
s∥2

≲
1

p



i∈[p],z(0)(i)̸=z(i)

θ(i)∥Xs
i: −Xs

z(0)(i)∥2

≲
1

p



i∈[p],z(0)(i)̸=z(i)

θ(i)

∥Xs

i: − x̂z(0)(i)∥2 + ∥x̂z(0)(i) −Xs
z(0)(i)∥2



≤ C̄
rK

pK


pK/2r + pr2 + rK


,

≤ C̄∆2
min

C̃r log p

where the first inequality follows from Lemma 4, the third inequality follows from inequalities (33) and (34),
and the last inequality follows from the assumption that SNR ≥ C̃p−K/2 log p.

Useful Definitions and Lemmas for the Proof of Theorem 4

Lemma 2 (Basic inequality). For any two nonzero vectors v1,v2 of same dimension, we have

sin(v1,v2) ≤ ∥vs
1 − vs

2∥ ≤ 2 ∥v1 − v2∥
max (∥v1∥ , ∥v2∥)

.

Proof of Lemma 2. For the first inequality, let α ∈ [0, π] denote the angle between v1 and v2. We have

∥vs
1 − vs

2∥ =


2(1− cosα) = 2 sin
α

2
≥ sinα,

where the equations follows from the properties of trigonometric function and the inequality follows from the
fact the cos α

2 ≤ 1 and sinα = 2 sin α
2 cos α

2 > 0 for α ∈ [0, π].
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For the second inequality, without loss of generality, we assume ∥v1∥ ≥ ∥v2∥. Then

∥vs
1 − vs

2∥ =


v1

∥v1∥
− v2

∥v1∥
+

v2

∥v1∥
− v2

∥v2∥



≤ ∥v1 − v2∥
∥v1∥

+
∥v2∥ ∥v1∥ − ∥v2∥

∥v1∥ ∥v2∥

≤ 2 ∥v1 − v2∥
∥v2∥

.

Therefore, Lemma 2 is proved.

Definition 3 (Weighted padding vectors). For a vector a = �ai� ∈ Rd, we define the padding vector of a
with the weight collection w = {wi : wi = �wik� ∈ Rpi}di=1 as

Padw(a) = [a1 ◦w1, . . . , ad ◦wd]
T , where ai ◦wi = [aiwi1, . . . , aiwipi

]T , for all i ∈ [d]. (35)

Here we also view Padw(·) : Rd → R
∑

i∈[d] pi as an operator. We have the bounds of the weighted padding
vector

min
i∈[d]

∥wi∥2∥a∥2 ≤ ∥Padw(a)∥2 ≤ max
i∈[d]

∥wi∥2∥a∥2. (36)

Further, we define the inverse weighted padding operator Pad−1 : R
∑

i∈[d] pi → Rd which satisfies

Pad−1
w (Padw(a)) = a.

Lemma 3 (Angle for weighted padding vectors). Suppose we have two non-zero vectors a, b ∈ Rd. Given
the weight collection w, we have

mini∈[d]∥wi∥
maxi∈[d]∥wi∥

sin(a, b)
∗
≤ sin(Padw(a),Padw(b))

∗∗
≤ maxi∈[d]∥wi∥

mini∈[d]∥wi∥
sin(a, b). (37)

Proof of Lemma 3. We prove the two inequalities separately with similar ideas.

First, we prove the inequality ** in (37). Decomposing b yields

b = cos(a, b)
∥b∥
∥a∥a+ sin(a, b)

∥b∥
∥a⊥∥a

⊥,

where a⊥ ∈ Rd is in the orthogonal complement space of a. By the Definition 3, we have

Padw(b) = cos(a, b)
∥b∥
∥a∥Padw(a) + sin(a, b)

∥b∥
∥a⊥∥Padw(a⊥).

Note that Padw(a⊥) is not necessary equal to the orthogonal vector of Pad(a); i.e., Padw(a⊥) ̸= (Padw(a))⊥.
By the geometry property of trigonometric functions, we obtain

sin(Padw(a),Padw(b)) ≤ ∥b∥∥Padw(a⊥)∥
∥a⊥∥∥Padw(b)∥ sin(a, b)

≤ maxi∈[d]∥wi∥
mini∈[d]∥wi∥

sin(a, b),

where the second inequality follows by applying the property (36) to vectors b and a⊥.

Next, we prove inequality * in (37). With the decomposition of Padw(b) and the inverse weighted padding
operator, we have

b = cos(Padw(a),Padw(b))
∥Padw(b)∥
∥Padw(a)∥a+ sin(Padw(a),Padw(b))

∥Padw(b)∥
∥(Padw(a))⊥∥Pad

−1
w ((Padw(a))⊥).
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Therefore, we obtain

sin(a, b) ≤ ∥Padw(b)∥∥Pad−1
w ((Padw(a))⊥)∥

∥(Padw(a))⊥∥∥b∥ sin(Padw(a),Padw(b))

≤ maxi∈[d]∥wi∥
mini∈[d]∥wi∥

sin(Padw(a),Padw(b)),

where the second inequality follows by applying the property (36) to vectors b and Pad−1
w ((Padw(a))⊥).

Lemma 4 (Angle gap in X ). Consider the dTBM model (1) under the parameter space P in (2). Suppose
Assumption 1 holds and θ is balanced satisfying (6). Then the angle gap in X is asymptotically lower bounded
by the angle gap in S; i.e., for all i, j such that z(i) ̸= z(j)

∥Xs
i: −Xs

j:∥ ≳ ∥Ss
z1(i):

− Ss
z1(j):

∥ ≳ ∆min.

Proof of Lemma 4. Note that the vector Sz(i): can be folded to a tensor S ′ = �S ′
a2,...,aK

� ∈ RrK−1

; i.e.,
vec(S ′) = Sz(i):. Define weight vectors wa2,··· ,aK

correspond to the elements in S ′
a2,...,aK

by

wa2···aK
= [θT

z−1(a2)
⊗ · · · ⊗ θT

z−1(aK)] ∈ R|z−1(a2)|×···×|z−1(aK)|,

for all ak ∈ [r], k = 2, . . . ,K, where ⊗ denotes the Kronecker product. Therefore, we have
Xi: = θ(i)Padw(Sz(i):) where w = {wa2,··· ,aK

}ak∈[r],k∈[K]/{1}. Specifically, we have ∥wa2,...,aK
∥2 =K

k=2∥θz−1(ak)∥2, and by the balanced assumption (6) we have

max
(a2,...,aK)

∥wa2,...,aK
∥2 = (1 + o(1)) min

(a2,...,aK)
∥wa2,...,aK

∥2. (38)

Consider the inner product of Xi: and Xj: for z(i) ̸= z(j). By the definition of weighted padding operator (35)
and the balanced assumption (38), we have

⟨Xi:,Xj:⟩ = θ(i)θ(j)

Padw(Sz(i):),Padw(Sz(j):)



= θ(i)θ(j) min
(a2,...,aK)

∥wa2,...,aK
∥2


Sz(i):,Sz(j):


(1 + o(1)).

Therefore, when p large enough, the inner product ⟨Xi:,Xj:⟩ has the same sign as

Sz(i):,Sz(j):


. Next, we

discuss the angle between Xi: and Xj: by two cases.

1. Case 1: Suppose

Sz(i):,Sz(j):


≤ 0. Then, we also have ⟨Xi:,Xj:⟩ ≤ 0, which implies ∥Xs

i: −Xs
j:∥ ≥

√
2.

Note that ∥Ss
z(i): − Ss

z(j):∥ ≤ 2 by the definition of angle gap. We have ∥Xs
i: −Xs

j:∥ ≳ ∥Ss
z(i): − Ss

z(j):∥.

2. Case 2: Suppose

Sz(i):,Sz(j):


> 0. Then, we have cos(Sz(i):,Sz(j):) > 0. Note that the fact

√
1− cosα =

2 sin α
2 ≲ sinα for the angle α ∈ [0, π

2 ). Then, we have

∥Ss
z(i): − Ss

z(j):∥ =

1− cos(Sz(i):,Sz(j):)

≲ sin(Sz(i):,Sz(j):)

≤ max(a2,...,aK)∥wa2,...,aK
∥

min(a2,...,aK)∥wa2,...,aK
∥ sin(Padw(Sz(i):),Padw(Sz(j):))

≤ (1 + o(1))∥Xs
i: −Xs

j:∥,

where the second inequality follows from Lemma 3, and the last inequality follows from the balanced
weight (38) and Lemma 2.

