
Class-agnostic Reconstruction of

Dynamic Objects from Videos

Zhongzheng Ren∗, Xiaoming Zhao∗, Alexander G. Schwing
University of Illinois at Urbana-Champaign
https://jason718.github.io/redo

Abstract

We introduce REDO, a class-agnostic framework to REconstruct the Dynamic
Objects from RGBD or calibrated videos. Compared to prior work, our problem
setting is more realistic yet more challenging for three reasons: 1) due to occlusion
or camera settings an object of interest may never be entirely visible, but we aim
to reconstruct the complete shape; 2) we aim to handle different object dynamics
including rigid motion, non-rigid motion, and articulation; 3) we aim to reconstruct
different categories of objects with one unified framework. To address these
challenges, we develop two novel modules. First, we introduce a canonical 4D
implicit function which is pixel-aligned with aggregated temporal visual cues.
Second, we develop a 4D transformation module which captures object dynamics
to support temporal propagation and aggregation. We study the efficacy of REDO
in extensive experiments on synthetic RGBD video datasets SAIL-VOS 3D and
DeformingThings4D++, and on real-world video data 3DPW. We find REDO
outperforms state-of-the-art dynamic reconstruction methods by a margin. In
ablation studies we validate each developed component.

1 Introduction

4D (3D space + time) reconstruction of both the geometry and dynamics of different objects is
a long-standing research problem, and is crucial for numerous applications across domains from
robotics to augmented/virtual reality (AR/VR). However, complete and accurate 4D reconstruction
from videos remains a great challenge for mainly three reasons: 1) partial visibility of objects due
to occlusion or camera settings (e.g., out-of-view parts, non-observable surfaces); 2) complexity of
the dynamics including rigid-motion (e.g., translation and rotation), non-rigid motion (deformation
caused by external forces), and articulation; and 3) variability within and across object categories.

Existing work addresses the above challenges by assuming complete visibility through a multi-view
setting [33, 4], or by recovering only the observable surface rather than the complete shape of an
object [57], or by ignoring rigid object motion and recovering only the articulation [59], or by building
shape templates or priors specific to a particular object category like humans [47]. However, these
assumptions also limit applicability of models to unconstrained videos in the wild, where these
challenges are either infeasible or only met when taking special care during a video capture.

In contrast, we aim to study the more challenging unconstrained 4D reconstruction setting where
objects may never be entirely visible. Specifically, we deal with visual inputs that suffer from:
1) occlusion: the moving occluder and self-articulation cause occlusion to change across time; 2)
cropped view: the camera view is limited and often fails to capture the complete and consistent
appearance across time; 3) front-view only: due to limited camera motion, the back side of the objects
are often not captured at all in the entire video. Moreover, we focus on different dynamic object-types

∗Indicates equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

a
rX

iv
:2

1
1
2
.0

2
0
9
1
v
1

[c

s.
C

V
]

 3
 D

e
c
 2

0
2
1

inside the canonical space, i.e., for p ∈ C, the 4D implicit function is defined as:

gθ(p,xp) : C × R
K → [0, 1]. (1)

Intuitively, the higher the score gθ(·, ·), the more likely the point p is part of the object. Here, θ
subsumes all trainable parameters in the framework and xp ∈ R

K is a K-dimensional dynamic
feature which summarizes information from all input frames. Concretely,

xp = fagg

(

{fenc(ψ (Φ(p, tc, ti, vθ)) , Ii)}
N

i=1

)

, (2)

where ψ(·) : C → R
3 transforms a point in canonical space to world space. Meanwhile, Φ is the

flow-field which propagates the point p from tc to ti in canonical space, leveraging a learned
3-dimensional velocity-field vθ. Note, tc refers to the time-step of the canonical frame Ic while ti
denotes the time-step of frame Ii. Given the transformed point ψ(Φ(p, tc, ti, vθ)) ∈ R

3, we use a
pixel-aligned feature encoder fenc to extract a set of visual representations, each of which comes from
one of the N frames Ii, i.e., ∀i ∈ {1, . . . , N}. The set function fagg is a temporal feature aggregator
which merges the temporal information of different time-steps. We’ll discuss details of temporal
aggregator fagg, encoder fenc, flow-field Φ and velocity-field vθ in § 3.2.

This canonical 4D implicit function propagates points across time and extracts the pixel-aligned
visual representations from different frames. This differs from: 1) prior works that only consider static
objects. Actually, setting N = 1 in Eq. (2) will simplify Eq. (1) to g(p, fenc(ψ(p), I)), recovering
a static Pixel-aligned Implicit Function (PIFu) used in [69, 70]; 2) OFlow [59] which encodes the
whole video clip {I1, . . . , IN} into one single feature vector, thus loosing spatial information.

3.2 Framework design

In this section, we introduce the temporal aggregator fagg, the feature extractor fenc, and the flow-field
Φ used in Eq. (2). These modules help REDO aggregate information from different time-steps
(frames) and model the complex dynamics.

a) Temporal aggregator fagg. To deal with partial visibility caused by occlusions or camera settings,
we develop a transformer-based temporal aggregator fagg as shown in Fig. 2. fagg is a set function

which computes K-dimensional point features xp ∈ R
K . Assume the flow-field Φ is given and

object j is of interest. We first propagate a query point within the canonical space, i.e., the point
p ∈ C, to every time-step ti, obtaining locations ψ(Φ(p, tc, ti, vθ)) ∈ R

3 ∀i ∈ {1, . . . , N}. We then
project each 3D point ψ(Φ(p, tc, ti, vθ)) back to the corresponding 2D image frame Ii using the
associated camera matrix. For all points that are projected into the mask area mij , we extract a visual
representation using the pixel-aligned feature extractor fenc, which we detail below. Note that due to
partial visibility, we may not be able to extract features from every frame in the clip. To cope with
this, the aggregator fagg is designed as a transformer-based [84] set function. For more information,
please see the implementation details in § 4.1 and Appendix § A.

