
Bridging the Imitation Gap

by Adaptive Insubordination

Luca Weihs∗,1, Unnat Jain∗,2,†, Iou-Jen Liu2, Jordi Salvador1,

Svetlana Lazebnik2, Aniruddha Kembhavi1, Alexander Schwing2

1Allen Institute for AI, 2University of Illinois at Urbana-Champaign
{lucaw, jordis, anik}@allenai.org

{uj2, iliu3, slazebni, aschwing}@illinois.edu

https://unnat.github.io/advisor/

Abstract

In practice, imitation learning is preferred over pure reinforcement learning when-
ever it is possible to design a teaching agent to provide expert supervision. However,
we show that when the teaching agent makes decisions with access to privileged
information that is unavailable to the student, this information is marginalized dur-
ing imitation learning, resulting in an “imitation gap” and, potentially, poor results.
Prior work bridges this gap via a progression from imitation learning to reinforce-
ment learning. While often successful, gradual progression fails for tasks that
require frequent switches between exploration and memorization. To better address
these tasks and alleviate the imitation gap we propose ‘Adaptive Insubordination’
(ADVISOR). ADVISOR dynamically weights imitation and reward-based rein-
forcement learning losses during training, enabling on-the-fly switching between
imitation and exploration. On a suite of challenging tasks set within gridworlds,
multi-agent particle environments, and high-fidelity 3D simulators, we show that
on-the-fly switching with ADVISOR outperforms pure imitation, pure reinforce-
ment learning, as well as their sequential and parallel combinations.

1 Introduction

Imitation learning (IL) can be remarkably successful in settings where reinforcement learning (RL)
struggles. For instance, IL has been shown to succeed in complex tasks with sparse rewards [9, 51, 48],
and when the observations are high-dimensional, e.g., in visual 3D environments [35, 58]. To succeed,
IL provides the agent with consistent expert supervision at every timestep, making it less reliant on
the agent randomly attaining success. To obtain this expert supervision, it is often convenient to use
“privileged information,” i.e., information that is unavailable to the student at inference time. This
privileged information takes many forms in practice. For instance, in navigational tasks, experts
are frequently designed using shortest path algorithms which access the environment’s connectivity
graph [e.g., 20]. Other forms of privilege include semantic maps [e.g., 64, 14], the ability to see into
“the future” via rollouts [65], and ground-truth world layouts [8]. The following example shows how
this type of privileged information can result in IL dramatically failing.

Example 1 (Poisoned Doors). Suppose an agent is presented with N ≥ 3 doors d1, . . . , dN . As
illustrated in Fig. 1 (for N = 4), opening d1 requires entering an unknown fixed code of length M .
Successful code entry results in a reward of 1, otherwise the reward is 0. Since the code is unknown
to the agent, it would need to learn the code by trial and error. All other doors can be opened without
a code. For some randomly chosen 2 ≤ j ≤ N (sampled each episode), the reward behind dj is 2 but

∗denotes equal contribution by LW and UJ; †work done, in part, as an intern at Allen Institute for AI

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

a
rX

iv
:2

0
0
7
.1

2
1
7
3
v
3

[c

s.
L

G
]

 3
 D

e
c
 2

0
2
1

More recent methods mix expert demonstrations with the agent’s own rollouts instead of using a
sequential combination of IL followed by RL. Chemali and Lazaric [6] perform policy iteration from
expert and on-policy demonstrations. DQfD [24] initializes the replay buffer with expert episodes
and adds rollouts of (a pretrained) agent. They weight experiences based on the previous temporal
difference errors [59] and use a supervised loss to learn from the expert. For continuous action
spaces, DDPGfD [70] analogously incorporates IL into DDPG [39]. POfD [32] improves by adding
a demonstration-guided exploration term, i.e., the Jensen-Shannon divergence between the expert’s
and the learner’s policy (estimated using occupancy measures). THOR uses suboptimal experts to
reshape rewards and then searches over a finite planning horizon [66]. Zhu et al. [78] show that a
combination of GAIL [25] and RL can be highly effective for difficult manipulation tasks.

Critically, the above methods have, implicitly or explicitly, been designed under certain assumptions
(e.g., the agent operates in an MDP) which imply the expert and student observe the same state.
Different from the above methods, we investigate the difference of privilege between the expert policy
and the learned policy. Contrary to a sequential, static, or rule-based combination of supervised loss
or divergence, we train an auxiliary actor to adaptively weight IL and RL losses. To the best of our
knowledge, this hasn’t been studied before. In concurrent work, Warrington et al. [74] address the
imitation gap by jointly training their teacher and student to adapt the teacher to the student. For our
applications of interest, this work is not applicable as our expert teachers are fixed.

Our approach attempts to reduce the imitation gap directly, assuming the information available to the
learning agent is fixed. An indirect approach to reduce this gap is to enrich the information available
to the agent or to improve the agent’s memory of past experience. Several works have considered this
direction in the context of autonomous driving [11, 21] and continuous control [18]. We expect that
these methods can be beneficially combined with the method that we discuss next.

3 ADVISOR

We first introduce notation to define the imitation gap and illustrate how it arises due to ‘policy
averaging.’ Using an ‘auxiliary policy’ construct, we then propose ADVISOR to bridge this gap.
Finally, we show how to estimate the auxiliary policy in practice using deep networks. In what
follows we will use the terms teacher and expert interchangeably. Our use of “teacher” is meant to
emphasize that these policies are (1) designed for providing supervision for a student and (2) need
not be optimal among all policies.

3.1 Imitation gap

We want an agent to complete task T in environment E . The environment has states s ∈ S and
the agent executes an action a ∈ A at every discrete timestep t ≥ 0. For simplicity and w.l.o.g.
assume both A and S are finite. For example, let E be a 1D-gridworld in which the agent is tasked
with navigating to a location by executing actions to move left or right, as shown in Fig. 2a. Here
and below we assume states s ∈ S encapsulate historical information so that s includes the full
trajectory of the agent up to time t ≥ 0. The objective is to find a policy π, i.e., a mapping from
states to distributions over actions, which maximizes an evaluation criterion. Often this policy search
is restricted to a set of feasible policies Πfeas., for instance Πfeas. may be the set {π(·; θ) : θ ∈ R

D}
where π(·; θ) is a deep neural network with D-dimensional parameters θ. In classical (deep) RL
[45, 46], the evaluation criterion is usually the expected γ-discounted future return.

We focus on the setting of partially-observed Markov decision processes (POMDPs) where an agent
makes decisions without access to the full state information. We model this restricted access by
defining a filtration function f : S → Of and limiting the space of feasible policies to those policies

Πfeas.
f for which the value of π(s) depends on s only through f(s), i.e., so that f(s) = f(s′) implies

π(s) = π(s′). We call any π satisfying this condition an f -restricted policy and the set of feasible
f -restricted policies Πfeas.

f . In a gridworld example, f might restrict s to only include information

local to the agent’s current position as shown in Figs. 2c, 2d. If a f -restricted policy is optimal among
all other f -restricted policies, we say it is f -optimal. We call o ∈ Of a partial-observation and for
any f -restricted policy πf we write πf (o) to mean πf (s) if f(s) = o. It is frequently the case that,
during training, we have access to a teacher policy which is able to successfully complete the task T .
This teacher policy may have access to the whole environment state and thus may be optimal among
all policies. Alternatively, the teacher policy may, like the student, only make decisions given partial

3

·
·
·

Environment E start states

Actions A = {left, right}

= {L,R}

···

f2-partial obs.
áIL
f2

···

f1-partial obs.
áIL
f1áteach

Figure 2: Effect of partial observability in a 1-dimensional gridworld environment. (a) The two
start states and actions space for 1D-Lighthouse with N = 4. (b) A trajectory of the agent following
a hypothetical random policy. At every trajectory step we display output probabilities as per the
shortest-path expert (πteach) for each state. (c/d) Using the same trajectory from (b) we highlight the
partial-observations available to the agent (shaded gray) under different filtration function f1, f2.
Notice that, under f1, the agent does not see the goal within its first four steps. The policies πIL

f1 , πIL
f2 ,

learned by imitating πteach, show that imitation results in sub-optimal policies, i.e., πIL
f1 , πIL

f2 6= πteach.

information (e.g., a human who sees exactly the same inputs as the student). For flexibility we will
define the teacher policy as πteach

f teach , denoting it is an f teach-restricted policy for some filtration function

f teach. For simplicity, we will assume that πteach
f teach is f teach-optimal. Subsequently, we will drop the

subscript f teach unless we wish to explicitly discuss multiple teachers simultaneously.

