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Abstract

Low-precision arithmetic has had a transformative
effect on the training of neural networks, reducing
computation, memory and energy requirements.
However, despite its promise, low-precision arith-
metic has received little attention for Gaussian pro-
cesses (GPs), largely because GPs require sophis-
ticated linear algebra routines that are unstable in
low-precision. We study the different failure modes
that can occur when training GPs in half precision.
To circumvent these failure modes, we propose a
multi-faceted approach involving conjugate gra-
dients with re-orthogonalization, mixed precision,
and preconditioning. Our approach significantly
improves the numerical stability and practical per-
formance of conjugate gradients in low- precision
over a wide range of settings, enabling GPs to train
on 1.8 million data points in 10 hours on a single
GPU, without any sparse approximations.

1 INTRODUCTION

Low-precision computations can profoundly improve train-
ing time, memory requirements, and energy consumption.
Moreover, as hardware accelerators continue to develop,
the scalability gains of low-precision algorithms will con-
tinue to appreciate into the future. However, training in low-
precision can increase the magnitude of round-off errors
and decrease the supported range of the numerical repre-
sentation, leading to lower quality gradients and ultimately
sacrificing performance or, in the worst cases, convergence
of the training procedure.

Recent works have developed efficient and stable methods
for training deep neural networks in low-precision to great
effect, often via the development of new floating point rep-
resentations [Intel, 2018, Wang and Kanwar, 2019], mixed
precision representations [Micikevicius et al., 2017, Das

et al., 2018, Yang et al., 2019], or alternative summation
techniques [NVIDIA, 2017, Micikevicius et al., 2017, Za-
mirai et al., 2021].

Gaussian processes (GPs) are significantly more expensive
than neural networks, and thus potentially stand more to
gain from low-precision computations. GPs typically re-
quire O(N3) computations and O(N2) memory, for N
data points. However, GPs typically require sophisticated
algebraic operations such as Cholesky decompositions for
solving linear systems, which suffer badly from round-off
error and are very poorly suited to half precision. Develop-
ing these approaches for low-precision computation is an
open area of research [Higham and Pranesh, 2021].

Instead, we focus on iterative techniques for Gaussian pro-
cesses [Gibbs and MacKay, 1997, Cutajar et al., 2016, Gard-
ner et al., 2018] that use conjugate gradients to compute
the solutions to linear systems while exploiting extremely
efficient MapReduce matrix vector multiplications (MVMs)
using KeOps [Charlier et al., 2021, Feydy et al., 2020].
These approaches are particularly appealing in the context
of low-precision computations: (1) they suffer less from
round-off errors than Cholesky decompositions [Gardner
et al., 2018]; (2) they are easy to parallelize on GPUs, which
are being designed specifically to accelerate low-precision
computations [Gardner et al., 2018, Wang et al., 2019]; (3)
they reduce memory consumption, which is a major com-
putational bottleneck, since lower memory consumption
reduces the number of computationally expensive matrix
partitions [Wang et al., 2019].

While there are many challenges to overcome, we demon-
strate that training GPs in half precision can be stable, effi-
cient, and practical. In particular:

• We numerically show that half precision kernel ma-
trices have qualitatively different eigenspectra than
kernels in higher precisions, and represent covariances
at much shorter distances.

• We empirically investigate the effect of kernel choice,
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CG tolerance, preconditioner rank, and compact sup-
port on stability in half precision.

• Based on these insights, we propose a new numeri-
cally stable conjugate gradients (CG) algorithm that
converges quickly in half precision, particularly due to
the use of re-orthogonalization, mixed precision and
the logsumexp trick.

• We provide a powerful practical implementation of
Gaussian processes in half precision that reduces train-
ing times on 1.8 million data point datasets to less than
10 hours on a single GPU, a major advance over recent
CG milestones of 1 million data points in 3 days on 8
GPUs [Wang et al., 2019].

• We release code at https://github.com/
AndPotap/halfpres_gps.

2 PRELIMINARIES

We briefly introduce background on different floating point
precision representations, and on Gaussian processes. We
also review how solving linear systems can be viewed as an
optimization problem, and present conjugate gradients as
an accelerated linear solver.

2.1 NUMERICAL PRECISION

Modern computer architectures represent numbers in float-
ing point precision, often with either 32-bit (single) or 64-bit
(double) precision [Kahan, 1996]. Single precision uses 1
bit for the sign of the number (s), 8 bits for the exponent (e),
and 23 bits for the mantissa (or significant, m). Then, the
value of a number is represented as

value (s, e,m) = (−1)
s × 2e−127 × 1.m

where s ∈ {0, 1}, e ∈ {0, · · · , 255} and m{1, · · · , 1 +∑23
i=1 2−i}. Single precision can then represent values from

±
(
2− 2−23

)
× 2127 ≈ ±3.4028235 × 1038 and measure

small numbers, in absolute value, of the order of 2−126 ≈
1.175 × 10−38. The round-off error is approximately of
2−24 ≈ 6× 10−8 (Chapter 2.5, Watkins [2010]).

In contrast, half precision, a representation with 16-bits, uses
1 bit for the sign, 5 bits for the exponent and 10 bits for the
mantissa (or significant). Using again s, e andm to represent
the previous bits, we obtain the following representation

value (s, e,m) = (−1)
s × 2e−14 × 1.m

where s ∈ {0, 1}, e ∈ {0, · · · , 255} and m{1, · · · , 1 +∑10
i=1 2−i}. Immediately we see that the range of values

decreases to ±
(
2− 2−10

)
× 217 ≈ ±2.620 × 105 and

that the lowest value that can be represented is 2−14 ≈
6.1035 × 10−5. The round-off error is now significantly

higher as well, on the order of 2−14 ≈ 10−4. Much mod-
ern hardware attempts to reduce the round-off error via
fused multiply-and-accumulate (FMAC) compute units to
accumulate operations at higher precisions [NVIDIA, 2017,
Zamirai et al., 2021, Micikevicius et al., 2017]. We also note
the existence of the bfloat16 standard [Intel, 2018], which
uses a slightly different representation, preserving the range
of single precision, while using fewer bits in the mantissa,
thereby trading off the range for increased round-off error.

2.2 GAUSSIAN PROCESSES

We consider regression tasks on observed data D =
{(xi, yi)}Ni=1 for xi ∈ RD and yi ∈ R. The Gaussian pro-
cess (GP) model for the data is

f (·) ∼ GP (m (·) , k (·, ·)) ,
yi = f (xi) + εi, εi ∼ N

(
0, σ2

)
where kθ (·, ·) is the covariance kernel, m (·) is the mean
function (in the next equations we assume it set to zero
without loss of generality) [Rasmussen and Williams, 2008].
We train the kernel hyperparameters, θ, by minimizing the
negative log marginal likelihood:

L (θ) = − log p (y|X;θ)

=
1

2
log
∣∣∣K̃∣∣∣+

1

2
yT K̃

−1
y +

N

2
log (2π)

(1)

where K̃ ∈ RN×N is the Gram matrix of all data points
with diagonal observational noise

K̃i,j = (K + σ2I)i,j = k (xi,xj) + σ2Ii=j ,

representing the evaluated covariance matrix as K. To per-
form hyperparameter estimation of θ, we need to compute
the gradient of the loss function, which is given by

