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Abstract

Designing equivariance as an inductive bias
into deep-nets has been a prominent approach
to build effective models, e.g., a convolutional
neural network incorporates translation equiv-
ariance. However, incorporating these induc-
tive biases requires knowledge about the equiv-
ariance properties of the data, which may
not be available, e.g., when encountering a
new domain. To address this, we study how
to discover interpretable equivariances from
data. Specifically, we formulate this discovery
process as an optimization problem over a
model’s parameter-sharing schemes. We pro-
pose to use the partition distance to empiri-
cally quantify the accuracy of the recovered
equivariance. Also, we theoretically analyze
the method for Gaussian data and provide
a bound on the mean squared gap between
the studied discovery scheme and the oracle
scheme. Empirically, we show that the ap-
proach recovers known equivariances, such as
permutations and shifts, on sum of numbers
and spatially-invariant data.

1 INTRODUCTION

Encoding equivariance and invariance into deep-nets
has been an effective method to improve the data-
efficiency of machine learning models. For example, con-
volutional neural nets (CNNs) or recurrent neural nets
(RNNs) encode shift-equivariant properties either in the
spatial or temporal domain (LeCun et al., 1999; Hochre-
iter & Schmidhuber, 1997). More recently, equivariance
has also been studied in other domains, e.g., over sets,
graphs, or other geometric structures (Zaheer et al.,
2017; Bronstein et al., 2017).
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While encoding equivariance has been remarkably suc-
cessful, encoding requires a-priori knowledge about the
desirable equivariance properties to be built into a
model. Such knowledge of equivariance requires do-
main expertise which may not be available. To tackle
this concern, we study discovery of interpretable equiv-
ariance from data rather than manually imposing it.

For this, we consider discovery of equivariance over a
family of discrete group actions. This family of equiv-
ariances can be built into deep-nets via parameter-
sharing (Ravanbakhsh et al., 2017a). In other words,
if we can learn how to share parameters, then we can
discover equivariance. To achieve this goal, we identify
a parametric representation of the parameter-sharing
scheme. This permits to cast the discovery process as
an optimization problem. Intuitively, we aim to find
the parameter-sharing scheme that results in the best
generalization capability. To estimate this generaliza-
tion capability we use empirical data in a validation
set. This results in a bi-level optimization: optimize
for the best parameter-sharing scheme on a validation
set, given that the model parameters which use this
sharing are ‘optimal’ on the training set.

Contributions:

1. We theoretically analyze the benefits of learning a
parameter-sharing scheme and show how to choose
the validation and training set that are required in
the proposed algorithm. For a family of multivari-
ate Gaussian distributions with a shared mean, we
show that the proposed method provably yields
better generalization in terms of a mean squared
error than standard maximum likelihood training.

2. We also study how to evaluate the learned sharing
scheme. Specifically, we advocate for the use of
partition distance as a quantitative metric. This
differs from prior practice which relies on visual
inspection. Finally, we discuss practical considera-
tions for using the proposed approach and validate
its effectiveness through a range of experiments.
Empirically, we demonstrate that the approach
can recover known permutation invariance and
spatial equivariance from data.
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2 RELATED WORK

We briefly highlight works on designing equivariance
and invariance in machine learning. Then we review
recent advances towards discovering equivariance from
data. Lastly, we discuss how hyperparameter optimiza-
tion is related to our work.

Invariance and Equivariance. Designing invariance
and equivariance representations has been widely uti-
lized in building effective models. Well-known examples
are hand-crafted features in computer vision, such as
SIFT (Lowe et al., 1999) which is scale invariant, or
shift-invariant systems (Vetterli et al., 2014) in signal
processing. Naturally, learning-based representations
have also adopted these properties. For example, the
widely used CNN (LeCun et al., 1999) or RNN (Hochre-
iter & Schmidhuber, 1997) are shift-invariant in space
or time. The success of CNNs has also been general-
ized to other sets of equivariances. For example, Cohen
& Welling (2016) propose a group-equivariant CNN,
which is equivariant to rotations, reflections and trans-
lations, or TI-pooling (Laptev et al., 2016), which pools
over the desirable transformations to achieve invariance.
Other architectures, e.g., equivariant transformers (Tai
et al., 2019; Fuchs et al., 2020; Romero & Cordonnier,
2021) have also been studied.

Equivariance has also been extended to other domains,
such as sets, which are permutation invariant (Ravan-
bakhsh et al., 2017b; Zaheer et al., 2017; Qi et al.,
2017; Maron et al., 2020), graphs (Shuman et al., 2013;
Defferrard et al., 2016; Kipf & Welling, 2017; Maron
et al., 2019), meshes (de Haan et al., 2021), spherical
images (Cohen et al., 2018; Kondor et al., 2018), key-
points (Yeh et al., 2019a), trajectories (Yeh et al., 2019b;
Liu* et al., 2019, 2021) and tabular data (Hartford
et al., 2018). These works demonstrate that designing
equivariance into models/representations is beneficial.
However, these approaches require a practitioner to
select the suitable equivariance properties. Instead, in
this work, we are interested in discovering this equivari-
ance property explicitly from data rather than manually
imposing it.

Learning Equivariance. Recently, Benton et al.
(2020) proposed to learn invariance for deep-nets from
data. At a high-level, their approach achieves invari-
ance by applying augmentations at the input and aver-
aging the output. To learn the invariance, they param-
eterize the augmentation distribution and jointly learn
these parameters with the deep-net’s model parameters.
Note that the model is only invariant to the sampled
augmentations which may require many samples. E.g.,
for the permutation group, their approach requires
to sample all permutations to achieve invariance. In
contrast, we achieve equivariance through parameter-

sharing, and cast equivariance discovery as learning
the parameter-sharing scheme.

