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Abstract

In practice, imitation learning is preferred over pure reinforcement learning when-
ever it is possible to design a teaching agent to provide expert supervision. However,
we show that when the teaching agent makes decisions with access to privileged
information that is unavailable to the student, this information is marginalized dur-
ing imitation learning, resulting in an “imitation gap” and, potentially, poor results.
Prior work bridges this gap via a progression from imitation learning to reinforce-
ment learning. While often successful, gradual progression fails for tasks that
require frequent switches between exploration and memorization. To better address
these tasks and alleviate the imitation gap we propose ‘Adaptive Insubordination’
(ADVISOR). ADVISOR dynamically weights imitation and reward-based rein-
forcement learning losses during training, enabling on-the-fly switching between
imitation and exploration. On a suite of challenging tasks set within gridworlds,
multi-agent particle environments, and high-fidelity 3D simulators, we show that
on-the-fly switching with ADVISOR outperforms pure imitation, pure reinforce-
ment learning, as well as their sequential and parallel combinations.

1 Introduction

Imitation learning (IL) can be remarkably successful in settings where reinforcement learning (RL)
struggles. For instance, IL has been shown to succeed in complex tasks with sparse rewards [9, 51, 48],
and when the observations are high-dimensional, e.g., in visual 3D environments [35, 58]. To succeed,
IL provides the agent with consistent expert supervision at every timestep, making it less reliant on
the agent randomly attaining success. To obtain this expert supervision, it is often convenient to use
“privileged information,” i.e., information that is unavailable to the student at inference time. This
privileged information takes many forms in practice. For instance, in navigational tasks, experts
are frequently designed using shortest path algorithms which access the environment’s connectivity
graph [e.g., 20]. Other forms of privilege include semantic maps [e.g., 64, 14], the ability to see into
“the future” via rollouts [65], and ground-truth world layouts [8]. The following example shows how
this type of privileged information can result in IL dramatically failing.

Example 1 (Poisoned Doors). Suppose an agent is presented with N > 3 doors dy,...,dy. As
illustrated in Fig. 1 (for N = 4), opening d; requires entering an unknown fixed code of length M.
Successful code entry results in a reward of 1, otherwise the reward is 0. Since the code is unknown
to the agent, it would need to learn the code by trial and error. All other doors can be opened without
a code. For some randomly chosen 2 < j < N (sampled each episode), the reward behind d; is 2 but
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foralli € {2,...,N}\ {j} the reward behind d; is —2. Without knowing j, the optimal policy is to
always enter the correct code to open d; obtaining an expected reward of 1. In contrast, if the expert
is given the privileged knowledge of the door d; with reward 2, it will always choose to open this
door immediately. It is easy to see that an agent without knowledge of j attempting to imitate such an
expert will learn to open a door among da, . . ., dy uniformly at random obtaining an expected return
of =2 (N — 3)/(IN — 1). In this setting, training with reward-based RL after a ‘warm start’ with IL
is strictly worse than starting without it: the agent needs to unlearn its policy and then, by chance,
stumble into entering the correct code for door d;, a practical impossibility when M is large.

To characterize this imitation failure, we show that training a student

to imitate a teacher who uses privileged information results in the T 5o B
student learning a policy which marginalizes out this privileged in- 5 5 o 5
formation. This can result in a sub-optimal, even uniformly random, @ ? 0 ?
student policy over a large collection of states. We call the discrep-
ancy between the teacher’s and student’s policy the imitation gap. ‘ 1‘2 -2

To bridge the imitation gap, we introduce Adaptive Insubordination T f
(ADVISOR). ADVISOR adaptively weights imitation and RL losses. Consistent High-value
Specifically, throughout training we use an auxiliary actor which ~ reward behind  door chosen
judges whether the current observation is better treated using an IL locked door at random
or a RL loss. For this, the auxiliary actor attempts to reproduce the
teacher’s action using the observations of the student at every step.
Intuitively, the weight corresponding to the IL loss is large when the auxiliary actor can reproduce
the teacher’s action with high confidence.

Figure 1: POISONEDDOORS.

We study the benefits of ADVISOR on thirteen tasks, including ‘POISONEDDOORS’ from Ex. 1, a 2D
“lighthouse” gridworld, a suite of tasks set within the MINIGRID environment [9, 10], Cooperative
Navigation with limited range (COOPNAV) in the multi-agent particle environment (MPE) [47, 42],
and two navigational tasks set in 3D, high visual fidelity, simulators of real-world living environments
(POINTNAV in ATHABITAT [58] and OBJECTNAV in ROBOTHOR [35, 15]). Our results show that,
e the imitation gap’s size directly impacts agent performance when using modern learning methods,
o ADVISOR is performant (outperforming IL and RL baselines), robust, and sample efficient,

o ADVISOR can succeed even when expert supervision is partially corrupted, and
o ADVISOR can be easily integrated in existing pipelines spanning diverse observations (grids and
pixels), actions spaces (discrete and continuous), and algorithms (PPO and MADDPG).

2 Related Work

A series of methods [e.g., 45, 69, 3, 59] have made off-policy deep Q-learning stable for complex
environments like Atari Games. Several high-performance (on-policy) policy-gradient methods for
deep-RL have also been proposed [60, 46, 38, 72, 65]. For instance, Trust Region Policy Optimization
(TRPO) [60] improves sample-efficiency by safely integrating larger gradient steps. Proximal Policy
Optimization (PPO) [62] employs a clipped variant of TRPO’s surrogate objective and is widely
adopted in the deep RL community. We use PPO as a baseline in our experiments.

As environments get more complex, navigating the search space with only deep RL and simple
heuristic exploration (such as e-greedy) is increasingly difficult. Therefore, methods that imitate
expert (i.e., teacher) supervision were introduced. A popular approach to imitation learning (IL) is
Behaviour Cloning (BC), i.e., use of a supervised classification loss between the policy of the student
and expert agents [57, 2]. However, BC suffers from compounding errors. Namely, a single mistake
of the student may lead to settings that have never been observed in training [55]. To address this,
Data Aggregation (DAgger) [56] trains a sequence of student policies by querying the expert at states
beyond those that would be reached by following only expert actions. IL is further enhanced by, e.g.,
hierarchies [37], improving over the expert [5, 4, 31], bypassing any intermediate reward function
inference [25], and/or learning from experts that differ from the student [19, 30, 17]. Importantly, a
sequential combination of IL and RL, i.e., pre-training a model on expert data before letting the agent
interact with the environment, performs remarkably well. This strategy has been applied in a wide
range of applications — the game of Go [65], robotic and motor skills [53, 34, 52, 54], navigation in
visually realistic environments [20, 13, 27, 29], and web & language based tasks [22, 12, 63, 71].



More recent methods mix expert demonstrations with the agent’s own rollouts instead of using a
sequential combination of IL followed by RL. Chemali and Lazaric [6] perform policy iteration from
expert and on-policy demonstrations. DQfD [24] initializes the replay buffer with expert episodes
and adds rollouts of (a pretrained) agent. They weight experiences based on the previous temporal
difference errors [59] and use a supervised loss to learn from the expert. For continuous action
spaces, DDPGfD [70] analogously incorporates IL into DDPG [39]. POfD [32] improves by adding
a demonstration-guided exploration term, i.e., the Jensen-Shannon divergence between the expert’s
and the learner’s policy (estimated using occupancy measures). THOR uses suboptimal experts to
reshape rewards and then searches over a finite planning horizon [66]. Zhu et al. [78] show that a
combination of GAIL [25] and RL can be highly effective for difficult manipulation tasks.

Critically, the above methods have, implicitly or explicitly, been designed under certain assumptions
(e.g., the agent operates in an MDP) which imply the expert and student observe the same state.
Different from the above methods, we investigate the difference of privilege between the expert policy
and the learned policy. Contrary to a sequential, static, or rule-based combination of supervised loss
or divergence, we train an auxiliary actor to adaptively weight IL and RL losses. To the best of our
knowledge, this hasn’t been studied before. In concurrent work, Warrington et al. [74] address the
imitation gap by jointly training their teacher and student to adapt the teacher to the student. For our
applications of interest, this work is not applicable as our expert teachers are fixed.

Our approach attempts to reduce the imitation gap directly, assuming the information available to the
learning agent is fixed. An indirect approach to reduce this gap is to enrich the information available
to the agent or to improve the agent’s memory of past experience. Several works have considered this
direction in the context of autonomous driving [11, 21] and continuous control [18]. We expect that
these methods can be beneficially combined with the method that we discuss next.

3 ADVISOR

We first introduce notation to define the imitation gap and illustrate how it arises due to ‘policy
averaging.” Using an ‘auxiliary policy’ construct, we then propose ADVISOR to bridge this gap.
Finally, we show how to estimate the auxiliary policy in practice using deep networks. In what
follows we will use the terms teacher and expert interchangeably. Our use of “teacher” is meant to
emphasize that these policies are (1) designed for providing supervision for a student and (2) need
not be optimal among all policies.

3.1 Imitation gap

We want an agent to complete task 7 in environment £. The environment has states s € S and
the agent executes an action a € A at every discrete timestep ¢ > 0. For simplicity and w.l.o.g.
assume both A and S are finite. For example, let £ be a 1D-gridworld in which the agent is tasked
with navigating to a location by executing actions to move left or right, as shown in Fig. 2a. Here
and below we assume states s € S encapsulate historical information so that s includes the full
trajectory of the agent up to time ¢ > 0. The objective is to find a policy 7, i.e., a mapping from
states to distributions over actions, which maximizes an evaluation criterion. Often this policy search
is restricted to a set of feasible policies I, for instance 1% may be the set {r(+;6) : § € RP}
where 7(-;6) is a deep neural network with D-dimensional parameters 6. In classical (deep) RL
[45, 46], the evaluation criterion is usually the expected ~y-discounted future return.

