


performance of universal architectures [14, 62], is currently

lower (> 9 AP) than the SOTA specialized architecture

for instance segmentation [6]. Beyond the inferior per-

formance, universal architectures are also harder to train.

They typically require more advanced hardware and a much

longer training schedule. For example, training Mask-

Former [14] takes 300 epochs to reach 40.1 AP and it can

only fit a single image in a GPU with 32G memory. In con-

trast, the specialized Swin-HTC++ [6] obtains better perfor-

mance in only 72 epochs. Both the performance and train-

ing efficiency issues hamper the deployment of universal

architectures.

In this work, we propose a universal image segmen-

tation architecture named Masked-attention Mask Trans-

former (Mask2Former) that outperforms specialized ar-

chitectures across different segmentation tasks, while still

being easy to train on every task. We build upon a sim-

ple meta architecture [14] consisting of a backbone fea-

ture extractor [25, 36], a pixel decoder [33] and a Trans-

former decoder [51]. We propose key improvements that

enable better results and efficient training. First, we use

masked attention in the Transformer decoder which restricts

the attention to localized features centered around predicted

segments, which can be either objects or regions depend-

ing on the specific semantic for grouping. Compared to

the cross-attention used in a standard Transformer decoder

which attends to all locations in an image, our masked atten-

tion leads to faster convergence and improved performance.

Second, we use multi-scale high-resolution features which

help the model to segment small objects/regions. Third,

we propose optimization improvements such as switching

the order of self and cross-attention, making query features

learnable, and removing dropout; all of which improve per-

formance without additional compute. Finally, we save 3×
training memory without affecting the performance by cal-

culating mask loss on few randomly sampled points. These

improvements not only boost the model performance, but

also make training significantly easier, making universal ar-

chitectures more accessible to users with limited compute.

We evaluate Mask2Former on three image segmenta-

tion tasks (panoptic, instance and semantic segmentation)

using four popular datasets (COCO [35], Cityscapes [16],

ADE20K [65] and Mapillary Vistas [42]). For the first

time, on all these benchmarks, our single architecture

performs on par or better than specialized architectures.

Mask2Former sets the new state-of-the-art of 57.8 PQ on

COCO panoptic segmentation [28], 50.1 AP on COCO in-

stance segmentation [35] and 57.7 mIoU on ADE20K se-

mantic segmentation [65] using the exact same architecture.

2. Related Work

Specialized semantic segmentation architectures typi-

cally treat the task as a per-pixel classification problem.

FCN-based architectures [37] independently predict a cat-

egory label for every pixel. Follow-up methods find con-

text to play an important role for precise per-pixel classi-

fication and focus on designing customized context mod-

ules [7,8,63] or self-attention variants [21,26,45,55,61,64].

Specialized instance segmentation architectures are typ-

ically based upon “mask classification.” They predict a set

of binary masks each associated with a single class label.

The pioneering work, Mask R-CNN [24], generates masks

from detected bounding boxes. Follow-up methods either

focus on detecting more precise bounding boxes [4, 6], or

finding new ways to generate a dynamic number of masks,

e.g., using dynamic kernels [3, 49, 56] or clustering algo-

rithms [11, 29]. Although the performance has been ad-

vanced in each task, these specialized innovations lack the

flexibility to generalize from one to the other, leading to

duplicated research effort. For instance, although multiple

approaches have been proposed for building feature pyra-

mid representations [33], as we show in our experiments,

BiFPN [47] performs better for instance segmentation while

FaPN [39] performs better for semantic segmentation.

Panoptic segmentation has been proposed to unify both se-

mantic and instance segmentation tasks [28]. Architectures

for panoptic segmentation either combine the best of spe-

cialized semantic and instance segmentation architectures

into a single framework [11, 27, 31, 60] or design novel ob-

jectives that equally treat semantic regions and instance ob-

jects [5, 52]. Despite those new architectures, researchers

continue to develop specialized architectures for different

image segmentation tasks [20, 45]. We find panoptic archi-

tectures usually only report performance on a single panop-

tic segmentation task [52], which does not guarantee good

performance on other tasks (Figure 1). For example, panop-

tic segmentation does not measure architectures’ abilities to

rank predictions as instance segmentations. Thus, we re-

frain from referring to architectures that are only evaluated

for panoptic segmentation as universal architectures. In-

stead, here, we evaluate our Mask2Former on all studied

tasks to guarantee generalizability.

Universal architectures have emerged with DETR [5] and

show that mask classification architectures with an end-to-

end set prediction objective are general enough for any im-

age segmentation task. MaskFormer [14] shows that mask

classification based on DETR not only performs well on

panoptic segmentation but also achieves state-of-the-art on

semantic segmentation. K-Net [62] further extends set pre-

diction to instance segmentation. Unfortunately, these ar-

chitectures fail to replace specialized models as their perfor-

mance on particular tasks or datasets is still worse than the

best specialized architecture (e.g., MaskFormer [14] cannot

segment instances well). To our knowledge, Mask2Former

is the first architecture that outperforms state-of-the-art spe-

cialized architectures on all considered tasks and datasets.
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Our masked attention modulates the attention matrix via

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1. (2)

Moreover, the attention mask Ml−1 at feature location

(x, y) is

Ml−1(x, y) =

{

0 if Ml−1(x, y) = 1
−∞ otherwise

. (3)

Here, Ml−1 ∈ {0, 1}N×HlWl is the binarized output

(thresholded at 0.5) of the resized mask prediction of the

previous (l − 1)-th Transformer decoder layer. It is resized

to the same resolution of Kl. M0 is the binary mask predic-

tion obtained from X0, i.e., before feeding query features

into the Transformer decoder.