In recent work, Zhou et al. (2021) consider learning
equivariance in a meta-learning framework. Our work
differs in the following ways: (a) We use an assignment
matrix consisting of elements between zero and one
to parameterize the sharing of parameters while Zhou
et al. (2021) do not enforce any constraints. (b) This
constraint permits to quantitatively evaluated the dis-
covered schemes. We propose to assess the discovered
sharing scheme via the partition distance (PD) (Gus-
field, 2002), while prior works rely on visual inspection.
(¢) We demonstrate that the proposed method has ad-
vantages over standard maximum likelihood training
without parameter-sharing on multivariate Gaussian
distributions with a shared mean. We also show a
trade-off between the size of training and validation
sets. Next, we review hyperparameter optimization, as
the sharing scheme can be viewed as a hyperparameter.

Hyperparameter Optimization. Typically formu-
lated as a bi-level optimization problem, hyperparame-
ter optimization consists of an upper/lower-level opti-
mization task which, respectively, minimizes the loss
on a validation/training set. Numerous hypergradi-
ent based methods have been proposed to solve this
problem (Larsen et al., 1996; Bengio, 2000; Maclaurin
et al., 2015; Luketina et al., 2016; Shaban et al., 2018;
Lorraine et al., 2020; Ren* et al., 2020). Lorraine et al.
(2020) provide a comprehensive review.

As bi-level optimization requires a validation set, here
we also discuss how to select this set. Prior works have
studied how to split a validation set (Kearns, 1996;
Guyon et al., 1997; Amari et al., 1997) and what test
set size is necessary to yield a good generalization error
estimate (Guyon et al., 1998). More recently Afendras
& Markatou (2019) study the optimal size of the valida-
tion set in the context of cross-validation. In this work,
we optimize and study a specific hyperparameter, i.e.,
the parameter-sharing scheme, to achieve equivariance
discovery.

3 PRELIMINARIES

Abstractly, equivariance and invariance capture prop-
erties of a function’s input-output relationship. Con-
sider the task of image segmentation. If an object is
shifted within the image, one would expect the pre-
dicted segmentation to shift accordingly, i.e., the model
is shift-equivariant. Similarly, for the task of image
classification, the class prediction should remain the
same for a shifted object. In this case, the classifier is
shift-invariant. Incorporating these properties into a
multilayer perceptron (MLP) via parameter-sharing re-
sults in a convolutional neural net (CNN). To generalize
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this success, Ravanbakhsh et al. (2017a) theoretically
study types of equivariances that can be encoded via
parameter-sharing, and how to construct such layers.
We will briefly review their results in the remainder of
this section.

We start with the definitions of equivariance and in-
variance over the family of discrete group actions. A
function f : RN — RM ig Gn, m-equivariant if and

only if (iff)
f(PTrNX) = Pﬂ'Mf(x) V(71—]\777-(-M) S gN,Ma X € RNu (1)

where P, denotes a permutation matrix and Gy
denotes the set of group actions each characterized by
two permutations wy and my; on input and output
dimensions. Informally, equivariance describes how the
output changes when the input is transformed in a “pre-
defined way.” Similarly, a function is Gy-invariant iff

f(Pryx) = f(x) Yoy € Gy, x € RV, (2)

Invariance is a special case of equivariance where Pr,, =
Ips is the identity matrix, ¢.e., the output remains the
same. Next, we discuss how to construct deep-nets
that satisfy equivariance.

Equivariance Through Parameter-Sharing. Ra-
vanbakhsh et al. (2017a) theoretically study how to
design deep-nets that are equivariant to any discrete
group action, which are characterized above via per-
mutation matrices. They prove that symmetries in
model parameters, i.e., the sharing of the parameters,
leads to equivariance. Importantly, a fully connected
layer fw can be designed to be Gy, y-equivariant for
any set of group actions. For example, a fully con-
nected layer, fy(x) £ Wx, where W € RMXN g
Gn,m-equivariant if the weight W satisfies the follow-
ing sharing scheme:

Win = Waym)anm) V(TN 7a) € Gunr- (3)

They also propose a method to achieve such a sharing.
In summary, by tying parameters, one can design fully
connected layers that are equivariant to various discrete
group actions. Note that Ravanbakhsh et al. (2017a)
design a model given an equivariance property, i.e., a
practitioner needs to decide which equivariance to build
into a model. In contrast, we study how to discover
equivariance from data.

4 EQUIVARIANCE DISCOVERY
BY LEARNED
PARAMETER-SHARING

Here, we are interested in discovering equivariance from
data, i.e., learning explicit parameter-sharing schemes
rather than manually imposing them.

Consider a supervised learning setup, given a dataset
D ={(x,y)}, the goal is to learn the parameters @ of
a model fg(x), by minimizing a desired loss function
L, ie.,

min £(6, D) = min S Ufe(x)y).  (4)

(x,y)€ED

To discover equivariance, we introduce a parametric
representation of the sharing scheme and develop an
algorithm to optimize over it.

Parameterizing Parameter-Sharing. We use an
assignment matrix A to select which of the parameters
are shared. Formally, let

0 = A, (5)

where 0,9 € REK A € {0,1}5*K and A is row
stochastic, i.e., Vi Zj A;; = 1. Hence, entries in 6 may
originate from the same entries in 1. Using A, we can
represent all possible sharing configurations, which in
turn permits to incorporate different equivariances. For
example, A encoding a Toeplitz matrix results in the
convolution operation, i.e., shift equivariance. With
this parametrization at hand, we now describe how to
learn both A and 1 from data.

Learning Parameter-Sharing. Note, jointly opti-
mizing v and A on D doesn’t yield the desired result:
the trivial solution A = I selects all the parameters,
leading to the lowest loss on the training set. This is
not necessarily desirable.

Recall, the motivation for an equivariant model is to
improve generalization. Therefore, we directly estimate
generalization on data. For this we split the dataset D
into two sets, the training set 7 and the validation set
V. We then aim to solve the following bi-level program:

upper-level task lower-level task

min £(A$7(A),V) st. ¢ (A) = arg min £(A%, T),
Af_lg P

Ac{0, 1K N A =1 Vi. (6)
J

Intuitively, we aim to find the “best sharing scheme” on
validation set V (upper-level task), given model param-
eters ¢ trained on T (lower-level task). Once having
discovered the optimal parameter-sharing scheme A1,
we fix it and train 1) on the entire dataset D to obtain
the best model.