b) Pixel-aligned feature extractor fenc. Pixel-aligned features help REDO make 3D predictions
that are aligned with the visual 2D input. To achieve this, we develop fenc(q, Ii) where the first
argument is a point q in 3D world space and the second argument is a frame Ii. We first project
the point q in world space to the frame Ii, and then use a pre-trained convolutional neural net [58]
to extract the 2D feature map of a video frame Ii. For points that fall within the instance mask of a
frame, we extract its visual representation using bi-linear interpolation at the projected location.
We then append a positional encoding [84] of the frame time-step ti to this feature which helps to
retain temporal information. We illustrate this process in Fig. 2. The resulting feature is combined
with visual cues from other frames to serve as input to the temporal aggregator fagg.

c) Flow-field Φ. The flow-field models object dynamics in space and time. For this let
Φ(p, t1, t2, vθ) ∈ C denote a flow-field function in canonical space. It computes the position at
time-step t2 of a 3D point, whose location is p ∈ C at time-step t1. To compute the displacement, we
define a velocity field vθ(·) which represents the 3D velocity vectors in space and time via

vθ(p, zp, t) : C × R
K × R → C. (3)

Here, p ∈ C is a point in canonical space with corresponding static feature zp ∈ R
K computed as

zp = fagg

(

{fenc(ψ(p), Ii)}
N

i=1

)

. (4)

5

Here, fenc(ψ(p), Ii) is the feature of world coordinate point ψ(p) extracted from frame Ii. Note, zp
differs from xp defined in Eq. (2). The feature zp summarizes information of static locations from
all frames Ii. This feature is beneficial as it helps capture whether a point remains static or whether it
moves. The velocity network then leverages this feature zp to predict object dynamics.

Using the velocity field, we compute the target location at time-step t2 of a point originating from
location p at time-step t1 by integrating the velocity field over the interval [t1, t2] via

Φ(p, t1, t2, vθ) = p+

∫ t2

t1

vθ(Φ(p, t1, t, vθ), zp, t)dt. (5)

Note that Φ(p, t1, t2, vθ) can represent both forward (t2 > t1) or backward motion (t2 < t1) given
the initial location and velocity-field. To solve the flow-field for discrete video time-steps, we
approximate the above continuous integral equation using a neural-ODE solver [6].

3.3 Inference

To reconstruct objects densely in a clip, the reconstruction/inference procedure is summarized as:

Step 1: We construct the canonical space at the center frame Ic and sample a query point set P ⊆ C
uniformly from the inferred space. This step requires no network inference and is very efficient.

Step 2: We extract static features zp for all p ∈ P using Eq. (4). Next, we compute the trajectory of
point p, i.e., Φ(p, tc, ti, vθ) for all time-steps ti associated with frames Ii, ∀i ∈ {1, . . . , N}, using a
neural ODE solver which solves Eq. (5).

Step 3: We then compute dynamic features xp for all p ∈ P using Eq. (2).

Step 4: Using Eq. (1) we finally compute the occupancy scores for all p ∈ P , which are then
transformed into a triangle mesh via Multi-resolution Iso-Surface Extraction (MISE) [53]. Note, the
mesh is constructed in canonical space.

Step 5: To obtain the mesh associated with frame Ii, following Step 2, we use the flow-field Φ to
propagate all vertices of the extracted mesh from the time-step tc of the canonical space to time-step
ti which corresponds to non-canonical frame Ii. After using the function ψ(·) defined in Eq. (2), we
obtain the mesh in 3D world space. While various discrete representations could be obtained from
our implicit representation, we use meshes for evaluation and visualization purposes.

3.4 Training

REDO is fully differentiable containing the following parametric components: the temporal aggrega-
tor fagg, the feature extractor fenc, the velocity-field network vθ, and the reconstruction network gθ.
For simplicity, we use θ to subsume all trainable parameters of REDO. To better extract shape and
dynamics from given video clips, we train REDO end-to-end using

min
θ

Lshape(D, θ) + Ltemp(D, θ), (6)

where D is the training set. Lshape(D, θ) is the shape reconstruction loss in canonical space which
encourages REDO to recover the accurate 3D geometry. Ltemp(D, θ) is a temporal coherence loss
defined on temporal point correspondences. This loss encourages the flow-field Φ to capture the
precise dynamics of objects. We detail training set, sampling procedure, and both losses next.

Training set. We train REDO on a dataset D that consists of entries from different videos and of
various object instances. Formally, D =

{(

{(Ii, ti)}
N
i=1,V,Y

)}

. Specifically, a data entry for an

N -frame video clip includes three components: 1) a set of RGBD frames {Ii}, associated time-steps
{ti}, as well as corresponding camera matrices ∀i ∈ {1, . . . , N}; 2) an instance ground-truth mesh
V that provides-temporally aligned supervision. For every vertex v ∈ V , we use vi to denote its
position at time-step ti ; 3) the ground-truth occupancy Y in the canonical space. Concretely, for
a point p ∈ C in canonical space, occupancy label y(p) ∈ {0, 1} indicates whether p is inside the
object (y = 1) or outside the object (y = 0). As mentioned in § 3.1, the canonical space is chosen so
that it corresponds to time-step tc, where c = d(1 +N)/2e.

Sampling procedure. To optimize for the parameters θ during training we randomly sample a set
of points p ∈ P(V) within the canonical space. P(V) contains a mixture of uniform sampling and

6

importance sampling around the ground-truth mesh’s surface V at time-step tc. Similar strategies are
also used in prior works [69, 70].

Shape reconstruction loss. To encourage that the canonical 4D implicit function gθ accurately
captures the shape of objects we use the shape reconstruction loss

Lshape(D, θ) =
∑

({(Ii,ti)}N

i=1
,V,Y)∈D

1

|P(V)|

∑

p∈P(V)

BCE (gθ(p,xp), y(p)) , (7)

where BCE(·, ·) represents the standard binary cross-entropy loss.

Temporal coherence loss. REDO models dynamics of objects explicitly through the flow-field Φ,
which leverages the velocity-field network vθ. As the ground-truth correspondences across time are
available in V , we define the temporal correspondence loss via the squared error

Ltemp(D, θ) =
∑

({(Ii,ti)}N

i=1
,V,Y)∈D

1

N |V|

∑

v∈V

N
∑

i=1

‖Φ(vc, tc, ti, vθ)− vi‖
2
2. (8)

4 Experiments

We first introduce the key implementation details (§ 4.1) and the experimental setup (§ 4.2), followed
by the quantitative results (§ 4.3), qualitative results (§ 4.5), and an in-depth analysis (§ 4.4).