Hence, we conclude that for all i, j such that z(i) ̸= z(j),

∥Xs
i: −Xs

j:∥ ≳ ∥Ss
z1(i):

− Ss
z1(j):

∥ ≳ ∆min.
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Lemma 5 (Singular value of weighted membership matrix). Under the parameter space (2) and assumption
that mini∈[p] θ(i) ≥ c, the singular values of ΘM are bounded as


p/r ≲


min
a∈[r]

∥θz−1(a)∥2 ≤ λr(ΘM) ≤ ∥ΘM∥σ ≤

max
a∈[r]

∥θz−1(a)∥2 ≲ p/r.

Proof of Lemma 5. Note that

(ΘM)TΘM = D, with D = diag(D1, . . . , Dr), Da = ∥θz−1(a)∥2, a ∈ [r].

By the definition of singular values, we have


min
a∈[r]

∥θz−1(a)∥2 ≤ λr(ΘM) ≤ ∥ΘM∥σ ≤


max
a∈[r]

∥θz−1(a)∥2.

Since that mini∈[p] θ(i) ≥ c by the constraints in parameter space, we have

min
a∈[r]

∥θz−1(a)∥2 ≥ c2 min
a∈[r]

|z−1(a)| ≳ p

r
,

where the last inequality follows from the constraint in parameter space (2). Finally, notice that


max
a∈[r]

∥θz−1(a)∥2 ≤ max
a∈[r]


∥θz−1(a)∥21 ≲

p

r
.

Therefore, we complete the proof of Lemma 5.

Lemma 6 (Singular-value gap-free tensor estimation error bound). Consider an order-K tensor A = X +Z ∈
Rp×···×p, where X has Tucker rank (r, ...r) and Z has independent sub-Gaussian entries with parameter σ2.
Let X̂ denote the double projection estimated tensor in Step 2 of Sub-algorithm 1 in the main paper. Then
with probability at least 1− C exp (−cp), we have

∥X̂ − X∥2F ≤ Cσ2

pK/2r + pr2 + rK


,

where C, c are some positive constants.

Proof of Lemma 6. See Han et al. (2020, Proposition 1).

Lemma 7 (Upper bound of misclustering error). Let z : [p] → [r] be a cluster assignment such that
|z−1(a)| ≍ p/r for all a ∈ [r]. Let node i correspond to a vector xi = θ(i)vz(i) ∈ Rd, where {va}ra=1 are the
cluster centers and θ = �θ(i)� ∈ Rp

+ is the positive degree heterogeneity. Assume that θ satisfies the balanced

assumption (6) such that
maxa∈[r]∥θz−1(a)∥2

mina∈[r]∥θz−1(a)∥2 = 1 + o(1). Consider an arbitrary estimate ẑ with x̂i = v̂ẑ(i) for

all i ∈ S. Then, if

min
a ̸=b∈[r]

∥va − vb∥ ≥ 2c, (39)

for some constant c > 0, we have

min
π∈Π



i:ẑ(i)̸=π(z(i))

θ(i)2 ≤


i∈S0

θ(i)2 + 4


i∈S

θ(i)2,

where S0 is defined in Step 3 of Sub-algorithm 1 and

S = {i ∈ Sc
0 : ∥x̂i − vz(i)∥ ≥ c}.
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Proof of Lemma 7. For each cluster u ∈ [r], we use Cu to collect the subset of points for which the estimated
and true positions x̂i,xi are within distance c. Specifically, define

Cu = {i ∈ z−1(u) ∩ Sc
0 : ∥x̂i − vz(i)∥ < c},

and divide [r] into three groups based on Cu as

R1 = {u ∈ [r] : Cu = ∅},
R2 = {u ∈ [r] : Cu ̸= ∅, for all i, j ∈ Cu, ẑ(i) = ẑ(j)},
R3 = {u ∈ [r] : Cu ̸= ∅, there exist i, j ∈ Cu, ẑ(i) ̸= ẑ(j)}.

Note that ∪u∈[r]Cu = Sc
0/S

c and Cu ∩ Cv = ∅ for any u ̸= v. Suppose there exist i ∈ Cu and j ∈ Cv with
u ̸= v ∈ [r] and ẑ(i) = ẑ(j). Then we have

∥vz(i) − vz(j)∥ ≤ ∥vz(i) − x̂i∥+ ∥vz(j) − x̂j∥ < 2c,

which contradicts to the assumption (39). Hence, the estimates ẑ(i) ̸= ẑ(j) for the nodes i ∈ Cu and j ∈ Cv

with u ̸= v. By the definition of R2, the nodes in ∪u∈R2
Cu have the same assignment with z and ẑ. Then,

we have

min
π∈Π



i:ẑ(i)̸=π(z(i))

θ(i)2 ≤


i∈S0

θ(i)2 +


i∈S

θ(i)2 +


i∈∪u∈R3
Cu

θ(i)2.

We only need to bound


i∈∪u∈R3
Cu

θ(i)2 to finish the proof. Note that every Cu with u ∈ R3 contains at least

two nodes assigned to different clusters by ẑ. Then, we have |R2|+ 2|R3| ≤ r. Since |R1|+ |R2|+ |R3| = r,
we have |R3| ≤ |R1|. Hence, we obtain



i∈∪u∈R3
Cu

θ(i)2 ≤ |R3|max
a∈[r]

∥θz−1(a)∥2

≤ |R1|max
a∈[r]

∥θz−1(a)∥2

≤ maxa∈[r]∥θz−1(a)∥2
mina∈[r]∥θz−1(a)∥2



i∈∪u∈R1
z−1(u)

θ(i)2

≤ 2


i∈S

θ(i)2,

where the last inequality holds by the balanced assumption on θ when p is large enough, and the fact that
∪u∈R1

z−1(u) ⊂ S.

C.6 Proof of Theorem 5

Proof of Theorem 5. We prove Theorem 5 under the symmetric dTBM (1) with parameters (z,S,θ). We
drop the subscript k in the matricizations Mk,Sk,Xk. Without loss of generality, we assume that the
variance σ = 1, and that the identity permutation minimizes the initial misclustering error; i.e., π(0) =
argminπ∈Π


i∈[p] 1


z(0)(i) ̸= π ◦ z(i)


and π(0)(a) = a for all a ∈ [r].

Step 1 (Notation and conditions). We first introduce additional notations and the necessary conditions
used in the proof. We will verify that the conditions hold in our context under high probability in the last
step of the proof.

Notation.

1. Projection. We use Id to denote the identity matrix of dimension d. For a vector v ∈ Rd, let Proj(v) ∈ Rd×d

denote the projection matrix to v. Then, Id −Proj(v) is the projection matrix to the orthogonal complement
v⊥.
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2. We define normalized membership matrices

W = M
�
diag(1T

p M)
−1

, W (t) = M (t)

diag(1T

p M
(t))

−1

,

and the dual normalized membership matrices

V = W⊗(K−1), V (t) =

W (t)

⊗(K−1)

.

3. We use S(t) to denote the estimator of S in the t-th iteration, and we use S̃ to denote the oracle estimator
of S given true assignment z; i.e.,

S(t) = Y ×1


W (t)

T

×2 · · · ×K


W (t)

T

, S̃ = Y ×1 W
T ×2 · · · ×K W T .

4. We define the matricizations of tensors

S = Mat(S), S(t) = Mat(S(t)), S̃ = Mat(S̃)
Y = Mat(Y), X = Mat(X ), E = Mat(E).

5. We define the angle-based misclustering loss in the t-th iteration

L(t) =
1

p



i∈[p]

θ(i)


b∈[r]

1

z(t)(i) = b


∥[Sz(i):]

s − [Sb:]
s∥2,

and the oracle loss

ξ =
1

p



i∈[p]

θ(i)


b∈[r]

1


Ei:V , [S̃z(i):]
s − [S̃b:]

s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


∥[Sz(i):]

s − [Sb:]
s∥2,

where m is a positive universal constant defined in (47).