∇θL =
1

2
Tr
(
K̃
−1
∇θK̃

)
− 1

2
yT K̃

−1 (
∇θK̃

)
K̃
−1

y

≈ 1

M

M∑
i=1

z>i K̃
−1
∇θK̃zi)−

1

2
yT K̃

−1 (
∇θK̃

)
K̃
−1

y

(2)

where the first line is the result of classical matrix deriva-
tives [Rasmussen and Williams, 2008] and the second line
comes from the application of Hutchinson’s trace estima-
tor [Gibbs and MacKay, 1997, Gardner et al., 2018]. The
limiting time complexity is that of computing v = K̃

−1
y,

which costs O(N3) operations and space when using the
Cholesky decomposition [Rasmussen and Williams, 2008].
Instead, Gibbs and MacKay [1997] and then Gardner et al.
[2018], proposed to use conjugate gradients (CG) to com-
pute these linear systems, reducing the time complexity
down to O(JN2), for J steps of conjugate gradients.

https://github.com/AndPotap/halfpres_gps
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2.3 CONJUGATE GRADIENTS

We use conjugate gradients (CG) to solve the linear sys-
tem Ax = b for x, so that x = A−1b [Hestenes and
Stiefel, 1952, Nocedal and Wright, 2006, Demmel, 1997].
CG uses a three-term recurrence where each new term re-
quires only a matrix-vector multiplication with A. Formally,
each CG iteration computes a new term of the following
summation: A−1b =

∑N
i=1 αidi, where, for simplicity, we

assume that the algorithm is initialized at x0 = 0, αi are
the step-size coefficients and di are the orthogonal conju-
gate search directions [Golub and Loan, 2018]. In infinite
precision representation, N iterations of CG produce all the
N summation terms and recover the exact solution. The CG
algorithm is shown in Algorithm 2 in the Appendix.

3 RELATED WORK

Iterative Gaussian Processes There has been exten-
sive research on alternative algorithms to reduce the cu-
bic runtime complexity of training Gaussian processes via
Cholesky. In this work, we primarily focus on iterative
GPs methods, prioritizing over other alternative approaches.
Gibbs and MacKay [1997] studied iterative techniques for
GPs by using conjugate gradients to solve the linear sys-
tems that result from training GPs and also to estimate the
stochastic trace term that appears when computing the loss.
In contrast to Cholesky, these iterative approaches reduce
the overall complexity of GP regression to O(JN2) for
J steps of CG. Cutajar et al. [2016] re-visited these ap-
proaches, and applied preconditioners based on low-rank
kernel approximations to increase the convergence speed to
the linear system solutions, using double precision. Gard-
ner et al. [2018] proposed the batch conjugate gradients
algorithm that we extend in this paper and used Lanczos to
estimate log determinants, focusing their efforts in single
precision. Wang et al. [2019] extended this work and en-
abled exact GPs to be trained on 1 million data points by
using 8 GPUs over 3 days via data partitioning. Meanti et al.
[2020] also used KeOps over several GPUs for Nyström-
based kernel regression, achieving results on datasets of up
to 1 billion data points.

Lower Precision Arithmetic Interest in training neural
network models in lower precisions than the traditional dou-
ble or single precisions has been around as early as Ham-
merstrom [1990]. In the modern era, Gupta et al. [2015] and
Chen et al. [2014] pioneered the usage of lower precision
arithmetic to reduce memory costs so that larger deep neu-
ral network models could be trained. Gupta et al. [2015]
proposed the usage of stochastic rounding to reduce errors
from the loss of precision when moving to half (e.g. 16-
bit arithmetic) precision down from single precision, while
Chen et al. [2014] used special representations to enable
accurate training of DNNs. These works have led to a flurry

of research into mixed precision training of deep neural
networks [Micikevicius et al., 2017, Das et al., 2018, Yang
et al., 2019]. In mixed precision training, the activations and
gradients of each DNN layer are propagated in half but the
weights are stored in single precision [Micikevicius et al.,
2017]. The success of these lower precision approaches
has led to significant efforts in reducing the memory over-
head even further via quantization of neural network layers
[Jacob et al., 2018, Das et al., 2018], the development of
specialized chip architectures that speed up lower precision
arithmetic such as modern GPUs [NVIDIA, 2017] and TPU
cores [Wang and Kanwar, 2019], and new standards that en-
hance mixed precision training such as bfloat16 [Wang and
Kanwar, 2019, Intel, 2018]. The use of lower precision arith-
metic has found some applications outside of deep learning
for kernel approximations. For example, using quantized
random Fourier features as in [Zhang et al., 2019, Li and Li,
2021] or inside of structured basis functions like Fastfood
[Le et al., 2013, Yang et al., 2015].

Improving CG convergence When using infinite preci-
sion arithmetic, CG is guaranteed to converge relatively fast
to the solution of the linear system. However, the round-
off error introduced when using finite precision affects the
convergence to the solution. There are several strategies
that can generally improve the stability and convergence of
CG, such as: preconditioning, re-orthogonalization, mixed
precision and blocked arithmetic. For double precision GP
inference, Cutajar et al. [2016] found that preconditioning
was necessary for the CG solves to be accurate, a finding
echoed by Gardner et al. [2018] and more recently Wenger
et al. [2021]. Gardner et al. [2018], Wang et al. [2019] and
Wenger et al. [2021] proposed using pivoted Cholesky pre-
conditioners [Harbrecht et al., 2012]. Additionally, recent
work in numerical methods, such as Gratton et al. [2021],
has argued for the use of re-orthogonalization in CG as a
general numerical strategy. Haidar et al. [2017] and Haidar
et al. [2018] alternatively proposed iterative refinement in-
side of GMRES (a method related directly to CG) for solv-
ing dense linear systems on GPUs in lower precision arith-
metic, while Abdelfattah et al. [2020] considered mixed
precision solves using iterative refinement. Higham [2021]
and Higham and Pranesh [2021] argue for blocked arith-
metic to reduce round-off errors, which we demonstrate has
considerable advantages in Figure 4b.

4 WHAT HAPPENS TO KERNEL
MATRICES IN HALF PRECISION?

In this section, we investigate the properties of half preci-
sion kernels, finding that they have a truncated support, that
their eigenspectra are qualitatively different than in single
precision (leading to different generalization properties) and
that direct methods such as the standard Cholesky decom-
position fails in half precision due to round-off error. In
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Figure 1: Elementwise logarithms of RBF kernel matrices
in double (left), single (middle), and half (right) precisions.
As we move to lower precision, the support of the kernel
matrices becomes increasingly truncated, which can be ex-
ploited for faster inference. White values show where the
kernel matrix is exactly zero, producing a kernel with com-
pact support. A compactly supported kernel produces more
efficient kernel matrix MVMs as we can safely remove data
points that have distances from a given test point larger than
can be represented in a given numerical precision.

Section 5 we leverage these insights to develop effective
methods for low-precision GP inference.

4.1 FINITE PRECISION KERNELS HAVE FINITE
SUPPORT

First, in Figure 1, we display the elementwise logarithms of
RBF kernel matrices of size 500 as we lower the precision
from double (left) to single (middle) to half (right) precision.
The elementwise logarithm allows us to see that there are
significantly more values of the kernel matrix represented
as exactly zero, displayed as white, for the half precision
kernels than for the higher precisions. For the half and sin-
gle precision kernels, we consider data evenly spaced in
[−10, 10] while for double we consider data in [−20, 20].