3.2.2 High-resolution features

High-resolution features improve model performance, espe-

cially for small objects [5]. However, this is computation-

ally demanding. Thus, we propose an efficient multi-scale

strategy to introduce high-resolution features while control-

ling the increase in computation. Instead of always using

the high-resolution feature map, we utilize a feature pyra-

mid which consists of both low- and high-resolution fea-

tures and feed one resolution of the multi-scale feature to

one Transformer decoder layer at a time.

Specifically, we use the feature pyramid produced by

the pixel decoder with resolution 1/32, 1/16 and 1/8 of

the original image. For each resolution, we add both a si-

nusoidal positional embedding epos ∈ R
HlWl×C , follow-

ing [5], and a learnable scale-level embedding elvl ∈ R
1×C ,

following [66]. We use those, from lowest-resolution to

highest-resolution for the corresponding Transformer de-

coder layer as shown in Figure 2 left. We repeat this 3-layer

Transformer decoder L times. Our final Transformer de-

coder hence has 3L layers. More specifically, the first three

layers receive a feature map of resolution H1 = H/32,

H2 = H/16, H3 = H/8 and W1 = W/32, W2 = W/16,

W3 = W/8, where H and W are the original image reso-

lution. This pattern is repeated in a round robin fashion for

all following layers.

3.2.3 Optimization improvements

A standard Transformer decoder layer [51] consists of three

modules to process query features in the following order: a

self-attention module, a cross-attention and a feed-forward

network (FFN). Moreover, query features (X0) are zero ini-

tialized before being fed into the Transformer decoder and

are associated with learnable positional embeddings. Fur-

thermore, dropout is applied to both residual connections

and attention maps.

To optimize the Transformer decoder design, we make

the following three improvements. First, we switch the

order of self- and cross-attention (our new “masked atten-

tion”) to make computation more effective: query features

to the first self-attention layer are image-independent and

do not have signals from the image, thus applying self-

attention is unlikely to enrich information. Second, we

make query features (X0) learnable as well (we still keep

the learnable query positional embeddings), and learnable

query features are directly supervised before being used in

the Transformer decoder to predict masks (M0). We find

these learnable query features function like a region pro-

posal network [43] and have the ability to generate mask

proposals. Finally, we find dropout is not necessary and

usually decreases performance. We thus completely remove

dropout in our decoder.

3.3. Improving training efficiency

One limitation of training universal architectures is the

large memory consumption due to high-resolution mask

prediction, making them less accessible than the more

memory-friendly specialized architectures [6, 24]. For ex-

ample, MaskFormer [14] can only fit a single image in a

GPU with 32G memory. Motivated by PointRend [30] and

Implicit PointRend [13], which show a segmentation model

can be trained with its mask loss calculated on K randomly

sampled points instead of the whole mask, we calculate the

mask loss with sampled points in both the matching and

the final loss calculation. More specifically, in the match-

ing loss that constructs the cost matrix for bipartite match-

ing, we uniformly sample the same set of K points for all

prediction and ground truth masks. In the final loss be-

tween predictions and their matched ground truths, we sam-

ple different sets of K points for different pairs of predic-

tion and ground truth using importance sampling [30]. We

set K = 12544, i.e., 112 × 112 points. This new training

strategy effectively reduces training memory by 3×, from

18GB to 6GB per image, making Mask2Former more ac-

cessible to users with limited computational resources.

4. Experiments

We demonstrate Mask2Former is an effective architec-

ture for universal image segmentation through compar-

isons with specialized state-of-the-art architectures on stan-

dard benchmarks. We evaluate our proposed design de-

cisions through ablations on all three tasks. Finally we

show Mask2Former generalizes beyond the standard bench-

marks, obtaining state-of-the-art results on four datasets.

Datasets. We study Mask2Former using four widely used

image segmentation datasets that support semantic, instance

and panoptic segmentation: COCO [35] (80 “things” and

53 “stuff” categories), ADE20K [65] (100 “things” and

50 “stuff” categories), Cityscapes [16] (8 “things” and 11

“stuff” categories) and Mapillary Vistas [42] (37 “things”

and 28 “stuff” categories). Panoptic and semantic seg-
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method backbone query type epochs PQ PQTh PQSt APTh
pan mIoUpan #params. FLOPs fps

DETR [5] R50 100 queries 500+25 43.4 48.2 36.3 31.1 - - - -

MaskFormer [14] R50 100 queries 300 46.5 51.0 39.8 33.0 57.8 45M 181G 17.6

Mask2Former (ours) R50 100 queries 50 51.9 57.7 43.0 41.7 61.7 44M 226G 8.6

DETR [5] R101 100 queries 500+25 45.1 50.5 37.0 33.0 - - - -

MaskFormer [14] R101 100 queries 300 47.6 52.5 40.3 34.1 59.3 64M 248G 14.0

Mask2Former (ours) R101 100 queries 50 52.6 58.5 43.7 42.6 62.4 63M 293G 7.2

Max-DeepLab [52] Max-L 128 queries 216 51.1 57.0 42.2 - - 451M 3692G -

MaskFormer [14] Swin-L† 100 queries 300 52.7 58.5 44.0 40.1 64.8 212M 792G 5.2

K-Net [62] Swin-L† 100 queries 36 54.6 60.2 46.0 - - - - -

Mask2Former (ours) Swin-L† 200 queries 100 57.8 64.2 48.1 48.6 67.4 216M 868G 4.0

Table 1. Panoptic segmentation on COCO panoptic val2017 with 133 categories. Mask2Former consistently outperforms Mask-

Former [14] by a large margin with different backbones on all metrics. Our best model outperforms prior state-of-the-art MaskFormer by

5.1 PQ and K-Net [62] by 3.2 PQ. Backbones pre-trained on ImageNet-22K are marked with †.

mentation tasks are evaluated on the union of “things” and

“stuff” categories while instance segmentation is only eval-

uated on the “things” categories.