Condition 1. (Intermediate results) Let Op,r denote the collection of all the p-by-r matrices with orthonormal
columns. We have

∥EV ∥σ ≲


rK−1

pK−1


p1/2 + r(K−1)/2


, ∥EV ∥F ≲


r2(K−1)

pK−2
, ∥W T

a:EV ∥ ≲
rK

pK/2
for all a ∈ [r], (40)

sup
Uk∈Op,r,k=2,...,K

∥E(U2 ⊗ · · · ⊗UK)∥σ ≲
√

rK−1 +K
√
pr

, (41)

sup
Uk∈Op,r,k=2,...,K

∥E(U2 ⊗ · · · ⊗UK)∥F ≲


prK−1 +K
√
pr

, (42)

ξ ≤ exp


−M

∆2
minp

K−1

rK−1


, (43)

L(t) ≤ C̄

C̃

∆2
min

r log p
, for t = 0, 1, . . . , T, (44)

where M is a positive universal constant in inequality (59), C̄, C̃ are universal constants in Corollary 1 and
assumption SNR ≥ C̃p−K/2 log p, respectively. Further, inequality (40) holds by replacing V to V (t) and

W:a to W
(t),T
:a when initialization condition (44) holds.
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Step 2 (Misclustering loss decomposition). Next, we derive the upper bound of L(t+1) for t =
0, 1, . . . , T − 1. By Sub-algorithm 2, we update the assignment in t-th iteration via

z(t+1)(i) = argmin
a∈[r]

∥[Yi:V
(t)]s − [S(t)

a: ]
s∥2,

following the facts that ∥as − bs∥2 = 1− cos(a, b) for vectors a, b of same dimension and Mat(Yd) = Y V (t)

where Yd is the reduced tensor defined in Step 8 of Sub-algorithm 2. Then the event z(t+1)(i) = b implies

∥[Yi:V
(t)]s − [S

(t)
b: ]

s∥2 ≤ ∥[Yi:V
(t)]s − [S

(t)
z(i):]

s∥2. (45)

Note that the event (45) also holds for the degenerate entity i with ∥Yi:V
(t)∥ = 0 due to the convention that

as = 0 if a = 0. Arranging the terms in (45) yields the decomposition

2

Ei:V , [S̃z(i):]

s − [S̃b:]
s

≤ ∥Xi:V

(t)∥

−∥[Sz(i):]

s − [Sb:]
s∥2 +G

(t)
ib +H

(t)
ib


+ F

(t)
ib ,

where

F
(t)
ib = 2


Ei:V

(t),

[S̃z(i):]

s − [S
(t)
z(i):]

s

−


[S̃b:]

s − [S
(t)
b: ]

s


+ 2

Ei:


V − V (t)


, [S̃z(i):]

s − [S̃b:]
s

,

G
(t)
ib =


∥[Xi:V

(t)]s − [S
(t)
z(i):]

s∥2 − ∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2


−

∥[Xi:V

(t)]s − [S
(t)
b: ]

s∥2 − ∥[Xi:V
(t)]s − [W T

:b Y V (t)]s∥2

,

H
(t)
ib = ∥[Xi:V

(t)]s − [W T
:z(i)Y V (t)]s∥2 − ∥[Xi:V

(t)]s − [W T
:b Y V (t)]s∥2 + ∥[Sz(i):]

s − [Sb:]
s∥2.

Therefore, the event 1

z(t+1)(i) = b


can be upper bounded as

1

z(t+1)(i) = b


≤ 1


z(t+1)(i) = b,


Ej:V , [S̃z(i):]

s − [S̃b:]
s

≤ −1

4
∥Xi:V

(t)∥∥[Sz(i):]
s − [Sb:]

s∥2


+ 1


z(t+1)(i) = b,

1

2
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ ∥Xi:V

(t)∥−1F
(t)
ib +G

(t)
ib +H

(t)
ib


. (46)

Note that

∥Xi:V
(t)∥ = θ(i)∥Si:(ΘM)⊗(K−1),TW (t),⊗K−1∥ ≥ θ(i)∥Sz(i):∥λK−1

r (ΘM)λK−1
r (W (t)) ≥ θ(i)m, (47)

where the first inequality follows from the property of eigenvalues; the last inequality follows from Lemma 5,
Lemma 9, and assumption that mina∈[r]∥Sz(i):∥ ≥ c3 > 0; and m > 0 is a positive constant related to c3.

Plugging the lower bound of ∥Xi:V
(t)∥ (47) into the inequality (46) gives

1

z(t+1)(i) = b


≤ Aib +Bib, (48)

where

Aib = 1


z(t+1)(i) = b,


Ei:V , [S̃z(i):]

s − [S̃b:]
s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


,

Bib = 1


z(t+1)(i) = b,

1

2
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ (θ(i)m)−1F

(t)
ib +G

(t)
ib +H

(t)
ib


.

Taking the weighted summation of (48) over i ∈ [p] yields

L(t+1) ≤ ξ +
1

p



i∈[p]



b∈[r]/z(i)

ζ
(t)
ib ,
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where ξ is the oracle loss such that

ξ =
1

p



i∈[p]

θ(i)


b∈[r]/z(i)

Aib∥[Sz(i):]
s − [Sb:]

s∥2. (49)

Similarly to ξ in (49), we define

ζ
(t)
ib = θ(i)Bib∥[Sz(i):]

s − [Sb:]
s∥2.

Step 3 (Derivation of contraction inequality). In this step we derive the upper bound of ζib and obtain
the contraction inequality. Choose the constant C̃ in the condition SNR ≥ C̃p−K/2 log p that satisfies the
condition of Lemma 10, inequalities (73) and (77). Note that

ζ
(t)
ib = θ(i)∥[Sz(i):]

s − [Sb:]
s∥21


z(t+1)(i) = b,

1

2
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ (θ(i)m)−1F

(t)
ib +G

(t)
ib +H

(t)
ib



≤ θ(i)∥[Sz(i):]
s − [Sb:]

s∥21


z(t+1)(i) = b,

1

4
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ (θ(i)m)−1F

(t)
ib +G

(t)
ib



≤ 641

z(t+1)(i) = b


(F

(t)
ib )2

cm2∥[Sz(i):]s − [Sb:]s∥2
+

θ(i)(G
(t)
ib )

2

∥[Sz(i):]s − [Sb:]s∥2



where the first inequality follows from the inequality (64) in Lemma 10, and the last inequality follows from
the assumption that mini∈[p] θ(i) ≥ c > 0. Following Han et al. (2020, Step 4, Proof of Theorem 2) and
Lemma 10, we have

1

p



i∈[p]



b∈[r]/z(i)

1

z(t+1)(i) = b

 (F
(t)
ib )2

cm2∥[Sz(i):]s − [Sb:]s∥2
≤ C0C̄

cm2C̃2
L(t),

for a positive universal constant C and

1

p



i∈[p]



b∈[r]/z(i)

1

z(t+1)(i) = b

 θ(i)(G
(t)
ib )

2

∥[Sz(i):]s − [Sb:]s∥2
≤ 1

512

1

p



i∈[p]

θ(i)


b∈[r]/z(i)

1

z(t+1)(i) = b


(∆2

min + L(t))

≤ 1

512
(L(t+1) + L(t)),

where the last inequality follows from the definition of L(t) and the constraint of θ in parameter space (2).
For C̃ also satisfies

C0C̄

cm2C̃2
≤ 1

512
, (50)

we have
1

p



i∈[p]



b∈[r]/z(i)

ζ
(t)
ib ≤ 1

8
L(t+1) +

1

4
L(t). (51)

Plugging the inequality (51) into the decomposition (49), we obtain the contraction inequality

L(t+1) ≤ 3

2
ξ +

1

2
L(t), (52)

where 1
2 is the contraction parameter.

Therefore, with C̃ satisfying inequalities (50), (73) and (77), we obtain the conclusion in Theorem 5 via
inequality (52) combining the inequality (43) in Condition 1 and Lemma 8.