We can exactly quantify the range of support of common
stationary kernel matrices for a given lengthscale. For exam-
ple, for a Matérn-1/2 kernel with lengthscale, l, the kernel
function will be exactly zero when k(x, x′) = k(d) =
exp{−d/l} < ε (satisfied when d > − log ε/l), where ε
is the smallest representable value in that given precision.
We provide analogous results for other kernels in the Ap-
pendix. If we have d = 0.75 (equivalent to x = −0.5 and
x′ = 0.25), then we cannot represent a relationship in half
precision between the two points for lengthscales greater
than about 9.24 ≈ − log ε/0.75. We show the maximum
distance representable in double, single and half precisions
for RBF (Figure 2a) and rational quadratic kernels (Figure
2b, displaying 5 units (a proxy for the maximum distance of
input data standardized to have mean 0 and variance 1) as a
gray dashed line. RBF kernels have the smallest support, es-
pecially for short lengthscales, followed by Matérn kernels
(see Figure A.1b), and then rational quadratic kernels.

We can further understand these results by examining the
spectrum of the eigenvalues of RBF kernels. In infinite pre-
cision, an RBF kernel has support over the full space, with

λk > 0 for each k. For k ≥ O(log δ) with δ representing
the round-off error in the specified precision, then λk = 0
in finite precision, empirically reducing the support of the
kernel (see Appendix D for further details). These results
are reminiscent of how probabilities of a Gaussian variable
taking values several standard deviations from its mean are
numerically zero, due to the sharp decay of the tails of the
distribution.

Kernels represented with compact support can be exploited
for scalable computations. Indeed, we demonstrate the po-
tential for this type of structure exploitation when com-
puting GP predictive means in Figure 2c; first, we com-
pute the predictive mean cache v = K̃−1y before either
computing a full predictive mean µfull = K(x∗,X)v or
a truncated predictive mean by dropping all data points
that will be represented as zero in half precision, e.g.
µtrunc. = K(x∗,Xclose)vclose, which drops approximately
3/4 of the data in this example. As shown in Figure A.1c,
the error is zero, indicating the predictive mean does not
change at all!

4.2 INVESTIGATING THE EIGENSPECTRUM

We next investigate the eigenvalue spectrum across preci-
sions, considering a Matérn-1/2 kernel, and data drawn
from [−3, 3], displaying the empirical spectrum in Figure
2d. First, we see that the condition number of the linear
system is about the same across precisions, since the maxi-
mum eigenvalue is the same (see Figure A.2), and we know
that for GP kernel matrices the smallest eigenvalue is really
close to the noise hyperparameter value σ2. Second, we
see that the eigenvalues of the half precision kernel decay
slower before dropping to zero when compared to other
precisions. As the per iteration progress in CG is bounded
by the difference between the current iteration eigenvalue
and the first (Thm 5.5 of Nocedal and Wright [2006]), then
we would expect CG to take more iterations to converge in
half precision as the progress of each step in CG is minimal
if the eigenvalues are similar [Demmel, 1997].

Furthermore, the difference between the eigenvalue spec-
trum of single and half precision may lead to worse gen-
eralization. This point can be argued through the effective
dimension of a kernel matrix K defined as Neff(K, σ

2) :=∑N
i=1

λi

λi+σ2 where λi represents the eigenvalues of K.
First, note that the effective dimension is a critical term
in generalization bounds of kernel regression and GP meth-
ods [e.g., Zhang, 2005, Opper and Vivarelli, 1998]. These
generalization bounds are bounded above by Neff(K, λ)/N ;
therefore, higher effective dimensionality leads to looser
bounds. We prove in Appendix D that

E

(
N∑
i=1

Q(λi)

Q(λi) + s

)
≥ Neff(K, s), (3)
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Figure 2: (a, b) Maximum representable distance across precisions for RBF and rational quadratic (RQ, α = 5) kernels.
Shown as a gray line for reference is 5 units of distance. RBF kernels have significantly shorter representable distances
than RQ kernels. (c) Time for both the full and truncated MVMs as the dataset size grows. The truncated MVM grows at
a significantly lower rate than the full MVM because it only operates on one quarter of the full matrix. (d) An observed
eigenvalue spectrum for a Matérn-1/2 kernel across precisions; the kernel evaluated in half precision has a much slower
rate of decay in its spectrum than either single or double, which produces a much larger effective dimensionality (e) across
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in half, whereas preconditioned CG solves the system effi-
ciently and accurately.

where Q(λi) denotes the quantization error of λi and, fol-
lowing Li and De Sa [2019], we assume that Q(λi) is dis-
tributed uniformly U(λi− δ, λi+ δ), where δ represents the
round-off error of our numerical precision. We then argue in
Appendix D how the LHS of equation 3 increases for lower
precisions (that is, for higher δ) leading to provably worse
generalization. Second, it has been empirically shown how
for similar training losses, lower effective dimensionality
correlates with better generalization [Zhang, 2005, Capon-
netto and Vito, 2007, Maddox et al., 2020]. In Figure 2e
we empirically observe that the slower eigenvalue decay
of half precision implies that, as N increases, the effective
dimensionality increases much faster for the half precision
kernel. This finding is consistent with our previous theoreti-
cal analysis and also suggests that half precision will have a
worse generalization than single precision in the context of
kernel methods.

4.3 WHAT ABOUT DIRECT METHODS?

Can direct methods, such as Cholesky decompositions, ef-
fectively solve linear systems in low-precision? Support for
Cholesky factorizations in half precision is not included
in GPU based linear algebra libraries (LAPACK) and ap-
proaches for half precision Cholesky factorizations use itera-
tive techniques on the backend [Higham and Pranesh, 2021].

We studied the effectiveness of direct methods by using Eq.
5 to solve linear systems on the UCI protein dataset in half
precision, varying the size of the preconditioner directly. We
find that the computations in Eq. 5 accumulate a large num-
ber of run-off errors which results in high residual norms of
the resulting solves as seen in Figure 3.

5 OUR METHOD

Our methodology expands upon the ideas of Gardner et al.
[2018] and Wang et al. [2019] for training GPs solely
through matrix-vector operations via CG. We modify the
CG algorithm in order to support half precision by increas-
ing the numerical stability through: scale translation, mixed
precision aggregation and re-orthogonalizaton.

5.1 HALF PRECISION MATRIX VECTOR
MULTIPLIES

Following Wang et al. [2019] and Meanti et al. [2020], we
exploit KeOps [Charlier et al., 2021] to produce our matrix-
free approach. Where matrix-free refers to the numerical
strategy of evaluating matrix multiplies by generating, on
the fly, the entries required by the operation without the need
to hold the matrix in memory. For a more detailed explana-
tion of KeOps, please see Charlier et al. [2021] and Feydy
et al. [2020]. More specifically, to use conjugate gradients
effectively, we need to evaluate K̃v which is written as

K̃vi = a2
N∑
j=1

k (xi, xj) vj + σ2vi. (4)

KeOps performs the inner loop of this multiplication via par-
titioning the resulting rows and columns of the matrix into
blocks B1, · · ·Bk before reducing the resulting matrices,
computing the row-wise operations in parallel. To exploit
parallelism on accelerated hardware, we decompose the data
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Figure 4: (a) Timings for a single precision matrix vector
multiplication on the HouseElectric dataset. Half is consis-
tently about twice as fast as single precision. (b) Accuracies
compared to the single precision for various schemes. Block
summation performs each block within half precision, be-
fore doing accumulations in half or single and then casting
the result back to half, while Kahan summation performs
all operations in half. Block summation with single and Ka-
han summation are nearly as accurate as an entirely single
precision MVM.

into blocksB1, . . . , BK of size |Bk| = M << N (M is the
CUDA block size of 192) such that

⋃K
k=1Bk = {1, . . . , N}.