4.1 Implementation details

We briefly introduce the key implementation details. Check Appendix § A for a more detailed version.

Input: We assume all input clips are trimmed to haveN = 17 frames following [59]. During training,
clips are randomly sampled from original videos which have any length. For videos that are shorter
than 17 frames, we pad at both ends with duplicated starting and ending frames to form the clips.
The validation and test set consist of fixed 17-frame clips. This simplified input setting allows us to
split development into manageable pieces, and allows fair comparison with prior work. In practice,
dense reconstruction on the entire video is achieved via a sliding window method.

Reconstruction network: Following [69], the reconstruction network gθ is implemented as a 6-layer
MLP with dimensions (259, 1024, 512, 256, 128, 1) and skip-connections. The first layer’s dimension
of 259 is due to the concatenation of visual features (256-dim) and query point locations (3-dim).

Temporal aggregator: fagg uses a transformer model with 3 multi-headed self-attention blocks and
a 1-layer MLP. Group normalization and skip-connections are applied for each block, and we set the
hidden dimension to be 128. To compute the time-encoding, we use positional-encoding [84] with 6
exponentially increasing frequencies.

Feature extractor: fenc is implemented as a 2-stack hourglass network [58] following PIFu [69].
Given the instance mask, we take out the object of interest in the picture and resize it to 256× 256
before providing it as input to fenc. The output feature map has dimensions of 128× 128× 256 of
spatial resolution 128× 128 and feature dimension K = 256.

Velocity-field network: vθ uses a 4-layer MLP with skip-connections following [59], where the
internal dimension is fixed to 128. It takes query points as input and adds the visual features to the
activations after the 1st block. For ODE solvers, we use the Dormand–Prince method (dopri5) [12].

Training: In each training iteration we sample 2048 query points for shape reconstruction and
512 vertices for learning of temporal coherence. We train REDO end-to-end using the Adam
optimizer [39] for 60 epochs with a batch size of 8. The learning rate is initialized to 0.0001 and
decayed by 10× at the 40th and 55th epochs.

4.2 Experimental setup

Dataset. We briefly introduce the three datasets used in our experiments below. For more details
(e.g., preparation, statistics, examples), please check Appendix § B.

7

Dataset SAIL-VOS 3D DeformingThings4D++ 3DPW
Metrics mIoU↑ mCham.↓ mACD↓ mIoU↑ mCham.↓ mACD↓ mIoU↑ mCham.↓ mACD↓

Static reconstruction

ONet [53] 24.5 0.951 - 60.2 0.260 - 29.8 0.440 -
PIFuHD [70] 25.6 0.724 - 43.8 0.511 - 37.4 0.363 -

Dynamic reconstruction

SurfelWarp [20] 1.03 2.13 - 3.75 6.53 - - - -
OFlow [59] 26.0 0.732 1.69 55.2 0.412 0.812 31.5 0.461 0.907

REDO 31.9 0.647 1.47 57.4 0.349 0.765 41.6 0.337 0.846

Table 1: Quantitative results. For both shape reconstruction (mIoU and mCham.) and dynamics
modeling (mACD), REDO demonstrates significant improvements over prior methods. mACD is not
available for static methods and SurfelWarp which don’t predict temporally corresponding meshes.

1) SAIL-VOS 3D [27]: a photo-realistic synthetic dataset extracted from the game GTA-V. It consists
of RGBD videos together with ground-truth (masks and cameras). Out of the original 178 object
categories, we use 7 dynamic ones: human, car, truck, motorcycle, bicycle, airplane, and helicopter.
During training, we randomly sample clips from 193 training videos. For evaluation, we sample 291
clips from 78 validation videos. We further hold out 2 classes (dog and gorilla) as an unseen test set.

2) DeformingThings4D++: DeformingThings4D [42] is a synthetic dataset containing 39 object
categories. As the original dataset only provides texture-less meshes, we render RGBD video and
corresponding ground-truth (mask and camera) using Blender. Because the original dataset doesn’t
provide dataset splits, we create our own. Specifically, during training, we randomly sample clips from
1227 videos. For evaluation, we create a validation set of 152 clips and a test set of 347 clips. We hold
out class puma with 56 videos as a zero-shot test set. We dub this dataset DeformingThings4D++.

3) 3D Poses in the Wild (3DPW) [86]: to test the generalizability of our model, we test on this real-
world video dataset. Unfortunately, no real-world multi-class 4D dataset is available. Therefore, we
test REDO in a class-specific, i.e., class human, setting using 3DPW. This dataset contains calibrated
videos, i.e., known camera, and 3D human pose annotation. However, it doesn’t provide ground-truth
mesh and depth. To extract a mesh, we fit the provided 3D human pose using the SMPL [47] template.
To compute depth, we use Consistent Video Depth (CVD) [51] with ground-truth camera data to
get temporally consistent estimates. The dataset contains 60 videos (24 training, 12 validation, and
24 testing). During training, we randomly sample clips from all training videos. For evaluation, we
evaluate at uniformly sampled clips (10 clips per video) using the validation and test set.

Baselines. We consider the following baselines: 1) Static reconstruction: we adopt state-of-the-art
methods ONet [53] and PIFuHD [70], and train them for per-frame static reconstruction. For a
fair comparison, we train these two networks in a class-agnostic setting using all the frames in the
training videos. 2) Fusion-based dynamic reconstruction: most fusion based methods [57, 74, 75]
are neither open-sourced nor reproduced. Among the available ones, we adapt the author-released
SurfelWarp [20] due to its superior performance. Since this method is non-parametric and requires
no training, we directly apply it on the validation/testing clips. 3) Supervised dynamic reconstruction:
REDO learns to reconstruct dynamic objects in a supervised manner. OFlow [59] also falls into this
category but it doesn’t handle the partial observation and rigid-motion. Note, REDO uses each clip’s
center frame as the canonical space while OFlow uses the initial one. Therefore, for a fair comparison,
we set OFlow’s first frame to be the center of our input clip.