This naturally leads to the following questions: (a)
Is learning A beneficial?; and (b) Can the optimiza-
tion in Eq. (6) be solved efficiently? We analyze (a)
in Sec. 4.1, followed by discussing considerations for
(b) in Sec. 4.2.
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4.1 Analysis on Gaussian Data

We analyze the approach given in Eq. (6) on K-
dimensional Gaussian vectors that are independent
and identically distributed (i.i.d.), i.e.,

y ~ N(Agitgs, 0°I). (7

Here, Az denotes the unknown ground-truth sharing
scheme. The task is to estimate the ground-truth mean,
O £ Agipg: and the sharing scheme Ag. With our
supervised learning setup, D = {y}, fo = 0 and ¢ = /(5.

Benefits of Learning A. Let 6(D) be the maximum
likelihood estimate on dataset D. To analyze, we con-
sider the mean squared error (MSE) of an estimator,

MSE(6(D)) 2 E Hé(D) — g :

(8)
= HBias(OA(D))H2 + Trace(V(0(D))),

where Bias(6) = E(6) — 05, and V(6) denotes the
covariance matrix of 6. Note: the expectation is with
respect to the distribution that generated the finite
dataset with |D| number of samples, i.e., (D) is a
random variable and O is fixed (Wasserman, 2013).

We further let Ay,; denote the sharing scheme dis-
covered using Eq. (6) and 6y, (D) is the maximum
likelihood estimate on D following the sharing scheme
Ayal, dee., éval = Aya1®ya1. With the notation defined,
we study the form of the mean squared error given an
estimator using the parameter-sharing scheme Aya.;.
Specifically, we identify the role of the rank rk(Aya1)
in the MSE.

Claim 1. For Gaussian data (Eq. (7)) and a given
sharing scheme Aya1 we have

Tk( Ayay )0

MSE(éval <D)) = HAvalAJalegt - thHQ + D ,

where Aya refers to the column normalized Ay and

| rk(-) denotes the rank of a matriz.

J

Proof. Let S; denote the set of indices that share
parameters for the *" dimension of 0ya1 as char-
acterized in Ayar. Formally, S; 2 {k ¢
{1,...,K}| Vj Avali,j] = 1 A Avar[k,j] = 1}. As
the dimensions and samples are independent, the maxi-
mum likelihood estimator is the average over the shared
dimensions and samples, i.e.,

E(Byi]) = F1| S 64K,
v keS;

(9)

Similarly, the variance is

Substituting Eq. (9) and Eq. (10) into the MSE defini-
tion in Eq. (8) concludes the proof. Additional details
are deferred to Appendix Sec. A. O

Consider the case without any parameter-sharing, i.e.,
the parameters are independent (A, = I). As the
estimator is unbiased, we obtain

2
MSE(8y0a(D)) = 22 (11)
D]
Observe that when K > rk(Aya1) > rk(Ag:) then there
exists an unbiased Ay (as rank is larger) such that
the MSE (in Claim 1) is lower than the MSE without
parameter sharing (i.e., when using A;nq). Specifically,
there exists an unbiased estimator, Bias(8) = 0, with
a lower variance term compare to the estimator éind
without any parameter sharing. This means that it is
possible to find an estimator that generalizes better in

terms of MSE.

Next, we show that the procedure in Eq. (6) will select
such an A,.1. Recall, the algorithm selects A, based
on the loss over the empirically sampled validation set
V, i.e.,

2
T B | P
9—yH > B_WZY - (12)
yevV

L£6,V)=>"
yeV

Eq. (12) (left-hand side) is an upper bound on the
squared error between the parameter estimates. Left-
and right-hand side have the same global minimum.
Therefore, we directly analyze @, an MSE estimate
based on the validation set V, defined as follows:

NSEB(0) = E 0 — fuma(v) (13)

Note that the expectation is w.r.t. the estimator 6.

Recall, the procedure in Eq. (6) selects the sharing
scheme A,,1; which minimizes the MSE. By law of large

numbers, when |V| — oo then 1\@(9) — MSE(6).
This means that the program in Eq. (6) characterizes
the Aya1 which minimizes the MSE if V is sufficiently

large.

In practice, we have a limited amount of data. There-
fore we further study the finite sample behavior and
how to decide the sizes of training and validation sets.

Finite Sample Analysis. We study the MSE gap

MSE(8ya1(D)) — MSE(0g(D)) (14)
between learned and ground-truth sharing scheme.
This gap is useful as it measures the quality of the
estimator of the proposed procedure. Specifically, we
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Figure 1: Illustration of the upper bound on the MSE
gap in Eq. (15).

construct an upper bound to identify the role of dataset
sizes |T| and |V|. Recall, that we split a given dataset
D into a training set 7 and a validation set V, which
affects the characterized Aa1.

Claim 2. Given data drawn i.i.d. following Eq. (7),

with probability 1 — o and o < exp %, the MSE gap
in Eq. (14) is upper bounded by

40 In(o)

=)D

con. rel. MSE gap

1—7r

o*( St (rh(Ag) — 1) -

r|D| )’ (15)

sharing rel. MSE gap

where r = % denotes the ratio between the size of
| training and overall dataset.

J

Proof sketch. The high-level
pose Eq. (14) into three parts:

idea is to decom-

MSE(0ya1(D)) —
+  MSE(8ya1(T)) — MSE

1 «(7)
4+ MSE(6,(T)) — MSE(84(D)). (18)

We prove the claim by upper bounding each of
the terms. The complete proof is deferred to Ap-
pendix Sec. B. |

We now highlight this results’ significance. Observe
that the upper bound in Eq. (15) consists of two terms,
a sharing related MSE gap and a confidence related
MSE gap. The two terms form a trade-off w.r.t. the op-
timal percentage of the training examples. We provide
an illustration in Fig. 1 demonstrating the trade-off be-
tween the sharing term and the confidence term. Note,
the optimal validation set size may be much larger than
the commonly used 80-20 train/val split.