Evaluation metrics. For panoptic segmentation, we use

the standard PQ (panoptic quality) metric [28]. We fur-

ther report APTh
pan, which is the AP evaluated on the “thing”

categories using instance segmentation annotations, and

mIoUpan, which is the mIoU for semantic segmentation

by merging instance masks from the same category, of the

same model trained only with panoptic segmentation anno-

tations. For instance segmentation, we use the standard AP

(average precision) metric [35]. For semantic segmentation,

we use mIoU (mean Intersection-over-Union) [19].

4.1. Implementation details

We adopt settings from [14] with the following differences:

Pixel decoder. Mask2Former is compatible with any exist-

ing pixel decoder module. In MaskFormer [14], FPN [33]

is chosen as the default for its simplicity. Since our goal

is to demonstrate strong performance across different seg-

mentation tasks, we use the more advanced multi-scale de-

formable attention Transformer (MSDeformAttn) [66] as

our default pixel decoder. Specifically, we use 6 MSDefor-

mAttn layers applied to feature maps with resolution 1/8,

1/16 and 1/32, and use a simple upsampling layer with lat-

eral connection on the final 1/8 feature map to generate the

feature map of resolution 1/4 as the per-pixel embedding.

In our ablation study, we show that this pixel decoder pro-

vides best results across different segmentation tasks.

Transformer decoder. We use our Transformer decoder

proposed in Section 3.2 with L = 3 (i.e., 9 layers total) and

100 queries by default. An auxiliary loss is added to every

intermediate Transformer decoder layer and to the learnable

query features before the Transformer decoder.

Loss weights. We use the binary cross-entropy loss (instead

of focal loss [34] in [14]) and the dice loss [41] for our mask

loss: Lmask = λceLce + λdiceLdice. We set λce = 5.0 and

λdice = 5.0. The final loss is a combination of mask loss and

classification loss: Lmask+λclsLcls and we set λcls = 2.0 for

predictions matched with a ground truth and 0.1 for the “no

object,” i.e., predictions that have not been matched with

any ground truth.

Post-processing. We use the exact same post-processing

as [14] to acquire the expected output format for panoptic

and semantic segmentation from pairs of binary masks and

class predictions. Instance segmentation requires additional

confidence scores for each prediction. We multiply class

confidence and mask confidence (i.e., averaged foreground

per-pixel binary mask probability) for a final confidence.

4.2. Training settings

Panoptic and instance segmentation. We use Detec-

tron2 [57] and follow the updated Mask R-CNN [24] base-

line settings1 for the COCO dataset. More specifically, we

use AdamW [38] optimizer and the step learning rate sched-

ule. We use an initial learning rate of 0.0001 and a weight

decay of 0.05 for all backbones. A learning rate multiplier

of 0.1 is applied to the backbone and we decay the learning

rate at 0.9 and 0.95 fractions of the total number of training

steps by a factor of 10. If not stated otherwise, we train our

models for 50 epochs with a batch size of 16. For data aug-

mentation, we use the large-scale jittering (LSJ) augmenta-

tion [18,23] with a random scale sampled from range 0.1 to

2.0 followed by a fixed size crop to 1024×1024. We use the

standard Mask R-CNN inference setting where we resize an

image with shorter side to 800 and longer side up-to 1333.

We also report FLOPs and fps. FLOPs are averaged over

100 validation images (COCO images have varying sizes).

Frames-per-second (fps) is measured on a V100 GPU with

a batch size of 1 by taking the average runtime on the entire

validation set including post-processing time.

Semantic segmentation. We follow the same settings

as [14] to train our models, except: 1) a learning rate multi-

plier of 0.1 is applied to both CNN and Transformer back-

bones instead of only applying it to CNN backbones in [14],

2) both ResNet and Swin backbones use an initial learning

rate of 0.0001 and a weight decay of 0.05, instead of using

1https://github.com/facebookresearch/detectron2/blob/

main / MODEL _ ZOO . md # new - baselines - using - large - scale -

jitter-and-longer-training-schedule
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method backbone query type epochs AP APS APM APL APboundary #params. FLOPs fps

MaskFormer [14] R50 100 queries 300 34.0 16.4 37.8 54.2 23.0 45M 181G 19.2

Mask R-CNN [24] R50 dense anchors 36 37.2 18.6 39.5 53.3 23.1 44M 201G 15.2

Mask R-CNN [18, 23, 24] R50 dense anchors 400 42.5 23.8 45.0 60.0 28.0 46M 358G 10.3

