


to obtain better object priors [14, 45]. More recently, re-

search has focused on encoding object priors with deep

nets [23, 26–28, 49].

Naively applying these techniques to the set of images

that are used to capture neural volumetric 3D representa-

tions is sub-optimal. For example, simply transferring user

interactions like scribbles from one image to another using

a known camera transformation may fail to cover the in-

tended object because of occlusions. Similarly, transferring

an appearance model learned on one image to all remaining

images is challenging because of appearance and lighting

changes. Asking a user to interact with all images requires

an interface that may not be intuitive or require excessive

work, and furthermore may produce a segmentation that is

not view-consistent.

For those reasons, novel user-driven 3D segmentation

techniques are warranted. We propose a novel voxel feature

embedding that incorporates discretized features from the

neural volumetric 3D representation and image features from

all input views. Formally, we first project user interactions

in the form of 2D scribbles from a reference image to sparse

3D locations using the reconstructed scene. We then learn

a 3D object representation model that incorporates image

features from all views via a developed multi-view feature

embedding. We use these features to directly segment the

object in the volumetric 3D scene representation and apply a

post-processing step to remove outliers. The extracted 3D

object can subsequently be viewed from different directions,

as visualized in Fig. 1.

We evaluate the proposed method on real world samples

from the LLFF [32], Shiny [48], and NeRF-real360 [33]

data. As shown in Fig. 1, despite very few scribbles on a

single reference image, the proposed method recovers an

accurate 3D model of the object of interest and retains fine

details (e.g., the ribs of the dinosaur in row 1). To study

quantitatively, we obtained annotations using a professional

service. Our method out-performs 2D and 3D interactive

segmentation baselines by a margin on all benchmarks.

In summary, we present the first method for user-driven

3D object selection targeting recent neural volumetric re-

construction. We show that a pre-trained network to embed

multi-view features produces a more robust selection method

than applying existing interactive 3D segmentation methods.

For evaluation, we contribute a set of high-quality ground-

truth annotations on three real-world datasets.

2. Related work

2D interactive segmentation approaches include binary

object segmentation or alpha matting, which aim to estimate

the proportion of two colors mixing to form a boundary.

Early matting work goes back to the 1980s [1, 11] and the

1990s [34, 40]. Subsequent improvements like GrabCut [39]

used a global energy minimization and popularized a sim-

plification of the challenging matting task: first, estimate a

“hard” segmentation; second, use border matting to compute

alpha around a small strip at the boundary. A global energy

minimization for interactive object segmentation has been

used before by Boykov and Jolly [4] for object segmentation.

Different forms of user input have been studied for inter-

active segmentation, including contours [17, 35], bounding

boxes [39] and strokes [3, 4, 9, 13, 14, 21, 36, 37, 45, 46].

Beyond different user interactions, follow-up work has

also focused on improving the energy function employed in

the work by Boykov and Jolly [4] and GrabCut [39]. For

example, Grady [13] studied random walks for speed-up and

Veksler [45] and Gulshan et al. [14] introduced shape priors

to incorporate more expressive object information.

More recently, more expressive object information has

been incorporated via deep nets [23,26–28,49]. For instance,

given user input, Xu et al. [49] finetune fully connected

nets (FCNs), the output of which is then used in a graph-cut

formulation. Subsequent work refined the predictions by

incorporating diversity or attention [23, 26–28].

Different from the aforementioned works, we operate

in a 3D volume rather than in image space. This setup

requires developing a multi-view feature embedding which

transforms scribbles from image space to volume space, and

a pipeline that involves a 3D segmentation network, as well

as a 3D graph-cut based post-processing step.

3D interactive segmentation is particularly common in

the medical community. Indeed early image segmentation

techniques were often developed with medical image seg-

mentation in mind [4, 13]. Extending energy minimization

techniques to 3D volumes proved to be challenging, neces-

sitating various forms of improvements [13] to cope with

increased memory requirements. Deep learning based tech-

niques have been adopted more recently [25, 47], having the

goal to capture object priors more accurately. Our focus is

on visual realism instead of medical structure segmentation.