Intuitively, when there is less parameter sharing, i.e.,
rk(Ag¢) is large, then more training data should be
used to get a good estimate of the model parameters.

Algorithm 1 Equivariance discovery via learned
parameter-sharing
1: Initialize model parameters v, A

while not converged do

Sample batch V' C V.

# Solve lower-level task.

P*(A) + argminy L(AY,T)

A A—n-Va(L(AW V) + H(A) + | A].)
end while
Aval — A
# Train with all the data with fixed Aya;.
YP*(Ayar) < arg ming L(Ava19, D)
: Return A1, ¥*(Ayval)

— =
= O

Similarly, if one aims to have more confidence in Ay,
i.e., —In(a) is large, then more validation data should
be used. Also, this bound suggests that it can be
desirable to use a validation set that is larger than the
training set, which is not a common practice to date.

Further, we can use the upper bound to identify data
distributions where the proposed algorithm is prov-
ably better in generalization than standard maximum
likelihood training without parameter sharing.

For example, when rk(Ag) = 1,

< —401n o
- (1-7)D|
—40lna L o2
5 .
(1—7)[D| D
Ko?

< = = ).
S TP MSE(8ina) (19)

MSE (8,21 (D)) 0? + MSE(0g. (D))

given that K is sufficiently large. This shows that the
sharing approach achieves a lower MSE than standard
maximum likelihood training where all the parameters
are independent, i.e., éind.

We will next discuss how to address the bi-level opti-
mization in Eq. (6).

4.2 Practical Considerations

For really small-scale problems a brute-force search over
all A solves the proposed program in Eq. (6). However,
brute-force search quickly becomes infeasible when the
dimensions grow. Instead of brute-force search, we
relax the integrality constraint to A € [0, 1]%*%. This
permits the use of continuous optimization, e.g., pro-
jected gradient descent on A or use of a softmax to
avoid the constraints altogether.

However, this relaxation may yield a result that doesn’t
satisfy the original constraints. To alleviate this sce-
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nario, we found use of two penalty functions to help:

H(A) = —Zlog(A[i’j]) - A, j] (20)
and ||A]|, = trace( ATA) . (21)

The first entropy term encourages elements of A to
be closer to 0 or 1. The second nuclear norm encour-
ages A to be low-rank. Empirically we find both to
improve robustness to random initializations of the
model parameters. We illustrate the overall algorithm
in Alg. 1, where we iteratively solve the upper-level op-
timization via mini-batch gradient descent. In practice,
we monitor the validation loss to determine conver-
gence. Additionally, more advanced gradient based
optimization algorithms, e.g., Adam (Kingma & Ba,
2015), can be utilized. A natural question is how to
quantitatively evaluate the recovered sharing scheme,
which we discuss next.

4.3 Quantitative Evaluation of Equivariance

Prior works rely on visual inspection of the parame-
ter sharing to assess the quality, or use the final task
performance as a surrogate; both of which are not a di-
rect comparison with the ground-truth sharing scheme.
The main challenge is that an element-wise distance be-
tween Ay, and Ay is not meaningful, as A is unique
up-to permutations.

Hence, we propose to use the Partition Distance
(PD) (Gusfield, 2002) as an evaluation metric. Specifi-
cally, PD between two sharing schemes measures the
number of assignments that must be changed for one
sharing scheme to be identical to the other. We will
show that PD is related to the symmetric difference of
the equivariance groups G encoded by sharing scheme
A. We first review the definitions of cluster, partition,
and partition distance (Gusfield, 2002).

r

Definition 1 (Cluster). Given a set S, a cluster is a
non-empty subset of S, i.e., C C S where C # ().

Definition 2 (Partition). A partition of S is a set of
clusters, Ps = {C;}, where C; NC, = 0 Vj # k and
ULZ‘?‘ C; = &. In other words, the elements in S are
“partitioned” into mutually exclusive sets.

Definition 3 (Partition Distance). Given two
partitions of a set, the partition distance is
the number of elements that must be moved between
clusters such that the two partitions are identical.

.

~

Next, consider the Gaussian with shared means prob-
lem in Sec. 4.1 where we model the mean as 8 = Aap.
Here, 0,9 € RE A € {0,1}X*K and A is row
stochastic, i.e., Vi Zj A;; = 1. A parameter-sharing

scheme A can be viewed as a partition over the set of
model parameters. As A is integral row stochastic, it
forms a partition of mutually exclusive clusters.

Given two parameter-sharing schemes A() and A®)
the parition distance PD(AM, A?)) can be efficiently
computed, in polynomial time, as proposed by Gusfield
(2002). We will next explain how this distance relates
to equivariance.

For a sharing scheme A, we first construct sets to
form a partition Pg) consisting of clusters C,(cl) indicat-
ing indices of shared parameters, i.e.,

PO = (€| vkel,...,K]}and  (22)
¢y’ (1A, k] = 1}. (23)

Due to the shared parameters, the indices within a
cluster can be permuted. Le., given A the model is
gﬁ? x-equivariant, where

(24)

We use ch) to denote the set of all possible permuta-
k

tion matrices over the indices in C,(f), while holding the
other indices fixed.

For an effective evaluation metric, it should capture
the similarity between two equivariances, G() and G(2),
each encoded by respective sharing schemes, A and
A®) | We consider the symmetric difference of two sets
to quantify the similarity between G-equivariances, i.e.,

GWAGD = (g1 —g@)u(G® —gM).  (25)

This captures the non-overlapping elements within
groups. We now relate this quantity to the PD.

Claim 3. Considering the Gaussian sharing setup,
kPD(AD, A®) > |6 AGY | > PD(AM, AD),

where k = K! — 1 is a constant and K s the number
of dimensions.