Step 4 (Verification of Condition 1). Last, we verify the Condition 1 under high probability to finish the
proof. Note that the inequalities (40), (41), and (42) describe the property of the sub-Gaussian noise tensor
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E , and the readers can find the proof directly in Han et al. (2020, Step 5, Proof of Theorem 2). Here, we
include only the verification of inequalities (43) and (44).

Now, we verify the oracle loss condition (43). Recall the definition of ξ,

ξ =
1

p



i∈[p]

θ(i)


b∈[r]

1


Ei:V , [S̃z(i):]

s − [S̃b:]
s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


∥[Sz(i):]

s − [Sb:]
s∥2,

Let ei = Ei:V denote the aggregated noise vector for all i ∈ [p], and ei’s are independent zero-mean

sub-Gaussian vector in RrK−1

. The entries in ei are independent zero-mean sub-Gaussian variables with
sub-Gaussian norm upper bounded by m1


rK−1/pK−1 with some positive constant m1. We have the

probability inequality

P


ei, [S̃z(i):]
s − [S̃b:]

s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


≤ P1 + P2 + P3,

where

P1 = P


ei, [Sz(i):]
s − [Sb:]

s

≤ −θ(i)m

8
∥[Sz(i):]

s − [Sb:]
s∥2


,

P2 = P


ei, [S̃z(i):]
s − [Sz(i):]

s

≤ −θ(i)m

16
∥[Sz(i):]

s − [Sb:]
s∥2


,

P3 = P


ei, [Sb:]
s − [S̃b:]

s

≤ −θ(i)m

16
∥[Sz(i):]

s − [Sb:]
s∥2


.

For P1, notice that the inner product

ej ,S

s
z(j): − Ss

b:


is a sub-Gaussian variable with sub-Gaussian norm

bounded by m2


rK−1/pK−1∥Ss

z(i): − Ss
b:∥ with some positive constant m2. Then, by Chernoff bound, we

have

P1 ≲ exp


−pK−1

rK−1
∥[Sz(j):]

s − [Sb:]
s∥2


. (53)

For P2 and P3, we only need to derive the upper bound of P2 due to the symmetry. By the law of total
probability, we have

P2 ≤ P21 + P22, (54)

where with some positive constant t > 0,

P21 = P

t ≤ ∥[S̃z(i):]

s − [Sz(i):]
s∥

,

P22 = P


ei, [S̃z(i):]
s − [Sz(i):]

s

≤ −θ(i)m

16
∥[Sz(i):]

s − [Sb:]
s∥2

 ∥[S̃z(i):]
s − [Sz(i):]

s∥ < t


.

For P21, note that the term W T
:z(i)EV =

∑
j ̸=i,j∈[p] 1{z (j)=z(i)}ej∑

j∈[p] 1{z (j)=z(i)} is a sub-Gaussian vector with sub-Gaussian

norm bounded by m3


rK/pK with some positive constant m3. This implies

P21 ≤ P

t∥Sz(i):∥ ≤ ∥S̃z(i): − Sz(i):∥


≤ P


c3t ≤ ∥W T

:z(i)EV ∥

≲ exp


−pKt2

rK


, (55)

where the first inequality follows from the basic inequality in Lemma 2, the second inequality follows from
the assumption that mina∈[r]∥Sz(i):∥ ≥ c3 > 0 in (2), and the last inequality follows from the Bernstein
inequality.
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For P22, the inner product

ei, [S̃z(i):]

s − [Sz(i):]
s

is also a sub-Gaussian variable with sub-Gaussian norm

m4


rK−1/pK−1t, conditioned on ∥[S̃z(i):]

s−[Sz(i):]
s∥ < t with some positive constant m4. Then, by Chernoff

bound, we have

P22 ≲ exp


− pK−1

rK−1t2
∥[Sz(j):]

s − [Sb:]
s∥4


. (56)

We take t = ∥[Sz(i):]
s − [Sb:]

s∥ in P21 and P22, and plug the inequalities (55) and (56) into to the upper
bound for P2 in (54). We obtain that

P2 ≲ exp


−pK−1

rK−1
∥[Sz(i):]

s − [Sb:]
s∥2


. (57)

Combining the upper bounds (53) and (57) gives

P


ei, [S̃z(i):]
s − [S̃b:]

s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


≲ exp


−pK−1

rK−1
∥[Sz(i):]

s − [Sb:]
s∥2


. (58)

Hence, we have

Eξ =
1

p



i∈[p]

θ(i)


b∈[r]

P


Ei:V , [S̃z(i):]
s − [S̃b:]

s

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2


∥[Sz(i):]

s − [Sb:]
s∥2

≲
1

p



i∈[p]

θ(i) max
i∈[p],b∈[r]

∥[Sz(i):]
s − [Sb:]

s∥2 exp

−pK−1

rK−1
∥[Sz(i):]

s − [Sb:]
s∥2



≤ exp


−M

pK−1

rK−1
∆2

min


, (59)

where M is a positive constant, the first inequality follows from the constraint that


i∈[p] θ(i) = p, and the

last inequality follows from (58).

By Markov’s inequality, we have

P

ξ ≲ Eξ + exp


−M

pK−1

rK−1
∆2

min


≥ 1− C exp


−M

pK−1

rK−1
∆2

min


,

and thus the condition (43) holds with probability at least 1 − C exp

−M pK−1

rK−1∆
2
min


for some constant

C > 0.

Finally, we verify the bounded loss condition (44) by induction. With output z(0) from Sub-algorithm 2 and
the assumption SNR ≥ C̃p−K/2 log p, by Corollary 1, we have

L(0) ≤ C̄∆2
min

C̃r log p
, when p is large enough.

Therefore, the condition (44) holds for t = 0. Assume the condition (44) also holds for all t ≤ t0. Then, by
the decomposition (52), we have

L(t0+1) ≤ 3

2
ξ +

1

2
L(t0)

≤ exp


−M

pK−1

rK−1
∆2

min


+

∆2
min

r log p

≤ C̄

C̃

∆2
min

r log p
,

where the second inequality follows from the condition (43) and the last inequality follows from the assumption
that ∆2

min ≳ p−K/2 log p. Thus, the condition (44) holds for t0 + 1, and the condition (44) is proved by
induction.

31



Useful Definitions and Lemmas for the Proof of Theorem 5

Lemma 8 (Misclustering error and loss). Define the misclustering error in the t-th iteration as ℓ(t) = ℓ(z(t), z).
We have

ℓ(t) ≲
1

p



i∈[p]

θ(i)1

z(t)(i) ̸= z(i)


≤ L(t)

∆2
min

.

Proof of Lemma 8. By the definition of minimal gap in Assumption 1, we have

L(t) =
1

p



i∈[p]

θ(i)


b∈[r]

1

z(t)(i) = b


∥[Sz(i):]

s − [Sb:]
s∥2 ≥ 1

p



i∈[p]

θ(i)


b∈[r]

1

z(t)(i) = b


∆2

min ≥ cℓ(t)∆2
min,

where the last inequality follows from the assumption mini∈[p] θ(i) ≥ c > 0.

Lemma 9 (Singular-value property of membership matrices). Under the setup of Theorem 5, suppose the

condition (44) holds. Then, for all a ∈ [r], we have |
�
z(t)

−1
(a)| ≍ p/r. Moreover, we have

λr(M) ≍ ∥M∥σ ≍

p/r, λr(W ) ≍ ∥W ∥σ ≍


r/p. (60)

The inequalities (60) also hold by replacing M and W to M (t) and W (t) respectively. Further, we have

λr(WW T ) ≍
WW T


σ
≍ r/p, (61)

which is also true for W (t)W (t),T .

Proof of Lemma 9. The proof for the inequality (60) can be found in Han et al. (2020, Proof of Lemma 4)

For inequality (61), note that for all k ∈ [r],

λk(WW T ) =

eigenk(WW TWW T ) ≍


r

p
eigenk(WW T ) =


r

p
λ2
k(W ) ≍ r

p
,

where eigenk(A) denotes the k-th largest eigenvalue of the square matrix A, the first inequality follows the
fact that W TW is a diagonal matrix with elements of order r/p, and the second equation follows from the
definition of singular value.