We focus on the setting of partially-observed Markov decision processes (POMDPs) where an agent
makes decisions without access to the full state information. We model this restricted access by
defining a filtration function f : S — Oy and limiting the space of feasible policies to those policies
Hffm' for which the value of 7(s) depends on s only through f(s), i.e., so that f(s) = f(s’) implies

m(s) = m(s’). We call any 7 satisfying this condition an f-restricted policy and the set of feasible
f-restricted policies Hi?“'. In a gridworld example, f might restrict s to only include information
local to the agent’s current position as shown in Figs. 2¢, 2d. If a f-restricted policy is optimal among
all other f-restricted policies, we say it is f-optimal. We call o € Oy a partial-observation and for
any f-restricted policy 7y we write 7 (o) to mean 7y (s) if f(s) = o. It is frequently the case that,
during training, we have access to a teacher policy which is able to successfully complete the task 7.
This teacher policy may have access to the whole environment state and thus may be optimal among
all policies. Alternatively, the teacher policy may, like the student, only make decisions given partial
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Figure 2: Effect of partial observability in a 1-dimensional gridworld environment. (a) The two
start states and actions space for 1D-Lighthouse with NV = 4. (b) A trajectory of the agent following
a hypothetical random policy. At every trajectory step we display output probabilities as per the
shortest-path expert (7" for each state. (c/d) Using the same trajectory from (b) we highlight the
partial-observations available to the agent (shaded gray) under different filtration function f*, f2.
Notice that, under f1, the agent does not see the goal within its first four steps. The policies W}LI , W}LQ,

learned by imitating 72", show that imitation results in sub-optimal policies, i.e., 77}]1 , waLz £ qricach

information (e.g., a human who sees exactly the same inputs as the student). For flexibility we will
define the teacher policy as thfliﬂ?,, denoting it is an f teach_pestricted policy for some filtration function

f1*". For simplicity, we will assume that 753 is f*“*“"-optimal. Subsequently, we will drop the

subscript f'°*M unless we wish to explicitly discuss multiple teachers simultaneously.

In IL [49, 56], 7y is trained to mimic m'h by minimizing the (expected) cross-entropy between 7 ¥
and 7' over a set of sampled states s € S:

min ]EM[CE(ﬂ_teach’ﬂ.f)(S)] , (1)
ﬂ_fent}jas.

where CE(r'h 7)(S9) = —n'®*(S) ® log 74(S), ® denotes the usual dot-product, and S is a
random variable taking values s € S with probability measure p : S — [0, 1]. Often u(s) is chosen
to equal the frequency with which an exploration policy (e.g., random actions or 72") visits state s

teach
T

in a randomly initialized episode. When it exists, we denote the policy minimizing Eq. (1) as 7 ¥

teach
w7

M are unambiguous, we write 7 = 7

When p and 7
What happens when there is a difference of privilege (or filtration functions) between the teacher and
the student? Intuitively, if the information that a teacher uses to make a decision is unavailable to the
student then the student has little hope of being able to mimic the teacher’s decisions. As we show in
our next example, even when optimizing perfectly, depending on the choice of f and f*N, IL may
result in 77}1‘ being uniformly random over a large collection of states. We call the phenomenon that

W}L £ 7' the imitation gap.

Example 2 (1D-Lighthouse). We illustrate the imitation gap using a gridworld spanning
{=N,...,N}. The two start states correspond to the goal being at either —N or N, while the
agent is always initialized at O (see Fig. 2a). Clearly, with full state information, 7'°*" maps states to
an ‘always left’” or ‘always right’ probability distribution, depending on whether the goal is on the left
or right, respectively. Suppose now that the agent’s visibility is constrained to a radius of 7 (Fig. 2c
shows i = 1), i.e., an f-restricted observation is accessible. An agent following an optimal policy
with a visibility of radius 7 will begin to move deterministically towards any corner, w.l.0.g. assume
right. When the agent sees the rightmost edge (from position N — 7), it will either continue to move
right if the goal is visible or, if it’s not, move left until it reaches the goal (at — V). Now we may ask:
what is the best f*-restricted policy that can be learnt by imitating 7" (j.e., what is 71'}[‘ )? Tragically,
the cross-entropy loss causes 7T5£L to be uniform in a large number of states. In particular, an agent
following policy W;L,- will execute left (and right) actions with probability 0.5, until it is within a
distance of ¢ from one of the corners. Subsequently, it will head directly to the goal. See the policies
highlighted in Figs. 2c, 2d. The intuition for this result is straightforward: until the agent observes
one of the corners it cannot know if the goal is to the right or left and, conditional on its observations,
each of these events is equally likely under i (assumed uniform). Hence for half of these events the
teacher will instruct the agent to go right. For the other half the instruction is to go left. See App. A.1
for a rigorous treatment of this example. In Sec. 4 and Fig. 6, we train f*-restricted policies with



f7-optimal teachers for a 2D variant of this example. We empirically verify that a student learns a
better policy when imitating teachers whose filtration function is closest to their own.

The above example shows: when a student attempts to imitate an expert that is privileged with
information not available to the student, the student learns a version of 7'**" in which this privileged
information is marginalized out. We formalize this intuition in the following proposition.

Proposition 1 (Policy Averaging).
In the setting of Section 3.1, suppose that IV**" contains all f-restricted policies. Then, for any s € S
with 0 = f(s), we have that 7'f(0) = E ,[7"“"(S) | f(S) = o).

Given our definitions, the proof of this proposition is quite straightforward, see Appendix A.2.

The imitation gap provides theoretical justification for the common practical observation that an agent
trained via IL can often be significantly improved by continuing to train the agent using pure RL
(e.g., PPO) [42, 14]. Obviously training first with IL and then via pure RL is ad hoc and potentially
sub-optimal as discussed in Ex. 1 and empirically shown in Sec. 4. To alleviate this problem, the
student should imitate the teacher’s policy only in settings where the teacher’s policy can, in principle,
be exactly reproduced by the student. Otherwise the student should learn via ‘standard’ RL. To
achieve this we introduce ADVISOR.

3.2 Adaptive Insubordination (ADVISOR) with Policy Gradients

To close the imitation gap, ADVISOR adaptively weights reward-based and imitation losses. Intu-
itively, it supervises a student by asking it to imitate a teacher’s policy only in those states s € S for
which the imitation gap is small. For all other states, it trains the student using reward-based RL.
To simplify notation, we denote the reward-based RL loss via E,,[L(#, S)] for some loss function
L.2 This loss formulation is general and spans all policy gradient methods, including A2C and PPO.
The imitation loss is the standard cross-entropy loss E,[C E(7*!(S), 7¢(S;6))]. Concretely, the
ADVISOR loss is:

LAY (0) = B, [w(S) - CE(x'*™(S), 71(S;0)) + (1 — w(S)) - L(6, S)] - 2)

Our goal is to find a weight function w : S — [0, 1] where w(s) =~ 1 when the imitation gap is small
and w(s) ~ 0 otherwise. For this we need an estimator of the distance between 7' and W}L ata

state s and a mapping from this distance to weights in [0, 1].

We now define a distance estimate d°(7, w¢)(s) between a policy 7 and an f-restricted policy ¢
at a state s. We can use any common non-negative distance (or divergence) d between probability
distributions on A, e.g., in our experiments we use the KL-divergence. While there are many possible
strategies for using d to estimate d°(m, 7¢)(s), perhaps the simplest of these strategies is to define
d®(m,7¢)(s) = d(m(s),m¢(s)). Note that this quantity does not attempt to use any information
about the fiber f~!(/f(s)) which may be useful in producing more holistic measures of distances.
Appendix A.3 considers how those distances can be used in lieu of d°. Next, using the above, we
need to estimate the quantity d° (7", 7'F)(s).

Unfortunately it is, in general, impossible to compute d° (7', waL)(s) exactly as it is intractable to
compute the optimal minimizer 7T£CL. Instead we leverage an estimator of 7'('}1‘ which we term 7%, and
which we will define in the next section.

Given 7™ we obtain the estimator d° (7", 74**) of d°(7'**", 7). Additionally, we make use of

the monotonically decreasing function m, : R>g — [0, 1], where o > 0. We define our weight

2For readability, we implicitly make three key simplifications. First, computing the expectation E,[...]is
generally intractable, hence we cannot directly minimize losses such as E,[L(6, S)]. Instead, we approximate
the expectation using rollouts from p and optimize the empirical loss. Second, recent RL methods adjust the
measure y over states as optimization progresses while we assume it to be static for simplicity. Our final
simplification regards the degree to which any loss can be, and is, optimized. In general, losses are often
optimized by gradient descent and generally no guarantees are given that the global optimum can be found.
Extending our presentation to encompass these issues is straightforward but notationally dense.

*Measures using such information include max/ ¢ ;—1 (f(s) A(m(s"), s (s)) or a corresponding expectation
instead of the maximization, i.e., E, [d(7(S), 7¢(S)) | f(S) = o].
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Figure 4: Representative tasks from experiments. 2D-LH: Harder 2D variant of the gridworld task
introduced in Ex. 2. LAVACROSSING: one of our 8 tasks in the MINIGRID environment requiring safe
navigation. We test up-to 15 x 15 grids with 10 lava rivers. COOPNAV: A multi-agent cooperative
task set in multi-agent particle environments. POINTNAV: An agent embodied in the ATHABITAT
environment must navigate using egocentric visual observations to a goal position specified by a GPS
coordinate. OBJECTNAV: An agent in ROBOTHOR must navigate to an object of a given category.

function w(s) for s € S as:

w(s) = ma(do(ﬂte“h,ﬂ?”")(s)) with mg(x) = e ", 3)

3.3 The Auxiliary Policy 7*": Estimating 7} in Practice

In this section we describe how we can, during training, obtain an auxiliary policy m™

which estimates 7i.  Given this auxiliary policy we estimate d°(7'**" 7!")(s) using the

plug-in estimator d° (w‘ea“h,ﬂ‘}“")(s). While plug-in estimators are intuitive and simple to de-
fine, they need not be statistically efficient. In Appendix A.4 we consider possible strate-
gies for improving the statistical efficiency of our plug-in estimator via prospective estimation.