~

Proof. Deferred to Sec. C in the Appendix. O
From Claim 3’s upperbound,
PD(A;,A2) =0 — [GUNAGY|=0.  (26)

Hence, when a partition distance is zero, the two shar-
ing schemes achieve the same equivariance. Next, as
the symmetric difference is lower bounded by the par-
tition distance, when the PD is non-zero, then the two
equivariances are not identical. Base on these prop-
erties and its efficiency to compute, we find partition
distance to be a suitable evaluation metric.
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5 EXPERIMENTS

We first conduct experiments on Gaussian data with
random sharing as analyzed in Sec. 4.1. Next, we study
recovery of known equivariances including permutation
invariance and shift equivariance. Additional experi-
mental details and results are in the Appendix.

5.1 Gaussian Data with Shared Means

Task, Data and Metrics. We study the same task
of mean estimation that we analyzed in Sec. 4.1. We
generate datasets of Gaussian vectors, following Eq. (7).
We consider two evaluation metrics: 1) MSE which
quantifies the performance of the mean estimation; 2)
The Partition Distance (PD), discussed in Sec. 4.3,
which quantifies the accuracy of the recovered sharing-
scheme compared to Agy.

Baselines. We consider No sharing and Oracle. We
fix A to be the identity matrix for No sharing. For
Oracle, we directly use Ag:. Both of these methods
are trained on the entire dataset D. We also compare
to Ours* which uses brute-force to exactly solve the
bi-level optimization in Eq. (6).

Results. We conduct empirical studies over the di-
mension K, the ratio r between sizes of training and
overall dataset, the amount of sharing rk(Ag), and
lastly scalability of our approach when K is large. We
report the mean and shade the 95% confidence interval
computed from 200 runs for all experiments.

First, we empirically study the method’s performance
over the number of dimensions with data generated
for rk(Ag:) = 1. In Fig. 2, we report both the MSE
and Partition distance for each of the baselines. We
observe that the approach consistently outperforms

MSE

1.09 ——- No sharing el 1001 ___ No sharing ol
-
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e o]
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Figure 5: MSE/PD vs. # of dimensions.

No sharing across different number of dimensions in
both evaluation metrics. When comparing Qurs* to
Ours, solving the optimization via brute-force achieves
the best result, while the relaxed optimization, Ours,
remains competitive.

Second, we evaluate the effect of adjusting the train/val
split in Fig. 3. In this experiment rk(Ag) = 1. We
observe that the performance decreases as the percent-
age of training examples increases. This is consistent
with the upper bound in Eq. (15) and the intuition
that more validation data should be used when there
is more sharing.

Third, we study the effect of rk(Ag:). Results are
shown in Fig. 4. In this case, the data consists of
5 dimensions with varying rk(Ag) from 1 to 5. We
observe that Ours* and Ours outperform No sharing
in both metrics across the ranks.

Lastly, we demonstrate that the approach scales to
higher dimensions. In Fig. 5, we increase the dimen-
sions from 10 to 100 with rk(Ag:) = 1. In these cases,
brute-force optimization, i.e., Ours*, is no longer pos-
sible. Still, the relaxed optimization Ours consistently
outperforms the No sharing baseline across dimen-
sions.

Ablation Study on Proposed Penalty Functions.
We perform an ablation study on the two regulariza-
tion/penalty terms using Gaussian data with, the same
setup reported in Fig. 2. The results are summarized
in Tab. 1: both of the introduced penalty terms improve
the performance in both MSE and PD.

Validating Theory on Gaussian Data. Here, we
generate data with rk(Ag) = 4 to demonstrate the
trade-off between the size of training and validation
sets. From Fig. 6, we can empirically observe the trade-
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Table 1: Ablation study on the proposed penalty terms
on Gaussian data.
# dim Entropy

Rank MSE PD

0.019£.003 .915£0.03
0.016 £.003 .385+£0.07
0.014 £ .003 .145=£0.05
0.035+£.003 2.05+£.069
0.033 £.003 1.68+£.070
0.025 £ .003 0.49 £.095
0.050 £.004 3.35=£.075
0.048 £.004 3.36 £.094
0.028 £.004 0.59 £.132

[\

OO RN N
SN XN %NS\ X%
N X %[N X X[\ % X%

off characterized by the theoretical upper-bound. We
also observe the same trade-off in terms of partition
distance (PD), which further suggests that PD is a
suitable evaluation metric.

5.2 Recovering Permutation Invariance

Tasks, Data and Metrics. Following Zaheer et al.
(2017), the task is to regress to the sum of a sequence
of numbers provided in text format. E.g., given the
input (“one,” “five”) the model should output 6. We
also consider a variant of this task, where the “even
position” (zero indexing) numbers are negated, i.e.,
an input of (“one,” “five”) results in 4. Note that
this latter task is only permutation invariant within
the even/odd positions. The numbers are uniformly
sampled from the interval [1,10] and the labels contain
additive noise uniformly sampled from [—0.5,0.5].

For evaluation, we report the average squared differ-
ence ({2-loss) between prediction and ground-truth for
each of the models. As in Sec. 5.1, we also report
the partition distance to evaluate the quality of the
recovered Aqa.

Baselines. We consider baselines of No sharing,
Oracle, and Augerino (Benton et al., 2020). For No
sharing, the model parameters are independent. For
Oracle, in the standard sum of numbers, the model
parameters are shared across all number positions. In
the variant which negates some numbers, the model
parameters are shared only across even/odd positions
respectively. For Augerino, we parameterize the per-
mutation transformations using the Gumbel-Sinkhorn
method (Mena et al., 2018) to enable the training of
augmentation parameters. We sample three transfor-
mations during both train and test.

Results. We report quantitative results across se-
quence length for standard sum of numbers and negated
sum of numbers in Fig. 7. All results are averaged over
5 runs using different random seeds to generate the
data. We report the mean and 95% confidence interval.
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Figure 6: MSE/PD vs. % of training data on data with
I‘k(Agt) = 4.

In the standard sum of numbers, Ours outperforms
the No sharing baseline and Augerino, and performs
on par with Oracle in terms of £s-loss. Next, looking
at the partition distance, Ours successfully recovers
permutation invariance for sequence length of two and
four. While the partition distance increases for longer
sequences, the model did learn partial permutation
invariance among the number positions.