Metrics. To evaluate the reconstructed geometry, we report the mean volumetric Intersection over
Union (mIoU) and the mean Chamfer `1 distance (mCham.) over different classes at one time-
step, i.e., the center frame of the test clip. To evaluate the temporal motion prediction, we compute
the mean Averaged (over time) Correspondence `2 Distance (mACD) following [59]. As stated
before, OFlow’s starting frame is set to the center frame. For a fair comparison, we report mACD on
the latter half of each testing clip. We compute mCham. and mACD error in a scale-invariant way
following [53, 59, 18]: we use 1/10 times the maximal edge length of the object’s bounding box as
unit one. Even though our network is class-agnostic, we report the mean values over different object
categories. Namely, all ‘mean’ operations are conducted over categories.

4.3 Quantitative results

We present results on all three datasets in Tab. 1. For a fair comparison, we test on the center frame
(canonical frame of REDO) of the validation/testing clips. We observe that:

8

1) REDO improves upon the static methods for shape reconstruction on SAIL-VOS 3D and 3DPW
(+6.3/4.2 mIoU and -0.077/-0.026 mCham. over best static method). This is because the static methods
cannot capture the visual information from other frames in the video clip and thus fail to handle
partial visibility. However, REDO performs slightly worse than ONet on DeformingThings4D++
due to the unrealistic simplified visual input: 1) the pictures have only one foreground object with
neither occlusion nor background, 2) the rendered color is determined by the vertices order and hence
provides a visual short-cut for 2D to 3D mapping. Without modeling dynamics, the static baselines
are hence easier to optimize. In contrast, SAIL-VOS 3D renders photo-realistic game scenes with
diverse dynamic objects, which are much closer to a real-world setting.

2) REDO outperforms fusion-based method SurfelWarp greatly on all benchmarks, as SurfelWarp
only recovers the observable surface rather than the complete shape. We didn’t run SurfelWarp on
3DPW as it relies on precise depth as input and crashes frequently using the estimated depth values.

3) REDO improves upon OFlow (+5.9/2.2/10.1 mIoU and -0.085/0.063/0.124 mCham.) for shape
reconstruction due to the pixel-aligned 4D implicit representation, whereas OFlow encodes the whole
image as a single feature vector and looses spatial information.

4) Regarding dynamics modeling, REDO improves upon OFlow (-0.22/0.047/0.061 mACD) thanks
to the pixel-aligned implicit flow-field. Note that OFlow normalizes the 3D models at each time-step
into the first frame’s model space and hence fails to capture rigid motion like translation. In contrast,
our canonical space is constructed for the entire clip in which REDO predicts a complete trajectory.

As stated in Sec. 3.3, the reconstructed mesh on the center frame is propagated to other frames in
the video clip for a dense reconstruction. We thus report the per-frame results in Appendix § E. In
addition, all above results are mean values averaged over object categories to avoid being biased
towards the most frequent class. Class-wise results on SAIL-VOS 3D are reported in Appendix § C.

mIoU↑ mCham.↓ mACD↓

ONet 23.1 0.764 -
PIFu 21.2 0.911 -

SurfelWarp 2.06 1.23 -
OFlow 26.7 0.931 1.18

REDO 38.5 0.479 1.07

Table 2: Zero-shot reconstruction.

Zero-shot reconstruction. To test the generalizability of
REDO, we further test on unseen categories with no fine-
tuning in Tab. 2. The result is averaged over three unseen
classes: dog and gorilla from SAIL-VOS 3D, and puma
from DeformingThings4D++. REDO still greatly outper-
forms baselines and doesn’t fail catastrophically. The per-
class results are provided in Appendix Tab. S5.

4.4 Analysis

mIoU↑ mCham.↓ mACD↓

avg. pooling 28.3 0.712 1.60
w/o alignment 24.1 0.937 1.85

w/o Ltemp 29.4 0.685 3.12

REDO 31.9 0.647 1.47

Table 3: Ablation studies.

In Tab. 3, we provide an ablation study of different com-
ponents in REDO using SAIL-VOS 3D data. 1) We first
replace the temporal aggregator fagg with an average pool-
ing layer where features of different frames are averaged
and fed into the shape reconstruction and velocity field net-
work. The results are shown in the 1st row of Tab. 3 (avg.
pooling). The performance drops by -3.6 IoU, +0.065 mCham., and +0.13 mACD. 2) We then study
pixel-aligned feature representations xp, zp. We replace these two features with the feature map of
the entire input frame following OFlow [59] but still keep the transformer to aggregate these feature
maps. Results of this ablation are reported in Tab. 3 (w/o alignment). Compared to REDO, this setting
greatly hurts the results (-7.8 mIoU, +0.290 mCham., -0.38 mACD) as the network can no longer
handle partial observations and the 3D predictions don’t well align with the visual input. 3) In many
real-world tasks, ground-truth meshes of different time-steps are not corresponded. Conceptually,
REDO could adapt to this setting. This is because all components are differentiable and the flow-field
network could be used as a latent module for shape reconstruction. To mimic this setting, we train
REDO using only the shape reconstruction loss Lshape. As shown in Tab. 3 (w/o Ltemp), the model
still recovers objects at the canonical frame. However, mACD increases significantly (+1.65).

4.5 Qualitative results

Fig. 4 shows a few representative examples of REDO predictions on SAIL-VOS 3D and Deform-
ingThings4D++. Please check Appendix § F for more results on real-world data and additional
analysis. From Fig. 4 we observe that: 1) REDO is able to recover accurate geometry and dynamics
of different objects from input video frames. It completes the occluded parts and hallucinates invisible

9

Acknowledgements & funding transparency statement. This work was supported in part by NSF
under Grant #1718221, 2008387, 2045586, 2106825, MRI #1725729, NIFA award 2020-67021-
32799 and Cisco Systems Inc. (Gift Award CG 1377144 - thanks for access to Arcetri). ZR is
supported by a Yee Memorial Fund Fellowship.

References

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and generative models
for 3d point clouds. In ICML, 2018.

[2] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and C. Theobalt. A data-driven approach for real-time full
body pose reconstruction from a depth camera. Consumer Depth Cameras for Computer Vision, 2013.

[3] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black. Dynamic FAUST: Registering human bodies in motion.
In CVPR, 2017.

[4] A. Bozic, P. Palafox, M. Zollöfer, A. Dai, J. Thies, and M. Nießner. Neural non-rigid tracking. In NeurIPS,
2020.

[5] A. Božič, M. Zollhöfer, C. Theobalt, and M. Nießner. Deepdeform: Learning non-rigid rgb-d reconstruction
with semi-supervised data. In CVPR, 2020.