Moreover, we decompose Kv into K separate products
K(k)v(k) where the K(k) is an M ×M matrix composed
of K(k)

i,j = a2k (xi, xj)+σ2δi,j for all i, j ∈ Bk and where

v
(k)
i = vi for i ∈ Bk. We compute each separate product

K(k)v(k) as a regular matrix vector product (MVM). We
note that a matrix-free approach does involve the creation
of block matrices but not of the full matrix K where this
approach only ever requires the storage of M ×M block
matrices at once. For accurate matrix products, we use block
summation in a higher precision as is common on GPUs
[Zamirai et al., 2021, NVIDIA, 2017].

To further exploit parallelism and to reduce memory over-
head, we compute all matrix vector products in half preci-
sion, rather than single point precision [Gardner et al., 2018]
or double precision. Moving to half precision immediately
produces about a 2x speedup compared to half precision,
as shown in Figure 4a, as evaluated on dataset sizes suc-
cessively larger on the 1.8 million data point HouseElectric
dataset from the UCI repository [Dua and Graff, 2017].
Furthermore, as shown in Figure 4b, these matrix vector
multiplications are highly accurate with relative errors aver-
aging less than 0.1% when we perform block summation in
single precision. By comparison, block summation in half
precision is significantly less accurate, while Kahan sum-
mation [Kahan, 1965] in half is nearly as accurate as block
summation in single precision. All three approaches have
similar speeds as shown in the Appendix. Thus, by moving
to half precision we have immediately achieved a nearly
2x speedup in time complexity (and a similar reduction in
memory) at negligible accuracy costs.

However, the limitations of the range can cause numerical

Algorithm 1 Enhanced Stability CG (blue font denotes dif-
ferences from standard CG)

1: Input: MVM function K (·), initial solution guess x0,
linear system right hand side b, tolerance ε, precondi-
tioner function P (·)

2: Initialize: k ← 0, r0 ← K (x0) − b, d0 ← −r0,
z0 = P (r0) and log γ0 ← LΣE

(
rT0 z0

)
.

3: while ‖rk‖2 < ε do
4: αk = exp

(
log γk − LΣE

(
dTkK (dk)

))
5: xk+1 = xk + αkdk
6: rk+1 = rk + αkK (dk)
7: for j = 0 to k do
8: rk+1 = rk+1 −

(
uTj rk+1

)
uj

9: end for
10: zk+1 = P (rk+1)
11: log γk+1 = LΣE

(
rTk+1zk+1

)
12: βk+1 = exp (log γk+1 − log γk)
13: dk+1 = −rk+1 + βk+1dk
14: end while

overflow for large matrix vector multiplications. To see why
this is problematic, we note that the largest value repre-
sentable in half precision is 213, while the output of a kernel
matrix vector multiply scales quasi-linearly with the size of
the kernel matrix, N,

K̃
(
v
)
i

= a2
N∑
j=1

k (xi, xj) vj + σ2vi.

≤ N
(
a2 + σ2

)
‖v‖∞ .

We instead downscale every MVM by N−1/2, computing
K̃(v/N1/2), which produces an upper bound that scales as
N1/2.

5.2 HALF PRECISION CONJUGATE GRADIENTS

Rescaling Conjugate Gradients The step sizes of the
CG algorithm have a natural interpretation: αk ensures
we are minimizing the objective function along the path
xk+αkpk and βk guarantees conjugacy between the search
directions. The accelerated convergence of CG depends
on the correct computation of αk and βk; however, in fi-
nite arithmetic we cannot compute these quantities exactly.
Worse, the round-off error is amplified when using half
precision as we compute the step size αk and βk terms

αk =
zTk rk

dTkKdk
and βk+1 =

zTk+1rk+1

zTk rk
.

We need to prevent round-off and overflow error with these
terms, so we store them solely in the log-scale (as they are
positive by definition). To do so, we exploit the well known
logsumexp trick, which states that for a given vector w



and z such that wT z > 0, to compute logwT z we use the
following transformation LΣE (·) such that

LΣE
(
wT z

)
= ymax + log

(
N∑
i=1

si exp (yi − ymax)

)
where yi = log |wi| + log |zi| and si = sign (wizi). For
example, we compute and store logαk = LΣE(r>k zk) −
LΣE(d>kKdk).

Re-orthogonalization In infinite precision, each direc-
tion vector dj for CG is K orthogonal, that is dTi Kdj = 0
whenever i 6= j, producing residual vectors, rk, that are K
orthogonal to each other [Nocedal and Wright, 2006]. In
practice, orthogonality is lost due to round-off error leading
to slower convergence or even divergences in the resid-
ual vectors [Gratton et al., 2021, Cutajar et al., 2016]. To
accelerate convergence and preserve orthogonality, we ap-
ply explicit Gram-Schmidt re-orthogonalization inside CG
[Gratton et al., 2021]. Specifically, we re-orthogonalize the
residual vector for time step k, updating the new resid-
ual rk = Kxk − b as rk+1 ← rk+1 − (uTi rk+1)ui
for i = 1, . . . , k and where ui are the previous itera-
tion’s orthonormal vectors created from the residual ri. Re-
orthogonalization comes at an increased memory cost, as
we must store all previous residuals, adding O(JN) mem-
ory costs for J steps of CG. However, we find that with
re-orthogonalization (and high tolerances) we are able to
converge in very few steps, often J < 50.

Preconditioning With preconditioning, we hope to find
an operator such that P−1K ≈ I with P−1(v) is inexpen-
sive to compute and solve the system P−1Kv = P−1w
instead of Kv = w. Following Gardner et al. [2018], we
use the pivoted Cholesky decomposition, which requires
solely access to the rows of the matrix (e.g. Ki. = Kei
where ei is a zero vector with ith entry equal to one) and
an approximate diagonal (constant in our case). Running
k steps of the pivoted Cholesky decomposition on K pro-
duces an approximation K̃ ≈ LkL

>
k + σ2I and we use the

Woodbury matrix identity to construct P−1.

P−1w = σ−2w−

σ−4Lk

(
I + σ−2LTkLk

)−1
LTkw. (5)

The inner system is of size k << N and so can be solved us-
ing direct methods (e.g. Cholesky or QR) in single precision
(due to a lack of LAPACK support for these in half).

To summarize, we show our revised CG procedure in algo-
rithm 1, with the differences from the BBMM CG algorithm
of Gardner et al. [2018] in bolded blue font.