Mask2Former (ours) R50 100 queries 50 43.7 23.4 47.2 64.8 30.6 44M 226G 9.7

Mask R-CNN [24] R101 dense anchors 36 38.6 19.5 41.3 55.3 24.5 63M 266G 10.8

Mask R-CNN [18, 23, 24] R101 dense anchors 400 43.7 24.6 46.4 61.8 29.1 65M 423G 8.6

Mask2Former (ours) R101 100 queries 50 44.2 23.8 47.7 66.7 31.1 63M 293G 7.8

QueryInst [20] Swin-L† 300 queries 50 48.9 30.8 52.6 68.3 33.5 - - 3.3

Swin-HTC++ [6, 36] Swin-L† dense anchors 72 49.5 31.0 52.4 67.2 34.1 284M 1470G -

Mask2Former (ours) Swin-L† 200 queries 100 50.1 29.9 53.9 72.1 36.2 216M 868G 4.0

Table 2. Instance segmentation on COCO val2017 with 80 categories. Mask2Former outperforms strong Mask R-CNN [24] baselines

for both AP and APboundary [12] metrics when training with 8× fewer epochs. Our best model is also competitive to the state-of-the-art

specialized instance segmentation model on COCO and has higher boundary quality. For a fair comparison, we only consider single-scale

inference and models trained using only COCO train2017 set data. Backbones pre-trained on ImageNet-22K are marked with †.

different learning rates in [14].

4.3. Main results

Panoptic segmentation. We compare Mask2Former with

state-of-the-art models for panoptic segmentation on the

COCO panoptic [28] dataset in Table 1. Mask2Former

consistently outperforms MaskFormer by more than 5 PQ

across different backbones while converging 6× faster.

With Swin-L backbone, our Mask2Former sets a new state-

of-the-art of 57.8 PQ, outperforming existing state-of-the-

art [14] by 5.1 PQ and concurrent work, K-Net [62], by

3.2 PQ. Mask2Former even outperforms the best ensemble

models with extra training data in the COCO challenge (see

Appendix A.1 for test set results).

Beyond the PQ metric, our Mask2Former also achieves

higher performance on two other metrics compared to

DETR [5] and MaskFormer: APTh
pan, which is the AP eval-

uated on the 80 “thing” categories using instance segmen-

tation annotation, and mIoUpan, which is the mIoU evalu-

ated on the 133 categories for semantic segmentation con-

verted from panoptic segmentation annotation. This shows

Mask2Former’s universality: trained only with panoptic

segmentation annotations, it can be used for instance and

semantic segmentation.

Instance segmentation. We compare Mask2Former with

state-of-the-art models on the COCO [35] dataset in Ta-

ble 2. With ResNet [25] backbone, Mask2Former outper-

forms a strong Mask R-CNN [24] baseline using large-

scale jittering (LSJ) augmentation [18, 23] while requir-

ing 8× fewer training iterations. With Swin-L backbone,

Mask2Former outperforms the state-of-the-art HTC++ [6].

Although we only observe +0.6 AP improvement over

HTC++, the Boundary AP [12] improves by 2.1, suggesting

that our predictions have a better boundary quality thanks to

the high-resolution mask predictions. Note that for a fair

comparison, we only consider single-scale inference and

models trained with only COCO train2017 set data.

With a ResNet-50 backbone Mask2Former improves

over MaskFormer on small objects by 7.0 APS, while over-

method backbone crop size mIoU (s.s.) mIoU (m.s.)

MaskFormer [14] R50 512 44.5 46.7

Mask2Former (ours) R50 512 47.2 49.2

Swin-UperNet [36, 58] Swin-T 512 - 46.1

MaskFormer [14] Swin-T 512 46.7 48.8

Mask2Former (ours) Swin-T 512 47.7 49.6

MaskFormer [14] Swin-L†
640 54.1 55.6

FaPN-MaskFormer [14, 39] Swin-L-FaPN†
640 55.2 56.7

BEiT-UperNet [2, 58] BEiT-L†
640 - 57.0

Mask2Former (ours)
Swin-L†

640 56.1 57.3

Swin-L-FaPN†
640 56.4 57.7

Table 3. Semantic segmentation on ADE20K val with

150 categories. Mask2Former consistently outperforms Mask-

Former [14] by a large margin with different backbones (all

Mask2Former models use MSDeformAttn [66] as pixel decoder,

except Swin-L-FaPN uses FaPN [39]). Our best model outper-

forms the best specialized model, BEiT [2]. We report both single-

scale (s.s.) and multi-scale (m.s.) inference results. Backbones

pre-trained on ImageNet-22K are marked with †.

all the highest gains come from large objects (+10.6 APL).

The performance on APS still lags behind other state-of-the-

art models. Hence there still remains room for improvement

on small objects, e.g., by using dilated backbones like in

DETR [5], which we leave for future work.

Semantic segmentation. We compare Mask2Former with

state-of-the-art models for semantic segmentation on the

ADE20K [65] dataset in Table 3. Mask2Former outper-

forms MaskFormer [14] across different backbones, sug-

gesting that the proposed improvements even boost seman-

tic segmentation results where [14] was already state-of-

the-art. With Swin-L as backbone and FaPN [39] as pixel

decoder, Mask2Former sets a new state-of-the-art of 57.7

mIoU. We also report the test set results in Appendix A.3.