In IL [49, 56], πf is trained to mimic πteach by minimizing the (expected) cross-entropy between πf
and πteach over a set of sampled states s ∈ S:

min
πf∈Πfeas.

f

Eµ[CE(πteach, πf)(S)] , (1)

where CE(πteach, πf)(S) = −π
teach(S) � log πf (S), � denotes the usual dot-product, and S is a

random variable taking values s ∈ S with probability measure µ : S → [0, 1]. Often µ(s) is chosen
to equal the frequency with which an exploration policy (e.g., random actions or πteach) visits state s

in a randomly initialized episode. When it exists, we denote the policy minimizing Eq. (1) as πµ,π
teach

f .

When µ and πteach are unambiguous, we write πIL
f = πµ,π

teach

f .

What happens when there is a difference of privilege (or filtration functions) between the teacher and
the student? Intuitively, if the information that a teacher uses to make a decision is unavailable to the
student then the student has little hope of being able to mimic the teacher’s decisions. As we show in
our next example, even when optimizing perfectly, depending on the choice of f and f teach, IL may
result in πIL

f being uniformly random over a large collection of states. We call the phenomenon that

πIL
f 6= πteach the imitation gap.

Example 2 (1D-Lighthouse). We illustrate the imitation gap using a gridworld spanning
{−N, . . . , N}. The two start states correspond to the goal being at either −N or N , while the
agent is always initialized at 0 (see Fig. 2a). Clearly, with full state information, πteach maps states to
an ‘always left’ or ‘always right’ probability distribution, depending on whether the goal is on the left
or right, respectively. Suppose now that the agent’s visibility is constrained to a radius of i (Fig. 2c
shows i = 1), i.e., an f i-restricted observation is accessible. An agent following an optimal policy
with a visibility of radius i will begin to move deterministically towards any corner, w.l.o.g. assume
right. When the agent sees the rightmost edge (from position N − i), it will either continue to move
right if the goal is visible or, if it’s not, move left until it reaches the goal (at −N). Now we may ask:
what is the best f i-restricted policy that can be learnt by imitating πteach (i.e., what is πIL

fi)? Tragically,

the cross-entropy loss causes πIL
fi to be uniform in a large number of states. In particular, an agent

following policy πIL
fi will execute left (and right) actions with probability 0.5, until it is within a

distance of i from one of the corners. Subsequently, it will head directly to the goal. See the policies
highlighted in Figs. 2c, 2d. The intuition for this result is straightforward: until the agent observes
one of the corners it cannot know if the goal is to the right or left and, conditional on its observations,
each of these events is equally likely under µ (assumed uniform). Hence for half of these events the
teacher will instruct the agent to go right. For the other half the instruction is to go left. See App. A.1
for a rigorous treatment of this example. In Sec. 4 and Fig. 6, we train f i-restricted policies with

4

f j-optimal teachers for a 2D variant of this example. We empirically verify that a student learns a
better policy when imitating teachers whose filtration function is closest to their own.

The above example shows: when a student attempts to imitate an expert that is privileged with
information not available to the student, the student learns a version of πteach in which this privileged
information is marginalized out. We formalize this intuition in the following proposition.

Proposition 1 (Policy Averaging).
In the setting of Section 3.1, suppose that Πfeas. contains all f -restricted policies. Then, for any s ∈ S
with o = f(s), we have that πIL

f (o) = Eµ[π
teach(S) | f(S) = o].

Given our definitions, the proof of this proposition is quite straightforward, see Appendix A.2.

The imitation gap provides theoretical justification for the common practical observation that an agent
trained via IL can often be significantly improved by continuing to train the agent using pure RL
(e.g., PPO) [42, 14]. Obviously training first with IL and then via pure RL is ad hoc and potentially
sub-optimal as discussed in Ex. 1 and empirically shown in Sec. 4. To alleviate this problem, the
student should imitate the teacher’s policy only in settings where the teacher’s policy can, in principle,
be exactly reproduced by the student. Otherwise the student should learn via ‘standard’ RL. To
achieve this we introduce ADVISOR.

3.2 Adaptive Insubordination (ADVISOR) with Policy Gradients

To close the imitation gap, ADVISOR adaptively weights reward-based and imitation losses. Intu-
itively, it supervises a student by asking it to imitate a teacher’s policy only in those states s ∈ S for
which the imitation gap is small. For all other states, it trains the student using reward-based RL.
To simplify notation, we denote the reward-based RL loss via Eµ[L(θ, S)] for some loss function

L.2 This loss formulation is general and spans all policy gradient methods, including A2C and PPO.
The imitation loss is the standard cross-entropy loss Eµ[CE(πteach(S), πf (S; θ))]. Concretely, the
ADVISOR loss is:

LADV(θ) = Eµ[w(S) · CE(πteach(S), πf (S; θ)) + (1− w(S)) · L(θ, S)] . (2)

Our goal is to find a weight function w : S → [0, 1] where w(s) ≈ 1 when the imitation gap is small
and w(s) ≈ 0 otherwise. For this we need an estimator of the distance between πteach and πIL

f at a

state s and a mapping from this distance to weights in [0, 1].

We now define a distance estimate d0(π, πf)(s) between a policy π and an f -restricted policy πf
at a state s. We can use any common non-negative distance (or divergence) d between probability
distributions on A, e.g., in our experiments we use the KL-divergence. While there are many possible
strategies for using d to estimate d0(π, πf)(s), perhaps the simplest of these strategies is to define

d0(π, πf)(s) = d(π(s), πf (s)). Note that this quantity does not attempt to use any information

about the fiber f−1(f(s)) which may be useful in producing more holistic measures of distances.3

Appendix A.3 considers how those distances can be used in lieu of d0. Next, using the above, we
need to estimate the quantity d0(πteach, πIL

f)(s).

Unfortunately it is, in general, impossible to compute d0(πteach, πIL
f)(s) exactly as it is intractable to

compute the optimal minimizer πIL
f . Instead we leverage an estimator of πIL

f which we term πaux
f , and

which we will define in the next section.

Given πaux
f we obtain the estimator d0(πteach, πaux

f) of d0(πteach, πIL
f). Additionally, we make use of

the monotonically decreasing function mα : R≥0 → [0, 1], where α ≥ 0. We define our weight

2For readability, we implicitly make three key simplifications. First, computing the expectation Eµ[. . .] is
generally intractable, hence we cannot directly minimize losses such as Eµ[L(θ, S)]. Instead, we approximate
the expectation using rollouts from µ and optimize the empirical loss. Second, recent RL methods adjust the
measure µ over states as optimization progresses while we assume it to be static for simplicity. Our final
simplification regards the degree to which any loss can be, and is, optimized. In general, losses are often
optimized by gradient descent and generally no guarantees are given that the global optimum can be found.
Extending our presentation to encompass these issues is straightforward but notationally dense.

3Measures using such information include maxs′∈f−1(f(s) d(π(s
′), πf (s)) or a corresponding expectation

instead of the maximization, i.e., Eµ[d(π(S), πf (S)) | f(S) = o].

5

Tasks→ PD LAVACROSSING WALLCROSSING

Training routines ↓ - Base Ver. Corrupt Exp. Faulty Switch Once Switch Base Ver. Corrupt Exp. Faulty Switch Once Switch

RL 0 0 0 0.01 0 0.09 0.07 0.12 0.05
IL -0.59 0.88 0.02 0.02 0 0.96 0.05 0.17 0.11
IL & RL -0.17 0.94 0.74 0.04 0 0.97 0.18 0.17 0.1
Demo. Based -0.09 0.96 0.2 0.02 0 0.97 0.07 0.18 0.11
ADV. Based (ours) 1 0.96 0.94 0.77 0.8 0.97 0.31 0.38 0.45

Table 1: Expected rewards for the POISONEDDOORS task and MINIGRID tasks. For each of
our 15 training routines we report the expected maximum validation set performance (when given a
budget of 10 random hyperparameter evaluations) after training for≈300k steps in POISONEDDOORS

and ≈1Mn steps in our 8 MINIGRID tasks. The maximum reward is 1 for the MINIGRID tasks.