Lemma 10 (Upper bound for F
(t)
ib , G

(t)
ib and H

(t)
ib ). Under the Condition 1 and the setup of Theorem 5,

assume the the constant C̃ in the condition SNR ≥ C̃p−K/2 log p is large enough to satisfy the inequalities (73)
and (77). We have

max
i∈[p]

max
b̸=z(i)


F

(t)
ib

2

∥[Sz(i):]s − [Sb:]s∥2
≲

rL(t)

∆2
min

∥Ei:V ∥2 +

1 +

rL(t)

∆2
min


∥Ei:(V − V (t))∥2, (62)

max
i∈[p]

max
b̸=z(i)


G

(t)
ib

2

∥[Sz(i):]s − [Sb:]s∥2
≤ 1

512


∆2

min + L(t)

, (63)

max
i∈[p]

max
b̸=z(i)

H(t)
ib


∥[Sz(i):]s − [Sb:]s∥2

≤ 1

4
. (64)

Proof of Lemma 10. We prove the each of the inequalities in Lemma 10 separately.
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1. Upper bound for F
(t)
ib , i.e., inequality (62). Recall the definition of F

(t)
ib ,

F
(t)
ib = 2


Ei:V

(t),

[S̃z(i):]

s − [S
(t)
z(i):]

s

−


[S̃b:]

s − [S
(t)
b: ]

s


+ 2

Ei:(V − V (t)), [S̃z(i):]

s − [S̃b:]
s

.

By Cauchy-Schwartz inequality, we have


F

(t)
ib

2

≤ 8


Ei:V
(t),


[S̃z(i):]

s − [S
(t)
z(i):]

s

−

[S̃b:]

s − [S
(t)
b: ]

s
2

+ 8


Ei:(V − V (t)), [S̃z(i):]
s − [S̃b:]

s
2

≤ 8

∥Ei:V ∥2 + ∥Ei:(V − V (t))∥2


max
a∈[r]s

∥[S̃a:]
s − [S(t)

a: ]
s∥

+ ∥Ei:(V − V (t))∥2∥[S̃z(i):]
s − [S̃b:]

s∥. (65)

Note that for all a ∈ [r],

∥[S̃a:]
s − [S(t)

a: ]
s∥2 = ∥[W T

:aY V ]s − [W (t),T
:a Y V (t)]s∥2

≤ 2∥[W T
:aY V ]s − [W (t),T

:a Y V ]s∥2 + 2∥[W (t),T
:a Y V ]s − [W (t),T

:a Y V (t)]s∥2

≲
r2(L(t))2

∆2
min

+
rr2K + prK+2

pK
L(t)

∆2
min

≲ rL(t) +
rr2K + prK+2

pK
L(t)

∆2
min

≲ rL(t), (66)

where the second inequality follows from the inequalities (80) and (81) in Lemma 11, the third inequality
follows from the condition (44) in Condition 1, and the last inequality follows from the assumption that
∆2

min ≥ C̃p−K/2 log p.

Note that

∥[S̃z(i):]
s − [S̃b:]

s∥2 = ∥[S̃z(i):]
s − [Sz(i):]

s + [Sz(i):]
s − [Sb:]

s + [Sb:]
s − [S̃b:]

s∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2 +max
a∈[r]

∥[Sa:]
s − [S̃a:]

s∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2 +max
a∈[r]

1

∥Sa:∥2
∥W T

:aEV ∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2, (67)

where the second inequality follows from Lemma 2, and the last inequality follows from the assumptions on
∥Sa:∥ in the parameter space (2), the inequality (40) in Condition 1 and the assumption ∆2

min ≳ p−K/2 log p.

Therefore, we finish the proof of inequality (62) by plugging the inequalities (66) and (67) into the upper
bound (65).

2. Upper bound for G
(t)
ib , i.e., inequality (63). By definition of G

(t)
ib , we rearrange terms and obtain

G
(t)
ib =


∥[Xi:V

(t)]s − [S
(t)
z(i):]

s∥2 − ∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2


−

∥[Xi:V

(t)]s − [S
(t)
b: ]

s∥2 − ∥[Xi:V
(t)]s − [W T

:b Y V (t)]s∥2


= 2

[Xi:V

(t)]s,

[W T

:z(i)Y V (t)]s − [S
(t)
z(i):]

s

−

[W T

:b Y V (t)]s − [S
(t)
b: ]

s


= G1 +G2 −G3, (68)

where

G1 = ∥[W T
:z(i)Y V (t)]s − [S

(t)
z(i):]

s∥2 − ∥[W T
:b Y V (t)]s − [S

(t)
b: ]

s∥2,
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G2 = 2

[Xi:V

(t)]s − [W T
:z(i)Y V (t)]s, [W T

:z(i)Y V (t)]s − [S
(t)
z(i):]

s

,

G3 = 2

[Xi:V

(t)]s − [W T
:b Y V (t)]s, [W T

:b Y V (t)]s − [S
(t)
b: ]

s

.

For G1, we have

|G1|2 ≤
∥[W T

:z(i)Y V (t)]s − [S
(t)
z(i):]

s∥2 − ∥[W T
:b Y V (t)]s − [S

(t)
b: ]

s∥2

2

≤ max
a∈[r]

∥[W T
:aY V (t)]s − [W (t),T

:a Y V (t)]s∥4

≤ C4 r4

∆4
min

(L(t))4 +
r2r4K + p2r2K+4

p2K
(L(t))2

∆4
min

≤ C4 C̄

C̃3


∆4

min +∆2
minL

(t)

, (69)

where the third inequality follows from the inequality (82) in Lemma 9 and the last inequality follows from
the assumption that ∆2

min ≥ C̃p−K/2 log p and inequality (44) in Condition 1.

For G2, noticing that [Xi:V
(t)]s = [W T

z(i):XV (t)]s, we have

|G2|2 ≤ 2∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2∥[W T
:z(i)Y V (t)]s − [S

(t)
z(i):]

s∥2

≤ 2

∥W T
z(i):XV (t)∥2 max

a∈[r]
∥W T

:aEV (t)∥2 max
a∈[r]

∥[W T
:aY V (t)]s − [W (t),T

:a Y V (t)]s∥2

≤ C ′ r
2K−1 +KprK+1

pK


r2

∆2
min

(L(t))2 +
rr2K + prK+2

pK
L(t)

∆2
min



≤ C ′

C̃2
∆2

minL
(t), (70)

where C ′ is a positive universal constant, the second inequality follows from Lemma 2, the third inequality
follows from the inequality (41) in Condition 1, the inequalities (82) and (101) in the proof of Lemma 11,
and the last inequality follows from the assumption ∆2

min ≥ C̃p−K/2 log p and inequality (44) in Condition 1.

For G3, note that by triangle inequality

∥[Xi:V
(t)]s − [W T

:bXV (t)]s∥2 ≤ ∥Ss
z(i): − Ss

b:∥2 + 2max
a∈[r]

∥[W T
:aXV (t)]s − [W T

:aXV ]s∥2

≤ ∥Ss
z(i): − Ss

b:∥2 + C
r2(L(t))2

∆2
min

, (71)

where the last inequality follows from the inequality (100) in the proof of Lemma 11 and C is a positive
constant. Then we have

|G3|2 ≤ 2∥[Xi:V
(t)]s − [W T

:b Y V (t)]s∥2 max
a∈[r]

∥[W T
:aY V (t)]s − [W (t),T

:a Y V (t)]s∥2

≤ 2

∥[Xi:V

(t)]s − [W T
:bXV (t)]s∥2 + ∥[W T

:b Y V (t)]s − [W T
:bXV (t)]s∥2



×max
a∈[r]

[W T
:aY V (t)]s − [W (t),T

:a Y V (t)]s

2

≤ C2


∥Ss

z(i): − Ss
b:∥2 + C

r2(L(t))2

∆2
min


r2(L(t))2

∆2
min

+
rr2K + prK+2

pK
L(t)

∆2
min


+

C ′

C̃2
∆2

minL
(t)

≤ C2C̄2

C̃
∥Ss

z(i): − Ss
b:∥2(∆2

min + L(t)) +
C3C ′C̄2

C̃2


∆4

min +∆2
minL

(t)

, (72)

where the third inequality follows from the same procedure to derive (69) and (70), and the last inequality
follows from the assumption ∆2

min ≥ C̃p−K/2 log p and inequality (44) in Condition 1.
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Choose the C̃ such that

3


C4 C̄

C̃3
+

C ′

C̃2
+

C2C̄2

C̃
+

C3C ′C̄2

C̃2


≤ 1

512
. (73)

Then, we finish the proof of inequality (63) by plugging the inequalities (69), (70), and (72) into the upper
bound (68).