4.4. Ablation studies

We now analyze Mask2Former through a series of abla-

tion studies using a ResNet-50 backbone [25]. To test the

generality of the proposed components for universal image

segmentation, all ablations are performed on three tasks.
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AP PQ mIoU FLOPs

Mask2Former (ours) 43.7 51.9 47.2 226G

− masked attention 37.8 (-5.9) 47.1 (-4.8) 45.5 (-1.7) 213G

− high-resolution features 41.5 (-2.2) 50.2 (-1.7) 46.1 (-1.1) 218G

(a) Masked attention and high-resolution features (from efficient multi-scale

strategy) lead to the most gains. More detailed ablations are in Table 4c and

Table 4d. We remove one component at a time.

AP PQ mIoU FLOPs

Mask2Former (ours) 43.7 51.9 47.2 226G

− learnable query features 42.9 (-0.8) 51.2 (-0.7) 45.4 (-1.8) 226G

− cross-attention first 43.2 (-0.5) 51.6 (-0.3) 46.3 (-0.9) 226G

− remove dropout 43.0 (-0.7) 51.3 (-0.6) 47.2 (-0.0) 226G

− all 3 components above 42.3 (-1.4) 50.8 (-1.1) 46.3 (-0.9) 226G

(b) Optimization improvements increase the performance without introduc-

ing extra compute. Following DETR [5], query features are zero-initialized

when not learnable. We remove one component at a time.

AP PQ mIoU FLOPs

cross-attention 37.8 47.1 45.5 213G

SMCA [22] 37.9 47.2 46.6 213G

mask pooling [62] 43.1 51.5 46.0 217G

masked attention 43.7 51.9 47.2 226G

(c) Masked attention. Our masked attention

performs better than other variants of cross-

attention across all tasks.

AP PQ mIoU FLOPs

single scale (1/32) 41.5 50.2 46.1 218G

single scale (1/16) 43.0 51.5 46.5 222G

single scale (1/8) 44.0 51.8 47.4 239G

naı̈ve m.s. (3 scales) 44.0 51.9 46.3 247G

efficient m.s. (3 scales) 43.7 51.9 47.2 226G

(d) Feature resolution. High-resolution features (sin-

gle scale 1/8) are important. Our efficient multi-scale

(efficient m.s.) strategy effectively reduces the FLOPs.

AP PQ mIoU FLOPs

FPN [33] 41.5 50.7 45.6 195G

Semantic FPN [27] 42.1 51.2 46.2 258G

FaPN [39] 42.4 51.8 46.8 -

BiFPN [47] 43.5 51.8 45.6 204G

MSDeformAttn [66] 43.7 51.9 47.2 226G

(e) Pixel decoder. MSDeformAttn [66] consis-

tently performs the best across all tasks.

Table 4. Mask2Former ablations. We perform ablations on three tasks: instance (AP on COCO val2017), panoptic (PQ on COCO

panoptic val2017) and semantic (mIoU on ADE20K val) segmentation. FLOPs are measured on COCO instance segmentation.

Transformer decoder. We validate the importance of each

component by removing them one at a time. As shown in

Table 4a, masked attention leads to the biggest improve-

ment across all tasks. The improvement is larger for in-

stance and panoptic segmentation than for semantic seg-

mentation. Moreover, using high-resolution features from

the efficient multi-scale strategy is also important. Table 4b

shows additional optimization improvements further im-

prove the performance without extra computation.

Masked attention. Concurrent work has proposed other

variants of cross-attention [22, 40] that aim to improve the

convergence and performance of DETR [5] for object de-

tection. Most recently, K-Net [62] replaced cross-attention

with a mask pooling operation that averages features within

mask regions. We validate the importance of our masked

attention in Table 4c. While existing cross-attention vari-

ants may improve on a specific task, our masked attention

performs the best on all three tasks.

Feature resolution. Table 4d shows that Mask2Former

benefits from using high-resolution features (e.g., a single

scale of 1/8) in the Transformer decoder. However, this in-

troduces additional computation. Our efficient multi-scale

(efficient m.s.) strategy effectively reduces the FLOPs with-

out affecting the performance. Note that, naively concate-

nating multi-scale features as input to every Transformer

decoder layer (naı̈ve m.s.) does not yield additional gains.

Pixel decoder. As shown in Table 4e, Mask2Former is com-

patible with any existing pixel decoder. However, we ob-

serve different pixel decoders specialize in different tasks:

while BiFPN [47] performs better on instance-level seg-

mentation, FaPN [39] works better for semantic segmen-

tation. Among all studied pixel decoders, the MSDefor-

maAttn [66] consistently performs the best across all tasks

and thus is selected as our default. This set of ablations also

matching loss training loss

AP

(COCO)

PQ

(COCO)

mIoU

(ADE20K)

memory

(COCO)

mask
mask 41.0 50.3 45.9 18G

point 41.0 50.8 45.9 6G

point (ours)
mask 43.1 51.4 47.3 18G

point (ours) 43.7 51.9 47.2 6G

Table 5. Calculating loss with points vs. masks. Training with

point loss reduces training memory without influencing the perfor-

mance. Matching with point loss further improves performance.

suggests that designing a module like a pixel decoder for a

specific task does not guarantee generalization across seg-

mentation tasks. Mask2Former, as a universal model, could

serve as a testbed for a generalizable module design.

Calculating loss with points vs. masks. In Table 5 we

study the performance and memory implications when cal-

culating the loss based on either mask or sampled points.

Calculating the final training loss with sampled points re-

duces training memory by 3× without affecting the per-

formance. Additionally, calculating the matching loss with

sampled points improves performance across all three tasks.