[6] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. In
NeurIPS, 2018.

[7] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In CVPR, 2019.

[8] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified approach for single and
multi-view 3d object reconstruction. In ECCV, 2016.

[9] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan.
High-quality streamable free-viewpoint video. TOG, 2015.

[10] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In
SIGGRAPH, 1996.

[11] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S. Thrun. Performance capture from
sparse multi-view video. TOG, 2008.

[12] J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae. J. Comput. Appl. Math, 1980.

[13] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers, and
T. Brox. Flownet: Learning optical flow with convolutional networks. In ICCV, 2015.

[14] M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi. 3d scanning deformable objects with a single
rgbd sensor. In CVPR, 2015.

[15] M. Dou, S. Khamis, Y. Degtyarev, P. L. Davidson, S. Fanello, A. Kowdle, S. Orts, C. Rhemann, D. Kim,
J. Taylor, P. Kohli, V. Tankovich, and S. Izadi. Fusion4d: real-time performance capture of challenging
scenes. TOG, 2016.

[16] M. Dou, P. Davidson, S. R. Fanello, S. Khamis, A. Kowdle, C. Rhemann, V. Tankovich, and S. Izadi.
Motion2fusion: Real-time volumetric performance capture. TOG, 2017.

[17] Facebook-AI. D2go brings detectron2 to mobile. https://ai.facebook.com/blog/
d2go-brings-detectron2-to-mobile/, 2021.

[18] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction from a single
image. In CVPR, 2017.

[19] C. Franklin. Apple unveils new iPad Pro with breakthrough LiDAR Scanner and brings trackpad support
to iPadOS. https://www.apple.com/, 2020.

[20] W. Gao and R. Tedrake. Surfelwarp: Efficient non-volumetric single view dynamic reconstruction. In RSS,
2018.

[21] D. Gavrila and L. Davis. Tracking of humans in action: A 3-d model-based approach. ARPA Image
Understanding Workshop, 1996.

11

[22] G. Gkioxari, J. Malik, and J. Johnson. Mesh r-cnn. In ICCV, 2019.

[23] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry. AtlasNet: A Papier-Mâché Approach to
Learning 3D Surface Generation. In CVPR, 2018.

[24] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu. Real-time geometry, albedo, and motion reconstruction
using a single rgb-d camera. TOG, 2017.

[25] M. Habermann, W. Xu, M. Zollhoefer, G. Pons-Moll, and C. Theobalt. Livecap: Real-time human
performance capture from monocular video. TOG, 2019.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In CVPR, 2017.

[27] Y.-T. Hu, J. Wang, R. A. Yeh, and A. G. Schwing. SAIL-VOS 3D: A Synthetic Dataset and Baselines for
Object Detection and 3D Mesh Reconstruction from Video Data. In CVPR, 2021.

[28] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobald, and M. Stamminger. Volumedeform: Real-time
volumetric non-rigid reconstruction. In ECCV, 2016.

[29] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3. 6m: Large scale datasets and predictive
methods for 3d human sensing in natural environments. TPAMI, 2013.

[30] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman,
A. J. Davison, and A. W. Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera. In UIST, 2011.

[31] M. Jaimez, M. Souiai, J. González, and D. Cremers. A primal-dual framework for real-time dense rgb-d
scene flow. In ICRA, 2015.

[32] H. Joo, H. Liu, L. Tan, L. Gui, B. C. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic
studio: A massively multiview system for social motion capture. In ICCV, 2015.

[33] H. Joo, T. Simon, and Y. Sheikh. Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and
Bodies. In CVPR, 2018.

[34] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-to-end Recovery of Human Shape and Pose.
In CVPR, 2018.

[35] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning Category-Specific Mesh Reconstruction
from Image Collections. In ECCV, 2018.

[36] A. Kanazawa, J. Y. Zhang, P. Felsen, and J. Malik. Learning 3d human dynamics from video. In CVPR,
2019.

[37] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In CVPR, 2018.

[38] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Eurographics, 2006.

[39] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[40] H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust single-view geometry and motion reconstruction.
TOG, 2009.

[41] X. Li, S. Liu, K. Kim, S. De Mello, V. Jampani, M.-H. Yang, and J. Kautz. Self-supervised single-view 3d
reconstruction via semantic consistency. In ECCV, 2020.

[42] Y. Li, H. Takehara, Takafumi, Taketomi, B. Zheng, and M. Nießner. 4dcomplete: Non-rigid motion
estimation beyond the observable surface. In ICCV, 2021.

[43] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural Scene Flow Fields for Space-Time View Synthesis of
Dynamic Scenes. In CVPR, 2021.

[44] H. Liu, R. A. R. Soto, F. Xiao, and Y. J. Lee. Yolactedge: Real-time instance segmentation on the edge. In
ICRA, 2021.

[45] X. Liu, C. R. Qi, and L. J. Guibas. Flownet3d: Learning scene flow in 3d point clouds. In CVPR, 2019.

[46] M. Loper, N. Mahmood, and M. J. Black. Mosh: Motion and shape capture from sparse markers. TOG,
2014.

12

[47] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A skinned multi-person linear
model. TOG, 2015.

[48] M. M. Loper and M. J. Black. Opendr: An approximate differentiable renderer. In ECCV, 2014.

[49] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.
TOG, 1987.

[50] L. Luo, H. Li, and S. Rusinkiewicz. Structure-aware hair capture. TOG, 2013.

[51] X. Luo, J. Huang, R. Szeliski, K. Matzen, and J. Kopf. Consistent video depth estimation. TOG, 2020.

[52] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time object recognition.
In IROS, 2015.

[53] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks: Learning 3d
reconstruction in function space. In CVPR, 2019.

[54] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[55] C. Nash, Y. Ganin, S. A. Eslami, and P. Battaglia. Polygen: An autoregressive generative model of 3d
meshes. In ICML, 2020.

[56] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton,
S. Hodges, and A. W. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In ISMAR,
2011.

[57] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In CVPR, 2015.

[58] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016.

[59] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Occupancy flow: 4d reconstruction by learning
particle dynamics. In ICCV, 2019.

[60] J. J. Park, P. R. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove. DeepSDF: Learning Continuous
Signed Distance Functions for Shape Representation. In CVPR, 2019.