Image-based rendering (IBR) has a long history in com-

puter graphics and computer vision [8], just like interactive

segmentation. Image-based rendering aims to render novel

views directly from input images and can be broadly catego-

rized into methods which use geometry explicitly, methods

which use geometry implicitly, and methods which do not

use geometry at all. Classical techniques based on explicit

geometry are texture-mapped models. Layered depth images

(LDIs) [42], lumigraphs [5], flow-based [8], and tensor-based

methods [2] implicitly use geometry, while light-field meth-

ods [20] try to avoid using geometry. Hybrid methods [10]

have also long been studied.

More recently deep nets have been used for image-based

rendering. Among the most widely used techniques are

neural radiance fields (NeRF) [33] and multi-plane images

(MPI) [55]. Both have in common that they aim to extract

from a given set of images a volumetric representation of
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Multi-view image features vMVS
p . The multi-view image

features vMVS
p encode appearance information from the ob-

served views. We find this information to be particularly

useful for user-driven segmentation. This is intuitive when

considering the three limitations of features that are extracted

from only an IBR volume: 1) features extracted from an IBR

volume are particularly noisy since the geometry is learned

implicitly through differentiable volume rendering and never

explicitly supervised. They further degrade during discretiza-

tion; 2) IBR volume voxels encode limited neighborhood

information; and 3) IBR volume representations are learned

to model appearance, which might be sub-optimal for recog-

nition tasks. To address these three limitations, we develop

the multi-view image feature v
MVS
p inspired by recent deep

multi-view stereo (MVS) methods [6, 51]. Specifically, we

encode multi-view images into the reference view using the

following three steps:

• 2D feature extraction: for a multi-view image set {Ii}
M
i=1

where M denotes the number of available views, a pre-

trained 2D convolutional neural network (CNN) is used to

extract image features {Gi}
M
i=1 for each image i.

• Cost-volume construction: using the known camera intrin-

sic and extrinsic parameters {Ki,Ri, ti}
M
i=1, the extracted

2D feature maps {Gi}
M
i=1 can be warped onto multiple

3D planes oriented fronto-parallel to the reference view

r ∈ {1, . . . ,M}, and their agreement can be recorded in

a plane-sweep cost volume. Let (u, v) be a pixel location in

the reference view r and Hi→r(z) be a 3× 3 homography

matrix that projects a 2D homogeneous point in view i to the

plane at depth z of reference view r. We obtain the warped

feature map Gi→r,z by applying the homography matrix to

the pixel locations of the feature map Gi for view i,

Gi→r,z(u, v) = Gi

�

H
−1
i→r(z)[u, v, 1]

T
�

. (3)

If nr is the principal axis of the reference camera r, then the

homography Hi→r(z) is:

Hi→r(z) = KiRi

�

I−
(tr − ti)n

T
r

z

"

R
T
r K

T
r . (4)

We then aggregate the projected features from the M

plane-sweep volumes into a single cost-volume via

Gr,z(u, v) = Vari∈{1,...,M}(Gi→r,z(u, v)), (5)

where Var(·) calculates the variance of the features over the

M feature maps. We calculate the variance as it explicitly

measures the feature difference from multiple views, which

has been validated to out-perform baselines calculating the

features’ mean [51]. The computed visual feature variance

serves as a good indicator for probable surface locations and

hence greatly informs the 3D segmentation.

• Feature computation: the computed cost-volume is of-

ten noisy due to occlusions or non-Lambertian reflectance.

Therefore, we further refine it using a 3D U-Net [38]. Con-

cretely, we compute the final feature volume via

v
MVS
(·) = gω(Gr), (6)

where we concatenate each Gr,z along the Z-axis to form the

3D tensor Gr and gω is a 3D U-Net with parameters ω. To

extract robust and expressive multi-view features, we adopt

the learned weights ω from Chen et al. [6], who originally

train the network gω on all scenes of the DTU dataset [16]

for fast generalization of NeRF models to unseen scenes.

Appendix Fig. A1 shows the details for the computation of

v
MVS
p .