Learnable queries as region proposals. Region propos-

als [1, 50], either in the form of boxes or masks, are re-

gions that are likely to be “objects.” With learnable queries

being supervised by the mask loss, predictions from learn-

able queries can serve as mask proposals. In Figure 3 top,

we visualize mask predictions of selected learnable queries

before feeding them into the Transformer decoder (the pro-

posal generation process is shown in Figure 3 bottom right).

In Figure 3 bottom left, we further perform a quantita-

tive analysis on the quality of these proposals by calculat-

ing the class-agnostic average recall with 100 predictions

(AR@100) on COCO val2017. We find these learnable

queries already achieve good AR@100 compared to the fi-
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Appendix

We first provide more results for Mask2Former with differ-

ent backbones as well as test-set performance on standard

benchmarks (Appendix A): We use COCO panoptic [28]

for panoptic, COCO [35] for instance, and ADE20K [65]

for semantic segmentation. Then, we provide more detailed

results on additional datasets (Appendix B). Finally, we pro-

vide additional ablation studies (Appendix C) and visualiza-

tion of Mask2Former predictions for all three segmentation

tasks (Appendix D).

A. Additional results

Here, we provide more results of Mask2Former with

different backbones on COCO panoptic [28] for panoptic

segmentation, COCO [35] for instance segmentation and

ADE20K [65] for semantic segmentation. More specifi-

cally, for each benckmark, we evaluate Mask2Former with

ResNet [25] with 50 and 101 layers, as well as Swin [36]

Tiny, Small, Base and Large variants as backbones. We use

ImageNet [44] pre-trained checkpoints to initialize back-

bones.

A.1. Panoptic segmentation.

In Table I, we report Mask2Former with various back-

bones on COCO panoptic val2017. Mask2Former out-

performs all existing panoptic segmentation models with

various backbones. Our best model sets a new state-of-the-

art of 57.8 PQ.

In Table II, we further report the best Mask2Former

model on the test-dev set. Note that Mask2Former

trained only with the standard train2017 data,

achieves the absolute new state-of-the-art performance on

both validation and test set. Mask2Former even outper-

forms the best COCO competition entry which uses extra

training data and test-time augmentation.

A.2. Instance segmentation.

In Table III, we report Mask2Former results ob-

tained with various backbones on COCO val2017.

Mask2Former outperforms the best single-scale model,

HTC++ [6, 36]. Note that it is non-trivial to do multi-scale

inference for instance-level segmentation tasks without in-

troducing complex post-processing like non-maximum sup-

pression. Thus, we only compare Mask2Former with other

single-scale inference models. We believe multi-scale infer-

ence can further improve Mask2Former performance and it

remains an interesting future work.

In Table IV, we further report the best Mask2Former

model on the test-dev set. Mask2Former achieves the

absolute new state-of-the-art performance on both valida-

tion and test set. On the one hand, Mask2Former is ex-

tremely good at segmenting large objects: we can even

outperform the challenge winner (which uses extra train-

ing data, model ensemble, etc.) on APL by a large margin

without any bells-and-whistles. On the other hand, the poor

performance on small objects leaves room for further im-

provement in the future.

A.3. Semantic segmentation.

In Table V, we report Mask2Former results obtained

with various backbones on ADE20K val. Mask2Former

outperforms all existing semantic segmentation models

with various backbones. Our best model sets a new state-

of-the-art of 57.7 mIoU.

In Table VI, we further report the best Mask2Former

model on the test set. Following [14], we train

Mask2Former on the union of ADE20K train and val

set with ImageNet-22K pre-trained checkpoint and use

multi-scale inference. Mask2Former is able to outperform

previous state-of-the-art methods on all metrics.

B. Additional datasets

We study Mask2Former on three image segmentation

tasks (panoptic, instance and semantic segmentation) us-

ing four datasets. Here we report additional results on

Cityscapes [16], ADE20K [65] and Mapillary Vistas [42]

as well as more detailed training settings.

B.1. Cityscapes

Cityscapes is an urban egocentric street-view dataset

with high-resolution images (1024 × 2048 pixels). It con-

tains 2975 images for training, 500 images for validation

and 1525 images for testing with a total of 19 classes.

Training settings. For all three segmentation tasks: we use

a crop size of 512 × 1024, a batch size of 16 and train

all models for 90k iterations. During inference, we oper-

ate on the whole image (1024 × 2048). Other implemen-

tation details largely follow Section 4.1 (panoptic and in-

stance segmentation follow semantic segmentation training

settings), except that we use 200 queries for panoptic and

instance segmentation models with Swin-L backbone. All

other backbones or semantic segmentation models use 100

queries.