3. Upper bound for H
(t)
ib , i.e., the inequality (64). By definition of Hib, we rearrange terms and obtain

Hib = ∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2 − ∥[Xi:V
(t)]s − [W T

:b Y V (t)]s∥2 + ∥[Sz(i):]
s − [Sb:]

s∥2

= ∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2

+

∥[Sz(i):]

s − [Sb:]
s∥2 − ∥[Xi:V

(t)]s − [W T
:bXV (t)]s∥



−

∥[Xi:V

(t)]s − [W T
:b Y V (t)]s∥ − ∥[Xi:V

(t)]s − [W T
:bXV (t)]s∥



= H1 +H2 +H3,

where

H1 = ∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2 − ∥[W T
:bXV (t)]s − [W T

:b Y V (t)]s∥2,
H2 = ∥[Sz(i):]

s − [Sb:]
s∥2 − ∥[Xi:V

(t)]s − [W T
:bXV (t)]s∥2,

H3 = 2

[Xi:V

(t)]s − [W T
:bXV (t)]s, [W T

:b Y V (t)]s − [W T
:bXV (t)]s


.

For H1, we have

|H1| ≤
4maxa∈[r]∥W T

:aEV (t)∥2
∥W T

z(i):XV (t)∥2 ≤ r2K−1 +KprK+1

pK
≤ C̃−2∥[Sz(i):]

s − [Sb:]
s∥2, (74)

following the derivation of G2 in inequality (70) and the assumption that ∆2
min ≥ C̃p−K/2 log p.

For H2, by the inequality (71), we have

|H2| ≲ 2max
a∈[r]

∥[W T
:aXV (t)]s − [W T

:aXV ]s∥2 ≲
r2(L(t))2

∆2
min

≤ C
C̄2

C̃2
∥[Sz(i):]

s − [Sa:]
s∥2, (75)

where the last inequality follows from the condition (44) in Condition 1.

For H3, by Cauchy-Schwartz inequality, we have

|H3| ≲ ∥[Xi:V
(t)]s − [W T

:bXV (t)]s∥|H1|1/2 ≤ 2C̃−1∥[Sz(i):]
s − [Sa:]

s∥2, (76)

following the inequalities (71) and (74).

Choose C̃ such that

C̃−2 + C
C̄2

C̃2
+ C̃−1 ≤ 1

4
. (77)

Therefore, we finish the proof of inequality (64) combining inequalities (74), (75), and (76).

Lemma 11 (Relationship between misclustering loss and intermediate parameters). Under the Condition 1
and the setup of Theorem 5, we have

∥V − V (t)∥σ ≲


rK−1

pK−1

r

∆2
min

L(t), (78)
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∥E(V − V (t))∥σ ≲


rK−1(prK−1 + pr)

pK−1

r

∆2
min

L(t), (79)

max
b∈[r]

∥[W T
:b Y V ]s − [W

(t),T
:b Y V ]s∥ ≤ C


 rL(t)

∆min
+


r2K + prK+1

pK

√
L(t)

∆min


 , (80)

max
b∈[r]

∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V (t)]s∥ ≤ C





rr2K + prK+2

pK

√
L(t)

∆min
+

rL(t)

∆min


 , (81)

max
b∈[r]

∥[W T
:b Y V (t)]s − [W

(t),T
:b Y V (t)]s∥ ≤ C


 rL(t)

∆min
+


rr2K + prK+2

pK

√
L(t)

∆min


 , (82)

for some positive universal constant C. In addition, the inequality (81) also holds by replacing W
(t)
:b to W:b.

Proof of Lemma 11. We follow and use several intermediate conclusions in Han et al. (2020, Proof of Lemma
5). We prove each inequality separately.

1. Inequality (78). By Han et al. (2020, Proof of Lemma 5), we have

∥V − V (t)∥σ ≲


rK−1

pK−1
rℓ(t).

Then, we complete the proof of inequality (78) by applying Lemma 8 to the above inequality.

2. Inequality (79). By Han et al. (2020, Proof of Lemma 5), we have

∥E(V − V (t))∥σ ≲


rK−1(prK−1 + pr)

pK−1
rℓ(t).

Also, we complete the proof of inequality (78) by applying Lemma 8 to the above inequality.

3. Inequality (80). We upper bound the desired quantity by triangle inequality,

∥[W T
:b Y V ]s − [W

(t),T
:b Y V ]s∥ ≤ I1 + I2 + I3,

where

I1 =


W T

:b Y V

∥W T
:bXV ∥ − W

(t),T
:b Y V

∥W (t),T
:b XV ∥

 ,

I2 =




1

∥W T
:b Y V ∥ − 1

∥W T
:bXV ∥


W T

:b Y V

 ,

I3 =




1

∥W (t),T
:b Y V ∥

− 1

∥W (t),T
:b XV ∥


W

(t),T
:b Y V

 .

Next, we upper bound the quantities I1, I2, I3 separately.

For I1, we further bound I1 by triangle inequality,

I1 ≤ I11 + I12,

where

I11 =


W T

:bXV

∥W T
:bXV ∥ − W

(t),T
:b XV

∥W (t),T
:b XV ∥

 , and I12 =


W T

:bEV

∥W T
:bXV ∥ − W

(t),T
:b EV

∥W (t),T
:b XV ∥

 .
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We first consider I11. Define the confusion matrix D = MTΘTW (t) = �Dab� ∈ Rr×r where

Dab =


i∈[p] θ(i)1


z(i) = a, z(t)(i) = b




i∈[p] 1

z(t)(i) = b

 , for all a, b ∈ [r].

By Lemma 9, we have


i∈[p] 1

z(t)(i) = b


≳ p/r. Then, we have



a ̸=b,a,b∈[r]

Dab ≲
r

p



i : z(t)(i)̸=z(i)

θ(i) ≲
L(t)

∆2
min

≲
1

log p
, (83)

and for all b ∈ [r],

Dbb =


i∈[p] θ(i)1


z(i) = z(t)(i) = b




i∈[p] 1

z(t)(i) = b

 ≥
c(


i∈[p] 1

z(t)(i) = b


− pℓ(t))


i∈[p] 1


z(t)(i) = b

 ≳ 1− 1

log p
, (84)

under the inequality (44) in Condition 1. By the definition of W ,W (t),V , we have

W T
:bXV

∥W T
:bXV ∥ = [Sb:]

s
,

W
(t),T
:b XV

∥W (t),T
:b XV ∥

= [DbbSb: +


a ̸=b,a∈[r]

DabSa:]
s.

Let α denote the angle between Sb: and DbbSb: +


a ̸=b,a∈[r] DabSa:. To roughly estimate the range of α, we
consider the inner product


Sb:, DbbSb: +



a ̸=b,a∈[r]

DabSa:


= Dbb ∥Sb:∥2 +



a ̸=b

Dab ⟨Sb:,Sa:⟩

≥ Dbb ∥Sb:∥2 −


a ̸=b,a∈[r]

Dab ∥Sb:∥max
a∈[r]

∥Sa:∥

≥ C,

where C is a positive constant, and the last inequality holds when p is large enough following the constraint
of ∥Sb:∥ in parameter space (2) and the bounds of D in (83) and (84).