5.3 LOSS FUNCTION

Computation of Eq. (1) requires either an expensive eigen-
decomposition or Lanczos iteration in the forwards pass to

compute the log determinant term, which can be quite un-
stable [Gardner et al., 2018]. Instead, we use a pseudo-loss
that has the same gradient as Eq. (2) via solving K̃ against
both the response y and the probe vectors zi simultaneously.
That is, we find solutions to the linear system using Alg. 1:

K [u0,u1, · · · ,uM ] = [y, z1, · · · , zM ] . (6)

for ui. We then detach these solutions and compute simply:

L̃(θ) =
1

2M

M∑
j=1

uTj (Kθzj)−
1

2
uT0 (Kθu0) , (7)

which has gradient

∇θL̃ =
1

2M

M∑
j=1

uTj (∇θKzj)−
1

2
uT0 (∇θKu0) , (8)

which is the same as Eq. 2. Eq. 8 then only requires gradients
with respect to matrix vector products, which are computed
natively in KeOps. Eq. (8) does not use variance reduction
strategies such as Wenger et al. [2021] but they could also
be incorporated.

The computational complexity of these operations is the
same as that of computing the standard log marginal like-
lihood [Gardner et al., 2018]. Computing Eq. 8 requires
O((M + 1)N2) time where M is the number of trace es-
timates and N is the total number of data points. Using
half precision does not alter the order of the cost but only
reduces the constant of the MVMs by half.

6 BENCHMARKING EXPERIMENTS

We compare our method directly to single precision GP
training using KeOps and GPyTorch on benchmarks of up
to 1.8 million data points from the UCI repository [Dua and
Graff, 2017] using RBF ARD kernels and a single NVIDIA
V100 GPU. We show results for other kernels in Appendix
C. A mixed precision strategy of using solely half precision
matrix vector multiplications produces speedups of at least
two times over an equivalent single precision model.

Residual Norms First, we consider the relative solve er-
ror on three different datasets of varying size: Elevators,
KeggDirected, and Buzz for hyperparameters collected at
the end of the optimization runs. While standard CG in half
precision diverges very quickly, we find that our stable CG
implementation in half precision closely matches the con-
vergence behaviour of single precision CG, converging to
a residual tolerance less than 0.5 in less than 50 optimiza-
tion steps, as shown in Figures 5a for elevators and 5b for
KeggDirected.

Furthermore, we explore the effects of using no precondi-
tioner (rank 0) and also of using preconditioners of rank 5,
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Figure 5: (a,b) Residual norms on Elevators and KeggD; standard half precision CG fails while our approach converges in a
similar number of iterations to single precision CG. (c) Residual norms using our CG solver on Buzz; using preconditioning
prevents divergences due to round-off errors. (d) Running CG for too many iterations produces round-off errors that build
up over time producing divergences. (e) Matérn-1/2, 3/2 kernels tend to converge quicker than RBF kernels on PoleTele.

Table 1: RMSEs and training time with ± the standard deviation of the results over 5 different seeds on a suite of UCI tasks
for half and single precision GPs and SVGPs. Here, we use RBF ARD kernels with 50 CG iterations and 50 optimization
steps. We included KeOps compilation times and observe that the largest improvements come on Song and HouseElectric.

RMSE Time
Dataset (N, d) Single Half SVGP Single Half SVGP
PoleTele (13.5K, 26) 0.117± 0.004 0.121± 0.003 0.14± 0.004 57.6± 0.6 88.3± 3.2 15.± 0.5
Elevators (14.9K, 18) 0.364± 0.004 0.382± 0.001 0.374± 0.005 58.4± 3.1 90.1± 2.9 16± 0.5

Bike (15.6K, 17) 0.074± 0.003 0.083± 0.009 0.077± 0.006 62.3± 0.7 85.6± 0.41 17± 0.6
Kin40K (36K, 8) 0.099± 0.001 0.100± 0.003 0.165± 0.003 65.5± 5.3 92.9± 0.28 39± 0.5
Protein (41.1K, 9) 0.055± 0.006 0.635± 0.002 0.632± 0.01 70.9± 5.7 115.7± 0.10 46± 3.2
3droad (391.4K, 3) 0.194± 0.01 0.215± 0.004 0.412± 0.011 1, 260± 35 1,003± 0.97 412± 101
Song (463.8K, 90) 0.761± 0.004 0.779± 0.022 0.999± 0.002 24,357± 2,613 9,930± 130 284± 2.0
Buzz (524.9K, 77) 0.300± 0.01 0.448± 0.025 0.268± 0.004 25,436± 1,200 23,127± 1,819 617± 114

HouseElectric (1844.3K, 9) 0.052± 0.002 0.051± 0.004 - 42,751± 2,180 36,025± 1,178 -

15 and 50 on Buzz. As seen in Figure 5c, we find that CG
diverges without preconditioning and that a rank 5 precon-
ditioner is sufficient for convergence and behaves similarly
to preconditioners with rank 15 and 50. These findings are
consistent with Maddox et al. [2021].

Despite preconditioning, the effect of low-precision does
produce round-off errors that grow with the number of iter-
ations, preventing us from running our method for a large
number iterations or with low tolerances. We show this ef-
fect across three datasets in Figure 5d. Finally, we show
the results across Matérn kernels with varying ν and RBF
kernels without ARD on PoleTele in Figure 5e, finding that
Matérn-1/2 kernels tend to converge fastest. This is consis-
tent with our discussion in Section 4.2, since the Matérn-1/2
kernels have a wider range of numerically representable dis-
tances, reducing round-off error and they also have better
conditioning.

Optimization Trajectories Next, in Figure 6, we dis-
play the evolution of the three hyperparameters (noise, out-
putscale, and lengthscale) on Protein with the same plot
shown for 3droad in Figure A.5. We see that the solver
produces accurate enough solves so that gradients are unaf-
fected and the hyperparameters train similarly to the GPy-
Torch solves in single precision.
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Figure 6: Optimization and parameter trajectories on Pro-
tein for both a standard single precision model and our
half precision implementation. The noise term (left) and
lengthscale (right) are very close for both precisions, while
the outputscale (center) shows some minor differences, but
convergence to a similar value.

Benchmark Results Finally, in Table 1 we show the root
mean square errors (RMSEs) and fitting times for both sin-
gle and half precision as well as variational GPs (SVGPs)
[Hensman et al., 2013] over 5 seeds, displaying the mean
and standard deviation. At a first glance, it appears that
half precision only runs faster for datasets with size larger
than 100K datapoints. However, this is simply because the
fixed compilation times in KeOps for half are longer, and
the runtime is already very fast for smaller datasizes. As
seen in Figure A.7, when taking out the compilation times,
half precision always runs faster. Moreover, for Song and
HouseElectric, we see significant speedups (of up to 3x)
for the same number of optimization steps as seen in Fig-



ure 7. Finally, SVGPs tend to be faster but often perform
significantly worse than half or single precision GPs. We
were unable to run SVGPs on HouseElectric due to out of
memory errors at test time on our servers. Combining half-
precision inference with SVGP is an interesting direction
for future work.

Figure 7: Half precision GP inference is particularly faster
than full precision on large datasets. Running times (± one
standard deviation) for the experiments of Table 1 with
the largest datasets. The scale of the y-axis is broken into
[0-1,500] and [5,000-50,000].

7 CONCLUSION

Deep learning has benefited enormously from advances in
hardware design and systems. While GPs have started to
exploit GPU parallelization, with highly impactful systems
such as GPyTorch [Gardner et al., 2018], there is essentially
no work on low-precision inference with GPs, despite the
widespread impact of low-precision optimization in deep
learning. Indeed, low-precision GPs are nontrivial because
the operations necessary for inference are relatively sensitive
to the precision of the computations. In this respect, our
work provides several new insights:

• Training GPs in low-precision requires algorithmic
modifications to ensure numerical stability. To this
end, we propose a stable version of conjugate gradi-
ents that uses scale translation, re-orthogonalization,
preconditioning and mixed precision.