Results. In Table VII, we report Mask2Former results ob-

tained with various backbones on Cityscapes for three seg-

mentation tasks and compare it with other state-of-the-art

methods without using extra data. For panoptic segmen-

tation, Mask2Former with Swin-L backbone outperforms

the state-of-the-art Panoptic-DeepLab [11] with SWideR-

net [9] using single-scale inference. For semantic segmen-

tation, Mask2Former with Swin-B backbone outperforms

the state-of-the-art SegFormer [59].
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method backbone search space epochs PQ PQTh PQSt APTh
pan mIoUpan #params. FLOPs

C
N

N
b
ac

k
b
o
n
es

DETR [5]
R50 100 queries 500+25 43.4 48.2 36.3 31.1 - - -

R101 100 queries 500+25 45.1 50.5 37.0 33.0 - - -

K-Net [62] R50 100 queries 36 47.1 51.7 40.3 - - - -

Panoptic SegFormer [32] R50 400 queries 50 50.0 56.1 40.8 - - 47M 246G

MaskFormer [14]
R50 100 queries 300 46.5 51.0 39.8 33.0 57.8 45M 181G

R101 100 queries 300 47.6 52.5 40.3 34.1 59.3 64M 248G

Mask2Former (ours)
R50 100 queries 50 51.9 57.7 43.0 41.7 61.7 44M 226G

R101 100 queries 50 52.6 58.5 43.7 42.6 62.4 63M 293G

T
ra

n
sf

o
rm

er
b
ac

k
b
o
n
es

Max-DeepLab [52]
Max-S 128 queries 216 48.4 53.0 41.5 - - 62M 324G

Max-L 128 queries 216 51.1 57.0 42.2 - - 451M 3692G

Panoptic SegFormer [32] PVTv2-B5 [54] 400 queries 50 54.1 60.4 44.6 - - 101M 391G

K-Net [62] Swin-L† 100 queries 36 54.6 60.2 46.0 - - - -

MaskFormer [14]

Swin-T 100 queries 300 47.7 51.7 41.7 33.6 60.4 42M 179G

Swin-S 100 queries 300 49.7 54.4 42.6 36.1 61.3 63M 259G

Swin-B 100 queries 300 51.1 56.3 43.2 37.8 62.6 102M 411G

Swin-B† 100 queries 300 51.8 56.9 44.1 38.5 63.6 102M 411G

Swin-L† 100 queries 300 52.7 58.5 44.0 40.1 64.8 212M 792G

Mask2Former (ours)

Swin-T 100 queries 50 53.2 59.3 44.0 43.3 63.2 47M 232G

Swin-S 100 queries 50 54.6 60.6 45.7 44.7 64.2 69M 313G

Swin-B 100 queries 50 55.1 61.0 46.1 45.2 65.1 107M 466G

Swin-B† 100 queries 50 56.4 62.4 47.3 46.3 67.1 107M 466G

Swin-L† 200 queries 100 57.8 64.2 48.1 48.6 67.4 216M 868G

Table I. Panoptic segmentation on COCO panoptic val2017 with 133 categories. Mask2Former outperforms all existing panoptic

segmentation models by a large margin with different backbones on all metrics. Our best model sets a new state-of-the-art of 57.8 PQ.

Besides PQ for panoptic segmentation, we also report APTh
pan (the AP evaluated on the 80 “thing” categories using instance segmentation

annotation) and mIoUpan (the mIoU evaluated on the 133 categories for semantic segmentation converted from panoptic segmentation

annotation) of the same model trained for panoptic segmentation (note: we train all our models with panoptic segmentation annotation

only). Backbones pre-trained on ImageNet-22K are marked with †.

method backbone PQ PQTh PQSt SQ RQ

Max-DeepLab [52] Max-L 51.3 57.2 42.4 82.5 61.3

Panoptic FCN [31] Swin-L 52.7 59.4 42.5 - -

MaskFormer [14] Swin-L 53.3 59.1 44.5 82.0 64.1

Panoptic SegFormer [32] PVTv2-B5 [54] 54.4 61.1 44.3 83.3 64.6

K-Net [62] Swin-L 55.2 61.2 46.2 - -

Megvii (challenge winner) - 54.7 64.6 39.8 83.6 64.3

Mask2Former (ours) Swin-L 58.3 65.1 48.1 84.1 68.6

Table II. Panoptic segmentation on COCO panoptic test-dev with 133 categories. Mask2Former, without any bells-and-whistles,

outperforms the challenge winner (which uses extra training data, model ensemble, etc.) on the test-dev set. We only train our model

on the COCO train2017 set with ImageNet-22K pre-trained checkpoint.

B.2. ADE20K

Training settings. For panoptic and instance segmentation,

we use the exact same training parameters as we used for

semantic segmentation, except that we always use a crop

size of 640 × 640 for all backbones. Other implementa-

tion details largely follow Section 4.1 , except that we use

200 queries for panoptic and instance segmentation models

with Swin-L backbone. All other backbones or semantic

segmentation models use 100 queries.

Results. In Table VIII, we report the results of

Mask2Former obtained with various backbones on

ADE20K for three segmentation tasks and compare it

with other state-of-the-art methods. Mask2Former with

Swin-L backbone sets a new state-of-the-art performance

on ADE20K for panoptic segmentation. As there are

few papers reporting results on ADE20K, we hope this

experiment could set up a useful benchmark for future

research.

B.3. Mapillary Vistas

Mapillary Vistas is a large-scale urban street-view

dataset with 18k, 2k and 5k images for training, validation

and testing. It contains images with a variety of resolutions,

ranging from 1024 × 768 to 4000 × 6000. We only report

panoptic and semantic segmentation results for this dataset.

Training settings. For both panoptic and semantic segmen-

tation, we follow the same data augmentation of [14]: stan-

dard random scale jittering between 0.5 and 2.0, random

horizontal flipping, random cropping with a crop size of

1024 × 1024 as well as random color jittering. We train
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panoptic model instance model semantic model

method backbone PQ (s.s.) PQ (m.s.) APTh
pan mIoUpan AP AP50 mIoU (s.s.) mIoU (m.s.)