[61] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla. Nerfies:
Deformable neural radiance fields. In ICCV, 2021.

[62] S. I. Park and J. K. Hodgins. Capturing and animating skin deformation in human motion. TOG, 2006.

[63] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-NeRF: Neural radiance fields for
dynamic scenes. In CVPR, 2020.

[64] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view cnns for object
classification on 3d data. In CVPR, 2016.

[65] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In CVPR, 2017.

[66] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. In NeurIPS, 2017.

[67] Z. Ren, I. Misra, A. G. Schwing, and R. Girdhar. 3d spatial recognition without spatially labeled 3d. In
CVPR, 2021.

[68] G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learning deep 3d representations at high resolutions.
In CVPR, 2017.

[69] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li. PIFu: Pixel-Aligned Implicit
Function for High-Resolution Clothed Human Digitization. In ICCV, 2019.

[70] S. Saito, T. Simon, J. Saragih, and H. Joo. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for
High-Resolution 3D Human Digitization. In CVPR, 2020.

[71] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In CVPR, 2016.

13

[72] T. Simon, H. Joo, and Y. Sheikh. Hand keypoint detection in single images using multiview bootstrapping.
In CVPR, 2017.

[73] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In NeurIPS, 2019.

[74] M. Slavcheva, M. Baust, D. Cremers, and S. Ilic. KillingFusion: Non-rigid 3D Reconstruction without
Correspondences. In CVPR, 2017.

[75] M. Slavcheva, M. Baust, and S. Ilic. Sobolevfusion: 3d reconstruction of scenes undergoing free non-rigid
motion. In CVPR, 2018.

[76] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in rgb-d images. In CVPR, 2016.

[77] J. Starck and A. Hilton. Surface capture for performance-based animation. CG&A, 2007.

[78] S. Stein. Lidar on the iPhone 12 Pro. https://www.cnet.com/, 2020.

[79] Z. Su, W. Wan, T. Yu, L. Liu, L. Fang, W. Wang, and Y. Liu. Mulaycap: Multi-layer human performance
capture using a monocular video camera. TVCG, 2020.

[80] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In CVPR, 2018.

[81] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson, M. McGuire, and
S. Fidler. Neural geometric level of detail: Real-time rendering with implicit 3D shapes. In CVPR, 2021.

[82] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks: Efficient convolutional
architectures for high-resolution 3d outputs. In ICCV, 2017.

[83] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV, 2020.

[84] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, 2017.

[85] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh animation from multi-view silhouettes.
TOG, 2008.

[86] T. von Marcard, R. Henschel, M. Black, B. Rosenhahn, and G. Pons-Moll. Recovering accurate 3d human
pose in the wild using imus and a moving camera. In ECCV, 2018.

[87] T. von Marcard, R. Henschel, M. J. Black, B. Rosenhahn, and G. Pons-Moll. Recovering accurate 3d
human pose in the wild using imus and a moving camera. In ECCV, 2018.

[88] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh: Generating 3d mesh models from
single rgb images. In ECCV, 2018.

[89] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-based facial animation. TOG, 2011.

[90] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In NeurIPS, 2016.

[91] G. Yang, D. Sun, V. Jampani, D. Vlasic, F. Cole, H. Chang, D. Ramanan, W. T. Freeman, and C. Liu. Lasr:
Learning articulated shape reconstruction from a monocular video. In CVPR, 2021.

[92] T. Yu, K. Guo, F. Xu, Y. Dong, Z. Su, J. Zhao, J. Li, Q. Dai, and Y. Liu. Bodyfusion: Real-time capture of
human motion and surface geometry using a single depth camera. In ICCV, 2017.

[93] T. Yu, Z. Zheng, K. Guo, J. Zhao, Q. Dai, H. Li, G. Pons-Moll, and Y. Liu. Doublefusion: Real-time
capture of human performances with inner body shapes from a single depth sensor. In CVPR, 2018.

[94] J. Y. Zhang, P. Felsen, A. Kanazawa, and J. Malik. Predicting 3d human dynamics from video. In ICCV,
2019.

[95] M. Zollhöfer, M. Nießner, S. Izadi, C. Rhemann, C. Zach, M. Fisher, C. Wu, A. W. Fitzgibbon, C. T. Loop,
C. Theobalt, and M. Stamminger. Real-time non-rigid reconstruction using an rgb-d camera. TOG, 2014.

[96] S. Zuffi, A. Kanazawa, and M. J. Black. Lions and tigers and bears: Capturing non-rigid 3d articulated
shape from images. In CVPR, 2018.

[97] S. Zuffi, A. Kanazawa, T. Berger-Wolf, and M. J. Black. Three-D Safari: Learning to Estimate Zebra Pose,
Shape, and Texture from Images" In the Wild". In ICCV, 2019.

14

Appendix:
Class-agnostic Reconstruction of Dynamic Objects from Videos

In this appendix we first provide additional implementation details (§ A) before providing more
information about the datasets (§ B). We then discuss additional quantitative results including per-
class reconstruction results (§ C), the propagated per-frame reconstruction results (§ E), and per-class
zero-shot reconstruction results (§ D). Lastly, we illustrate additional qualitative results (§ F).

A Implementation Details

We provide additional implementation details in this section.

Baselines. For the baseline models, we used the released code of ONet [53], OFlow [59] and
PIFuHD [69, 70]. For the static 3D reconstruction baselines (e.g., ONet and PIFuHD), we re-train
these models on all the frames from the training set using the default setting. Note, the dynamic 4D
reconstruction baseline OFlow always utilizes the initial frame for the canonical space. Therefore,
for a fair comparison, we set OFlow’s first frame to be the center of our input clip.

ODE. To solve the Ordinary Differential Equation (ODE), we use the Dormand–Prince method with
a relative error tolerance of 1e−2 and an absolute error tolerance of 1e−4. To support batch-wise
processing in the ODE solver for the backward flow, we use the variant from OFlow [59]. We also
zero-pad the velocity network output to make it compatible with a ODE solver following OFlow [59].

Training. Our code is implemented in PyTorch. The training process takes around 30 hours on a
4 GPU machine. To ensure a fair comparison, parts of our model, i.e., the image encoder and the
reconstruction net, share the same architecture as PIFuHD.