Gibson dataset in AIHABITAT [77, 58], and ObjectGoal Navigation (OBJECTNAV) in ROBOTHOR
[15].4 Furthermore, to probe robustness, we train 50 hyperparameter variants for each of the 15
learning methods for our MINIGRID tasks. We find ADVISOR-based methods outperform or match
performance of all baselines.

All code to reproduce our experiments will be made public under the Apache 2.0 license.5 The
environments used are public for academic and commercial use under the Apache 2.0 (MINIGRID

and ROBOTHOR) and MIT licence (MPE and AIHABITAT).

4.1 Tasks

Detailed descriptions of our tasks (and teachers) are deferred to Appendix A.5. See Fig. 4 for a
high-level overview of 5 representative tasks.

4.2 Baselines and ADVISOR-based Methods

We briefly introduce baselines and variants of our ADVISOR method. Further details of all methods
are in Appendix A.7. For fairness, the same model architecture is shared across all methods (recall
Fig. 3, Sec. 3.3). We defer implementation details to Appendix A.8.

• RL only. Proximal Policy Optimization [62] serves as the pure RL baseline for all our tasks with a
discrete action space. For the continuous and multi-agent COOPNAV task, we follow prior work and
adopt MADDPG [41, 40].

• IL only. IL baselines where supervision comes from an expert policy with different levels of
teacher-forcing (tf), i.e., tf=0, tf annealed from 1→0, and tf=1. This leads to Behaviour Cloning

(BC), Data Aggregation (DAgger or †), and BCtf=1, respectively [57, 2, 56].

• IL & RL. Baselines that use a mix of IL and RL losses, either in sequence or in parallel. These are
popularly adopted in the literature to warm-start agent policies. Sequential combinations include BC

then PPO (BC→PPO), DAgger then PPO († → PPO), and BCtf=1 → PPO. The parallel combination
of BC + PPO(static) is a static analog of our adaptive combination of IL and RL losses.

• Demonstration-based. These agents imitate expert demonstrations and hence get no supervision

beyond the states in the demonstrations. We implement BCdemo, its combination with PPO

(BCdemo + PPO), and Generative Adversarial Imitation Learning (GAIL) [25].

• ADVISOR-based (ours). Our Adaptive Insubordination methodology can learn from an expert
policy and can be given a warm-start via BC or DAgger. This leads to ADVISOR (ADV),

BCtf=1 → ADV, and † → ADV) baselines. Similarly, ADVdemo + PPO employs Adaptive
Insubordination to learn from expert demonstrations while training with PPO on on-policy rollouts.

4.3 Evaluation

Fair Hyperparameter Tuning. Often unintentionally done, extensively tuning the hyperparameters
(hps) of a proposed method and not those of the baselines can introduce unfair bias into evaluations.

4The ROBOTHOR environment is a sub-environment of AI2-THOR [35].
5See https://unnat.github.io/advisor/ for an up-to-date link to this code.

7

possibility of corrupted experts in mind, Figures 5d and 5h (see also Table 1) show that ADVISOR
can succeed despite this corruption.

5 Conclusion

We propose the imitation gap as one explanation for the empirical observation that imitating “more
intelligent” teachers can lead to worse policies. While prior work has, implicitly, attempted to bridge
this gap, we introduce a principled adaptive weighting technique (ADVISOR), which we test on a
suite of thirteen tasks. Due to the fast rendering speed of MINIGRID, PD, and 2D-LH, we could
undertake a study where we trained over 6 billion steps, to draw statistically significant inferences.

6 Limitations and Societal Impact

While we have attempted to robustly evaluate our proposed ADVISOR methodology, we have
primarily focused our experiments on navigational tasks where shortest path experts can be quickly
computed. Further work is needed to validate that ADVISOR can be successful in other domains,
e.g., imitation in interactive robotic tasks or natural language applications.

While the potential for direct negative societal impact of this work is small, it is worth noting that, in
enabling agents to learn more effectively from expert supervision, this work makes imitation learning
a more attractive option to RL researchers. If expert supervision is obtained from humans, RL agents
trained with such data will inevitably reproduce any (potentially harmful) biases of these humans.

Acknowledgements

This material is based upon work supported in part by the National Science Foundation under Grants
No. 1563727, 1718221, 1637479, 165205, 1703166, 2008387, 2045586, 2106825, MRI #1725729,
NIFA award 2020-67021-32799, Samsung, 3M, Sloan Fellowship, NVIDIA Artificial Intelligence
Lab, Allen Institute for AI, Amazon, AWS Research Awards, and Siebel Scholars Award. We thank
Nan Jiang and Tanmay Gangwani for feedback on this work.

References

[1] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik,
R. Mottaghi, M. Savva, et al. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018.

[2] M. Bain and C. Sammut. A framework for behavioural cloning. In Machine Intelligence, 1995.

[3] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos. Increasing the action
gap: New operators for reinforcement learning. In AAAI, 2016.

[4] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement
learning from demonstration through shaping. In Q. Yang and M. J. Wooldridge, editors, IJCAI,
2015.

[5] K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daume, and J. Langford. Learning to search
better than your teacher. In ICML, 2015.

[6] J. Chemali and A. Lazaric. Direct policy iteration with demonstrations. In Q. Yang and M. J.
Wooldridge, editors, IJCAI, 2015.

[7] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and
K. Grauman. Audio-visual embodied navigation. In ECCV, 2020.

[8] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In CoRL, 2020.

[9] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. Babyai: A platform to study the sample efficiency of grounded language learning.
In ICLR, 2018.

10

[10] M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environment for openai
gym. https://github.com/maximecb/gym-minigrid, 2018.

[11] F. Codevilla, M. Müller, A. M. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via
conditional imitation learning. In ICRA, 2018.

[12] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learning cooperative visual dialog agents
with deep reinforcement learning. In ICCV, 2017.

[13] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied Question Answering.
In CVPR, 2018.

[14] A. Das, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Neural Modular Control for Embodied
Question Answering. In CoRL, 2018.

[15] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,
E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi. RoboTHOR: An Open
Simulation-to-Real Embodied AI Platform. In CVPR, 2020.

[16] J. Dodge, S. Gururangan, D. Card, R. Schwartz, and N. A. Smith. Show your work: Improved
reporting of experimental results. In EMNLP, 2019.

[17] T. Gangwani and J. Peng. State-only imitation with transition dynamics mismatch. In ICLR,
2020.

[18] T. Gangwani, J. Lehman, Q. Liu, and J. Peng. Learning belief representations for imitation
learning in pomdps. In A. Globerson and R. Silva, editors, UAI, 2019.

[19] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to
transfer skills with reinforcement learning. In ICLR, 2017.

[20] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive Mapping and Planning
for Visual Navigation. In CVPR, 2017.

[21] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur, S. Micklethwaite,
N. Griffiths, A. Shah, and A. Kendall. Urban driving with conditional imitation learning. In
ICRA, 2020.

[22] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma. Dual learning for machine
translation. In NeurIPS, 2016.

[23] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. Eslami, et al. Emergence of locomotion behaviours in rich environments. arXiv preprint
arXiv:1707.02286, 2017.

[24] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In AAAI, 2018.

[25] J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, 2016.

[26] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. In ICLR, 2017.

[27] U. Jain, L. Weihs, E. Kolve, M. Rastegari, S. Lazebnik, A. Farhadi, A. G. Schwing, and
A. Kembhavi. Two body problem: Collaborative visual task completion. In CVPR, 2019.

[28] U. Jain, L. Weihs, E. Kolve, A. Farhadi, S. Lazebnik, A. Kembhavi, and A. G. Schwing. A
cordial sync: Going beyond marginal policies for multi-agent embodied tasks. In ECCV, 2020.

[29] U. Jain, I.-J. Liu, S. Lazebnik, A. Kembhavi, L. Weihs, and A. G. Schwing. Gridtopix: Training
embodied agents with minimal supervision. In ICCV, 2021.