In Fig. 3 we provide an overview of how we com- Nex partial, Env AC“;O" © sample
pute the estimator 7™ via deep nets. As is com- (5:0)

. Actor H
mon practice [46, 23, 26, 50, 44, 9, 7, 28, 731, oy

the policy net 7 (+; #) is composed via a, o ry
with § = (v, \), where a, is the actor head
(possibly complemented in actor-critic models

Value
o

. . f(s)=o ux (g. 9’
by a critic head v,)) and r) is called the repre- Partial TG T3 (5;6")
. o 4 ' ptionally o
sentation network. Generally a,, is lightweight,  observation  share backbone z

for instance a linear layer or a shallow MLP
followed by a soft-max function, while r) is a
deep, and possibly recurrent neural, net. We add
another actor head a, to our existing network
which shares the underlying representation r}, i.e., 77}“" = a, o ry. We experiment with the actors

Figure 3: Model overview. An auxiliary actor is
added and trained only using IL. The ‘main’ actor
policy is trained using the ADVISOR loss.

sharing their representation r and estimating W;L via two separate networks, i.e., ' = (/, \'). In
practice we train 7 (-; ) and ﬂ}”"(~; 0) jointly using stochastic gradient descent, as summarized in
Alg. Al

4 Experiments

We rigorously compare ADVISOR to IL methods, RL methods, and popularly-adopted (but often ad
hoc) IL & RL combinations. In particular, we evaluate 15 learning methods. We do this over thirteen
tasks — realizations of Ex. 1 & Ex. 2, eight tasks of varying complexity within the fast, versatile
MINIGRID environment [9, 10], Cooperative Navigation (COOPNAV) with reduced visible range in
the multi-agent particle environment (MPE) [47, 41], PointGoal navigation (POINTNAV) using the



Tasks — PD LAVACROSSING WALLCROSSING

Training routines | - Base Ver. Corrupt Exp. Faulty Switch  Once Switch Base Ver.  Corrupt Exp.  Faulty Switch  Once Switch
RL 0 0 0 0.01 0 0.09 0.07 0.12 0.05

IL -0.59 0.88 0.02 0.02 0 0.96 0.05 0.17 0.11

IL & RL -0.17 0.94 0.74 0.04 0 0.97 0.18 0.17 0.1
Demo. Based -0.09 0.96 0.2 0.02 0 0.97 0.07 0.18 0.11
ADV. Based (ours) 1 0.96 0.94 0.77 0.8 0.97 0.31 0.38 0.45

Table 1: Expected rewards for the POISONEDDOORS task and MINIGRID tasks. For each of
our 15 training routines we report the expected maximum validation set performance (when given a
budget of 10 random hyperparameter evaluations) after training for ~300k steps in POISONEDDOORS
and ~1Mn steps in our 8§ MINIGRID tasks. The maximum reward is 1 for the MINIGRID tasks.

Gibson dataset in AIHABITAT [77, 58], and ObjectGoal Navigation (OBJECTNAV) in ROBOTHOR
[15]. Furthermore, to probe robustness, we train 50 hyperparameter variants for each of the 15
learning methods for our MINIGRID tasks. We find ADVISOR-based methods outperform or match
performance of all baselines.

All code to reproduce our experiments will be made public under the Apache 2.0 license.” The
environments used are public for academic and commercial use under the Apache 2.0 (MINIGRID
and ROBOTHOR) and MIT licence (MPE and ATHABITAT).

4.1 Tasks

Detailed descriptions of our tasks (and teachers) are deferred to Appendix A.5. See Fig. 4 for a
high-level overview of 5 representative tasks.

4.2 Baselines and ADVISOR-based Methods

We briefly introduce baselines and variants of our ADVISOR method. Further details of all methods
are in Appendix A.7. For fairness, the same model architecture is shared across all methods (recall
Fig. 3, Sec. 3.3). We defer implementation details to Appendix A.8.

o RL only. Proximal Policy Optimization [62] serves as the pure RL baseline for all our tasks with a
discrete action space. For the continuous and multi-agent COOPNAV task, we follow prior work and
adopt MADDPG [41, 40].

o IL only. IL baselines where supervision comes from an expert policy with different levels of
teacher-forcing (tf), i.e., tf=0, tf annealed from 1—0, and tf=1. This leads to Behaviour Cloning
(BC), Data Aggregation (DAgger or 1), and BC'™™', respectively [57, 2, 56].

o IL & RL. Baselines that use a mix of IL and RL losses, either in sequence or in parallel. These are
popularly adopted in the literature to warm-start agent policies. Sequential combinations include BC
then PPO (BC—PPO), DAgger then PPO (f — PPO), and BC'™! — PPO. The parallel combination
of BC + PPO(static) is a static analog of our adaptive combination of IL and RL losses.

e Demonstration-based. These agents imitate expert demonstrations and hence get no supervision
beyond the states in the demonstrations. We implement BC*™, its combination with PPO
(BC¥™  PPO), and Generative Adversarial Imitation Learning (GAIL) [25].

o ADVISOR-based (ours). Our Adaptive Insubordination methodology can learn from an expert
policy and can be given a warm-start via BC or DAgger. This leads to ADVISOR (ADV),

BC™! — ADV, and t — ADV) baselines. Similarly, ADV*™ + PPO employs Adaptive
Insubordination to learn from expert demonstrations while training with PPO on on-policy rollouts.

4.3 Evaluation

Fair Hyperparameter Tuning. Often unintentionally done, extensively tuning the hyperparameters
(hps) of a proposed method and not those of the baselines can introduce unfair bias into evaluations.

“The ROBOTHOR environment is a sub-environment of AI2-THOR [35].
>See https://unnat.github.io/advisor/ for an up-to-date link to this code.
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Figure 5: Evaluation following [16]. Plots for 15 training routines in four selected tasks (additional
plots in appendix). For clarity, we highlight the best performing training routine within five categories,
e.g., RL only, IL only efc. (details in Sec. 4.2) with all other plots shaded lighter. (a)-(d) As
described in Sec. 4.3 we plot RobustReward@ 10 at multiple points during training. (e)-(f) Plots of
RobustReward@N for values of N € {1,...,45}. Recall that RobustReward@ N is the expected
validation reward of best-found model when allowed N random hyperparameter evaluations.

Tasks — PointGoal Navigation ObjectGoal Navigation Cooperative Navigation
SPL Success SPL Success Reward
Training routines | @10% @100% @10% @I100% @I10% @100% @I10% @I100% @I10% @]100%
RL only 30.9 54.7 54.7 79.0 6.7 13.1 11.1 31.6 —561.8 —456.0
IL only 30.1 68.7 355 76.7 38 9 8.8 13.6 —460.3 —416.7
IL + RL static 48.9 71.5 56.7 78.2 6.5 11.3 11.7 19.8 —475.5 —424.6
ADVISOR (ours) 57.7 77.1 67.3 88.2 11.9 14.1 22.7 29.9 —419.9 —405.6

Table 2: Quantitative results for high-fidelity visual environments and continuous control. Val-
idation set performance after 10% and 100% of training has completed for four training routines on
the POINTNAV, OBJECTNAV, and COOPNAV tasks (specifics of these routines can be found in the
Appendix). For POINTNAV and OBJECTNAV we include the common success weighted path length
(SPL) metric [1] in addition to the success rate.

We avoid this by considering two strategies. For PD and all MINIGRID tasks, we follow recent best
practices [16]. Namely, we tune each method by randomly sampling a fixed number of hps and
reporting, for each baseline, an estimate of

RobustReward@ K = E[Val. reward of best model from k random hyperparam. evaluations] (4)

for 1 < k < 45. For this we must train 50 models per method, i.e., 750 for each of these nine tasks.
In order to show learning curves over training steps we also report RobustReward@10 at 5 points
during training. More details in Appendix A.9. For 2D-LH, we tune the hps of a competing method
and use these hps for all other methods.

Training. For the eight MINIGRID tasks, we train each of the 50 training runs for 1 million steps. For
2D-LH/PD, models saturate much before 3 - 10° steps. POINTNAV, OBJECTNAV, and COOPNAV
are trained for standard budgets of 50Mn, 100Mn, and 1.5Mn steps. Details are in Appendix A.10.
Metrics. We record standard metrics for each task. This includes avg. rewards (PD, MINIGRID tasks,
and OBJECTNAV), and avg. episode lengths (2D-LH). Following visual navigation works [1, 58, 15],
we report success rates and success-weighted path length (SPL) for POINTNAV and OBJECTNAV. In
the following, we report a subset of the above and defer additional plots to Appendix A.11.

4.4 Results

In the following, we include takeaways based on the results in Fig. 5, Fig. 6, Tab. 1, and Tab. 2.

Smaller imitation gap — better performance. A central claim of our paper is that the
imitation gap is not merely a theoretical concern: the degree to which the teacher is privi-



leged over the student has significant impact on the student’s performance. To study this em-
pirically, we vary the degree to which teachers are privileged over its students in our 2D-LH
task. In particular, we use behavior cloning to train an fi-restricted policy (i.e., an agent
that can see i grid locations away) using an f7-optimal teacher 25 times. Each policy is
then evaluated on 200 random episodes and the average episode length (lower being better)
is recorded. For select ¢,; pairs we show boxplots of the 25 average episode lengths in
Fig. 6. See our appendix for similar plots when using other training routines (e.g., ADVISOR).
Grey vertical lines show optimal average
episode lengths for f?-restricted policies. We ’
find that training an f?-restricted policy with an l[
f7-expert results in a near optimal policy when
i = 7 but even small increases in j dramati-
cally decrease performance. While performance
tends to drop with increasing 7, the largest ¢, j
gaps do not consistently correspond to the worst
performing models. While this seems to differ
from our results in Ex. 2, recall that there the

policy 1 was fixed while here it varies through 0 200 100 600 500
training, resulting in complex learning dynam- Avg. Ep. Length for BC

ics. Surprisingly we also find that, even when Figure 6: The size of the imitation gap directly
there is no imitation gap (e.g., the ¢ = j case), impacts performance (in 2D-LH).