B Datasets

We provide a detailed comparison of popular dynamic 3D dataset in Tab. S1. Among them, we
choose to use SAIL-VOS 3D, DeformingThings4D, and 3D Poses in the Wild (3DPW) because of
the dataset scale and the quality of the ground-truth labels. Besides SAIL-VOS 3D, the other two are
incomplete and miss some ground-truth labels. In below section, we introduce the details about how
we complete the datasets used in our experiments.

Datasets Type #Category #Videos RGB Depth GT camera GT mask GT mesh Misc. GT

Single-class real-world datasets

Human3.6M [29] real-world 1 (human) N/A X X X 7 7

3DPW [87] real-world 1 (human) 60 X 7 X 7 7 3D pose
D-FAUST [3] real-world 1 (human) N/A 7 7 7 7 X

Multi-class real-world datasets

KillingFusion [74] real-world 5 5 X X X X 7

VolumeDeform [28] real-world 8 8 X X X 7 X

DeepDeform [5] real-world multiple 400 X X X X 7

Multi-class synthetic datasets

DeformingThings4D++ [42] synthetic 39 1972 7 7 7 7 X

SAIL-VOS 3D [27] synthetic 10 484 X X X X X

Table S1: Summary of dataset statistics.

B.1 SAIL-VOS 3D

SAIL-VOS 3D [27] is a very challenging dataset due to the diverse appearance and complex motion.
Most observed objects are partially visible and the occlusion is often changing across time. The
dataset also has a very challenging long-tail distribution.

Data source. SAIL-VOS 3D is publicly available for research and educational purpose under a user
agreement.2 This dataset is extracted from the photo-realistic game Grand Theft Auto (GTA) V.3 The
collected data of SAIL-VOS 3D contains neither personally identifiable information nor offensive
content.

2
http://sailvos.web.illinois.edu/_site/index.html

3
https://www.rockstargames.com/games/V

15

Split #Videos #Frames PO Size #Clips Class-wise distribution
Train 193 475 84% 15% - #classes = 7: person (188), car (62),

truck (10), helicopter (7), motorcycle
(10), bicycle (3), airplane (3)

Val 78 675 86% 13% 291 #classes = 8: person (61-241), car
(12-23), motorcycle (4-8), truck (2-
7), bicycle (2-5), trolley (2-3), air-
plane (1-2), helicopter (1-2)

Unseen 2 333 100% 6.4% 2 #classes = 2: dog (1-1), gorilla (1-1)

Table S2: SAIL-VOD 3D statistics. Values in parenthesis (V −C) indicate the number of videos V
and clips C for the corresponding class. For each split we report the number of videos (#Videos),
average video frames (#Frames), partial visibility ratio (PO), ratio between object area and image area
(Size), and the number of sampled clips (#Clips). Note, 1) videos are untrimmed and may contain
several objects from different classes. Therefore, #Videos may not equal the summation of V from
all classes; 2) #Clips for split train is not reported as we randomly sample clips from videos during
training.

Splits & statistics. Our network is class-agnostic and handles different dynamic objects in a unified
manner. For this purpose, we use 10 kinds of dynamic objects, i.e., human, car, truck, motorcycle,
bicycle, airplane, helicopter, gorilla, trolley, and dog. We provide detailed statistics in Tab. S2

Clips sampling. SAIL-VOS 3D contains videos whose number of frames ranges from single digits
to several hundreds. For our experiments, we sample fixed-length video clips satisfying the following
rules: 1) the average occlusion ratio of the observed object is lower than 0.75 following [27]. 2) the
average visible instance area of the object is bigger than 128× 128 pixels. In our training, we set the
number of frames to be 17 following [59]. If the length of the original video clip is shorter than 17,
we duplicate beginning and ending frames to meet this requirement.

Ground-truth. To compute the ground-truth occupancy label, we first truncate the ground-truth
mesh of each frame in the input clip to remove the vertices and faces that are never seen in this clip.
Note, the set of invisible vertices and faces can be easily identified since SAIL-VOS 3D provides the
vertices’ temporal correspondences across frames. Therefore, we just need to compute a per-frame
set of invisible vertices and faces and then take a union of those per-frame sets. We can then compute
the ground-truth occupancy label and correspondences using the converted truncated mesh.

B.2 DeformingThings4D++

Data source. The original dataset DeformingThings4D [42] is released for non-commercial research
and educational purposes under “DeformingThings4D Terms of Use”4, and the accompany code
is release under a non-commercial creative commons license. The characters in this dataset are
obtained from Adobe Mixamo5. This dataset is synthetic and contains neither personally identifiable
information nor offensive content.

Rendering. The original DeformingThings4D [42] data is composed of 1972 scenes with 1772
animals and 200 humanoids from 39 classes. Note, the number of classes isn’t 31 as listed in the
paper [42]. This is because the dataset does not contain a mapping between scene IDs and categories.
Therefore, we count classes ourselves and treat each unique object type as a class. See Tab. S3 for
more details. Each scene in the dataset contains a triangular mesh and vertices’s 3D coordinates
at different time steps, which provide ground truth motion fields. For each scene, we render with
resolution of 500× 600 and obtain the following information with several representative examples
shown in Fig. S1.

• Camera: we do not consider camera shot changes and fix the camera pose for the whole animation.
Specifically, we first render with a fixed camera pose. If the resulting animations are of low-
quality, e.g., too zoomed-in or zoomed-out, we manually adjust to a better pose.