Panoptic-DeepLab [11]

R50 60.3 - 32.1 78.7 - - - -

X71 [15] 63.0 64.1 35.3 80.5 - - - -

SWideRNet [9] 66.4 67.5 40.1 82.2 - - - -

Panoptic FCN [31] Swin-L† 65.9 - - - - - - -

Segmenter [45] ViT-L† - - - - - - - 81.3

SETR [64] ViT-L† - - - - - - - 82.2

SegFormer [59] MiT-B5 - - - - - - - 84.0

Mask2Former (ours)

R50 62.1 - 37.3 77.5 37.4 61.9 79.4 82.2

R101 62.4 - 37.7 78.6 38.5 63.9 80.1 81.9

Swin-T 63.9 - 39.1 80.5 39.7 66.9 82.1 83.0

Swin-S 64.8 - 40.7 81.8 41.8 70.4 82.6 83.6

Swin-B† 66.1 - 42.8 82.7 42.0 68.8 83.3 84.5

Swin-L† 66.6 - 43.6 82.9 43.7 71.4 83.3 84.3

Table VII. Image segmentation results on Cityscapes val. We report both single-scale (s.s.) and multi-scale (m.s.) inference results

for PQ and mIoU. All other metrics are evaluated with single-scale inference. Since Mask2Former is an end-to-end model, we only use

single-scale inference for instance-level segmentation tasks to avoid the need for further post-processing (e.g., NMS).

panoptic model instance model semantic model

method backbone PQ APTh
pan mIoUpan AP APS APM APL mIoU (s.s.) mIoU (m.s.)

MaskFormer [14] R50 34.7 - - - - - - - -

Panoptic-DeepLab [11] SWideRNet [9] 37.9∗ - 50.0∗ - - - - - -

Swin-UperNet [36, 58] Swin-L† - - - - - - - - 53.5

MaskFormer [14] Swin-L† - - - - - - - 54.1 55.6

FaPN-MaskFormer [14, 39] Swin-L† - - - - - - - 55.2 56.7

BEiT-UperNet [2, 58] BEiT-L† - - - - - - - - 57.0

Mask2Former (ours)

R50 39.7 26.5 46.1 26.4 10.4 28.9 43.1 47.2 49.2

Swin-L† 48.1 34.2 54.5 34.9 16.3 40.0 54.7 56.1 57.3

Swin-L-FaPN† 46.2 33.2 55.4 33.4 14.6 37.6 54.6 56.4 57.7

Table VIII. Image segmentation results on ADE20K val. Mask2Former is competitive to specialized models on ADE20K. Panoptic

segmentation models use single-scale inference by default, multi-scale numbers are marked with ∗. For semantic segmentation, we report

both single-scale (s.s.) and multi-scale (m.s.) inference results.

ber of queries for three image segmentation tasks in Ta-

ble Xa. For instance and semantic segmentation, using

100 queries achieves the best performance, while using 200

queries can further improve panoptic segmentation results.

As panoptic segmentation is a combination of instance and

semantic segmentation, it has more segments per image

than the other two tasks. This ablation suggests that pick-

ing the number of queries for Mask2Former may depend on

the number of segments per image for a particular task or

dataset.

Learnable queries. An object query consists of two parts:

object query features and object query positional embed-

dings. Object query features are only used as the initial

input to the Transformer decoder and are updated through

decoder layers; whereas query positional embeddings are

added to query features in every Transformer decoder layer

when computing the attention weights. In DETR [5], query

features are zero-initialized and query positional embed-

dings are learnable. Furthermore, there is no direct su-

pervision on these query features before feeding them into

the Transformer (since they are zero vectors). In our

Mask2Former, we still make query positional embeddings

learnable. In addition, we make query features learnable

as well and directly apply losses on these learnable query

features before feeding them into the Transformer decoder.

In Table Xb, we compare our learnable query features

with zero-initialized query features in DETR. We find it

is important to directly supervise object queries even be-

fore feeding them into the Transformer decoder. Learnable

queries without supervision perform similarly well as zero-

initialized queries in DETR.

C.4. MaskFormer vs. Mask2Former

Mask2Former builds upon the same meta architecture

as MaskFormer [14] with two major differences: 1) We

use more advanced training parameters summarized in Ta-

ble XIa; and 2) we propose a new Transformer decoder with

masked attention, instead of using the standard Transformer

decoder, as well as some optimization improvements sum-

marized in Table XIb. To better understand Mask2Former’s

improvements over MaskFormer, we perform ablation stud-

ies on training parameter improvements and Transformer

decoder improvements in isolation.

In Table XIc, we study our new training parameters. We
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Figure V. Visualization of panoptic segmentation predictions on the COCO panoptic dataset: Mask2Former with Swin-L backbone which

achieves 57.8 PQ on the validation set. First and third columns: ground truth. Second and fourth columns: prediction. Last row shows

failure cases.

18



Figure VI. Visualization of instance segmentation predictions on the COCO dataset: Mask2Former with Swin-L backbone which achieves

50.1 AP on the validation set. First and third columns: ground truth. Second and fourth columns: prediction. Last row shows failure

cases. We show predictions with confidence scores greater than 0.5.
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Figure VII. Visualization of semantic segmentation predictions on the ADE20K dataset: Mask2Former with Swin-L backbone which

achieves 57.7 mIoU (multi-scale) on the validation set. First and third columns: ground truth. Second and fourth columns: prediction.

Last row shows failure cases.
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