[30] N. Jiang. On value functions and the agent-environment boundary. arXiv preprint
arXiv:1905.13341, 2019.

11

[31] M. Jing, X. Ma, W. Huang, F. Sun, C. Yang, B. Fang, and H. Liu. Reinforcement learning from
imperfect demonstrations under soft expert guidance. In AAAI, 2020.

[32] B. Kang, Z. Jie, and J. Feng. Policy optimization with demonstrations. In ICML, 2018.

[33] D. Kingma and J. Ba. A method for stochastic optimization. In CVPR, 2017.

[34] J. Kober and J. R. Peters. Policy search for motor primitives in robotics. In NeurIPS, 2009.

[35] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. AI2-THOR: an interactive 3d environment for visual AI. arXiv
preprint arXiv:1712.05474, 2019.

[36] I. Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[37] H. Le, N. Jiang, A. Agarwal, M. Dudik, Y. Yue, and H. Daumé. Hierarchical imitation and
reinforcement learning. In ICML, 2018.

[38] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
JMLR, 2016.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In ICLR, 2016.

[40] I.-J. Liu, R. Yeh, and A. G. Schwing. PIC: Permutation Invariant Critic for Multi-Agent Deep
Reinforcement Learning. In CORL, 2019.

[41] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-Agent Actor-Critic for
Mixed Cooperative-Competitive Environments. In NeurIPS, 2017.

[42] R. Lowe, A. Gupta, J. N. Foerster, D. Kiela, and J. Pineau. On the interaction between
supervision and self-play in emergent communication. In ICLR, 2020.

[43] A. R. Mahmood, H. P. van Hasselt, and R. S. Sutton. Weighted importance sampling for
off-policy learning with linear function approximation. In NeurIPS, 2014.

[44] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, et al. Learning to navigate in complex environments. In ICLR, 2017.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015.

[46] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In ICML, 2016.

[47] I. Mordatch and P. Abbeel. Emergence of Grounded Compositional Language in Multi-Agent
Populations. In AAAI, 2018.

[48] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration
in reinforcement learning with demonstrations. In ICRA, 2018.

[49] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic
perspective on imitation learning. Foundations and Trends in Robotics, 2018.

[50] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017.

[51] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph., 2018.

[52] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 2008.

12

[53] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 1991.

[54] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
In RSS, 2018.

[55] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In AISTATS, 2010.

[56] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, 2011.

[57] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In Machine Learning
Proceedings, 1992.

[58] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. In ICCV,
2019.

[59] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized Experience Replay. In ICLR, 2016.

[60] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In ICML, 2015.

[61] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[62] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[63] T. T. Shi, A. Karpathy, L. J. Fan, J. Hernandez, and P. Liang. World of bits: An open-domain
platform for web-based agents. In ICML, 2017.

[64] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. CVPR,
2020.

[65] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 2016.

[66] W. Sun, J. A. Bagnell, and B. Boots. Truncated horizon policy search: Combining reinforcement
learning & imitation learning. In ICLR, 2018.

[67] M. van der Laan and S. Gruber. One-step targeted minimum loss-based estimation based on
universal least favorable one-dimensional submodels. The international journal of biostatistics,
12(1):351–378, 2016.

[68] A. van der Vaart. Asymptotic Statistics. Asymptotic Statistics. Cambridge University Press, 2000.
ISBN 9780521784504. URL https://books.google.com/books?id=UEuQEM5RjWgC.

[69] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In
AAAI, 2016.

[70] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[71] X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Yang Wang. Video captioning via hierarchical
reinforcement learning. In CVPR, 2018.

[72] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample
efficient actor-critic with experience replay. In ICLR, 2017.

13

[73] S. Wani, S. Patel, U. Jain, A. X. Chang, and M. Savva. Multi-on: Benchmarking semantic map
memory using multi-object navigation. In NeurIPS, 2020.

[74] A. Warrington, J. W. Lavington, A. Ścibior, M. Schmidt, and F. Wood. Robust asymmetric
learning in pomdps. CoRR, abs/2012.15566, 2020. URL https://arxiv.org/abs/2012.
15566.

[75] L. Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer-Verlag,
Berlin, Heidelberg, 2006. ISBN 0387251456.

[76] L. Weihs, J. Salvador, K. Kotar, U. Jain, K.-H. Zeng, R. Mottaghi, and A. Kembhavi. Allenact:
A framework for embodied ai research. arXiv preprint arXiv:2008.12760, 2020.

[77] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. Gibson env: Real-world perception
for embodied agents. In CVPR, 2018.

[78] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,
N. de Freitas, and N. Heess. Reinforcement and imitation learning for diverse visuomotor skills.
In RSS, 2018.

14

Appendix: Bridging the Imitation Gap by Adaptive Insubordination

The appendix includes theoretical extensions of ideas presented in the main paper and details of
empirical analysis. We structure the appendix into the following subsections:

A.1 A formal treatment of Ex. 2 on 1D-Lighthouse.

A.2 Proof of Proposition 1.

A.3 Distance measures beyond d0π(πf)(s) = d(π(s), πf (s)) utilized in ADVISOR.6

A.4 Future strategies for improving statistical efficiency of d0πteach(πIL
f)(s) estimator and a prospec-

tive approach towards it.

A.5 Descriptions of all the tasks that we evaluate baselines on, including values for grid size,
obstacles, corruption distance etc. We also include details about observation space for each
of these tasks.

A.6 Initial results showing that ADVISOR can outperform behavior cloning even when there is
no imitation gap.

A.7 Additional details about nature of learning, expert supervision and hyperparameters searched
for each baseline introduced in Sec. 4.2.

A.8 Details about the underlying model architecture for all baselines across different tasks.

A.9 Methodologies adopted for ensuring fair hyperparameter tuning of previous baselines when
comparing ADVISOR to them.

A.10 Training implementation including maximum steps per episode, reward structure and com-
puting infrastructure adopted for this work. We clearly summarize all structural and training
hyperparameters for better reproducibility.

A.11 Additional results including plots for all tasks to supplement Fig. 5, a table giving an
expanded version of the Tab. 1, and learning curves to supplement Tab. 2.

A Additional Information

A.1 Formal treatment of Example 2

Let N ≥ 1 and consider a 1-dimensional grid-world with states S = {−N,N} × {0, . . . , T} ×
{−N, . . . , N}T . Here g ∈ {−N,N} are possible goal positions, elements t ∈ {0, . . . , T} corre-
spond to the episode’s current timestep, and (pi)

T
i=1 ∈ {−N, . . . , N}

T correspond to possible agent

trajectories of length T . Taking action a ∈ A = {left, right} = {−1, 1} in state (g, t, (pi)
T
i=1) ∈ S

results in the deterministic transition to state (g, t+ 1, (p1, . . . , pt, clip(pt + a,−N,N), 0, . . . , 0)).
An episode start state is chosen uniformly at random from the set {(±N, 0, (0, . . . , 0))} and the goal
of the agent is to reach some state (g, t, (pi)

T
i=1) with pt = g in the fewest steps possible. We now

consider a collection of filtration functions f i, that allow the agent to see spaces up to i steps left/right
of its current position but otherwise has perfect memory of its actions. See Figs. 2c, 2d for examples
of f1- and f2-restricted observations. For 0 ≤ i ≤ N we define f i so that

f i(g, t, (pi)
T
i=1) = ((`0, . . . , `t), (p1 − p0, . . . , pt − pt−1)) and (5)

`j = (1[pj+k=N] − 1[pj+k=−N] | k ∈ {−i, . . . , i}) for 0 ≤ j ≤ t. (6)

Here `j is a tuple of length 2 · i+1 and corresponds to the agent’s view at timestep j while pk+1− pk
uniquely identifies the action taken by the agent at timestep k. Let πteach be the optimal policy
given full state information so that πteach(g, t, (pi)

T
i=1) = (1[g=−N], 1[g=N]) and let µ be a uniform

distribution over states in S. It is straightforward to show that an agent following policy πIL
fi will

take random actions until it is within a distance of i from one of the corners {−N,N} after which
it will head directly to the goal, see the policies highlighted in Figs. 2c, 2d. The intuition for this
result is straightforward: until the agent observes one of the corners it cannot know if the goal is
to the right or left and, conditional on its observations, each of these events is equally likely under
µ. Hence in half of these events the expert will instruct the agent to go right and in the other half

6We overload main paper’s notation d0(π, πf)(s) with d0π(πf)(s)

15

Algorithm A.1: On-policy ADVISOR algorithm overview. Some details omitted for clarity.