• RGB: in order to maintain correspondences between rendered frames, i.e., same position of
an object should have same color across the whole animation, we assign an RGB value to each

4
https://docs.google.com/forms/d/e/1FAIpQLSckMLPBO8HB8gJsIXFQHtYVQaTPTdd-rZQzyr9LIIkHA515Sg/viewform

5
https://mixamo.com/

16

Split #Videos #Frames PO Size #Clips Class-wise distribution

Train 1227 61 88% 8.5% - #classes = 37: bear (195), deer (170),
fox (126), humanoids (111), moose
(105), rabbit (72), doggie (45), dragon
(41), elk (41), tiger (40), procy (38),
raccoon (37), bunny (28), bucks (25),
grizz (24), canie (22), huskydog (21),
bull (13), milkcow (12), cattle (11),
hog (7), rhino (7), cetacea (6), ele-
phant (6), chicken (5), hippo (3), li-
oness (3), sheep (3), raven (2), cat (1),
crocodile (1), duck (1), goat (1), leop-
ard (1), pig (1), seabird (1), zebra (1)

Val 152 64 96% 6.9% 152 #classes = 25: bear (27-27), deer (24-
24), fox (18-18), moose (15-15), rabbit
(10-10), humanoids (7-7), doggie (6-
6), dragon (5-5), elk (5-5), procy (5-5),
raccoon (5-5), tiger (5-5), bunny (4-
4), bucks (3-3), canie (2-2), huskydog
(2-2), bull (1-1), cattle (1-1), cetacea
(1-1), chicken (1-1), elephant (1-1),
hog (1-1), lioness (1-1), milkcow (1-
1), sheep (1-1)

Test 347 65 94% 7.2% 347 #classes = 29: bear (55-55), deer (48-
48), humanoids (44-44), fox (36-36),
moose (30-30), rabbit (20-20), dog-
gie (12-12), dragon (11-11), elk (11-
11), tiger (11-11), procy (10-10), rac-
coon (10-10), bunny (8-8), bucks (6-
6), grizz (6-6), canie (5-5), huskydog
(5-5), bull (3-3), cattle (3-3), milkcow
(3-3), hog (2-2), cetacea (1-1), chicken
(1-1), duck (1-1), elephant (1-1), goat
(1-1), lioness (1-1), raven (1-1), sheep
(1-1)

Unseen 56 65 92% 7.4% 56 #classes = 1: puma (56-56)

Table S3: DeformingThings4D++ statistics. Values in parenthesis (V − C) indicate the number of
videos (V) and clips (C) for the corresponding class. For each split we report the number of videos
(#Videos), average video frames (#Frames), partial visibility ratio (PO), ratio between object area
and image area (Size), and the number of sampled clips (#Clips). Note, #Clips for split train is not
reported as we randomly sample clips from videos during training.

vertex on the mesh and keep that RGB value for all time steps. We then utilize Blender’s
ShaderNodeVertexColor to get RGB frames.

• Mask & depth: we ray-cast from each pixel of a frame. 1) For mask, we mark a pixel as “in mask” if
its ray reaches the object’s mesh. 2) For depth, if the ray reaches the mesh, we store the z coordinate
of the intersection point between ray and mesh in the camera coordinate system.

Splits & Statistics. Note, the original dataset doesn’t provide the train/validation/test splits. We
hence create our own split following the rules discussed next: First, we discard the videos with invalid
motion values, e.g., NaN. Second, we do not use videos if there are frames where objects leave the
view frustum entirely. After filtering, we split the remaining videos into train/validation/test sets with
a rough ratio of 7 : 1 : 2: 1) We reserve one class for zero-shot experiments to examine algorithm
generalization. Specifically, we remove the class puma from the training/validation/test set as an
unseen category. 2) For validation and test sets, we consider a subset of videos that composes of at
least one rendered frame where the object is completely visible. The motivation is that if an object
appears completely, we do not need to impose any extra processing for evaluation, e.g., truncating the
ground truth mesh. In this way, we avoid inaccuracies incurred in the processing step. We sample

17

(a) Deer (b) Humanoids

(c) Tiger (d) Humanoids

(e) Motion from class humanoid.

(f) Motion from class bear.

Figure S1: Examples of DeformingThings++. (a) - (d): we display the rendered RGB image (left),
mask (center), and depth (right) of 4 instances from different objects; (e) - (f): we showcase dynamics
of two objects. Note the rendered images maintain semantic consistency across frames.

152 and 347 videos from the subset for validation and test respectively. 3) For the remaining videos,
we use them as the training set. Please check Tab. S3 for detailed split distribution and statistics.

B.3 3D Poses in the Wild (3DPW)

3DPW is a real-world 3D video dataset focusing on humans. The collected videos usually contain
multiple people, which are often occluded and out of the camera view. The camera is also moving to
capture the human dynamics. Due to all these appealing and challenging properties, we adopt it in
our experiments to test the generalizability of REDO under a class-specific setting.

Data source. 3DPW is publicly available under a license.6 This dataset captures real-world human
videos with a moving camera and Inertial Measurement Units (IMUs) in complex scenes. This dataset
contains no offensive content.

Ground-truth. For training and evaluation purposes, we estimate the human mesh. Since 3D pose
annotation is given, we utilize the Skinned Multi-Person Linear (SMPL) [47] human template. Since
the same template is used across all frames in a video, we also get the ground-truth correspondences
(vertices). Note that we render an amodal mesh in this experiment under the class-specific setting,
meaning we aim to reconstruct the complete human mesh when the visual inputs are partially visible.

C Per-class results

To further analyze the performance of REDO, we provide class-specific results on SAIL-VOS 3D
in Tab. S4. Overall, REDO outperforms baseline methods in 18 out of 21 metrics. In terms of
performance across classes, REDO performs best for human and car because these two classes have
the most training examples. REDO is less effective for airplane and bicycle due to the complex
geometry and the small number of training examples.

6
https://virtualhumans.mpi-inf.mpg.de/3DPW/license.html

18

F Additional qualitative results

In Fig. S3, we show additional qualitative comparisons on the real-world 3DPW dataset. In each sub-
figure we show the input frame, the estimated mask of the object of interest using Mask R-CNN [26],
the prediction of the best-performing baseline model (PIFuHD), and our prediction. From Fig. S3
we observe that REDO recovers complete and smooth prediction of the real-world human in various
poses. In contrast, the baseline method often struggles when humans are in rare poses. This is largely
due to the difference in the pre-training dataset where PIFuHD is trained on stand-still humans with
no occlusion, whereas REDO is trained on the large-scale synthetic dataset SAIL-VOS 3D which
comes with humans in challenging poses and with sever occlusions.

In Fig. S4, we demonstrate our prediction on SAIL-VOS 3D from multi-views in a single video clip.
In each chunk we show the input frames, ground truth mesh, and predicted mesh of one video clip
from top to bottom. From Fig. S4 we can see that the front-view of REDO’s prediction aligns well
with input images. Meanwhile, REDO also hallucinates decently about the side (partially observed)
and back (invisible) of the objects. The predicted meshes are relatively smooth across time.

20