ADVISOR can outperform BC, see App. A.6.

———— l View Radius
e —— ]
of Teacher (j)

-
<+—— Better performance
{ —— i j=3,5,...,15

e
—
e

—_—

—_———

" —— 1 Smaller l j=5,7,..,15
o —— 0 T “ T i
———— mitation Gap

’ ¢ i=179..,15

View Radius of
Student Agent (i)
—_—

§ 7=9,11,13,15

| = v j=11,13,15

—
—
-

ADVISOR outperforms, even in complex visual environments. Across all of our tasks,
ADVISOR-based methods perform as well or better than competing methods. In particular, see Tab. 1
for our results on the POISONEDDOORS (PD) and MINIGRID tasks and Tab. 2 for our results on the
POINTNAV, OBJECTNAV, and COOPNAV tasks. 2D-LH results are deferred to the Appendix.

While the strong performance of ADVISOR is likely expected on our PD, MINIGRID, and 2D-LH
tasks (indeed we designed a subset of these with the explicit purpose of studying the imitation gap),
it is nonetheless surprising to see that in the PD and LC ONCE SWITCH tasks, all non-ADVISOR
methods completely fail. Moreover, it is extremely promising to see that ADVISOR can provide
substantial benefits in a variety of standard tasks, namely OBJECTNAV, POINTNAV, and COOPNAV
with limited visible range. Note that OBJECTNAV and POINTNAV are set in 3D high-fidelity visual
environments while COOPNAV requires multi-agent collaboration in a continuous space.

ADVISOR is sample efficient. To understand the sample efficiency of ADVISOR, we plot valida-
tion set performance over training of select tasks (see Figures 5a to 5d) and, in Table 2 we show
performance of our models after 10% of training has elapsed for the OBJECTNAV, POINTNAV, and
CoOPNAV tasks. Note that in Table 2, ADVISOR trained models frequently reach better performance
after 10% of training than other methods manage to reach by the end of training.

ADVISOR is robust. Rigorously studying sensitivity to hyperparameter choice requires retraining
every method under consideration tens to hundreds of times. This computational task can make
evaluating our methods on certain tasks infeasible (training a single POINTNAV or OBJECTNAV
model can easily require a GPU-week of computation). Because of these computational constraints,
we limit our study of robustness to the PD and MINIGRID tasks. In Figures Se to 5h (additional
results in Appendix) we plot, for each of the 15 evaluated methods, how the expected performance of
each method behaves as we increase the budget of random hyperparameter evaluations. In general,
relatively few hyperparameter evaluations are required for ADVISOR before a high performance
model is expected to be found.

Expert demonstrations can be critical to success. While it is frequently assumed that on-policy
expert supervision is better than learning from off-policy demonstrations, we found several instances
in our MINIGRID experiments where demonstration-based methods outperformed competing methods.
See, for example, Figures 5b and 5f. In such cases our demonstration-based ADVISOR variant (see
Appendix A.7 for details) performed very well.

ADVISOR helps even when the expert is corrupted. In LC CORRUPT EXPERT and WC CORRUPT
EXPERT, where the expert is designed to be corrupted (outputting random actions as supervision)
when the agent gets sufficiently close to the goal. While ADVISOR was not designed with the



possibility of corrupted experts in mind, Figures 5d and 5h (see also Table 1) show that ADVISOR
can succeed despite this corruption.

5 Conclusion

We propose the imitation gap as one explanation for the empirical observation that imitating “more
intelligent” teachers can lead to worse policies. While prior work has, implicitly, attempted to bridge
this gap, we introduce a principled adaptive weighting technique (ADVISOR), which we test on a
suite of thirteen tasks. Due to the fast rendering speed of MINIGRID, PD, and 2D-LH, we could
undertake a study where we trained over 6 billion steps, to draw statistically significant inferences.

6 Limitations and Societal Impact

While we have attempted to robustly evaluate our proposed ADVISOR methodology, we have
primarily focused our experiments on navigational tasks where shortest path experts can be quickly
computed. Further work is needed to validate that ADVISOR can be successful in other domains,
e.g., imitation in interactive robotic tasks or natural language applications.

While the potential for direct negative societal impact of this work is small, it is worth noting that, in
enabling agents to learn more effectively from expert supervision, this work makes imitation learning
a more attractive option to RL researchers. If expert supervision is obtained from humans, RL agents
trained with such data will inevitably reproduce any (potentially harmful) biases of these humans.
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Appendix: Bridging the Imitation Gap by Adaptive Insubordination

The appendix includes theoretical extensions of ideas presented in the main paper and details of
empirical analysis. We structure the appendix into the following subsections:

A.1 A formal treatment of Ex. 2 on 1D-Lighthouse.
A.2 Proof of Proposition 1.

A.3 Distance measures beyond d2 ()(s) = d(m(s), 7(s)) utilized in ADVISOR.®

A.4 Future strategies for improving statistical efficiency of d ., (7‘(‘?‘) (s) estimator and a prospec-

s
tive approach towards it.

A.5 Descriptions of all the tasks that we evaluate baselines on, including values for grid size,
obstacles, corruption distance efc. We also include details about observation space for each
of these tasks.

A.6 Initial results showing that ADVISOR can outperform behavior cloning even when there is
no imitation gap.

A.7 Additional details about nature of learning, expert supervision and hyperparameters searched
for each baseline introduced in Sec. 4.2.

A.8 Details about the underlying model architecture for all baselines across different tasks.

A.9 Methodologies adopted for ensuring fair hyperparameter tuning of previous baselines when
comparing ADVISOR to them.

A.10 Training implementation including maximum steps per episode, reward structure and com-
puting infrastructure adopted for this work. We clearly summarize all structural and training
hyperparameters for better reproducibility.

A.11 Additional results including plots for all tasks to supplement Fig. 5, a table giving an
expanded version of the Tab. 1, and learning curves to supplement Tab. 2.

A Additional Information

A.1 Formal treatment of Example 2

Let N > 1 and consider a 1-dimensional grid-world with states S = {—N, N} x {0,...,T} x
{=N,...,N}T. Here g € {—N, N} are possible goal positions, elements ¢ € {0,...,T} corre-
spond to the episode’s current timestep, and (p;)._, € {—N,..., N}* correspond to possible agent
trajectories of length 7. Taking action a € A = {left, right} = {—1,1} in state (g,t, (p;)L,) € S
results in the deterministic transition to state (g,¢ + 1, (p1, . . ., pt, clip(ps + a,—N, N),0,...,0)).
An episode start state is chosen uniformly at random from the set {(+N,0, (0,...,0))} and the goal
of the agent is to reach some state (g, t, (p;)7_;) with p, = g in the fewest steps possible. We now
consider a collection of filtration functions f¢, that allow the agent to see spaces up to 7 steps left/right
of its current position but otherwise has perfect memory of its actions. See Figs. 2c, 2d for examples
of f1-and f2-restricted observations. For 0 < i < N we define f so that

fi(gat7 (pz)?zl) = ((607“-3625)7(1)1_pOa"'vpt_pt—l)) and (5)
by = (Lp,4k=N) — Lp4h=—n1 | kK € {—i,...,i}) for0<j<t. (6)

Here ¢; is a tuple of length 2 -4 + 1 and corresponds to the agent’s view at timestep j while py41 — px
uniquely identifies the action taken by the agent at timestep k. Let 7'®*" be the optimal policy
given full state information so that 7" (g, ¢, (p;)]_;) = (1y=—n], 1jg=n]) and let ;2 be a uniform
distribution over states in S. It is straightforward to show that an agent following policy ﬂ}% will
take random actions until it is within a distance of ¢ from one of the corners {—N, N'} after which
it will head directly to the goal, see the policies highlighted in Figs. 2c, 2d. The intuition for this
result is straightforward: until the agent observes one of the corners it cannot know if the goal is
to the right or left and, conditional on its observations, each of these events is equally likely under
1. Hence in half of these events the expert will instruct the agent to go right and in the other half

5We overload main paper’s notation d° (7, 77 ) (s) with d2 () (s)
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Algorithm A.1: On-policy ADVISOR algorithm overview. Some details omitted for clarity.

Input: Trainable policies (77, 74" ), expert policy wt€ah rollout length L, environment &.
Output: Trained policy
begin
Initialize the environment £
0 < randomly initialized parameters
while Training completion criterion not met do
Take L steps in the environment using 77 (-; #) and record resulting rewards and
observations (restarting £ whenever the agent has reached a terminal state)

Evaluate 7% (-; ¢) and m'eah at each of the above steps

L < the empirical version of the loss from Eq. (2) computed using the above rollout
Compute Vg L using backpropagation
Update 6 using VL via gradient descent

return 7y (-; 6)

to go left. The cross entropy loss will thus force W}Li to be uniform in all such states. Formally,
we will have, for s = (g, t, (p;){_;), 7}i(s) = m<"(s) if and only if ming<4<(pg) — i < —N or
maxo<q<¢(pq) + ¢ > N and, for all other s, we have 7rf1( s) = (1/2,1/2). In Sec. 4, see also Fig. 6,
we train f?-restricted policies with f7-optimal teachers for a 2D variant of this example. |

A.2 Proof of Proposition 1

We wish to show that the minimizer of E,,[— W}CSCh(S ) ©log s (S)] among all f-restricted policies

s is the policy T = E,, [7'*"(S) | £(.S)]. This is straightforward, by the law of iterated expectations
and as ;7 (s) = m(f(s)) by definition. We obtain

E, [~ (S) ©logmp(8)] = —E,u[Eulnfe(S) © logmp(S) | f(S)]]
= ~Eu[Bu[r§"(S) © logms (f(S)) | f(S)]
= ~Eu[Eu[nf2"(S) | £(S)] @ logms(f(S))]
= Eu[-7(f(5)) ©log s (£(5))] - (7
Now let s € S and let 0 = f(s). It is well known, by Gibbs’ inequality, that —7(0) ® log 7¢(0) is
minimized (in 7 (0)) by letting 7 (0) = 7(0) and this minimizer is feasible as we have assumed

that II; contains all f-restricted policies. Hence it follows immediately that Eq. (7) is minimized by
letting 7y = 7 which proves the claimed proposition.