Input: Trainable policies (πf , π
aux
f), expert policy πteach, rollout length L, environment E .

Output: Trained policy
1 begin
2 Initialize the environment E
3 θ ← randomly initialized parameters
4 while Training completion criterion not met do
5 Take L steps in the environment using πf (·; θ) and record resulting rewards and

observations (restarting E whenever the agent has reached a terminal state)
6 Evaluate πaux

f (·; θ) and πteach at each of the above steps

7 L← the empirical version of the loss from Eq. (2) computed using the above rollout
8 Compute ∇θL using backpropagation
9 Update θ using ∇θL via gradient descent

10 return πf (·; θ)

to go left. The cross entropy loss will thus force πIL
fi to be uniform in all such states. Formally,

we will have, for s = (g, t, (pi)
T
i=1), π

IL
fi(s) = πteach(s) if and only if min0≤q≤t(pq)− i ≤ −N or

max0≤q≤t(pq) + i ≥ N and, for all other s, we have πIL
fi(s) = (1/2, 1/2). In Sec. 4, see also Fig. 6,

we train f i-restricted policies with f j-optimal teachers for a 2D variant of this example. �

A.2 Proof of Proposition 1

We wish to show that the minimizer of Eµ[−π
teach
fe (S)� log πf (S)] among all f -restricted policies

πf is the policy π = Eµ[π
teach(S) | f(S)]. This is straightforward, by the law of iterated expectations

and as πf (s) = πf (f(s)) by definition. We obtain

Eµ[−π
teach
fe (S)� log πf (S)] = −Eµ[Eµ[π

teach
fe (S)� log πf (S) | f(S)]]

= −Eµ[Eµ[π
teach
fe (S)� log πf (f(S)) | f(S)]]

= −Eµ[Eµ[π
teach
fe (S) | f(S)]� log πf (f(S))]

= Eµ[−π(f(S))� log πf (f(S))] . (7)

Now let s ∈ S and let o = f(s). It is well known, by Gibbs’ inequality, that −π(o)� log πf (o) is
minimized (in πf (o)) by letting πf (o) = π(o) and this minimizer is feasible as we have assumed
that Πf contains all f -restricted policies. Hence it follows immediately that Eq. (7) is minimized by
letting πf = π which proves the claimed proposition.

A.3 Other Distance Measures

As discussed in Section 3.2, there are several different choices one may make when choosing
a measure of distance between the expert policy πteach and an f -restricted policy πf at a state

s ∈ S. The measure of distance we use in our experiments, d0πteach(πf)(s) = d(πteach(s), πf (s)),

has the (potentially) undesirable property that f(s) = f(s′) does not imply that d0πteach(πf)(s) =

d0πteach(πf)(s
′). While an in-depth evaluation of the merits of different distance measures is beyond

this current work, we suspect that a careful choice of such a distance measure may have a substantial
impact on the speed of training. The following proposition lists a collection of possible distance
measures with a conceptual illustration given in Fig. A.1.

Proposition 2. Let s ∈ S and o = f(s) and for any 0 < β < ∞ define, for any policy π and
f -restricted policy πf ,

dβµ,π(πf)(s) = Eµ[
(
d0π(πf)(S)

)β
| f(S) = f(s)]1/β , (8)

with d∞µ,π(πf)(s) equalling the essential supremum of d0π(πf) under the conditional distribution

Pµ(· | f(S) = f(s)). As a special case note that

d1µ,π(πf)(s) = Eµ[d
0
π(πf)(S) | f(S) = f(s)].

16

Then, for all β ≥ 0 and s ∈ S (almost surely µ), we have that π(s) 6= πf (f(s)) if and only if

dβπ(πf)(s) > 0.

Proof. This statement follows trivially from the definition of πIL and the fact that d(π, π′) ≥ 0 with
d(π, π′) = 0 if and only if π = π′.

The above proposition shows that any dβ can be used to consistently detect differences between πteach

and πIL
f , i.e., it can be used to detect the imitation gap. Notice also that for any β > 0 we have that

dβ
µ,πteach(π

IL
f)(s) = dβ

µ,πteach(π
IL
f)(s

′) whenever f(s) = f(s′).

As an alternative to using d0, we now describe how d1µ,πteach(πIL
f)(s) can be estimated in practice

during training. Let πaux
f be an estimator of πIL

f as usual. To estimate d1µ,πteach(πIL
f)(s) we assume

we have access to a function approximator gψ : Of → R parameterized by ψ ∈ Ψ, e.g., a neural

network. Then we estimate d1µ,πteach(πIL
f)(s) with gψ̂ where ψ̂ is taken to be the minimizer of the loss

Lµ,πteach,πaux
f
(ψ) = Eµ

[(
d(πteach(S), πaux

f (f(S)))− gψ(f(S))
)2]

. (9)

The following proposition then shows that, assuming that d1µ,πteach(πaux
f) ∈ {gψ | ψ ∈ Ψ}, gψ̂ will

equal d1µ,πteach(πaux
f) and thus gψ̂ may be interpreted as a plug-in estimator of d1µ,πteach(πIL

f).

Proposition 3. For any ψ ∈ Ψ,

Lµ,πteach,πaux
f
(ψ) = Eµ[(d

1
µ,πteach(πaux

f)(S)− gψ(f(S)))
2] + c,

where c = Eµ[(d(π
teach(S), πaux(f(S)))− d1µ,πteach,π̂(S))

2] is constant in ψ and this implies that if

d1µ,πteach(πaux
f) ∈ {gψ | ψ ∈ Ψ} then gψ̂ = d1µ,πteach(πaux

f).

Proof. In the following we let Of = f(S). We now have that

Eµ[
(
d(πteach(S), πaux

f (Of))− gψ(Of)
)2
]

= Eµ[
(
(d(πteach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S)) + (d1µ,πteach(πaux
f)(S)− gψ(Of))

)2
]

= Eµ[(d(π
teach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S))2] + Eµ[(d
1
µ,πteach(πaux

f)(S)− gψ(Of)))
2]

+ 2 · Eµ[((d(π
teach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S)) · (d1µ,πteach(πaux
f)(S)− gψ(Of)))]

= c+ Eµ[(d
1
µ,πteach(πaux

f)(S)− gψ(Of)))
2]

+ 2 · Eµ[((d(π
teach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S)) · (d1µ,πteach(πaux
f)(S)− gψ(Of)))].

Now as as d1µ,πteach(πaux
f)(s) = d1µ,πteach(πaux

f)(s′) for any s, s′ with f(s) = f(s′) we have that

d1µ,πteach(πaux
f)(S)− gψ(Of) is constant conditional on Of and thus

Eµ[(d(π
teach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S)) · (d1µ,πteach(πaux
f)(S)− gψ(Of)) | Of]

= Eµ[(d(π
teach(S), πaux

f (Of))− d
1
µ,πteach(πaux

f)(S) | Of] · Eµ[d
1
µ,πteach(πaux

f)(S)− gψ(Of) | Of]

= Eµ[d
1
µ,πteach(πaux

f)(S)− d1µ,πteach(πaux
f)(S) | Of] · Eµ[d

1
µ,πteach(πaux

f)(S)− gψ(Of) | Of]

= 0.

Combining the above results and using the law of iterated expectations gives the desired result.

A.4 Future Directions in Improving Distance Estimators

In this section we highlight possible directions towards improving the estimation of d0πteach(πIL
f)(s)

for s ∈ S . As a comprehensive study of these directions is beyond the scope of this work, our aim in
this section is intuition over formality. We will focus on d0 here but similar ideas can be extended to
other distance measures, e.g., those in Sec. A.3.

17

were primarily run using the AllenAct learning framework [76], see AllenAct.org for details and
tutorials.