Next, for the negated sum of number variant, Augerino
did not learn a competitive model. The main challenge:
the probability of sampling a permutation matrix that
leads to the correct invariance is low. The model seems
sensitive to Gumbel Sinkhorn’s temperature term. In
contrast, Ours outperforms No sharing and is compet-
itive to Oracle.

5.3 Recovering Shift Equivariance

Task, Data and Metrics. The task is to regress
to the output of the cross-correlation operation with
additive Gaussian noise, i.e.,

x[k + jlglil, (27)

where € ~ N'(0,0.1) and g € R® denotes a 1D kernel.
We sample the input x € RX from a Gaussian distri-
bution; noise is not added for the test set. Note that
cross-correlation is equivariant to shifts and is a linear
system, y = Gx, where G is a Toeplitz matrix.

We investigate whether the studied approach recovers
this sharing scheme, i.e., Aya1% = Flatten(G), where
G is a Toeplitz matrix. We report the ¢5-loss between
the prediction and the label. We also report partition
distance following Sec. 5.1.

Baselines. We consider baselines: No sharing,
Oracle, and Augerino (Benton et al., 2020). For
Augerino, we use their augmentation over the set of
shift transformations with five augmented samples.

Results. In Fig. 8, we report the f5-loss and parti-
tion distance for each of the models. We observe Ours
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Figure 8: Results for cross-correlation.

to outperform baselines No sharing and Augerino in
terms of ¢5-loss. Due to padding at the boundaries,
Augerino learns not to shift the data, hence the per-
formance is similar to No sharing. Next, we observe
that Ours can fully recover the sharing scheme for shift
equivariance when the dimension of A is 6 x 6 and
15 x 15, achieving a partition distance of 0. For a larger
A, e.g., 35 x 35 and 80 x 80, recovering the sharing
scheme is much more challenging. In this case, Ours
can partially recover the sharing scheme.

6 CONCLUSION

We cast the process of equivariance discovery as an
optimization over the parameter-sharing schemes. We
analyze the proposed method using Gaussian data and
provide a bound on the MSE gap. We illustrate that
the approach can lead to better generalization than
standard maximum likelihood training. We discuss
practical considerations useful for solving the proposed
optimization. We also propose to use the partition
distance (PD) to quantitatively evaluate the recovered
sharing schemes and show how PD is related to the
symmetric difference between two equivariant groups.
Through experiments, we demonstrate that the ap-
proach can recover known equivariance properties and
PD is a useful evaluation metric.

Limitations. Our theoretical analysis assumes Gaus-
sian distributions which may not be met in practice.
Also, the approach considers discrete group actions.
However, we think the formulation and study pave the
way to future research in equivariance discovery.
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Supplementary Material:
Equivariance Discovery by Learned Parameter-Sharing

This appendix is organized as follows:

e In Sec. A, we provide the full proof of Claim 1.

e In Sec. B, we provide the full proof of Claim 2.

e In Sec. C, we provide the full proof of Claim 3.

e In Sec. D, we provide an ablation study and additional experimental results.

e In Sec. E, we provide additional background and proof details.

e In Sec. F, we discuss experimental and implementation details for our empirical results.

e In Sec. G, we provide link to our code.

A Proof of Claim 1

Claim 1. For Gaussian data (Eq. (7)) and a given sharing scheme Aya1 we have
’I"k‘(Aval)O'2

MSH0,0(D) = [ A Al — 0+ A7

where Ayay refers to the column normalized Ayar and rk(-) denotes the rank of a matriz.

Proof. Let S; denote the set of indices that share parameters for the i*" dimension of éval as characterized in
Ayar. Formally, S; £ {k € {1,...,K}| Vj Avai[i,j] = 1 A Ayar[k, j] = 1}. As the dimensions and samples are
independent, the maximum likelihood estimator is the average over the shared dimensions and samples, i.e.,

. 1
IE:(eval [l]) = m Z egt [k]a (9)
" kes;
Similarly, the variance is . o2
V(Gval[z]) = |SHD| ' (10>

Now substitute these into the MSE definition

MSE(0(D)) 2 E Hé(p) _o, = HBias(é(D))H2 + Trace(V(O(D))).

For the bias term, we can verify that AAT, 04.[k] = ‘S—ll > kes, Ogilk]. For the variance term, each independent

rk(Aya)o? ) 0

. 2 . .
parameter has a variance of W, in total we have rk(Aya1) independent parameters, hence, D]
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B Proof of Claim 2

L

in Eq. (14) is upper bounded by

(Claim 2. Given data drawn i.i.d. following Eq. (7), with probability 1 — « and o < exp %, the MSE gap\

1—r 401n(«)
Ag) —1) - ——= 1
7 (S (M) =D = T ) (15)
sharing rel. MSE gap con. rel. MSE gap
where r = ?I denotes the ratio between the size of training and overall dataset.
Proof. We first decompose Eq. (14) into three parts:
MSE(6ya1 (D)) — MSE(8ya1 (7)), (28)
+  MSE(6va(T)) — MSE(6g:(T)), (29)
+  MSE(6(T)) — MSE(6g(D)). (30)
We then prove the claim by upper bounding Eq. (28), Eq. (29), and Eq. (30).
Bounding Eq. (28). Substituting results from Claim 1,
MSE(0v21 (D)) — MSE(6ya1 (7)) (31)
tk(Ayar)o?  1k(Aya)o?
= - (32)
D T
1—7r 1—r
_ A 2 < _ 2
T’|D| ( val)a = 7’|D‘ o (33)
Bounding Eq. (29). We further decompose Eq. (29) into three parts via
MSE (041 (7)) — MSE( gt(T))
= MSE(6ya1 (7)) — MSE(6ya1(7)) (34)
+MSE(Byea ( )) MSE( (7)) (35)
+MSE(6g:(T)) — MSE(0. (7)), (36)
and bound each term.
For Eq. (34): By reverse triangle inequality
MSE (8,1 (7)) ~ MSE(6a1 (7)) (37)
. 2 . . 2
= [[BOeas(7) = e [EOuaa(T) — BinaV) (38)
o 2 R 2
< Ot b = |0 — OimaV)| " (39)
Let Z = Og; — 010a(V), then Z ~ N(0 %I ). This means
z| 72
p=l2l i % e (40)
v VI
From the tail bound of the x? distribution (Laurent & Massart, 2000) and t > 1,
P(U > 2tK) < exp (—tK> . (41)

10
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Therefore, with probability 1 — o where a < exp(—%),

MSE(0ya1 (T)) — MSE(0ya1 (T))

< —20111(04)"—2 = —201n(«) (1_"T§|D .