A.3 Other Distance Measures

As discussed in Section 3.2, there are several different choices one may make when choosing
a measure of distance between the expert policy 7'°*" and an f-restricted policy Ty at a state
s € S. The measure of distance we use in our experiments, d2...,(77)(s) = d(7'*(s), s (s)),
has the (potentially) undesirable property that f(s) = f(s’) does not imply that d ..., (7s)(s) =
2 r (1) (s"). While an in-depth evaluation of the merits of different distance measures is beyond
this current work, we suspect that a careful choice of such a distance measure may have a substantial
impact on the speed of training. The following proposition lists a collection of possible distance
measures with a conceptual illustration given in Fig. A.1.

Proposition 2. Let s € S and o = f(s) and for any 0 < 8 < oo define, for any policy m and
f-restricted policy my,

df (71)(s) = Bul(d2(m1)(8))" | £(S) = f(s)]/7, (8)

with d3° (7)(s) equalling the essential supremum of d2(my) under the conditional distribution

P,(- | f(S) = f(s)). As a special case note that

dy 7 (77)(5) = Epuldy (m5)(S) | £(S) = f(5)]-
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Then, for all B > 0 and s € S (almost surely 1), we have that w(s) # w¢(f(s)) if and only if
d2(ms)(s) > 0.

Proof. This statement follows trivially from the definition of 7" and the fact that d(7, 7’) > 0 with
d(m,7") = 0if and only if 7 = 7’. O

The above proposition shows that any d” can be used to consistently detect differences between 72"
and 7TIL i.e., it can be used to detect the imitation gap. Notice also that for any 8 > 0 we have that

d) (T (8) = ) (7) (") whenever f(s) = f(s').
IL

As an alternative to using d°, we now describe how d* th(wf )(s) can be estimated in practice

during training. Let 74" be an estimator of 7r as usual To estimate d,ll ﬂ,,mh(ﬂ'}]‘)(s) we assume

we have access to a functlon approximator gq/, Oy — R parameterized by ¢ € VU, e.g., a neural
network. Then we estimate dM teach (W}L) (s) with g n where 1) is taken to be the minimizer of the loss

Ly e () = B [ (A (8), w3 (1)) — gu(£(5))) |- ©

The following proposition then shows that, assuming that du e (TF) € {gy | 1 € U}, g7 will

equal d! n reacn (7T }“X) and thus g~ 5 may be interpreted as a plug-in estimator of d# pteach (W}L)

Proposition 3. Forany ¢ € U,
Ly s e () = Ep[(d), e (75)(S) = g (F(5))*] + ¢,

where ¢ = E,[(d(7""(S), 7 (f(S))) — dilt,ﬁ“"“h ~(5))?] is constant in 1 and this implies that if
dllmrmh (F?M) € {gy | Y € U} then 95 = dlluﬂ’””h (W?‘”‘).

Proof. In the following we let Oy = f(.S). We now have that
BL[(d(x(8), 74™(05)) = 94(01)) ]
= B, [((d(m=(S), W?”X(O )) = dyy e (15)(S)) + (d Mm(w}””)(S) ~ 95(01)))’]
= E,[(d(m'"(S), 7™ (05)) = dy guesen (7F7)(9))?] + Epul(d icn (7F7)(S) = 95(01)))?]
+2- Eu[((d(m te"‘Ch(S), T (05)) = dyy e (1F7)(9)) + (d picsen (1) (S) = 95(O)))]
= ¢ + Eu[(dy, e (777)(S) = 95(01)))?]
+2- B[((d(mN(S), 75™(05)) = dyy s (177)(S)) - (y, csn (15) (S) = g (O4)))]-
Now as as d? s (T37) (8) = d} s (T37) (") for any s,s" with f(s) = f(s") we have that
d/lm‘each (7‘(‘2}“)(5) —gy(Oy) is constant conditional on O and thus

E[(d(m(8), 7§™(O1)) = dy, i (7F)(S)) - (d), csn (1) (S) = 9(0)) | O]

Eu[(d(@(8), 7§™(05)) = dyy s (77 (S) | O] - Byl e (15)(S) = 9(Oy) | O]
Epldy, e (T7)(S) = d s (77)(S) | O]+ By [d, s (757)(S) — 9u(Oy) | Of]
0.

Combining the above results and using the law of iterated expectations gives the desired result. [

A.4 Future Directions in Improving Distance Estimators

In this section we highlight possible directions towards improving the estimation of d?..., (W}L)(s)
for s € S. As a comprehensive study of these directions is beyond the scope of this work, our aim in
this section is intuition over formality. We will focus on d° here but similar ideas can be extended to
other distance measures, e.g., those in Sec. A.3.
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Figure A.1: Concept Illustration. Here we illustrate several of the concepts from our paper. Suppose
our action space A contains three elements. Then for any s € S and policy 7, the value 7(s) can
be represented as a single point in the 2-dimensional probability simplex {(x,y) € R? |z > 0,y >
0,2 +y < 1} shown as the grey area in (a). Suppose that the fiber f~*(f) contains the three unique
states st, 52, and s3. In (a) we show the hypothetical values of 7P when evaluated at these points.
Proposition 1 says that 7'"(s) lies in the convex hull of {7***"(s%)}3_, visualized as a magenta
triangle in (a). Exactly where 7'"(s) lies depends on the probability measure 4, in (b) we show how
a particular instantiation of x4 may result in a realization of WIL(S) (not to scale). (c) shows how d}rwaoh
measures the distance between 7°*"(s1) and 7' (s'). Notice that it ignores s? and s®. In (d), we

illustrate how d?r,mh produces a “smoothed” measure of distance incorporating information about all

s".

As discussed in the main paper, we estimate d2,.., (}}")(s) by first estimating 7' with 74" and
then forming the “plug-in” estimator dgmh(wz}uX)(S), For brevity, we will write 40 (7%) (s) as d.
While such plug-in estimators are easy to estimate and conceptually compelling, they need not be
statistically efficient. Intuitively, the reason for this behavior is because we are spending too much
effort in trying to create a high quality estimate 73" of W}L when we should be willing to sacrifice

some of this quality in service of obtaining a better estimate of dg.m (ﬂ'lfL) (s). Very general work in

this area has brought about the targeted maximum-likelihood estimation (TMLE) [67] framework.
Similar ideas may be fruitful in improving our estimator d.

Another weakness of d discussed in the main paper is that is not prospective. In the main paper we
assume, for readability, that we have trained the estimator 7™ before we train our main policy. In

practice, we train 7™ alongside our main policy. Thus the quality of 7% will improve throughout
aux

training. To clarify, suppose that, for ¢ € [0, 1], 7}"} is our estimate of 71'}1‘ after (100 - )% of training
has completed. Now suppose that (100 - ¢)% of training has completed and we wish to update
our main policy using the ADVISOR loss given in Eq. (2). In our current approach we estimate
A2 e (W;L)(S) using d?. .., (m%)(s) when, ideally, we would prefer to use A2 e (m§})(s) from the
end of training. Of course we will not know the value of d?rm (77}”’1‘) (s) until the end of training
but we can, in principle, use time-series methods to estimate it. To this end, let g, be a time-series
model with parameters w € €2 (e.g., q,, might be a recurrent neural network) and suppose that we
have stored the model checkpoints (7%}, | i/K < t). We can then train g, to perform forward
prediction, for instance to minimize

[t-K]

‘ 2
> (@ (73 10)(5) = s, (2 (VD))
j=1

and then use this trained q,, to predict the value of d?r.mh (w}”’l‘)(s) The advantage of this prospective
estimator g, is that it can detect that the auxiliary policy will eventually succeed in exactly imitating
the expert in a given state and thus allow for supervising the main policy with the expert cross entropy
loss earlier in training. The downside of such a method: it is significantly more complicated to
implement and requires running inference using saved model checkpoints.

A.5 Additional Task Details
In Figure 4 we gave a quick qualitative glimpse at the various tasks we use in our experiments.

Here, we provide additional details for each of them along with information about observation space
associated with each task. For training details for the tasks, please see Sec. A.10. Our experiments
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were primarily run using the AllenAct learning framework [76], see AllenAct . org for details and
tutorials.

A.5.1 PoisonedDoors (PD)

This environment is a reproduction of our example from Sec. 1. An agent is presented with N = 4
doors dy, . .., d4. Door d is locked, requiring a fixed {0, 1, 2}'° code to open, but always results in
a reward of 1 when opened. For some randomly chosen j € {2,3,4}, opening door d; results in a
reward of 2 and for ¢ ¢ {1, j}, opening door d; results in a reward of —2. The agent must first choose
a door after which, if it has chosen door 1, it must enter the combination (receiving a reward of O if
it enters the incorrect combination) and, otherwise, the agent immediately receives its reward. See
Fig. 1.

A.5.2 2D-Lighthouse (2D-LH)

2D variant of the exemplar grid-world task introduced in Ex. 2,
aimed to empirically verify our analysis of the imitation gap. . .
A reward awaits at a randomly chosen corner of a square grid

of size 2N + 1 and the agent can only see the local region, a
square of size 2i + 1 about itself (an f-restricted observation).
Additionally, all f allow the agent access to it’s previous ac-
tion. As explained in Ex. 2, we experiment with optimizing A
f*-policies when given supervision from f7-optimal teachers
(i.e., experts that are optimal when restricted to f7-restricted
observations). See Fig. A.2 for an illustration.