Neural voxel features v
IBR
p . We also extract voxel fea-

tures from the neural IBR volume. To study the robustness

and generalizability of our method, we use two recent IBR

models: MPI and NeRF. An MPI is naturally a discretized

volume for 3D scenes and we use the MPI variant NeX [48]

here. In contrast, a NeRF is an implicit continuous neural

representation and cannot be directly used. We hence adopt

the PlenOctrees [52] discretization which is an octree-based

representation that supports real-time rendering without com-

promising photometric quality. PlenOctrees convert a NeRF

model to a regular volume of size 5123. For the obtained

volumes, both NeX and PlenOctrees leverage spherical basis

functions for modeling the color information via

cp(d) =
�

l∈{1,...,N}

klpH
l(d), (7)

where cp(d) ∈ R
3 is the color of voxel p from view direction

d, klp ∈ R
3 for voxel p are RGB coefficients, H l(d) is a

view-dependent basis function, and l ∈ {1, . . . , N} is the

basis function index. In addition, each voxel also stores

one transparency value which we refer to as ξp (e.g., alpha-

transparency in an MPI and density in a NeRF). The neural

IBR feature is constructed as,

v
IBR
p = [ξp, k

1
p, . . . , k

N
p ], (8)

where [·] denotes concatenation. Note that this feature is

independent of the viewing direction d.

Positional voxel features vXYZ
p . In addition to the multi-

view image features, we also extract a positional encoding

of the voxel location. For each voxel, we project its (x, y)
location to a 40-dimensional feature vector using a posi-

tional encoding [33], and similarly its z location to a 16-

dimensional feature vector. In total, for each voxel we obtain

a 56 dimensional feature vector vXYZ
p .

3.2. 3D segmentation network

Given the voxel representation vp ∈ R
C detailed in § 3.1,

we use a 3-layer MLP as the segmentation network fθ to

predict the foreground probability.

As user input is provided in the form of 2D scribbles on

the reference view, to obtain training labels, we first lift the

2D foreground and background scribbles to 3D using the

known camera pose. For this lifting, we define a 3D ray for

each pixel and compute the intersecting 3D surface-voxel

as the first voxel on the ray with accumulated transmittance
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lower than γ = 0.01. This step yields an “expected depth”

for each ray, which permits to assign to the corresponding

voxel either a foreground or a background label. Our network

is then trained for binary classification using a standard

binary cross-entropy loss. This process is illustrated in the

blue colored region of Fig. 2.

3.3. Post­processing

Since the 3D segmentation network (§ 3.2) is trained with

limited supervision (sparse scribbles), the final prediction

on the entire volume is occasionally noisy. There are two

main causes for the noise: 1) floaters: these errors are gen-

erally isolated and far from the foreground scribbles in 3D

space; and 2) incompleteness: surface voxels are predicted

incorrectly if their appearance differs significantly from the

foreground scribbles, even though these voxels are very close

to the foreground scribbles in 3D space. The reason for these

errors is that the classifier processes each voxel indepen-

dently, i.e., neighborhood correlations are not considered.

To address this issue, we apply a distance field-based 3D

graph-cut for post-processing. Note, the neural volumetric

representations are often of high resolution, which graph-cut

fails to process due to memory and computational limitations.

To ensure fast inference, we operate in a down-sampled and

truncated volume space and upsample the segmentation af-

terwards. Truncation removes planes that are unlikely to

contain the object of interest. We down-sample the volume

by 4× on the XY-plane and truncate to 20 planes. Note that

our initial 3D segmentation is in the original high-resolution

volume.

We design the following energy function for 3D segmen-

tation. As before, let p be a voxel in the 3D volume and

N ¦ |V|× |V| be a neighborhood system on the volume (we

adopt a 6-connected neighborhood). We seek to infer the

foreground/background label yp ∈ {0, 1} of each voxel p.

Let the unary term φp indicate how likely a voxel p belongs

to foreground or background and the pairwise term ψp,q

capture the correlation between voxel p and its neighboring

voxel q. We minimize the sum of unary and pairwise terms,

E =
�

p∈P

φp(yp) + α
�

p,q∈N

ψp,q(yp, yq), (9)

where α is a scalar balancing weight. We depict this process

in the green colored region of Fig. 2.

The unary term is based on our network prediction and

input scribbles, i.e.,

φp(yp) = ω1φ
c
p(yp) + ω2φ

d
p(yp). (10)

Here, the first term relies on the segmentation network output

and is formulated as

φcp(yp) =

�

fθ(vp) if yp = 1
1− fθ(vp) if yp = 0

, (11)

which is the probability that a voxel p belongs to category

yp. The second term φdp is based on a distance-field of voxel

p to the input scribbles. Formally,

φdp(yp) =

�

minq∈F Dist(p, q) if yp = 1
minq∈B Dist(p, q) if yp = 0

, (12)

where B,F are the set of 3D-projected background and

foreground scribbles and Dist(·) is a function computing the

3D distance between two voxels.