• Mixing the precision of computations guarantees
speedups while minimizing issues related to round-off
errors. To minimize catastrophic round-off error it is
important to cast inexpensive but critical computations,
such as the step sizes in CG, into higher precisions,
while performing noncritical and large computations,
such as MVMs, on lower precisions to gain runtime
speedups.

• The kernel choice affects the convergence behavior
of GPs in lower precisions. Mátern kernels converge

faster than RBF kernels, as Mátern kernels have a wider
range of numerically representable distances, reducing
round-off error and poor conditioning.

• Lower precisions slow the rate of decay of the eigen-
spectrum of the kernel matrices. The change in the rate
of decay of the eigenvalues introduced by using lower
precisions has a detrimental effect both on the train-
ing convergence, by slowing the rate of progress of
the CG iterations, and on the provable generalization
guarantees, by increasing the effective dimensionality.

• How the bits are split between matissa and exponent
affect the training results. We find float16 to be the
easiest half precision standard to work with since it has
a wider range of values (when compared to bfloat16)
which avoids the CG steps from being clipped.

• Our algorithm for training GPs in lower precisions can
be used to broadly accelerate standard CG, beyond
Gaussian process inference. In many cases, there is
no reason not to use the proposed procedures as a
drop-in replacement for standard CG. Apart from re-
orthogonalization, the rest of the modifications that we
introduced into CG have no effect on single or double
precision, and apply broadly.

These contributions will continue to appreciate with time,
as hardware advances continue to further accelerate low-
precision computations.

There are also many promising directions for future research.
The use of lower precisions and our mixed precision ap-
proach can be used in other iterative methods such as Lanc-
zos [Pleiss et al., 2018] and MINRES [Pleiss et al., 2020].
Our methods could also be adapted to approximate GP in-
ference, e.g., for classification, and combined with SVGP
and scalable low rank approximations of the kernel matrix.
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Our Appendix is structured as follows:

• In Appendix A, we further describe related work, including on conjugate gradients.

• In Appendix B, we show several other experiments on both the properties of half precision kernel matrices and half
precision conjugate gradients.

• In Appendix C, we outline experimental details for all of our experiments.

• In Appendix D, we give some detailed theoretical analysis of half precision kernel matrices, focusing on the quantized
effective dimension and the effect of finite precision on the support of the kernel.

A EXTENDED RELATED WORK

Conjugate Gradients: A description of the conjugate gradients algorithm is given in Alg. 2 while using preconditioning
[Nocedal and Wright, 2006, Golub and Loan, 2018]. Gardner et al. [2018] propose a variant of conjugate gradients that
they call modified batched CG (mBCG) which we use in our work. The primary difference between mBCG and CG is
that mBCG enables solving several linear systems at once by performing all computations in batch mode so that linear
operators such as K(v) are actually matrix matrix multiplications rather than matrix vector products. Then, an individual set
of learning rates αk and βk is used for each system. Our stable CG implementation (Alg. 1) is actually based off of mBCG,
but for didactic purposes we display only the standard CG version.

Algorithm 2 CG

1: Input: MVM function K (·), initial solution guess x0, linear system right hand side b, tolerance ε, preconditioner
function P (·)

2: Initialize: k ← 0, r0 ← K (x0)− b, d0 ← −r0, z0 = P (r0) and γ0 = rT0 z0.

3: while ‖rk‖2 < ε do
4: αk = γk

dT
k K(dk)

5: xk+1 = xk + αkdk
6: rk+1 = rk + αkK (dk)
7: zk+1 = P (rk+1)
8: γk+1 = rTk+1zk+1

9: βk+1 = γk+1

γk
10: dk+1 = −rk+1 + βk+1dk
11: end while

Other Scalable Gaussian Processes We note that our matrix-free schemes can be used to scale up approximate kernel
methods such as Nystrom style approximations [Smola and Schölkopf, 2000, Williams and Seeger, 2000]; indeed, Meanti
et al. [2020] use Nystrom approximations and KeOps for their kernel ridge regression approach. However, Zhang et al.
[2019] found limited speedups when quantizing (which is slightly distinct from half precision) Nystrom approximations.
Similarly, Pleiss et al. [2020] used iterative methods (in their cast MINRES) to speed up variational Gaussian processes
[Titsias, 2009, Hensman et al., 2013], and we hope to speed up their approach as well. Chen et al. [2013], Nguyen et al.
[2019] proposed parallel direct Cholesky based GP schemes for more scalable GP regression; however, their approaches will
probably perform poorly in lower precision, as we demonstrate is the case for pivoted Cholesky based solves in Section 4.3.

Finally, kernels with compact support have been previously studied from a kernel approximation point of view [Genton, 2001,
Gneiting, 2002]. However, these works focused on developing new techniques to approximate an infinitely supported kernel
with a kernel that has demonstrated compact support, rather than using floating point precision to develop an approximate
kernel with compact support.

B EXTENDED EXPERIMENTS

Summation Approaches In Figure A.1a, we display the different times of block summation across precisions, as well as
Kahan summation and floating point accumultion of float kernel matrix MVMs, finding that all half precision accumulation
mechanisms behave similarly, with Kahan summation being slightly slower than the other two. This plot is inspired by the
study performed by the authors of KeOps [Charlier et al., 2021], available at https://www.kernel-operations.

https://www.kernel-operations.io/keops/_auto_benchmarks/plot_accuracy.html


io/keops/_auto_benchmarks/plot_accuracy.html. Due to these results, we use block summation, casting
each block’s summation up to float before down-casting to half, as is the default in KeOps.
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Figure A.1: (a) Block summation in floating point adds negligible overhead compared with block summation in half
precision, while being as accurate as Kahan summation. (b) Maximum distance representable for Matérn-1/2 kernel; note
the similar trend to Figure 2a. (c) Error of the truncated MVM is zero as expected. To produce the sparsified MVM, we
truncated any data points that had kernel entries that were un-representable in half precision.

Properties of Half Precision Kernel Matrices In Figure A.1b, we display the maximum distance representable for
Matérn-1/2 kernels across varying lengthscales, as we show for RBF and rational quadratic kernels in Figures 2a and 2b.
The trend for the Matérn family is similar to that of the RBF kernels, except that larger distances are representable.

Finally, in Figure A.1c, we show the error of sparsified MVMs (which is zero) across increasing dataset size for the data
reduction experiment in Section 4.1.

The difference of the largest eigenvalue of a Matérn-1/2 kernel is shown in Figure A.2a in float and half as compared to
double precision (which we use as a proxy for infinite precision). Note that extremely small relative differences for these
largest values.

In Figure A.2(b), we show ED for RBF kernels with the associated spectrum in (c).

In Figure A.3, we display (K + 0.01)−1 for RBF kernels with lengthscale 1 and 50 data points in [−3, 3] across double
(left), float (middle), and half (right) precisions. We first evaluate the kernel to a lower precision and then pass into double
precision before using a Cholesky factorization to invert the kernel matrix, finding that the half precision kernel inverse has
a distinct pattern (larger magnitude off-diagonal values) compared to the float and double inverse matrices.