A.5.3 LavaCrossing (LC) -
[ Goal B Corner Observ
[] Boundary A Agent -ations

Initialized on the top-left corner the agent must navigate to
the bottom-right goal location. There exists at least one path
from start to end, navigating through obstacles. Refer to Fig. 4
where, for illustration, we show a simpler grid. Here the episode
terminates if the agent steps on any of the 1ava obstacles. This
LC environment has size 25 x 25 with 10 lava rivers (‘S25, N10’ as per the notation of [10]), which
are placed vertically or horizontally across the grid. The expert is a shortest path agent with access to
the entire environment’s connectivity graph and is implemented via the networkx python library.

Figure A.2: 2D-LIGHTHOUSE

A.5.4 WallCrossing (WC)

Similar to LAVACROSSING in structure and expert, except that obstacles are walls instead of lava.
Unlike lava (which immediately kills the agent upon touching), the agent may run into walls
without consequence (other than wasting time). Our environment is of size 25 x 25 with 10 walls
(°S25,N10%).

A.5.5 WC/LC Switch

In this task the agent faces a more challenging filtration function. In addition to navigational actions,
agents for this task have a ‘switch’ action. Using this switch action, the agents can switch-on the lights
of an otherwise darkened environment which is implemented as an observation tensor of all zeros. In
WQC, even in the dark, an agent can reach the target by taking random actions with non-negligible
probability. Achieving this in LC is nearly impossible as random actions will, with high probability,
result in stepping into lava and thereby immediately end the episode.

We experiment with two variants of this ‘switch’ — ONCE and FAULTY. In the ONCE SWITCH variant,
once the the ‘switch’ action is taken, the lights remain on for the remainder of the episode. This is
implemented as the unaffected observation tensor being available to the agent. In contrast, in the
FAULTY SWITCH variant, taking the ‘switch’ action will only turn the lights on for a single timestep.
This is implemented as observations being available for one timestep followed by zero tensors (unless
the ‘switch’ action is executed again).
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The expert for these tasks is the same as for WC and LC. Namely, the expert always takes actions
along the shortest path from the agents current position to the goal and is unaffected by whether the
light is on or off. For the expert-policy-based methods this translates to the learner agent getting
perfect (navigational) supervision while struggling in the dark, with no cue for trying the switch
action. For the expert-demonstrations-based methods this translates to the demonstrations being
populated with blacked-out observations paired with perfect actions: such actions are, of course,
difficult to imitate. As FAULTY is more difficult than ONCE (and LC more difficult than WC) we set
grid sizes to reduce the difference in difficulty between tasks. In particular, we choose to set WC
ONCE SWITCH on a (S25, N10) grid and the LC ONCE SWITCH on a (S15, N7) grid. Moreover,
WC FAULTY SWITCH is set with a (S15, N7) grid and LC FAULTY SWITCH with a (S9, N4) grid.

A.5.6 WC/LC Corrupt

In the SWITCH task, we study agents with observations affected by a challenging filtration function.
In this task we experiment with corrupting the expert’s actions. The expert policy flips over to a
random policy when the expert is N¢ steps away from the goal. For the expert-policy-based method
this translates to the expert outputting uniformly random actions once it is within N steps from the
target. For the expert-demonstrations-based methods this translates to the demonstrations consisting
of some valid (observation, expert action) tuples, while the tuples close to the target have the expert
action sampled from a uniform distribution over the action space. WC CORRUPT is a (525, N10)
grid with N = 15, while the LC CORRUPT is significantly harder, hence is a (S15, N7) grid with
N¢ = 10.

A.5.7 PointGoal Navigation

In PointGoal Navigation, a randomly spawned agent must navigate to a goal specified by a relative-
displacement vector. The observation space is composed of rich egocentric RGB observations
(256 x256x3) with a limited field of view. The action space is {move_ahead, rotate_right,
rotate_left, stop}. The task was formulated by [1] and implemented for the ATHABITAT
simulator by [58]. Our reward structure, train/val/test splits, PointNav dataset, and implementation
follow [58]. RL agents are trained using PPO following authors’ implementation’. The IL agent
is trained with on-policy behavior cloning using the shortest-path action. A static combination of
the PPO and BC losses (i.e. a simple sum of the PPO loss and IL cross entropy loss) is also used a
competing baseline for ADVISOR. Note that the agent observes a filtered egocentric observation
while the shortest-path action is inferred from the entire environment state leading to a significant
imitation gap. We train on the standard Gibson set of 76 scenes, and report metrics as an average over
the val. set consisting of 14 unseen scenes in AIHABITAT. We use a budget of 50 million frames, i.e.,
~2 days of training on 4 NVIDIA TitanX GPUs, and 28 CPUs for each method.

A.5.8 ObjectGoal Navigation

In ObjectGoal Navigation within the RoboTHOR environment, a randomly spawned agent must
navigate to a goal specified by an object category. In particular, the agent must search it’s environment
to find an object of the given category and take a stop action (which ends the episode regardless of
success) when that object is within 1m of the agent and visible. The observation space is composed
of rich egocentric RGB observations (300 x400x 3) with a limited field of view. The action space is
{move_ahead, rotate_right, rotate_left, look_up, ,look_down, stop}. The OBJECTNAV
task within the RoboTHOR environment was proposed by [15], we use the version of this task
corresponding to the 2021 RoboTHOR ObjectNav Challenge® and use this challenge’s reward
structure, dataset, train/val/test splits, and their baseline model architecture. This challenge provides
implementations of PPO and DAgger where the DAgger agent is trained with supervision coming
from a shortest-path expert. We implement our ADVISOR methodology (with no teacher forcing) as
well as a baseline where we simply sum PPO and IL losses. We use a budget of 100 million frames,
i.e., ~2-5 days of training, 8§ NVIDIA TitanX GPUs, and 56 CPUs for each method. At every update
step we use 60 rollouts of length 128 and perform 4 gradient steps with the rollout.

"https://github.com/facebookresearch/habitat-lab
8https://ai2thor.allenai.org/robothor/cvpr-2021-challenge
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A.5.9 Cooperative Navigation

In Cooperative Navigation, there are three agents and three landmarks. The goal of the three agents is
to cover the three landmarks. Agents are encouraged to move toward uncovered landmarks and get
penalized when they collide with each other. Agents have limited visibility range. The agents can
only observe other agents and landmarks within its visibility range (euclidean distance to the agent).
The action space has five dimensions. The first dimension is no-op, and the other four dimensions
represent the forward, backward, left, and right force applied to the agent. The RL agents are trained
with MADDPG [41] with a permutation invariant critic [40]. The IL agents are trained using DAgger.
The experts are pre-trained RL agents with no limits to their visibility range. Following [41, 40], we
use a budge of 1.5 million environment steps. We use one NVIDIA GTX1080 and 2 CPUs to train
these agents.

A.5.10 Observation spaces

2D-LH. Within our 2D-LH environment we wish to train our agent in the context of Proposition
1 so that the agent may learn any f-restricted policy. As the 2D-LH environment is quite simple,
we are able to uniquely encode the state observed by an agent using a 4* - 52 = 6400 dimensional
{0, 1}-valued vector such that any f-restricted policy can be represented as a linear function applied
to this observation (followed by a soft-max).’

PD. Within the PD environment the agent’s observed state is very simple: at every timestep the agent
observes an element of {0, 1,2, 3} with 0 denoting that no door has yet been chosen, 1 denoting that
the agent has chosen door d; but has not begun entering the code, 2 indicating that the agent has
chosen door d; and has started entering the code, and 3 representing the final terminal state after a
door has been opened or combination incorrectly entered.

MINIGRID. The MINIGRID environments [10] enable agents with an egocentric “visual” observation
which, in practice, is an integer tensor of shape 7 x 7 x 3, where the channels contain integer labels
corresponding to the cell’s type, color, and state. Kindly see [10, 9] for details. For the above tasks,
the cell types belong to the set of (empty, lava, wall, goal).

POINTNAV. Agents in the POINTNAV task observe, at every step, egocentric RGB observations
(256 %256 % 3) of their environment along with a relative displacement vector towards the goal (i.e. a
2d vector specifying the location of the goal relative the goal). See Figure 4 for an example of one
such egocentric RGB image.

OBJECTNAV. Agents in the OBJECTNAV task observe, at every step, egocentric RGB observations
(300x400x3) of their environment along with an object category (e.g. “BaseballBat”) specifying
their goal. See Figure 4 for an example of one such egocentric RGB image. Note that agents in the
OBJECTNAV task are generally also allowed access to egocentric depth frames, we do not use these
depth frames in our experiments as their use slows simulation speed.

COOPNAV. At each step, each agent in COOPNAYV task observes a 14-dimensional vector, which
contains the absolute location and speed of itself, the relative locations to the three landmarks, and
the relative location to other two agents.

A.6 ADVISOR can outperform BC in the no-imitation-gap setting

Recall the setting of our 2D-LH experiments in Section 4.4 where we train f-restricted policies
(i.e., an agent that can see 7 grid locations away) using f7-optimal teachers. In particular, we train
25 policies on each 7, j pair where for 1 <7 < j < 15 and ¢, j are both odd. Each trained policy is
then evaluated on 200 random episodes and we record average performance across various metrics
across these episodes. Complementing Fig. 6 from the main paper, Fig. A.3 shows the box plots of
the trained policies average episode lengths, lower being better, when training with BC, BC— PPO,
ADVISOR, and PPO (PPO does not use expert supervision so we simply report the performance of
PPO trained f*-restricted policies for each 7).