A.5.1 PoisonedDoors (PD)

This environment is a reproduction of our example from Sec. 1. An agent is presented with N = 4
doors d1, . . . , d4. Door d1 is locked, requiring a fixed {0, 1, 2}10 code to open, but always results in
a reward of 1 when opened. For some randomly chosen j ∈ {2, 3, 4}, opening door dj results in a
reward of 2 and for i 6∈ {1, j}, opening door di results in a reward of −2. The agent must first choose
a door after which, if it has chosen door 1, it must enter the combination (receiving a reward of 0 if
it enters the incorrect combination) and, otherwise, the agent immediately receives its reward. See
Fig. 1.

A.5.2 2D-Lighthouse (2D-LH)

Figure A.2: 2D-LIGHTHOUSE

2D variant of the exemplar grid-world task introduced in Ex. 2,
aimed to empirically verify our analysis of the imitation gap.
A reward awaits at a randomly chosen corner of a square grid
of size 2N + 1 and the agent can only see the local region, a
square of size 2i+ 1 about itself (an f i-restricted observation).
Additionally, all f i allow the agent access to it’s previous ac-
tion. As explained in Ex. 2, we experiment with optimizing
f i-policies when given supervision from f j-optimal teachers
(i.e., experts that are optimal when restricted to f j-restricted
observations). See Fig. A.2 for an illustration.

A.5.3 LavaCrossing (LC)

Initialized on the top-left corner the agent must navigate to
the bottom-right goal location. There exists at least one path
from start to end, navigating through obstacles. Refer to Fig. 4
where, for illustration, we show a simpler grid. Here the episode
terminates if the agent steps on any of the lava obstacles. This
LC environment has size 25× 25 with 10 lava rivers (‘S25, N10’ as per the notation of [10]), which
are placed vertically or horizontally across the grid. The expert is a shortest path agent with access to
the entire environment’s connectivity graph and is implemented via the networkx python library.

A.5.4 WallCrossing (WC)

Similar to LAVACROSSING in structure and expert, except that obstacles are walls instead of lava.
Unlike lava (which immediately kills the agent upon touching), the agent may run into walls
without consequence (other than wasting time). Our environment is of size 25× 25 with 10 walls
(‘S25, N10’).

A.5.5 WC/LC Switch

In this task the agent faces a more challenging filtration function. In addition to navigational actions,
agents for this task have a ‘switch’ action. Using this switch action, the agents can switch-on the lights
of an otherwise darkened environment which is implemented as an observation tensor of all zeros. In
WC, even in the dark, an agent can reach the target by taking random actions with non-negligible
probability. Achieving this in LC is nearly impossible as random actions will, with high probability,
result in stepping into lava and thereby immediately end the episode.

We experiment with two variants of this ‘switch’ – ONCE and FAULTY. In the ONCE SWITCH variant,
once the the ‘switch’ action is taken, the lights remain on for the remainder of the episode. This is
implemented as the unaffected observation tensor being available to the agent. In contrast, in the
FAULTY SWITCH variant, taking the ‘switch’ action will only turn the lights on for a single timestep.
This is implemented as observations being available for one timestep followed by zero tensors (unless
the ‘switch’ action is executed again).

19

The expert for these tasks is the same as for WC and LC. Namely, the expert always takes actions
along the shortest path from the agents current position to the goal and is unaffected by whether the
light is on or off. For the expert-policy-based methods this translates to the learner agent getting
perfect (navigational) supervision while struggling in the dark, with no cue for trying the switch
action. For the expert-demonstrations-based methods this translates to the demonstrations being
populated with blacked-out observations paired with perfect actions: such actions are, of course,
difficult to imitate. As FAULTY is more difficult than ONCE (and LC more difficult than WC) we set
grid sizes to reduce the difference in difficulty between tasks. In particular, we choose to set WC
ONCE SWITCH on a (S25, N10) grid and the LC ONCE SWITCH on a (S15, N7) grid. Moreover,
WC FAULTY SWITCH is set with a (S15, N7) grid and LC FAULTY SWITCH with a (S9, N4) grid.

A.5.6 WC/LC Corrupt

In the SWITCH task, we study agents with observations affected by a challenging filtration function.
In this task we experiment with corrupting the expert’s actions. The expert policy flips over to a
random policy when the expert is NC steps away from the goal. For the expert-policy-based method
this translates to the expert outputting uniformly random actions once it is within NC steps from the
target. For the expert-demonstrations-based methods this translates to the demonstrations consisting
of some valid (observation, expert action) tuples, while the tuples close to the target have the expert
action sampled from a uniform distribution over the action space. WC CORRUPT is a (S25, N10)
grid with NC = 15, while the LC CORRUPT is significantly harder, hence is a (S15, N7) grid with
NC = 10.

A.5.7 PointGoal Navigation

In PointGoal Navigation, a randomly spawned agent must navigate to a goal specified by a relative-
displacement vector. The observation space is composed of rich egocentric RGB observations
(256×256×3) with a limited field of view. The action space is {move_ahead, rotate_right,
rotate_left, stop}. The task was formulated by [1] and implemented for the AIHABITAT

simulator by [58]. Our reward structure, train/val/test splits, PointNav dataset, and implementation
follow [58]. RL agents are trained using PPO following authors’ implementation7. The IL agent
is trained with on-policy behavior cloning using the shortest-path action. A static combination of
the PPO and BC losses (i.e. a simple sum of the PPO loss and IL cross entropy loss) is also used a
competing baseline for ADVISOR. Note that the agent observes a filtered egocentric observation
while the shortest-path action is inferred from the entire environment state leading to a significant
imitation gap. We train on the standard Gibson set of 76 scenes, and report metrics as an average over
the val. set consisting of 14 unseen scenes in AIHABITAT. We use a budget of 50 million frames, i.e.,
∼2 days of training on 4 NVIDIA TitanX GPUs, and 28 CPUs for each method.

A.5.8 ObjectGoal Navigation

In ObjectGoal Navigation within the RoboTHOR environment, a randomly spawned agent must
navigate to a goal specified by an object category. In particular, the agent must search it’s environment
to find an object of the given category and take a stop action (which ends the episode regardless of
success) when that object is within 1m of the agent and visible. The observation space is composed
of rich egocentric RGB observations (300×400×3) with a limited field of view. The action space is
{move_ahead, rotate_right, rotate_left, look_up, ,look_down, stop}. The OBJECTNAV

task within the RoboTHOR environment was proposed by [15], we use the version of this task
corresponding to the 2021 RoboTHOR ObjectNav Challenge8 and use this challenge’s reward
structure, dataset, train/val/test splits, and their baseline model architecture. This challenge provides
implementations of PPO and DAgger where the DAgger agent is trained with supervision coming
from a shortest-path expert. We implement our ADVISOR methodology (with no teacher forcing) as
well as a baseline where we simply sum PPO and IL losses. We use a budget of 100 million frames,
i.e., ∼2-5 days of training, 8 NVIDIA TitanX GPUs, and 56 CPUs for each method. At every update
step we use 60 rollouts of length 128 and perform 4 gradient steps with the rollout.

7https://github.com/facebookresearch/habitat-lab
8https://ai2thor.allenai.org/robothor/cvpr-2021-challenge

20

A.5.9 Cooperative Navigation

In Cooperative Navigation, there are three agents and three landmarks. The goal of the three agents is
to cover the three landmarks. Agents are encouraged to move toward uncovered landmarks and get
penalized when they collide with each other. Agents have limited visibility range. The agents can
only observe other agents and landmarks within its visibility range (euclidean distance to the agent).
The action space has five dimensions. The first dimension is no-op, and the other four dimensions
represent the forward, backward, left, and right force applied to the agent. The RL agents are trained
with MADDPG [41] with a permutation invariant critic [40]. The IL agents are trained using DAgger.
The experts are pre-trained RL agents with no limits to their visibility range. Following [41, 40], we
use a budge of 1.5 million environment steps. We use one NVIDIA GTX1080 and 2 CPUs to train
these agents.