For Eq. (35): As Aya is determined on the validation set, it has the smallest KTS\E, hence

MSE(0ya1(T)) — MSE(8,(T)) < 0.

For Eq. (36): Similar to Eq. (34) we obtain

MSE (64 (T)) — MSE(0:(T))
= (£ T) ~ Buaa )| = [ — a0

Bounding Eq. (30). Substituting results from Claim 1,

MSE(6g. (T)) — MSE(6g. (D))
rk(Ag:)o? o rk(Ag:)o?

o 7] D]
= %rk(Agt)U

Summing up the individual bounds concludes the proof.

C Proof of Claim 3

—_~ o~
o
NN
=

Claim 3. Considering the Gaussian sharing setup,
kPD(AM, AD) > G0 AGE, | > PD(AD, AD),

where k = K! — 1 is a constant and K is the number of dimensions.

Proof. Let P};) and P}?) denote the corresponding partitions of A and A®). Let j be an element that must

be moved in Pg) to match ’Pg). Let C](-i) and C](i) refer to the cluster that contains the element j.

Lower bound. As j must be moved, this means that CJ(-i) are Cﬁ) are not identical, therefore, [I[,a) A I | > 1.
J* J*

As 11 Cﬁ’ C gg(l,)z{ and II cj('i’ C ggy)K, for each j there exist a difference of at least 1. Therefore,

9 AGR | = PD(AD, A®)).

Upper bound. Similarly, we can upper bound |HC(1) A HC(2)| with K!—1. Consider the case, when C](-i) contains
G* G*

all the elements and C](.i) contains only j. As Hc(l) - QS)K and HC(2> - QE)K, for each j there exist a difference
' ’ 3x e

of at most K! — 1. Therefore,
(K!—1)- PD(AM, A®) > G AGx .



Raymond A. Yeh! Yuan-Ting Hu Mark Hasegawa-Johnson Alexander G. Schwing

No sharing Ours
0 o -
2x100 . No sharing 1 e . ° .
-== Augerino / - - . — - .
—— Ours z . .
o - o -
: - AEE -
S
: - NEE - EE
10°- 10 1 B 0 - I
o N - o
A N - N - m
5.0 10.0 15.0 20.0 L N - NN | |
Variance of Gaussian Noise 01 2 3 4 5 6 7 01 2 3 4 5 6 7
Figure Al: Quantitative results for denoising. Figure A2: Visualization of the learned G.

D Additional Results

D.1 Recovering Shift Equivariance from Denoising

Task, data and metrics. The task is to denoise 1D signals with additive Gaussian noise, i.e.,
y = fo(x), (50)

where x € R¥ is the noisy signal, fy is the denoising function and y € R¥ is the clean signal. We denoise using a
linear model, i.e., y = Gx.

We create the data by adding Gaussian noise to a randomly scaled and translated unit step signal,

x[k] =s-U(k —t)+ b+e, (51)
—_———
y[k]

where U denotes the unit step function, s ~ unif[1, 50], b ~ unif[—5, 5], t ~ unif{0, K'} and ¢ is zero-mean Gaussian
noise. We report the mean squared error (MSE) between the prediction and the clean ground truth signal. The
training set T consists of 50 examples, the validation set V consists of 100 examples, and we use 10,000 examples
for testing.

Baselines. We consider two baselines: No sharing and Augerino (Benton et al., 2020). For Augerino, we use
their augmentation over the set of shift transformations with five augmented samples, i.e., during both train and
test, this method requires five forward passes for each input.

Implementation details. In this experiment, we consider learning the linear system as described above and
minimize the f5-loss. Again, the lower-level task is solved analytically. We use the Adam optimizer for the
upper-level optimization with a learning rate of 0.2.

Results. In Fig. A1, we report the £5-loss across different amounts of added noise. This is averaged over five
runs with different random seeds and we plot the mean and 95% confidence interval. We observe larger gains of
Ours over the baselines when there is more noise to be removed. When there is less noise, No sharing, Augerino
and Ours are comparable.

In Fig. A2, we visualize the learned G for No sharing and Ours. We observe that our approach successfully learns
a Toeplitz matrix capturing the shift equivariance property of the data. This is not the case for No sharing.

D.2 Additional Comparison with Augerino

In our paper, we reported Augerino with three or five transformations. For completeness, we report additional
experiments using more transformations. In Tab. A1 we report the training/testing time for standard sum of
numbers with sequence length of 10. As can be seen, the performance of Augerino improves with increased
number of transformations; similarly for the memory usage and inference time. The inference time is measured
on an NVIDIA Titan X (Pascal) averaged over 100 runs.
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Figure A3: Parameter-sharing scheme for a cross-correlation.

Method  Number of Trans. {9-loss Inference time Memory Usage
Augerino 3 0.03498 £ 0.00528 4.00 ms 727TMiB
Augerino 15 0.02567 + 0.00370 5.13 ms 1101MiB
Augerino 75 0.01966 + 0.00503 22.0 ms 2965MiB

Ours - 0.01005 % 0.00503 1.73 ms 645MiB

Table Al: Comparison with Augerino over more transformations.

E Additional Background

E.1 Parameter-sharing in cross-correlation

Recall that a cross-correlation operation is defined via

G-1

ylk) = x[k + jlgli]- (52)

<

We can write this as a linear system y = Gx, where G is a Toeplitz matrix. To build some intuition on the
parameter sharing scheme, let’s consider an input x € R® and g = [2,1]. In this case G takes the following form,

Observe that the parameters are shared across rows of G. To capture this sharing scheme, we use an assignment
matrix A, i.e., G = A as illustrated in Fig. A3, where we have flattened the matrix G into a vector. Observe
that A selects the parameters from 4 to form G characterizing a sharing scheme.