As might be expected: ADVISOR has consistently low episode lengths across all 7, j pairs suggesting
that ADVISOR is able to mitigate the impact of the imitation gap. One question that is not well-

% As the softmax function prevents us from learning a truly deterministic policy we can only learn a policy
arbitrarily close to such policies. In our setting, this distinction is irrelevant.
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Method % converged to near optimal performance
i=1 3 5 7 9 11 13 15

ADV 1 1 1 1 1 1 1 1
BC 1 072 052 072 068 084 09 1
} 088 056 024 008 052 096 1 1

Table A.1: Comparing efficiency of IL vs. ADVISOR in 2D-LH. Here we report the percentage
of runs (of 25 runs per (method, ¢) pair) that various methods converged to near-optimal performance
(within 5% of optimal) with a budget of 300,000 training steps. Here i corresponds to an f-restricted
(student) policy trained with expert supervision from an f*-optimal teacher (i.e. the ‘no-imitation-gap’
setting).

answered by Fig. A.3 is that of the relative performance of ADVISOR and IL methods when there
is no imitation gap, namely the ¢ = j case. As ADVISOR requires the training of an auxiliary
policy in addition (but, in parallel) to a main policy, we test the sample efficiency of ADVISOR
head-on with IL methods. Table A.1 records the percentage of runs in which ADV, BC, and 1 attain
near optimal (within 5%) performance when trained in the no-imitation-gap setting (i.e. = = j) for
different grid visibility <. We find that only ADVISOR consistently reaches near-optimal performance
within the budget of 300,000 training steps. We suspect that this is due to the RL loss encouraging
early exploration that results in the agent more frequently entering states where imitation learning is
easier. This interpretation is supported by the observation that ADV, BC, and 7 all consistently reach
near-optimal performance when ¢ is very small (almost all states look identical so exploration can be
of little help) and when i is quite large (the agent can see nearly the whole environment so there is no
need to explore). While we do no expect this trend to hold in all cases, indeed there are likely many
cases where pure-IL is more effective than ADV in the no-imitation-gap setting, it is encouraging to
see that ADV can bring benefits even when there is no imitation gap.

A.7 Additional baseline details

A.7.1 Baselines details for 2D-LH, PD, and MINIGRID tasks

In Tab. A.2, we include details about the baselines considered in this work, including — purely RL
(1), purely IL (2 — 4,9), a sequential combination of IL/RL (6 — 8), static combinations of IL/RL
(5, 10), a method that uses expert demonstrations to generate rewards for reward-based RL (i.e. GAIL,
11), and our dynamic combinations (12 — 15). Our imitation learning baselines include those which
learn from both expert policy (i.e. an expert action is assumed available for any state) and expert
demonstrations (offline dataset of pre-collected trajectories).

In our study of hyperparameter robustness (using the PD and MINIGRID tasks) the hyperparameters
(hps) we consider for optimization have been chosen as those which, in preliminary experiments,
had a substantial impact on model performance. This includes the learning rate (Ir), portion of the
training steps devoted to the first stage in methods with two stages (stage-split), and the temperature
parameter in the ADVISOR weight function («).!® Note that, the random environment seed also acts
as an implicit hyperparameter. We sample hyperparameters uniformly at random from various sets.
In particular, we sample Ir from [10~#,0.5) on a log-scale, stage-split from [0.1,0.9), and « from
{4,8,16,32}.

In the below we give additional detailis regarding the GAIL and ADV®™ + PPO methods.

Generative adversarial imitation learning (GAIL). For a comprehensive overview of GAIL, please
see [25]. Our implementation closely follows that of Ilya Kostrikov [36]. We found GAIL to be quite
unstable without adopting several critical implementation details. In particular, we found it critical
to (1) normalize rewards using a (momentum-based) running average of the standard deviation of
past returns and (2) provide an extensive “warmup” period in which the discriminator network is
pretrained. Because of the necessity of this “warmup period”, our GAIL baseline observes more

10See Sec. 3.2 for definition of the weight function for ADVISOR.
"'While implemented with supervision from expert policy, due to the teacher forcing being set to 1.0, this
method can never explore beyond states (and supervision) in expert demonstrations.
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#  Method IL/RL  Expert supervision Hps. searched
1 PPO RL Policy Ir

2 BC IL Policy Ir

3 IL Policy Ir, stage-split

4  BC™! IL Policy!! Ir

5 BC+PPO IL&RL  Policy Ir

6 BC — PPO IL—RL Policy Ir, stage-split

7 1 — PPO IL—RL Policy Ir, stage-split

8 BC™' - PPO IL—RL Policy Ir, stage-split

9  BCdm I Demonstrations Ir

10 BC®™ +PPO IL&RL  Demonstrations Ir

11  GAIL IL&RL  Demonstrations Ir

12 ADV IL&RL  Policy I,

13 1 — ADV IL&RL  Policy Ir, o, stage-split
14 BC™!' - ADV IL&RL  Policy Ir, cv, stage-split
15 BC%*™ 4 ADV IL&RL Demonstrations Ir, o

Table A.2: Baseline details. IL/RL: Nature of learning, Expert supervision: the type of expert
supervision leveraged by each method, Hps. searched: hps. that were randomly searched over, fairly
done with the same budget (see Sec. A.9 for details).

expert supervision and is given a budget of substantially more gradient steps than all other methods.
Because of this, our comparison against GAIL disadvantages our ADVISOR method. Despite this
disadvantage, ADVISOR still outperforms.

The ADV*™ + PPO method. As described in the main paper, the ADV®™ -+ PPO method attempts
to bring the benefits of our ADVISOR methodology to the setting where expert demonstrations are
available but an expert policy (i.e., an expert that can be evaluated at arbitrary states) is not. Attempting
to compute the ADVISOR loss (recall Eq. (2)) on off-policy demonstrations is complicated however,
as our RL loss assumes access to on-policy demonstrations. In theory, importance sampling methods,
see, e.g., [43], can be used to “reinterpret” expert demonstrations as though they were on-policy.
But such methods are known to be somewhat unstable, non-trivial to implement, and may require
information about the expert policy that we do not have access to. For these reasons, we choose to
use a simple solution: when computing the ADVISOR loss on expert demonstrations we ignore the
RL loss. Thus ADV®™ 4+ PPO works by looping between two phases:

* Collect an (on-policy) rollout using the agent’s policy, compute the PPO loss for this rollout
and perform gradient descent on this loss to update the parameters.

* Sample a rollout from the expert demonstrations and, using this rollout, compute the
demonstration-based ADVISOR loss

LAV () = By [0(S) - CE(n (), 74(5;0)), (10

and perform gradient descent on this loss to update the parameters.

A.7.2 Baselines used in POINTNAV experiments

Our POINTNAV baselines are described in Appendix A.5.9. See also Table A.4.

A.7.3 Baselines details for OBJECTNAV experiments

Our OBJECTNAYV baselines are described in Appendix A.5.8. See also Table A .4.

A.7.4 Baselines used in COOPNAV experiments

Our COOPNAYV baselines are described in Appendix A.5.9. We follow the implementation of [40].
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A.8 Architecture Details

2D-LH model. As discussed in Sec. A.5.10, we have designed the observation given to our agent
so that a simple linear layer followed by a soft-max function is sufficient to capture any f-restricted
policy. As such, our main and auxiliary actor models for this task are simply linear functions mapping
the input 6400-dimensional observation to a 4-dimensional output vector followed by a soft-max
non-linearity. The critic is computed similarly but with a 1-dimensional output and no non-linearity.

PD model. Our PD model has three sequential components. The first embedding layer maps a given
observation, a value in {0, 1, 2, 3}, to an 128-dimensional embedding. This 128-dimensional vector
is then fed into a 1-layer LSTM (with a 128-dimensional hidden state) to produce an 128-output
representation h. We then compute our main actor policy by applying a 128 x 7 linear layer followed
by a soft-max non-linearity. The auxiliary actor is produced similarly but with separate parameters in
its linear layer. Finally the critic’s value is generated by applying a 128 x 1 linear layer to h.

MINIGRID model. Here we detail each component of the model architecture illustrated in Fig. 3.
The encoder (‘Enc.”) converts observation tensors (integer tensor of shape 7 x 7 x 3) to a corresponding
embedding tensor via three embedding sets (of length 8) corresponding to type, color, and state of
the object. The observation tensor, which represents the ‘lights-out’ condition, has a unique (i.e.,
different from the ones listed by [10]) type, color and state. This prevents any type, color or state
from having more than one connotation. The output of the encoder is of size 7 x 7 x 24. This tensor
is flattened and fed into a (single-layered) LSTM with a 128-dimensional hidden space. The output of
the LSTM is fed to the main actor, auxiliary actor, and the critic. All of these are single linear layers
with output size of |A|, |.A| and 1, respectively (main and auxiliary actors are followed by soft-max
non-linearities).

s

POINTNAV, OBJECTNAV, and COOPNAV model.

For the POINTNAV [58], OBJECTNAV [15], and COOPNAV [40] tasks, we (for fair comparison) use
model architectures from prior work. For use with ADVISOR, these model architectures require an
additional auxiliary policy head. We define this auxiliary policy head as a linear layer applied to the
model’s final hidden representation followed by a softmax non-linearity.

A.9 Fair Hyperparameter Tuning

As discussed in the main paper, we attempt to ensuring that comparisons to baselines are fair.
In particular, we hope to avoid introducing misleading bias in our results by extensively tuning
the hyperparameters (hps) of our ADVISOR methodology while leaving other methods relatively
un-tuned.

2D-LH: Tune by Tuning a Competing Method. The goal of our experiments with the 2D-LH
environment are, principally, to highlight that increasing the imitation gap can have a substantial
detrimental impact on the quality of policies learned by training IL. Because of this, we wish to give
IL the greatest opportunity to succeed and thus we are not, as in our PD/MINIGRID experiments,
attempting to understand its expected performance when we must search for good hyperparameters.
To this end, we perform the following procedure for every ¢,j € {1,3,5...,15} with i < j.

For every learning rate A € {100 values evenly spaced in [10~%, 1] on a log-scale} we train a f*-
restricted policy to imitate a f7-optimal teacher using BC. For each such trained policy, we roll
out trajectories from the policy across 200 randomly sampled episodes (in the 2D-LH there is no
distinction between training, validation, and test episodes as there are only four unique initial world
settings). For each rollout, we compute the average cross entropy between the learned policy and
the expert’s policy at every step. A “best” learning rate A*/ is then chosen by selecting the learning
rate resulting in the smallest cross entropy (after having smoothed the results with a locally-linear
regression model [75]).

A final learning rate is then chosen as the average of the \»7 and this learning rate is then used
when training all methods to produce the plots in Fig. 6. As some baselines require additional
hyperparameter choices, these other hyperparameters were chosen heuristically (post-hoc experiments
suggest that results for the other methods are fairly robust to these other hyperparameters).