The pairwise term ψp,q models correlation. For instance,

if the feature encoding of two voxels are similar and if both

voxels are close, we expect them to be labeled similarly. This

correlation is formulated via the binary term

ψp,q(yp, yq) = |yp−yq|·Dist(p, q)−1 ·exp−
(vp−vq)2

σ , (13)

where σ is a positive scalar. This term is useful as the depth

planes in the 3D volume may be irregularly spaced, e.g.,

inverse depth spacing is also used for real-world forward

facing scenes [48].

4. Experiments

In this section, we introduce our experimental setup and

show quantitative results, followed by ablation studies and

an analysis. Lastly, we provide a qualitative comparison.

Experimental setup. There are three stages: 1) training:

The classifier fθ operates on only the features of voxels

belonging to 3D-lifted scribbles, and is trained for binary

classification (fg/bg). We annotate only one pair of scribbles

(fg/bg) in the reference view. 2) inference: The trained fθ
classifies all voxels in the entire 3D volume. No scribbles

are needed. 3) evaluation: with all voxels classified, we

render the foreground voxel locations to a novel view for 2D

evaluation (segmentation, photo-realism) relative to GT.

Datasets. We use three classical multi-view scene datasets

with multiple objects. We test the MPI models on seven

scenes from LLFF [32], which are front-facing real-world

scenes, with 20-62 images each. We also test on four scenes

from Shiny [48], which is captured in a similar manner as

LLFF but contains more challenging view-dependent effects

such as metallic and transparent objects. We test NeRF-

based models (PlenOctrees [52]) on two real-world 360◦

scenes from NeRF [33] (NeRF-real360). Unfortunately,

PlenOctrees does not generalize well to the front-facing

datasets LLFF and Shiny due to the large scene depth range.

We thus leave the task of 3D segmentation using NeRF mod-

els on front-facing scenes to future work. For all datasets,

the input images are resized to a 1008×756 pixels following

the common practice in novel-view synthesis [33, 48]. The

camera parameters are estimated via Structure-from-Motion

(SfM) using the publicly available COLMAP library [41].
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Dataset LLFF Shiny

Metrics Acc.↑ IoU↑ Acc.↑ IoU↑

Random 50.0 13.5 50.0 13.5

Scribbles (projected) 8.1 16.6 8.0 20.7

2D segmentation (using projected scribbles)

Graph-cut [19] 88.6 59.0 86.1 48.0

GrabCut [39] 78.1 49.0 66.2 31.1

DeepLabV3 [7] 91.5 56.6 88.6 50.4

DEXTR [31] 89.7 34.5 59.6 40.4

FCA-Net [29] 88.3 62.7 87.9 58.5

3D segmentation

Graph-cut (3D) 73.6 39.4 78.3 32.4

Ours 92.0 70.1 90.7 69.3

Table 1. 2D mask evaluation results. Our method yields more

accurate object selection results on both datasets.

Scribbles. For evaluation, we annotate a fixed set of

foreground-background scribbles per image as shown in

Appendix Fig. A2 left column. For each scene, we have

one pair of foreground (F) and background (B) scribbles

for the reference view. Note that a scribble (F or B) may

contain several strokes. We use the scribbles as the input

to our method. For baselines, we project these scribbles to

the testing view using the recovered camera (see details in

§ 3.2). To test the generalizability, we ensure that the scrib-

bles have different length and shape, sometimes covering

multiple objects, e.g., ‘tools’ and ‘pasta’ in the Shiny dataset.

Evaluation annotations & criteria. Our goal is to accu-

rately segment 3D objects in volumetric representations.

However, there is no standard way to annotate ground-truth

3D masks for real-world scenes since different IBR models

represent 3D scenes differently. We propose two ways.

First, we evaluate the projected 2D mask segmentation re-

sults. For evaluation, we obtain high-quality 2D annotation

masks in unseen validation views for the aforementioned

three datasets using a professional image segmentation ser-

vice. For each scene, one unseen validation image is anno-

tated for evaluation. Note that the validation image view

differs from the MPI reference view. Next, we render 2D

foreground masks from the 3D volumetric representation

in the novel view and compare to the corresponding 2D

ground-truth. We report pixel classification accuracy (Acc)

and foreground intersection-over-union (IoU).