E.2 Miscellaneous proof details
Reverse Triangle Inequality. Let x,y € R¢, then

[l = llyll < [x =yl

Proof. By triangle inequality,
Il =lx—y+yl <llx=yl+lyl-
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Tail bound of x? distribution. Let U be a x% random variable and ¢ > 1 then

P(U > 2tK) < exp (—?;) . (53)

Proof. From Lemma 1 of Laurent & Massart (2000), let Y; be i.i.d. Gaussian variables, let a; be non-negative,
and

D
Z =Y a(Y?-1). (54)
i=1
Then,
P(Z > 2 |all, V7 +2a]l . ) < exp(—a). (55)
Next, let a =[1,...,1], then
P(U > K+ 2VKz +2z) < exp(—x). (56)
Let x = %, we have
tK
PU > K +2K - (4/t/10 +t/10)) < exp (—10> . (57)
Lastly, we need to show
2K > K+ 2K - (4/t/10 +t/10)), (58)

2%—1> 2(\/1/10 + t/10). (59)

Let v = 4/t/10, then we have
0> 90> +v+0.5, (60)

which is true when v > 0.3, i.e., when ¢ > 0.9. O

F Additional Experimental Details

We provide additional details of the experiments reported in the main paper.

F.1 Gaussian data with Shared Means

Data. We generate data following a Gaussian distribution with a shared mean as specified in Eq. (7). The
dataset D contains 100 samples. We split 7 and V to contain 30 and 70 samples, except for experiment in Fig. 4
where we sweep over the different sizes of 7 and V.

Implementation details. For this task, the lower optimization in our proposed program (Eq. (6)) can be solved
analytically. To see this we write it in matrix form:

ngmeYﬁ, (61)

where X = 1yy1, ¥ € R>*E A €[0,1]5%K and Y € RVXK | In form of ordinary least-squares,

6* = argmin || X6 — Y%, (62)
o

from which we obtain ¥* = §*(AT)* where AT denotes the pseudo-inverse. We use the Adam (Kingma & Ba,
2015) to solve the upper-level optimization.

Training details. As described in the paper, we solve the lower-level optimization analytically and use the
Adam optimizer to handle the upper-level task. For the Adam optimizer, we use a learning rate of 2e—2 with
weight-decay of le—4. We also tried lowering the learning rates to le—2 and 5e—3. We did not sweep over the
weight-decay. These hyperparameters are used for all experiments and all models in this section. We train all
models for 1000 epochs without batching.

Running experiments. We provide code to run all these experiments. Please refer to the code in folder
projects/GaussianSharing/experiments/. We use an NVIDIA TITAN X (Pascal) to run these experiments.
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F.2 Recovering Permutation Invariance

Data. For the sum of numbers dataset, we uniformly sample numbers from the set {1,...,10} and the
corresponding label is the sum of these numbers. Let x; denote the i*® number in the sequence, then the label is

defined as
y = Z X (63)
Next, for the variant sum of numbers, the label is defined as

y = 3 (-1)Hx,. (64)

i
In this case, the even positioned numbers are multiplied by negative one.

For both of these experiments, we use a dataset D of size 250 and split it into training set 7 and validation set V
containing 100 and 150 samples respectively. As we use deep-nets for these experiments, we created a separate
set ‘H of size 250 to apply early stopping and tune the learning rate. Note that all the compared methods have
access to exactly the same data. Lastly, we use a test set of 100,000 samples. For pre-processing, we standardize
the label by subtracting the mean and by dividing by the standard deviation. At test-time, we scale the output
back to the original range.

Model details. We use an embedding of 500 dimensions to represent the input. Next, this embedding is passed
through a fully-connected layer of 50 dimensions (one per position), and a ReLU non-linearity. The baselines
use this same network architecture. To output a single scalar, we sum across the position dimension and pass it
through a fully-connected layer of 1 dimension. We learn how to share the model-parameters across the sequence
positions at the first fully connected layer.

Training details. We solve both lower and upper-level optimization using the Adam optimizer, and compute
the hypergradient using Neumann inverse approximation, with 20 iterations. The upper-level learning rate is
le—2 and the lower-level learning rate is le—3. For every upper-level optimization step, we run 250 lower-level
steps. For the learning rate, we studied le—1, le—2 and le—3. For the number of lower-level steps, we have
assessed 50, 150, 250 steps.

Running experiments. We provide code to run all these experiments. Please see the code in folder
projects/PermutationSharing/experiments/. We use an NVIDIA TITAN X (Pascal) to run these experiments.

F.3 Recovering Shift Equivariance

Data. We fixed the kernel g to increase by two for every position, e.g., a kernel with size three is [1,3,5]. The
training set 7 consists of 50 examples, the validation set V consists of 100 examples, and we use 10,000 examples
for testing.

Implementation details. In this experiment, we consider learning the linear system as described above and
minimize the f2-loss. As in the Gaussian experiment, the lower-level task can be solved analytically. We use the
Adam optimizer to address the upper-level optimization.

Training details. We solve the lower-level optimization task analytically by formulating it as an ordinary
least-squares problem, i.e.,
G =(X"X)'XTY, (65)

where X € RV*Kin and Y € RN *Ke | With the lower-level optimization solved, we write ¥* as
P*(A) = AT Flatten(G*), (66)

where AT denotes the pseudo-inverse and flatten reshapes a matrix into a vector. For the upper-level task, we
back-propagate through ¥* to update A. In this experiment, we use the Adam optimizer with a learning rate of
0.1.

Running experiments. We provide code to run all these experiments. Please see the code in folder
projects/ConvSharing/experiments/. We use an NVIDIA GeForce GTX 1080 to run these experiments.
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G Code Release

Please find the released code at https://github.com/raymondyeh07/equivariance_discovery.