PD and MINIGRID tasks: Random Hyperparameter Evaluations. As described in the main
paper, we follow the best practices suggested by Dodge et al. [16]. In particular, for our PD and
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Figure A.3: Size of the imitation gap directly impacts performance. Training f i_restricted stu-
dents with f7-optimal teachers (in 2D-LH).

MINIGRID tasks we train each of our baselines when sampling that method’s hyperparameters, see
Table A.2 and recall Sec. A.7, at random 50 times. Our plots, e.g., Fig. 5, then report an estimate of
the expected (validation set) performance of each of our methods when choosing the best performing
model from a fixed number of random hyperparameter evaluations. Unlike [16], we compute this
estimate using a U-statistic [68, Chapter 12] which is unbiased. Shaded regions encapsulate the
25-to-75th quantiles of the bootstrap distribution of this statistic.

POINTNAvV, OBJECTNAV, and COOPNAV tasks: use hyperparameters from in prior work.
Due to computational constraints, our strategy for choosing hyperparameters for the POINTNAv,
OBJECTNAV, and COOPNAV tasks was simply to follow prior work whenever possible. Of course,
there was no prior work suggesting good hyperparameter values for the «, 8 parameters in our new
ADVISOR loss. Following the intuitions we gained from our the 2D-LH, PD, and MINIGRID
experiments, we fixed «, 8 to (10, 0.1) for POINTNAV, «, /3 to (20, 0.1) for OBJECTNAV, and «, 5 to
(0.01, 0) for CoOOPNAV. For the OBJECTNAYV task, we experimented with setting 5 = 0 and found
that the change had essentially no impact on performance (validation-set SPL after ~ 100Mn training
steps actually improved slightly from .1482 to .1499 when setting 3 = 0).

A.10 Training Implementation

As discussed previously, for our POINTNAV, OBJECTNAV, and COOPNAV experiments, we have
used standard training implementation details (e.g. reward structure) from prior work. Thus, in the
below, we provide additional details only for the 2D-LH, PD, and MINIGRID tasks.

A summary of the training hyperparameters and their values is included in Tab. A.3. Kindly see [62]
for details on PPO and [61] for details on generalized advantage estimation (GAE).

Max. steps per episode. The maximum number of steps allowed in the 2D-LH task is 1000. Within
the PD task, an agent can never take more than 11 steps in a single episode (1 action to select the
door and then, at most, 10 more actions to input the combination if d; was selected) and thus we do
not need to set a maximum number of allowed steps. The maximum steps allowed for an episode of
WC/LC is set by [10, 9] to 452, where S is the grid size. We share the same limits for the challenging
variants — SWITCH and CORRUPT. Details of task variants, their grid size, and number of obstacles
are included in Sec. A.S.

Reward structure. Within the 2D-LH task, the agent receives one of three possible rewards after
every step: when the agent finds the goal it receives a reward of 0.99, if it otherwise has reached the
maximum number of steps (1000) it receives a —1 reward, and otherwise, if neither of the prior cases
hold, it obtains a reward of —0.01. See Sec. A.5.1 for a description of rewards for the PD task. For
WC/LC, [10, 9] configure the environment to give a 0 reward unless the goal is reached. If the goal
is reached, the reward is 1 — cpisode length ~ya7 adopt the same reward structure for our SWITCH and

maximum steps *
CORRUPT variants as well.

Computing infrastructure. As mentioned in Sec. 4.3, for all tasks (except LH) we train 50 models
(with randomly sampled hps) for each baseline. This amounts to 750 models per task or 6700 models
in total. For each task, we utilize a g4dn. 12x1arge instance on AWS consisting of 4 NVIDIA T4
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Figure A.4: Additional results for MINIGRID tasks. Here we include the results on the MINIGRID
tasks missing from Figure 5.
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Figure A.5: Learning curves for POINTNAV. SPL (scaled by 100) and success rate (in %) are
plotted vs. training steps, following the standard protocols. We evaluate checkpoints after every
1024k frames of experience. This is plotted as the thin line. The thick line and shading depicts the
rolling mean (with a window size of 2) and corresponding standard deviation.

GPUs and 48 CPUs. We run through a queue of 750 models using ~ 40 processes. For tasks set in the
MINIGRID environments, models each require ~ 1.2 GB GPU memory and all training completes
in 18 to 36 hours. For the PD task, model memory footprints are smaller and training all models is
significantly faster (< 8 hours).

A.11 Additional results

Here we record additional results that were summarized or deferred in Section 4.4. In particular,

* Figure A.3 complements Figure 6 from the main paper and provides results for additional
baselines on the 2D-LH task. Notice that both the pipelined IL—-PPO and ADVISOR
methods greatly reduce the impact of the imitation gap (Figures A.3c and A.3d versus Fig-
ure A.3b) but our ADVISOR method is considerably more effective in doing so (Figure A.3c
v.s. Figure A.3d).

* Figure A.4 shows the results on our remaining MINIGRID tasks missing from Figure 5.
Notice that the trends here are very similar to those from Figure 5, ADVISOR-based methods
have similar or better performance than our other baselines.
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Figure A.6: Learning curves for COOPNAV. Rewards are plotted vs. training steps, following the
standard protocols. For a full-range teacher, we train students with different (and limited) visibility
range of 0.8,1.2, 1.8, and 2.0. The networks are initialized with four different seeds and the mean
and standard deviation are plotted. Checkpoints are evaluated at every 25k steps.

Hyperparamter Value
Structural
Cell type embedding length 8
Cell color embedding length 8
Cell state embedding length 8
RNN type LSTM
RNN layers 1
RNN hidden size 128
# Layers in critic 1
# Layers in actor 1
PPO
Clip parameter (€) [62] 0.1
Decay on € Linear(1,0)
Value loss coefficient 0.5
Discount factor () 0.99
GAE parameter () 1.0
Training
Rollout timesteps 100
Rollouts per batch 10
# processes sampling rollouts 20
Epochs 4
Optimizer Adam [33]
(B1, B2) for Adam (0.9,0.999)
Learning rate searched
Gradient clip norm 0.5
Training steps (WC/LC & variants) 1-10°
Training steps (2D-LH & PD) 3.10°

Table A.3: Structural and training hyperparameters for 2D-LH, PD, and MINIGRID tasks.

» Table A.5 shows an extended version of Table 1 where, rather than grouping methods
together, we display results for each method individually.

* Figure A.5 displays validation set performance of our POINTNAV baselines over training.
Note that static combination of RL and IL losses improves individual RL/IL baselines. Our
adaptive combination of these losses (ADVISOR) outperforms these baselines and is more
sample efficient.

* Figure A.6 lays out the performance of agents on the COOPNAV task. In the main paper
we include results for the limited visibility range of 1.6 for the student. Here, we include
results for four visibility range. RL only baseline is least sample-efficient. Overall, we find
ADVISOR is significantly more sample efficient — most of the learning is completed in just
0.2 million steps while the other baselines take over 1.5 million steps.
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Hyperparamter POINTNAV OBJECTNAV

Structural
RNN type GRU
RNN layers 1
RNN hidden size 512
# Layers in critic 1
# Layers in actor 1
PPO
Clip parameter (¢) [62] 0.1
Decay on € None
Value loss coefficient 0.5
Discount factor () 0.99
GAE parameter (\) 0.95
Training
Rollout timesteps 128
Rollouts per batch 60 8
# processes sampling rollouts 60 16
Epochs 4
Optimizer Adam [33]
(B1, B2) for Adam (0.9,0.999)
Learning rate 3.107% 2.5-107%
Gradient clip norm 0.5 0.1
Training steps 100 - 108 50 - 106

Table A.4: Structural and training hyperparameters for POINTNAV and OBJECTNAV.

Tasks — PD LAVACROSSING WALLCROSSING

Training routines | - Base Ver. Corrupt Exp. Faulty Switch  Once Switch Base Ver. Corrupt Exp.  Faulty Switch  Once Switch
PPO 0 0 0 0.01 0 0.09 0.07 0.12 0.05
BC -0.6 0.1 0.02 0 0 0.25 0.05 0.01 0.01
DAgger (7) -0.59 0.14 0.02 0 0 0.31 0.03 0.01 0.01
BC!=! -0.62 0.88 0.02 0.02 0 0.96 0.03 0.17 0.11
BC-+PPO (static) -0.59 0.12 0.08 0 0 0.27 0.09 0.01 0
BC— PPO -0.17 0.15 0.32 0.02 0 0.43 0.18 0.14 0.09
i — PPO -0.45 0.32 0.61 0.02 0 0.75 0.15 0.15 0.1
BC*=! — PPO -0.5 0.94 0.74 0.04 0 0.97 0.09 0.17 0.1
BCdeme -0.62 0.88 0.02 0.02 0 0.96 0.07 0.18 0.11
BCY%me4 PPO -0.64 0.96 0.2 0.02 0 0.97 0.03 0.17 0.11
GAIL -0.09 0 0 0.02 0 0.11 0.06 0.16 0.07
ADV 1 0.18 0.8 0.77 0.8 0.41 0.31 0.38 0.45
BC*=1 — ADV -0.13 0.55 0.83 0.02 0 0.88 0.15 0.15 0.09
i — ADV -0.1 0.47 0.73 0.01 0 0.79 0.21 0.13 0.07
ADVm 4 PPO 0 0.96 0.94 0.03 0 0.97 0.11 0.14 0.06

Table A.5: Expected rewards for the POISONEDDOORS task and MINIGRID tasks. Here we
show an expanded version of Table A.5 where results for all methods rather than grouped methods.
For each of our 15 training routines we report the expected maximum validation set performance
(when given a budget of 10 random hyperparameter evaluations) after training for ~300k steps in the
POISONEDDOORS environment and ~1Mn steps in our 8 MINIGRID tasks. The maximum possible
reward is 1 for the MINIGRID tasks.
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