The positive inner product between Sb: and DbbSb: +


a ̸=b,a∈[r] DabSa: indicates α ∈ [0, π/2), and thus

2 sin α
2 ≤

√
2 sinα. Then, by the geometry property of trigonometric function, we have

∥[DbbSb: +


a ̸=b,a∈[r]

DabSa:] sinα∥ = ∥(Id − Proj(Sb:))


a ̸=b,a∈[r]

DabSa:∥

≤


a ̸=b,a∈[r]

Dab ∥(Id − Proj(Sb:))Sa:∥

=


a ̸=b,a∈[r]

Dab ∥Sa: sin(Sb:,Sa:)∥

≤


a ̸=b,a∈[r]

Dab ∥Sa:∥ ∥Ss
b: − Ss

a:∥ , (85)

where the first inequality follows from the triangle inequality, and the last inequality follows from Lemma 2.
Note that with bounds (83) and (84), when p is large enough, we have

∥W (t),T
:b XV ∥ = ∥DbbSb: +



a ̸=b,a∈[r]

DabSa:∥ ≥ Dbb ∥Sb:∥ −


a ̸=b,a∈[r]

Dab ∥Sa:∥ ≥ C1, (86)

for some positive constant C1. Notice that I11 =
√
1− cosα = 2 sin α

2 . Therefore, we obtain

I11 ≤
√
2 sinα
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=
∥[DbbSb: +


a ̸=b,a∈[r] DabSa:] sinα∥

∥DbbSb: +


a ̸=b,a∈[r] DabSa:∥

≤ 1

C1



a ̸=b,a∈[r]

Dab ∥Sa:∥ ∥Ss
b: − Ss

a:∥

≲
r

p



i∈[p]

θ(i)


b∈[r]

1

z(t)(i) = b


∥Ss

b: − Ss
a:∥

≤ rL(t)

∆min
, (87)

where the second inequality follows from (85) and (86), and the last two inequalities follow by the definition
of Da and L(t), and the constraint of ∥Sb:∥ in parameter space (2).

We now consider I12. By triangle inequality, we have

I12 ≤ 1

∥W T
:bXV ∥∥(W

T
:b −W

(t),T
:b )EV ∥+ ∥(W T

:b −W
(t),T
:b )XV ∥

∥W T
:bXV ∥∥W (t),T

:b XV ∥
∥W (t),T

:b EV ∥.

By Han et al. (2020, Proof of Lemma 5), we have

∥(W T
:b −W

(t),T
:b )EV ∥ ≲


r2K + prK+1

pK

√
L(t)

∆min
. (88)

Notice that

∥(W T
:b −W

(t),T
:b )XV ∥ ≤ ∥W T

:b −W
(t),T
:b ∥ ∥XV ∥F ≲

r3/2L(t)

√
p∆2

min

∥S∥∥ΘM∥σ ≲

√
rL(t)

∆min
, (89)

where the second inequality follows from Han et al. (2020, Inequality (121), Proof of Lemma 5) and the
last inequality follows from Lemma 5 and (44) in Condition 1. Note that

W T
:bXV

 = ∥Sb:∥ ≥ c3 and

∥W (t),T
:b XV ∥ ≥ C1 by inequality (86). Therefore, we have

I12 ≲ ∥(W T
:b −W

(t),T
:b )EV ∥+ ∥(W T

:b −W
(t),T
:b )XV ∥∥W (t),T

:b EV ∥

≲


r2K + prK+1

pK

√
L(t)

∆min
+

√
rL(t)

∆min


r2K

pK

≲


r2K + prK+1

pK

√
L(t)

∆min
, (90)

where second inequality follows from the inequalities (88), (89), and (40) in Condition 1.

Hence, combining inequalities (87) and (90) yields

I1 ≲
rL(t)

∆min
+


r2K + prK+1

pK

√
L(t)

∆min
. (91)

For I2 and I3, recall that
W T

:bXV
 = ∥Sb:∥ ≥ c3 and ∥W (t),T

:b XV ∥ ≥ C1 by inequality (86). By triangle
inequality and (40) in Condition 1, we have

I2 ≤ ∥W T
:bEV ∥

∥W T
:bXV ∥ ≲ ∥W T

:bEV ∥ ≲
rK

pK/2
, (92)

and

I3 ≤ ∥W (t),T
:b EV ∥

∥W (t),T
:b XV ∥

≲ ∥W (t),T
:b EV ∥ ≲

rK

pK/2
. (93)

Therefore, combining the inequalities (91), (92), and (93), we finish the proof of inequality (80).
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4. Inequality (81). Here we only show the proof of inequality (81) with W
(t)
:b . The proof also holds by

replacing W
(t)
:b to W:b, and we omit the repeated procedures.

We upper bound the desired quantity by triangle inequality

∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V (t)]s∥ ≤ J1 + J2 + J3,

where

J1 =


W

(t),T
:b Y V

∥W (t),T
:b XV ∥

− W
(t),T
:b Y V (t)

∥W (t),T
:b XV (t)∥

 ,

J2 =




1

∥W (t),T
:b Y V ∥

− 1

∥W (t),T
:b XV ∥


W

(t),T
:b Y V

 ,

J3 =




1

∥W (t),T
:b Y V (t)∥

− 1

∥W (t),T
:b XV (t)∥


W

(t),T
:b Y V (t)

 .

Next, we upper bound the quantities J1, J2, J3 separately.

For J1, by triangle inequality, we have
J1 ≤ J11 + J12,

where

J11 =


W

(t),T
:b XV

∥W (t),T
:b XV ∥

− W
(t),T
:b XV (t)

∥W (t),T
:b XV (t)∥

 and J12 =


W

(t),T
:b EV

∥W (t),T
:b XV ∥

− W
(t),T
:b EV (t)

∥W (t),T
:b XV (t)∥

 .

We first consider J11. Define the matrix V k := W⊗(k−1) ⊗W (t),⊗(K−k) for k = 2, . . . ,K − 1, and denote
V 1 = V (t),V K = V . Also, define the quantity

Jk
11 = ∥[W (t),T

:b XV k]s − [W
(t),T
:b XV k+1]s∥,

for k = 1, . . . ,K − 1. Let βk denote the angle between W
(t),T
:b XV k and W

(t),T
:b XV k+1. With the same idea

to prove I11 in inequality (87), we bound Jk
11 by the trigonometric function of βk.

To roughly estimate the range of βk, we consider the inner product between W
(t),T
:b XV k and W

(t),T
:b XV k+1.

Before the specific derivation of the inner product, note that

W
(t),T
:b XV k = Mat1(Tk), W

(t),T
:b XV k+1 = Mat1(Tk+1),

where

Tk = X ×1 W
(t),T
:b ×2 W

T ×3 · · · ×k W T ×k+1 W
(t),T ×k+1 · · · ×K W (t),T

Tk+1 = X ×1 W
(t),T
:b ×2 W

T ×3 · · · ×k W T ×k+1 W
T ×k+1 · · · ×K W (t),T .

Recall the definition of confusion matrix D = MTΘTW (t) = �Dab� ∈ Rr×r. We have


W

(t),T
:b XV k,W

(t),T
:b XV k+1


= ⟨Matk+1(Tk),Matk+1(Tk+1)⟩

=

DTSZk,SZk



=


b∈[r]


Dbb∥Sb:Z

k∥2 +


a ̸=b,a∈[r]

Dab


Sa:Z

k,Sb:Z
k




≳ (1− log p−1) min
a∈[r]

∥Sa:Z
k∥2 − log p−1 max

a∈[r]
∥Sa:Z

k∥2, (94)
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where Zk = D:b ⊗ I
⊗(k−1)
r ⊗D⊗(K−k−1), the equations follow by the tensor algebra and definitions, and the

last inequality follows from the bounds of D in (83) and (84).

Note that

∥D∥σ ≤ ∥D∥F ≤


b∈[r]

D2
bb + (



a ̸=b,a,b∈[r]

Dab)2 ≲


r + log2 p−1 ≲ 1, (95)

where the second inequality follows from inequality (83), and the fact that for all b ∈ [r],

Dbb ≲
r

p



i : z(i)=b

θ(i) ≲ 1.

Also, we have
λr(D) ≥ λr(W

(t))λr(ΘM) ≳ 1, (96)

following the Lemma 5 and Lemma 9. Then, for all k ∈ [K], we have

1 ≲ ∥D:b∥λr(D)K−k−1 ≤ λrK−2(Zk) ≤ ∥Zk∥σ ≤ ∥D:b∥ ∥D∥K−k−1
σ ≲ 1. (97)

Thus, we have bounds

max
a∈[r]

∥Sa:Z
k∥ ≤ max

a∈[r]
∥Sa:∥ ∥Zk∥σ ≲ 1, min

a∈[r]
∥Sa:Z

k∥ ≥ min
a∈[r]

∥Sa:∥λrK−2(Zk) ≳ 1.