Second, as our method operates on volumetric 3D repre-

sentations, the segmented foreground object could be ren-

dered to novel views through volume rendering. We thus

report the photo-realistic quality of the segmented object

rendered in a novel view with a black background. Since the

objects could be small and we do not want the background to

dominate the evaluation. To overcome this issue, we crop the

foreground region on the rendered and ground-truth images

using a tight bounding box around the ground-truth mask.

We report Structural Similarity Index Measure (SSIM), Peak

Signal-to-Noise Ratio (PSNR), and Learned Perceptual Im-

Dataset LLFF Shiny

Metrics SSIM↑ PSNR↑ LPIPS³ SSIM↑ PSNR↑ LPIPS³
Graph-cut (3D) 0.600 15.03 0.415 0.454 12.83 0.477

Ours 0.767 18.40 0.213 0.612 15.73 0.319

Table 2. Novel-view object rendering results. Our model renders

more realistic foreground objects than 3D graph-cut.

age Patch Similarity (LPIPS) [54]. We do not report these

metrics for the 2D baselines as they do not render new views.

Baselines. We compare to several baselines: 1) Random:

we randomly assign pixels to the two classes with equal prob-

ability. 2) Scribbles (proj.): we lift the input 2D scribbles

from the reference view into 3D and find the intersecting

voxels (see details in § 3.2). We then project these voxels

into the test image using the camera matrices. Since the

projected scribbles are used as the input of baseline meth-

ods, this experiment helps to understand how accurate the

scribbles are after projection. We visualize these projected

scribbles in Appendix Fig. A2 right column.

Since the evaluation is conducted in 2D, we consider 2D

interactive segmentation baselines. Specifically, given the

input scribbles lifted to 3D and projected into the view that

we have supervision for, we evaluate: 1) Graph-cut [19]:

we use the 2D Graph-cut with the unary term proposed in

LazySnapping [22] and with an exponential binary term.

The exact formulation is provided in the Appendix. 2) Grab-

Cut [39]: an improved version of Graph-cut based on itera-

tive energy minimization. 3) DeepLabV3 [7]: we fine-tune

a state-of-the-art semantic segmentation net (DeepLabV3)

for binary classification using the projected scribbles. 4)

DEXTR [31]: a pre-trained image interactive segmentation

model that takes the 4 extreme points of the projected scrib-

bles as input. 5) FCA-Net [29]: a pre-trained 2D interactive

image segmentation model that takes user clicks as input.

In contrast to 2D baselines, we aim to achieve 3D seg-

mentation in volumetric representations rather than simply

segmenting 2D objects in novel views. As a baseline for

3D interactive segmentation, we consider Graph-cut (3D).

Concretely, we keep everything the same as in § 3.3 except

changing the first unary term (Eq. (11)) to

φcp(yp) =

�

minq∈F ∥vIBR
p − v

IBR
q ∥2 if yp = 1

minq∈B ∥vIBR
p − v

IBR
q ∥2 if yp = 0

,

(14)

where v
IBR
· is given in Eq. (2).

Implementation details. The input images for both MPI

and NeRF are resized to 1008 × 756 resolution. Follow-

ing [48,52], the MPI volume is of dimension 1156×1408×
192 and the PlenOctree volume is of size 5123. Our cost

volume is of size 640× 960×D where D ∈ {192, 512} for

MPI and PlenOctree, following MVS-Net [51]. Our classi-

fier is implemented as a 2-layer MLP with hidden dimension

128. We train our network using the Adam optimizer with

an initial learning rate of 0.001. During training, we adopt

cross-validation where 10% of the scribbles’ voxels are used
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# Layer Kernel Stride Dilation Input channels Output channels Input