Benchmarking Half Precision CG In Figure A.4a, we display how CG in half diverges, but our stable CG converges
as does CG in float. In Figure A.4b and A.4c, we display the effect of preconditioning on solves, finding again that larger
preconditioners tend to converge very slightly faster.

In Figure A.5, we display the optimization trajectory on 3droad finding that there are clearer divergences in terms of the
outputscale; however, each parameter converges to similar values by the end of training.

0 2500 5000 7500 10000
N

10 13

10 10

10 7

10 4

10 1

Sq
. E

rro
r o

f 
m
ax

Float
Half

(a) Difference of λmax.

0 2500 5000 7500 10000
N

101

102

N
ef
f(A

,0
.2
)

Float
Half
Double

(b) ED, RBF.

0 2500 5000 7500 10000
Order

10 16

10 12

10 8

10 4

100
104

Ei
ge

nv
al
ue

Float
Half
Double

(c) Spectrum, RBF.

Figure A.2: (a) Difference of λmax across precisions for Matérn-1/2 kernel. Other kernels have similar eigenvalue diffeences.
(b) Effective dimension (ED) for RBF kernels, the trend is similar to that of the Matérn-1/2 kernel because the eigenvalue
spectrum (c) has a similar bunched up pattern in half.
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Figure A.3: Matrix inverses of an RBF kernel in double (left), float (middle), and half (right) precisions. The inverse is
performed in double precision, while the evaluation itself is performed in half precision. The half precision inverse is
qualitatively distinct from the other two indicating a slightly distinct spectrum.
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Figure A.4: (a) Residual norms across solvers on buzz. (b) Residual norm for stable CG on elevators. Here no preconditioning
also converges. (c) Residual norm for stable CG on Kegg Directed. (d) Residual norm for no ARD on Pol.

0 50 100
Step

0.0

0.5

1.0

1.5

2.0

No
ise

0 50 100
Step

2

4

Ou
tp
ut
sc
al
e

0 50 100
Step

0.0

0.2

0.4

0.6

0.8

Le
ng

th
sc
al
e

Float Half

Figure A.5: Optimization trajectory on 3droad.

Expanded Benchmark Results In Figure A.7 we added the timing of Table 1 without the compilation times of KeOps.
Taking out the KeOps compilations times, half precision is always faster than single precision. Additionally in Figure A.8
we plotted the RMSE results where half precision, due to our stable method, maintains almost the same performance as
single precision.

Additional Benchmark Results In Table A.2, we display NLLs across five seeds on UCI datasets for float, half, and
SVGPs, analogous to our RMSE and timing results in Table 1. The timing results with and without PyKeops compilation
times are shown in A.6 and A.7, respectively.

In Table A.3, we display RMSEs, times, and NLLs for Matérn-5/2 ARD kernels for both single and half precisions. In Table
A.5, we display RMSEs, times, and NLLs for Matérn-1/2 ARD kernels for both single and half precisions. In Table A.4, we
display RMSEs, times, and NLLs for Matérn-1/2 ARD kernels for both single and half precisions.
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Figure A.6: Running times with KeOps compilation for RBF kernel experiment on UCI.
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Figure A.7: Running times without KeOps compilation for RBF kernel experiment on UCI.
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Figure A.8: Comparison of RMSE for RBF kernel experiment on UCI.

C EXPERIMENTAL DETAILS

C.1 MAXIMUM DISTANCE REPRESENTABLE IN FINITE PRECISION

To compute these distances, we consider four separate stationary kernels [Rasmussen and Williams, 2008] with distance
d = |x− x′| and lengthscale l, focusing on determining what values they drop below a given ε. For Matérn-1/2 kernels,
we need exp{−d/l} < ε and solving gives d > − log ε ∗ l. For other Matérn kernels (e.g. 3/2 and 5/2), there is no
straightforward closed form solution, but empirical investigations showed that the maximum distance representable is
somewhere between Matérn-1/2 and RBF.

For RBF Kernels, we have exp{−1/2d2/l2} < ε and solving gets d > (−2 log ε)1/2l. For rational quadratic kernels, we
have (1 + d2

2αl2 )−α < ε and solving for d gets d > (2α(ε1/α − 1))1/2 ∗ l. We found that for α = 2, 3 the size of the support

was much larger, and so showed only α = 5. For periodic kernels, we have − 2
λ sin2

(
π
p |d|

)
< log ε and solving gets



Table A.2: Test time NLLs across 5 seeds on a suite of UCI tasks for float, half, and SVGPs with RBF ARD kernels.

Dataset (N, d) Single Half SVGP
PoleTele (13.5K, 26) −0.349± 0.004 −0.316± 0.004 −0.513± 0.011
Elevators (14.9K, 18) 0.515± 0.0195 0.663± 0.024 0.437± 0.012

Bike (15.6K, 17) −0.3714± 0.0066 −0.413± 0.008 −1.020± 0.044
Kin40K (36K, 8) 0.2352± 0.005 0.241± 0.005 −0.327± 0.007
Protein (41.1K, 9) 0.9802± 0.0115 1.412± 0.001 0.964± 0.015
3droad (391.4K, 3) 1.249± 0.0129 1.201± 0.005 0.537± 0.025
Song (463.8K, 90) 1.146± 0.0043 1.765± 0.819 1.418± 0.002
Buzz (524.9K, 77) −0.424± 0.18 0.898± 0.714 −0.071± 0.010

Houseelectric (1844.3K,9) −0.72± 0.002 −0.439± 0.084 −

Table A.3: RMSEs, NLL, and training time across 3 seeds on a suite of UCI tasks. Here, we use Matérn-5/2 ARD kernels
with 50 CG iterations and 50 optimization steps.

RMSE NLL Time
Dataset (N, d) Single Half Single Half Single Half
PoleTele (13.5K, 26) 0.098± 0.002 0.102 −0.454± 0.004 −0.447 49.1± 1.74 97
Protein (41.1K, 9) 0.498± 0.007 0.509± 0.005 1.07± 0.01 1.04± 0.03 69.17± 1.7 110± 10
3droad (391.4K, 3) 0.254± 0.006 0.231 0.812± 0.014 0.899 1666± 214 1501

Table A.4: RMSEs, NLL, and training time across 3 seeds on a suite of UCI tasks. Here, we use Matérn kernel 1/2 with 50
CG iterations and 50 optimization steps.

RMSE NLL Time
Dataset (N, d) Half Half Half
PoleTele (13.5K, 26) 0.108± 0.003 0.0478± 0.006 85± 2.4
Elevators (14.9K, 18) 0.365± 0.002 −0.432± 0.010 83± 1.9

Bike (15.6K, 17) 0.096± 0.003 0.527± 0.004 84± 0.4
Kin40K (36K, 8) 0.136± 0.002 0.194± 0.005 87± 0.1
Protein (41.1K, 9) 0.481± 0.003 −0.762± 0.013 98± 0.1
3droad (391.4K, 3) 0.083± 0.001 −0.045± 0.020 1285± 2.3

Table A.5: RMSEs, NLL, and training time across 3 seeds on a suite of UCI tasks. Here, we use Matérn kernel 3/2 with 50
CG iterations and 50 optimization steps.