A.5.10 Observation spaces

2D-LH. Within our 2D-LH environment we wish to train our agent in the context of Proposition
1 so that the agent may learn any f -restricted policy. As the 2D-LH environment is quite simple,
we are able to uniquely encode the state observed by an agent using a 44 · 52 = 6400 dimensional
{0, 1}-valued vector such that any f -restricted policy can be represented as a linear function applied
to this observation (followed by a soft-max).9

PD. Within the PD environment the agent’s observed state is very simple: at every timestep the agent
observes an element of {0, 1, 2, 3} with 0 denoting that no door has yet been chosen, 1 denoting that
the agent has chosen door d1 but has not begun entering the code, 2 indicating that the agent has
chosen door d1 and has started entering the code, and 3 representing the final terminal state after a
door has been opened or combination incorrectly entered.

MINIGRID. The MINIGRID environments [10] enable agents with an egocentric “visual” observation
which, in practice, is an integer tensor of shape 7× 7× 3, where the channels contain integer labels
corresponding to the cell’s type, color, and state. Kindly see [10, 9] for details. For the above tasks,
the cell types belong to the set of (empty, lava, wall, goal).

POINTNAV. Agents in the POINTNAV task observe, at every step, egocentric RGB observations
(256×256×3) of their environment along with a relative displacement vector towards the goal (i.e. a
2d vector specifying the location of the goal relative the goal). See Figure 4 for an example of one
such egocentric RGB image.

OBJECTNAV. Agents in the OBJECTNAV task observe, at every step, egocentric RGB observations
(300×400×3) of their environment along with an object category (e.g. “BaseballBat”) specifying
their goal. See Figure 4 for an example of one such egocentric RGB image. Note that agents in the
OBJECTNAV task are generally also allowed access to egocentric depth frames, we do not use these
depth frames in our experiments as their use slows simulation speed.

COOPNAV. At each step, each agent in COOPNAV task observes a 14-dimensional vector, which
contains the absolute location and speed of itself, the relative locations to the three landmarks, and
the relative location to other two agents.

A.6 ADVISOR can outperform BC in the no-imitation-gap setting

Recall the setting of our 2D-LH experiments in Section 4.4 where we train f i-restricted policies
(i.e., an agent that can see i grid locations away) using f j-optimal teachers. In particular, we train
25 policies on each i, j pair where for 1 ≤ i ≤ j ≤ 15 and i, j are both odd. Each trained policy is
then evaluated on 200 random episodes and we record average performance across various metrics
across these episodes. Complementing Fig. 6 from the main paper, Fig. A.3 shows the box plots of
the trained policies average episode lengths, lower being better, when training with BC, BC→ PPO,
ADVISOR, and PPO (PPO does not use expert supervision so we simply report the performance of
PPO trained f i-restricted policies for each i).

As might be expected: ADVISOR has consistently low episode lengths across all i, j pairs suggesting
that ADVISOR is able to mitigate the impact of the imitation gap. One question that is not well-

9As the softmax function prevents us from learning a truly deterministic policy we can only learn a policy
arbitrarily close to such policies. In our setting, this distinction is irrelevant.

21

Method % converged to near optimal performance
i = 1 3 5 7 9 11 13 15

ADV 1 1 1 1 1 1 1 1
BC 1 0.72 0.52 0.72 0.68 0.84 0.96 1
† 0.88 0.56 0.24 0.08 0.52 0.96 1 1

Table A.1: Comparing efficiency of IL vs. ADVISOR in 2D-LH. Here we report the percentage
of runs (of 25 runs per (method, i) pair) that various methods converged to near-optimal performance
(within 5% of optimal) with a budget of 300,000 training steps. Here i corresponds to an f i-restricted
(student) policy trained with expert supervision from an f i-optimal teacher (i.e. the ‘no-imitation-gap’
setting).

answered by Fig. A.3 is that of the relative performance of ADVISOR and IL methods when there
is no imitation gap, namely the i = j case. As ADVISOR requires the training of an auxiliary
policy in addition (but, in parallel) to a main policy, we test the sample efficiency of ADVISOR
head-on with IL methods. Table A.1 records the percentage of runs in which ADV, BC, and † attain
near optimal (within 5%) performance when trained in the no-imitation-gap setting (i.e. i = j) for
different grid visibility i. We find that only ADVISOR consistently reaches near-optimal performance
within the budget of 300,000 training steps. We suspect that this is due to the RL loss encouraging
early exploration that results in the agent more frequently entering states where imitation learning is
easier. This interpretation is supported by the observation that ADV, BC, and † all consistently reach
near-optimal performance when i is very small (almost all states look identical so exploration can be
of little help) and when i is quite large (the agent can see nearly the whole environment so there is no
need to explore). While we do no expect this trend to hold in all cases, indeed there are likely many
cases where pure-IL is more effective than ADV in the no-imitation-gap setting, it is encouraging to
see that ADV can bring benefits even when there is no imitation gap.

A.7 Additional baseline details

A.7.1 Baselines details for 2D-LH, PD, and MINIGRID tasks

In Tab. A.2, we include details about the baselines considered in this work, including – purely RL
(1), purely IL (2− 4, 9), a sequential combination of IL/RL (6− 8), static combinations of IL/RL
(5, 10), a method that uses expert demonstrations to generate rewards for reward-based RL (i.e. GAIL,
11), and our dynamic combinations (12− 15). Our imitation learning baselines include those which
learn from both expert policy (i.e. an expert action is assumed available for any state) and expert
demonstrations (offline dataset of pre-collected trajectories).

In our study of hyperparameter robustness (using the PD and MINIGRID tasks) the hyperparameters
(hps) we consider for optimization have been chosen as those which, in preliminary experiments,
had a substantial impact on model performance. This includes the learning rate (lr), portion of the
training steps devoted to the first stage in methods with two stages (stage-split), and the temperature
parameter in the ADVISOR weight function (α).10 Note that, the random environment seed also acts
as an implicit hyperparameter. We sample hyperparameters uniformly at random from various sets.
In particular, we sample lr from [10−4, 0.5) on a log-scale, stage-split from [0.1, 0.9), and α from
{4, 8, 16, 32}.

In the below we give additional detailis regarding the GAIL and ADVdemo + PPO methods.

Generative adversarial imitation learning (GAIL). For a comprehensive overview of GAIL, please
see [25]. Our implementation closely follows that of Ilya Kostrikov [36]. We found GAIL to be quite
unstable without adopting several critical implementation details. In particular, we found it critical
to (1) normalize rewards using a (momentum-based) running average of the standard deviation of
past returns and (2) provide an extensive “warmup” period in which the discriminator network is
pretrained. Because of the necessity of this “warmup period”, our GAIL baseline observes more

10See Sec. 3.2 for definition of the weight function for ADVISOR.
11While implemented with supervision from expert policy, due to the teacher forcing being set to 1.0, this

method can never explore beyond states (and supervision) in expert demonstrations.

22

Method IL/RL Expert supervision Hps. searched

1 PPO RL Policy lr
2 BC IL Policy lr
3 † IL Policy lr, stage-split

4 BCtf=1 IL Policy11 lr
5 BC + PPO IL&RL Policy lr
6 BC→ PPO IL→RL Policy lr, stage-split
7 † → PPO IL→RL Policy lr, stage-split

8 BCtf=1 → PPO IL→RL Policy lr, stage-split

9 BCdemo IL Demonstrations lr

10 BCdemo + PPO IL&RL Demonstrations lr
11 GAIL IL&RL Demonstrations lr

12 ADV IL&RL Policy lr, α
13 † → ADV IL&RL Policy lr, α, stage-split

14 BCtf=1 → ADV IL&RL Policy lr, α, stage-split

15 BCdemo + ADV IL&RL Demonstrations lr, α

Table A.2: Baseline details. IL/RL: Nature of learning, Expert supervision: the type of expert
supervision leveraged by each method, Hps. searched: hps. that were randomly searched over, fairly
done with the same budget (see Sec. A.9 for details).

expert supervision and is given a budget of substantially more gradient steps than all other methods.
Because of this, our comparison against GAIL disadvantages our ADVISOR method. Despite this
disadvantage, ADVISOR still outperforms.