Image encoder

1 C2D/BN/ReLU 3× 3 1 1 3 8 Image

2 C2D/BN/ReLU 3× 3 1 1 8 8 #1

3 C2D/BN/ReLU 5× 5 2 2 8 16 #2

4 C2D/BN/ReLU 3× 3 1 1 16 16 #3

5 C2D/BN/ReLU 3× 3 1 1 16 16 #4

6 C2D/BN/ReLU 5× 5 2 2 16 32 #5

7 C2D/BN/ReLU 3× 3 1 1 32 32 #6

8 C2D 3× 3 1 1 32 32 #7

3D U-Net

9 C3D/BN/ReLU 3× 3 1 1 (32+9) 8 #8+3×Images

10 C3D/BN/ReLU 3× 3 2 1 8 16 #9

11 C3D/BN/ReLU 3× 3 1 1 16 16 #10

12 C3D/BN/ReLU 3× 3 2 1 16 32 #11

13 C3D/BN/ReLU 3× 3 1 1 32 32 #12

14 C3D/BN/ReLU 3× 3 2 1 32 64 #13

15 C3D/BN/ReLU 3× 3 1 1 64 64 #14

16 CT3D/BN/ReLU 3× 3 2 1 64 32 #15+#14

17 CT3D/BN/ReLU 3× 3 2 1 32 16 #16+#12

18 CT3D/BN/ReLU 3× 3 2 1 16 8 #17+#10

Table A1. Network architectures. C2D is a 2D convolutional layer, C3D is a 3D convolutional layer, CT3D is a 3D de-convolutional layer,

BN is a batch-normalization layer.

dBp = mink ∥cp −C
B
k ∥. The unary term is then defined as:

φp(yp) =



























φp(yp = 0) = ∞ ∀p ∈ F
φp(yp = 1) = 0 ∀p ∈ F
φp(yp = 0) = 0 ∀p ∈ B
φp(yp = 1) = ∞ ∀p ∈ B
(1−yp)d

B

p
+ypd

F

p

dB
p
+dF

p

otherwise

. (A1)

For the binary term, we use the exponential term

ψp,q(yp, yq) = |yp − yq| · exp
−

(cp−cq)2

σ , (A2)

where σ is a balancing term which we set to 10. Practically, we find this exponential term outperforms the one proposed in the

LazySnapping [22] formulation.

GrabCut [39]. We use the GrabCut implementation provided in the OpenCV library.1 We provide the projected foreground

and background scribbles as input, and use the mask segmentation mode (GC_INIT_WITH_MASK in the OpenCV library)

with 10 iterations.

DeepLabV3 [7]. We use the COCO pre-trained model with ResNet-50 backbone provided in the torchvision library.2

We fine-tune the network for binary classification using a binary-cross-entropy loss, where the positive and negative examples

are the projected foreground and background voxels respectively. We train the network for 20 epochs using Adam optimizer

with a learning rate of 0.0001.

Deep Extreme Cut (DEXTR) [31]. We use the released model pre-trained on PASCAL VOC and SBD data. We compute

the 4 extreme points from the projected foreground scribbles which are used as the network input.

FCA-Net [29]. We randomly sample 100 points from the projected foreground and background scribbles respectively, and

process them with a pre-trained FCA-Net (Res2Net [12] backbone). We run the baseline model 5 times and report the mean

value.

1https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html
2https://pytorch.org/vision/stable/models.html
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C. Additional visualization of the scribbles

For completeness, we illustrate the reference image and the input scribbles, together with the test-view image and the lifted

scribbles in Fig. A2.

D. NeRF results

Our method also generalize to NeRF models. We use PlenOctrees [52] to extract the discrete volumetric representation from

learned NeRF networks. For our purpose, we use the NeRF-real360 dataset which contains 2 real-world 360 scenes. Following

PlenOctrees [52], we use the modified NeRF models where Spherical Harmonics are used to represent color rather than RGB

values. We then convert the learned NeRF network into a 5123 volume following the suggested PlenOctrees settings [52]. We

present the qualitative results in Fig. A3 where our method correctly localizes and segments the foreground object in the scene.

E. Societal impact

In this work, we study novel-view object selection in neural volumetric representations. Our approach has the potential

to positively impact applications in computer graphics and augmented reality, among them applying artistic effects on

selected objects. However, our approach could also be used as a component for compositing objects into 3D scenes to create

misinformation.

This research does not use human-derived data. The LLFF [32] dataset is released under the GNU General Public License

v3.0. The Shiny [48] and NeRF-real 360 [33] datasets are released under MIT License. These datasets are mainly real-world

scenes and do not contain offensive content or involve high-risk groups.
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