Hence, when p is large enough, the inner product (94) is positive, which implies βk ∈ [0, π/2) and thus
2 sin βk

2 ≤
√
2 sinβk.

Next, we upper bound the trigonometric function sinβk. Note that

sinβk = sin(DT
:bSI

⊗k−1
r ⊗D⊗K−k,DT

:bSI
⊗k
r ⊗D⊗K−k−1)

≤ sinβk1 + sinβk2,

where

sinβk1 = sin(DT
:bSI

⊗k−1
r ⊗D⊗K−k,DT

:bSI
⊗k−1
r ⊗ D̃ ⊗D⊗K−k−1),

sinβk2 = sin(DT
:bSI

⊗k−1
r ⊗ D̃ ⊗D⊗K−k−1,DT

:bSI
⊗k
r ⊗D⊗K−k−1),

and D̃ is the normalized confusion matrix with entries D̃ab =
∑

i∈[p] θ(i)1{z (t)=b,z(i)=a}∑
i∈[p] θ(i)1{z (t)=b} .

To bound sinβk1, recall Definition 1 that for any cluster assignment z̄ in the ε-neighborhood of true z,

p(z̄) = (|z̄−1(1)|, . . . , |z̄−1(r)|)T , pθ(z̄) = (∥θz̄−1(1)∥1, . . . , ∥θz̄−1(r)∥1)T .

Note that we have ℓ(t) ≤ L(t)

∆2
min

≤ C̄
C̃
r log−1(p) by Condition 1 and Lemma 8. Then, with the locally linear

stability assumption, the θ is ℓ(t)-locally linearly stable; i.e.,

sin(p(z(t)),pθ(z
(t))) ≲

L(t)

∆min
.

Note that diag(p(z(t)))D = diag(pθ(z
(t)))D̃, and sin(a, b) = minc∈R

∥a−cb∥
∥a∥ for vectors a, b of same dimension.

Let c0 = argminc∈R
∥p(z(t))−cpθ(z

(t))∥
∥p(z(t))∥ . Then, we have

min
c∈R

∥D − cD̃∥F ≤ ∥Ir − c0diag(p(z
(t)))diag−1(pθ(z

(t)))∥F ∥D∥F

≲
∥p(z(t))− c0pθ(z

(t))∥
mina∈[r]∥θz(t),−1(a)∥1
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=
∥p(z(t))∥

mina∈[r]∥θz(t),−1(a)∥1
sin(p(z(t)),pθ(z

(t)))

≲
L(t)

∆min
,

where the last inequality follows from Lemma 9, the constraint mini∈[p] θ(i) ≥ c > 0, ∥p(z(t))∥ ≲ p and
mina∈[r]∥θz(t),−1(a)∥1 ≳ p. By the geometry property of trigonometric function, we have

sinβk1 = min
c∈R

∥DT
:bSI

⊗k−1
r ⊗ (D − cD̃)⊗D⊗K−k−1∥
∥DT

:bSI
⊗k−1
r ⊗D⊗K−k∥

(98)

≤ ∥DT
:bS∥∥D − c0D̃∥σ∥D∥K−k−1

σ

∥DT
:bS∥λK−k

r (D)

≲ ∥D − c0D̃∥F

≲
L(t)

∆min
,

where the second inequality follows from the singular property of D in (95), (96) and the constraint of S in
(2).

To bound sinβk2, let C = diag({∥Sa:∥}a∈[r]). We have

sinβk2 ≲

DT
:bSI

⊗k−1
r ⊗ (Ir − D̃)⊗D⊗K−k−1


∥DT

:bSI
⊗k
r ⊗D⊗K−k−1∥

(99)

≲
∥(Ir − D̃T )SZk∥F
∥DT

:bS∥λK−k−1
r (D)

≲ ∥(Ir − D̃T )SC−1∥F ∥CZk∥σ
≲

r

p



i∈[p]

θ(i)


b∈[r]

∥Ss
b: − Ss

z(i):∥

≲
L(t)

∆min
,

where the third inequality follows from the singular property of D and the boundedness of S, and the fourth
inequality follows from the definition of D̃, boundedness of S, the lower bound of θ, and the singular property
of Zk in inequality (97).

Combining (98) and (99) yields

sinβk ≤ sinβk1 + sinβk2 ≲
L(t)

∆min
.

Finally, by triangle inequality, we obtain

J11 ≤
K−1

k=1

Jk
11 ≲

K−1

k=1

sinβk ≲ (K − 1)
rL(t)

∆min
. (100)

We now consider J12. By triangle inequality, we have

J12 ≤ 1

∥W (t),T
:b XV ∥

∥W (t),T
:b E(V − V (t))∥+ ∥W (t),T

:b X(V − V (t))∥
∥W (t),T

:b XV ∥∥W (t),T
:b XV (t)∥

∥W (t),T
:b EV (t)∥.

Note that
∥W (t),T

:b XV (t)∥ = ∥DTSZ1∥ ≥ λr(D) ∥S∥λrK−2(Z1) ≳ 1, (101)
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where the inequality follows from the bounds (96) and (97).

By Han et al. (2020, Proof of Lemma 5), we have

∥W (t),T
:b E(V − V (t))∥ ≲


r2K+1 + pr2+K

pK
(K − 1)

√
L(t)

∆min
. (102)

Notice that

∥X(V k − V k+1)∥F ≤ ∥(I −DT )S(I⊗(k−1)
r ⊗D⊗(K−k−1))∥F

≤ ∥(W T −W (t),T )ΘM∥F ∥S∥F ∥D∥K−k−1
σ

≲ ∥W T −W (t),T ∥ ∥ΘM∥σ

≲

√
rL(t)

∆min
, (103)

where the first inequality follows from the tensor algebra in inequality (94), the second inequality follows
from the fact that I = W TΘM , and the last inequality follows from Han et al. (2020, Proof of Lemma 5).
It follows from (103) and Lemma 9 that

∥W (t),T
:b X(V − V (t))∥ ≤ ∥W (t),T

:b ∥
K−1

k=1

∥X(V k − V k+1)∥F ≲

√
rL(t)

√
p∆min

. (104)

Note that ∥W (t),T
:b XV ∥ and ∥W (t),T

:b XV (t)∥ are lower bounded by inequalities (86) and (101), respectively.
We have

J12 ≲ ∥W (t),T
:b E(V − V (t))∥+ ∥W (t),T

:b X(V − V (t))∥∥W (t),T
:b EV (t)∥

≲


r2K+1 + pr2+K

pK

√
L(t)

∆min
+

√
rL(t)

√
p∆min


r2K

pK

≲


r2K+1 + pr2+K

pK

√
L(t)

∆min
,

where the second inequality follows from inequalities (102), (104), and the inequality (40) in Condition 1.

For J2 and J3, recall that ∥W (t),T
:b XV ∥ and ∥W (t),T

:b XV (t)∥ are lower bounded by inequalities (86) and
(101), respectively. By triangle inequality and inequality (40) in Condition 1, we have

J2 ≤ ∥W (t),T
:b EV ∥

∥W (t),T
:b XV ∥

≲ ∥W (t),T
:b EV ∥ ≲

rK

pK/2
, (105)

and

J3 ≤ ∥W (t),T
:b EV (t)∥

∥W (t),T
:b XV (t)∥

≲ ∥W (t),T
:b EV ∥ ≲

rK

pK/2
. (106)

Therefore, combining the inequalities (100), (105), and (106), we finish the proof of inequality (81).

5. Inequality (82). By triangle inequality, we upper bound the desired quantity

∥[W T
:b Y V (t)]s − [W

(t),T
:b Y V (t)]s∥ ≤ ∥[W T

:b Y V (t)]s − [W T
:b Y V ]s∥+ ∥[W T

:b Y V ]s − [W
(t),T
:b Y V ]s∥

+ ∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V (t)]s∥

≲
rL(t)

∆min
+


rr2K + prK+2

pK

√
L(t)

∆min
,

following the inequalities (80) and (81). Therefore, we finish the proof of inequality (82).
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