RMSE NLL Time
Dataset (N, d) Half Half Half
PoleTele (13.5K, 26) 0.101± 0.003 0.475± 0.005 90± 2.2
Elevators (14.9K, 18) 0.498± 0.112 −0.990± 0.423 86± 3.5

Bike (15.6K, 17) 0.086± 0.003 0.567± 0.006 88± 0.1
Kin40K (36K, 8) 0.097± 0.001 0.186± 0.004 96± 0.1
Protein (41.1K, 9) 0.497± 0.003 −0.850± 0.008 107± 0.1
3droad (391.4K, 3) 0.165± 0.003 −0.700± 0.024 1532± 3.4

Table A.6: RMSEs, NLL, and training time across 3 seeds on a suite of UCI tasks. Here, we use Matérn-5/2 kernels with 50
CG iterations and 50 optimization steps.

RMSE NLL Time
Dataset (N, d) Half Half Half
PoleTele (13.5K, 26) 0.102± 0.002 0.437± 0.011 96± 2.1
Elevators (14.9K, 18) 0.520± 0.209 −0.967± 0.571 94± 5.9

Bike (15.6K, 17) 0.082± 0.001 0.568± 0.008 93± 0.1
Kin40K (36K, 8) 0.088± 0.001 0.078± 0.002 106± 0.1
Protein (41.1K, 9) 0.512± 0.008 −1.048± 0.008 113± 11.3
3droad (391.4K, 3) 0.226± 0.005 −0.905± 0.007 1486± 4.5

|d| > p
π arcsin

(
− log ελ2

)
which will only have solutions when − log ελ2 ≤ 1.



C.2 EXPERIMENTAL SETUP

All timing based experiments were performed using single NVIDIA V100 GPUs with 32GB of memory on a shared
supercomputing cluster. Non-timing experiments also used NVIDIA RTX GPUs with either 24 or 48 GB of memory on
either the same cluster or on a private internal server.

We used GPyTorch [Gardner et al., 2018] with the default parameter settings from Botorch’s single task GP model1 which
are constraining the noise to be greater than 0.0001 and a Gamma(1.1, 0.05) prior on the noise with initialization to 2, and
Gamma(2.0, 0.15) prior on the outpuscale and a Gamma(3.0, 6.0) prior on the lengthscale(s). We fit using Adam for either
50 or 100 iterations unless otherwise documented and used a tolerance of 1.0 for the CG iterations unless otherwise stated.
We used KeOps 1.5 for our experiments, noting that preliminary experiments with KeOps 2.0 produced significantly faster
compilation times [Charlier et al., 2021].

For the datasets, we used the bayesian benchmarks package of https://github.com/hughsalimbeni/
bayesian_benchmarks/, following their default training and testing splits.

At test time, we converted the models back to float precision; however, our experiments found that this actually had limited
impact on the RMSEs.

D THEORETICAL ANALYSIS

D.1 EFFECT OF FINITE PRECISION ON SUPPORT

Following Rasmussen and Williams [Chapter 4.3 of 2008] we can express the eigenvalues of an RBF kernel as λk =
√

2a
A B

k

for some positive constants a, A and B ∈ (0, 1) that depend on the hyperparameters of the RBF kernel. In infinite-precision
an RBF kernel has support over the whole space as λk > 0. However, if

k ≥
log δ + 1

2 log
(
A
2a

)
logB

= O(log δ)

then λk = 0 in finite-precision, where δ represents the round-off error. This means that the support of the kernel gets cut-off.
This is similar to the support a Gaussian distribution N

(
µ, σ2

)
being the whole line R, however, computing the probability

of a sample being several standard deviations from the mean get cut-off to zero due to the sharp decay of the tails. Thus, our
results focus on the empirical support of the kernel, not on the theoretical one.

D.2 EFFECT OF FINITE-PRECISION ON GENERALIZATION

Following Li and De Sa [2019], we assume that moving from infinite precision to finite precision and using stochastic
rounding means that our finite precision number, Q(a) ∼ U(a− δ, a+ δ) for some δ that depends on our quantization (e.g.
our precision based scheme). Eqs. 11-15 of Opper and Vivarelli [1998] (see also Thm 1 of Dicker et al. [2017], Thm 4.1 of
Zhang [2005] and Thm 4 of Caponnetto and Vito [2007]), generalization bounds often depend on the effective dimension of
the training kernel matrix. Recall that the effective dimension is computed from the eignenvalues as

∑N
i=1

λi

λi+s
for some

value s. We will compute our finite precision approximation by computing the expected value of the effective dimension
under the stochastic rounding scheme.

Furthermore, we assume that each eigenvalue is quantized independently, to compute the expected effective dimension, we

1https://botorch.org/api/models.html#module-botorch.models.gp_regression.

https://github.com/hughsalimbeni/bayesian_benchmarks/
https://github.com/hughsalimbeni/bayesian_benchmarks/
https://botorch.org/api/models.html#module-botorch.models.gp_regression


need to compute N integrals of the following form, where p(x) = U(a− δ, a+ δ):

Ep(x)
x

x+ s
=

∫ a+δ

a−δ

x

x+ s

1

a+ δ − (a− δ)
dx =

1

2δ
(x− s log(x+ s))|a+δa−δ

=
1

2δ
(a+ δ − s log(a+ δ + s)− (a− δ − s log(a− δ + s))

= 1 +
s

2δ
log

a+ s− δ
a+ s+ δ

= 1 +
s

2δ
log

(
1− 2δ

a+ s+ δ

)
= 1− s

2δ

(
2δ

a+ s+ δ
+

4δ2

2(a+ s+ δ)2
+

8δ3

3(a+ s+ δ)3
+O(δ4)

)
= 1− s

a+ s+ δ
− δs

(a+ s+ δ)2
− 4δ2s

3(a+ s+ δ)3
−O(δ3) (9)

≥ 1− s

a+ s+ δ
− δs

(a+ s+ δ)2
(10)

Now, putting this into our expectation over the quantized eigenvalues:

E

(
N∑
i=1

Q(λi)

Q(λi) + s

)
≥

N∑
i=1

1− s

λi + s+ δ
− δs

(λi + s+ δ)2
(11)

= N −
N∑
i=1

s(λi + s+ δ)− δs
(λi + s+ δ)2

= N −
N∑
i=1

s(λi + s)

(λi + s+ δ)2

≥ N −
N∑
i=1

s

λi + s

= Neff(K, s)

Note that as δ → 0 all of these inequalities become tight as expected. What this shows is that in finite precision, the expected
effective dimensionality can only be higher than the effective dimensionality in infinite precision.

In general, bounds such as Eqs. 11, 16 of Opper and Vivarelli [1998] (also Eq. 7.26 in Rasmussen and Williams [2008] tend to
depend on the expected eigenvalues rather than those estimated empirically (e.g. in finite precision). However, they are related
as 1

N λ
emp
i → λi (see Rasmussen & Williams, 06 4.3.2) and so we estimate Neff(K,σ

2/n) with Neff(K
emp, σ2). Plugging in

our finite precision estimate to something like Thm. 4.1 of Zhang [2005] then suggests that the generalization error in (any)
finite precision will tend to be higher than for infinite precision. Roughly, these bounds state that the generalization error of
a kernel ridge regressor is upper bounded by the sum of approximation error terms (relating to the fit of the kernel to the
function) plus Neff(K,λ)/n for a regularization term λ (similar to the noise value in the GP setting).

Finally, our analysis shows that a larger δ (e.g. a lower precision estimate) will tend to further increase the generalization
error. This tends to confirm our experimental study on the effective dimension in Figure 2d.
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