The ADVdemo+PPO method. As described in the main paper, the ADVdemo+PPO method attempts
to bring the benefits of our ADVISOR methodology to the setting where expert demonstrations are
available but an expert policy (i.e., an expert that can be evaluated at arbitrary states) is not. Attempting
to compute the ADVISOR loss (recall Eq. (2)) on off-policy demonstrations is complicated however,
as our RL loss assumes access to on-policy demonstrations. In theory, importance sampling methods,
see, e.g., [43], can be used to “reinterpret” expert demonstrations as though they were on-policy.
But such methods are known to be somewhat unstable, non-trivial to implement, and may require
information about the expert policy that we do not have access to. For these reasons, we choose to
use a simple solution: when computing the ADVISOR loss on expert demonstrations we ignore the

RL loss. Thus ADVdemo + PPO works by looping between two phases:

• Collect an (on-policy) rollout using the agent’s policy, compute the PPO loss for this rollout
and perform gradient descent on this loss to update the parameters.

• Sample a rollout from the expert demonstrations and, using this rollout, compute the
demonstration-based ADVISOR loss

LADV-demo(θ) = Edemos.[w(S) · CE(πteach(S), πf (S; θ))], (10)

and perform gradient descent on this loss to update the parameters.

A.7.2 Baselines used in POINTNAV experiments

Our POINTNAV baselines are described in Appendix A.5.9. See also Table A.4.

A.7.3 Baselines details for OBJECTNAV experiments

Our OBJECTNAV baselines are described in Appendix A.5.8. See also Table A.4.

A.7.4 Baselines used in COOPNAV experiments

Our COOPNAV baselines are described in Appendix A.5.9. We follow the implementation of [40].

23

A.8 Architecture Details

2D-LH model. As discussed in Sec. A.5.10, we have designed the observation given to our agent
so that a simple linear layer followed by a soft-max function is sufficient to capture any f -restricted
policy. As such, our main and auxiliary actor models for this task are simply linear functions mapping
the input 6400-dimensional observation to a 4-dimensional output vector followed by a soft-max
non-linearity. The critic is computed similarly but with a 1-dimensional output and no non-linearity.

PD model. Our PD model has three sequential components. The first embedding layer maps a given
observation, a value in {0, 1, 2, 3}, to an 128-dimensional embedding. This 128-dimensional vector
is then fed into a 1-layer LSTM (with a 128-dimensional hidden state) to produce an 128-output
representation h. We then compute our main actor policy by applying a 128× 7 linear layer followed
by a soft-max non-linearity. The auxiliary actor is produced similarly but with separate parameters in
its linear layer. Finally the critic’s value is generated by applying a 128× 1 linear layer to h.

MINIGRID model. Here we detail each component of the model architecture illustrated in Fig. 3.
The encoder (‘Enc.’) converts observation tensors (integer tensor of shape 7×7×3) to a corresponding
embedding tensor via three embedding sets (of length 8) corresponding to type, color, and state of
the object. The observation tensor, which represents the ‘lights-out’ condition, has a unique (i.e.,
different from the ones listed by [10]) type, color and state. This prevents any type, color or state
from having more than one connotation. The output of the encoder is of size 7× 7× 24. This tensor
is flattened and fed into a (single-layered) LSTM with a 128-dimensional hidden space. The output of
the LSTM is fed to the main actor, auxiliary actor, and the critic. All of these are single linear layers
with output size of |A|, |A| and 1, respectively (main and auxiliary actors are followed by soft-max
non-linearities).

POINTNAV, OBJECTNAV, and COOPNAV model.

For the POINTNAV [58], OBJECTNAV [15], and COOPNAV [40] tasks, we (for fair comparison) use
model architectures from prior work. For use with ADVISOR, these model architectures require an
additional auxiliary policy head. We define this auxiliary policy head as a linear layer applied to the
model’s final hidden representation followed by a softmax non-linearity.

A.9 Fair Hyperparameter Tuning

As discussed in the main paper, we attempt to ensuring that comparisons to baselines are fair.
In particular, we hope to avoid introducing misleading bias in our results by extensively tuning
the hyperparameters (hps) of our ADVISOR methodology while leaving other methods relatively
un-tuned.

2D-LH: Tune by Tuning a Competing Method. The goal of our experiments with the 2D-LH
environment are, principally, to highlight that increasing the imitation gap can have a substantial
detrimental impact on the quality of policies learned by training IL. Because of this, we wish to give
IL the greatest opportunity to succeed and thus we are not, as in our PD/MINIGRID experiments,
attempting to understand its expected performance when we must search for good hyperparameters.
To this end, we perform the following procedure for every i, j ∈ {1, 3, 5 . . . , 15} with i < j.

For every learning rate λ ∈ {100 values evenly spaced in [10−4, 1] on a log-scale} we train a f i-
restricted policy to imitate a f j-optimal teacher using BC. For each such trained policy, we roll
out trajectories from the policy across 200 randomly sampled episodes (in the 2D-LH there is no
distinction between training, validation, and test episodes as there are only four unique initial world
settings). For each rollout, we compute the average cross entropy between the learned policy and
the expert’s policy at every step. A “best” learning rate λi,j is then chosen by selecting the learning
rate resulting in the smallest cross entropy (after having smoothed the results with a locally-linear
regression model [75]).

A final learning rate is then chosen as the average of the λi,j and this learning rate is then used
when training all methods to produce the plots in Fig. 6. As some baselines require additional
hyperparameter choices, these other hyperparameters were chosen heuristically (post-hoc experiments
suggest that results for the other methods are fairly robust to these other hyperparameters).

PD and MINIGRID tasks: Random Hyperparameter Evaluations. As described in the main
paper, we follow the best practices suggested by Dodge et al. [16]. In particular, for our PD and

24

Hyperparamter POINTNAV OBJECTNAV

Structural

RNN type GRU

RNN layers 1
RNN hidden size 512

Layers in critic 1
Layers in actor 1

PPO

Clip parameter (ε) [62] 0.1
Decay on ε None

Value loss coefficient 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95

Training

Rollout timesteps 128

Rollouts per batch 60 8

processes sampling rollouts 60 16

Epochs 4
Optimizer Adam [33]

(β1, β2) for Adam (0.9, 0.999)

Learning rate 3 · 10−4 2.5 · 10−4

Gradient clip norm 0.5 0.1
Training steps 100 · 106 50 · 106

Table A.4: Structural and training hyperparameters for POINTNAV and OBJECTNAV.

Tasks→ PD LAVACROSSING WALLCROSSING

Training routines ↓ - Base Ver. Corrupt Exp. Faulty Switch Once Switch Base Ver. Corrupt Exp. Faulty Switch Once Switch

PPO 0 0 0 0.01 0 0.09 0.07 0.12 0.05
BC -0.6 0.1 0.02 0 0 0.25 0.05 0.01 0.01
DAgger (†) -0.59 0.14 0.02 0 0 0.31 0.03 0.01 0.01

BCtf=1 -0.62 0.88 0.02 0.02 0 0.96 0.03 0.17 0.11
BC+PPO (static) -0.59 0.12 0.08 0 0 0.27 0.09 0.01 0
BC→ PPO -0.17 0.15 0.32 0.02 0 0.43 0.18 0.14 0.09
† → PPO -0.45 0.32 0.61 0.02 0 0.75 0.15 0.15 0.1

BCtf=1 → PPO -0.5 0.94 0.74 0.04 0 0.97 0.09 0.17 0.1

BCdemo -0.62 0.88 0.02 0.02 0 0.96 0.07 0.18 0.11

BCdemo+ PPO -0.64 0.96 0.2 0.02 0 0.97 0.03 0.17 0.11
GAIL -0.09 0 0 0.02 0 0.11 0.06 0.16 0.07
ADV 1 0.18 0.8 0.77 0.8 0.41 0.31 0.38 0.45

BCtf=1 → ADV -0.13 0.55 0.83 0.02 0 0.88 0.15 0.15 0.09
† → ADV -0.1 0.47 0.73 0.01 0 0.79 0.21 0.13 0.07

ADVdemo+ PPO 0 0.96 0.94 0.03 0 0.97 0.11 0.14 0.06

Table A.5: Expected rewards for the POISONEDDOORS task and MINIGRID tasks. Here we
show an expanded version of Table A.5 where results for all methods rather than grouped methods.
For each of our 15 training routines we report the expected maximum validation set performance
(when given a budget of 10 random hyperparameter evaluations) after training for ≈300k steps in the
POISONEDDOORS environment and ≈1Mn steps in our 8 MINIGRID tasks. The maximum possible
reward is 1 for the MINIGRID tasks.

28

