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certainty in volatility and propagating it to our data forecasts
yields projected distributions that are well calibrated to the
data, providing critical tools for understanding risk levels
and simulating potential outcomes. For further information
on stochastic volatility see Appendix A.1.

Figure 1 provides a graphical representation of the hierarchi-
cal GP model described by Volt. Given a set of observations
(top row) we infer a volatility path over those returns (mid-
dle row), and form a hierarchical GP model where the first
GP models volatility, and the second GP is used to forecast
distributions over the data given samples from the volatility
GP (bottom row).

The covariance structure described by Volt provides a faith-
ful representation of the uncertainty in forecasts, but over-
looks the mean function of the data space GP, which is a
powerful tool for capturing trends in data. To that end, we
jointly introduce Moving Average Gaussian Processes, or
Magpie, in which we replace the standard parametric mean
function in GPs with a moving average. Moving averages
are a widely used technique in domains such as climatology
and finance (Nau, 2014). By joining the trend fitting capa-
bilities of moving averages with the probabilistic framework
of GPs we can produce forecasts that are both accurate and
have calibrated uncertainties.

While Volt and Magpie can be used separately, we present
them as a single work because it is specifically their com-
bination that solves challenging forecasting problems. In
time evolving domains like stock prices or wind speeds,
the inherent randomness of the processes prevents us from
producing accurate point estimates far out into the future,
and we need just accuracy, but uncertainty that is faithful
to the stochasticity of the data. For this reason one needs
both the accurate trend capture provided by Magpie, and the
accurate uncertainty representation provided by Volt

Our key contributions are as follows:

• Deriving a hierarchical GP model, Volt, inspired by
stochastic volatility models that produces calibrated
forecasts of stochastic time series (Section 3).

• Describing a simple but powerful mean function, Mag-
pie, that enables Gaussian process models to accurately
forecast trends (Section 3).

• Using Volt and Magpie to produce highly calibrated
forecasts in financial and climatological domains (Sec-
tion 4).

• Extending our procedure to multitask problems by ac-
counting for correlations in both volatility and price
across different financial assets and different spatial
locations (Section 5).

• We make code available here.

2. Related Work
Early autoregressive approaches to modeling the volatility
of time series returns such as GARCH have seen widespread
success (Bollerslev, 1986). These approaches typically view
the volatility process as a time-evolving series, and are ef-
fective for inferring and forecasting volatility, but do not
typically interface directly with a model over data as we
have with Volt.

Volatility models have been extended to use both neural net-
works or Gaussian processes as their base components. For
example, Cao et al. (2020) use a multi-layer perceptron to es-
timate volatility surfaces while Luo et al. (2018) use RNNs
with rollouts to forecast volatility into the future but only
considered one-step lookahead price forecasts. Wilson and
Ghahramani (2010) use Gaussian processes to parameterize
the volatility using Laplace approximations and MCMC
sampling introducing the Gaussian process copula volatility
model (GPCV), while Wu et al. (2014) used GP state space
models and particle filters to estimate volatility. Similar to
Wilson and Ghahramani (2010), Lázaro-Gredilla and Titsias
(2011) used Gaussian processes to parameterize volatility
models with an exponential link, but used a highly structured
variational approximation for inference. Liu et al. (2020)
used multi-task Gaussian processes to forecast volatility
into the future, applying their models to foreign exchange
currency returns, again with one-step lookahead forecasts
in price. Crucially, predicting volatility alone does yield a
straightforward path to forecast data, which is our central
aim with Volt. Furthermore, Volt builds off of the GPCV,
but other volatility estimation methods such as the ones
described here could also be used.

Stochastic volatility models such as the Heston model (Hes-
ton, 1993) and SABR (Hagan et al., 2002), treat the evolu-
tion of the price of a security and the associated volatility
as a coupled system of SDEs. Such SDEs are commonly
used as methods for pricing financial derivatives. Differing
from our viewpoint, these models are typically used to price
stock options under risk-neutral measures, with Volt and
Magpie we are focused on performing predictive inference
by conditioning on observations.

The connection between Gaussian processes and SDEs has
been extensively studied by Särkkä and Solin (2019) who
suggest Kalman filtering based approaches for estimating
GP hyperparameters in SDE-inspired GP models, which we
do not consider here, preferring simply marginal likelihood
based estimation. Systems of linear differential equations
have been integrated into GP models previously via latent
force models both for ordinary differential equations (Al-
varez et al., 2009) and partial differential equations (Särkkä,
2011). To perform inference, Alvarez et al. (2009) derive
covariances corresponding to the linear projection of the
differential operator onto a specific kernel, while Särkkä

https://github.com/g-benton/Volt
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(2011); Särkkä and Solin (2019) use the projection operator
explicitly to develop kernel functions to emulate systems
of SDEs. Similarly, Zhu and Dunson (2013) use SDEs to
derive a nested GP, but their approach produces a standard
GP with a non-deep, but structured, covariance function.
Autoregressive mean functions for GPs have been explored
in Gonzalvez et al. (2019), however in their approach they
use autoregressive features as inputs to a GP model, rather
than as a way to specify the prior functions.

While many of the references above are focused specifically
on finance, Volt and Magpie are applicable to a broad set of
domains including climate modeling. Autoregressive and
volatility models have successfully been applied to domains
such as wind and precipitation forecasting as in Mehdizadeh
et al. (2020); Liu et al. (2011) and Tian et al. (2018).

The Gaussian process autoregressive model (Requeima
et al., 2019) stacks Gaussian processes of different tasks,
using the GP for one task as the mean function for the next.
It thus bears only slight resemblance to our moving average
or multi-task approaches. Furthermore, many well-studied
autoregressive models, e.g. the AR(p) family, can be written
as Gaussian processes (Williams, 2010). As an alternative to
developing domain specific kernel functions, one could alter-
natively construct manual combinations of generic kernels,
which either requires significant amounts of hand-tuning as
in Rasmussen and Williams (2008, Ch 5.4,) or solving dis-
crete optimization problems (Lloyd et al., 2014; Sun et al.,
2018). As we wish to develop our models efficiently and
succinctly, we also do not consider these models.

3. Methods
We first begin with a brief overview of Gaussian process re-
gression models, before deriving the Volt kernel and Magpie
mean functions in Section 3.1. After deriving the Volt kernel
and Magpie mean, we explain the inference procedure in
Section 3.2 and how we perform forecasting in Section 3.3.

Gaussian Processes Please see Rasmussen and Williams
(2008) for a more detailed introduction to Gaussian pro-
cesses (GPs). We assume noisy observations y(t) ∼
N (f(t), σ2), where f ∼ GP(µ(t), k(t, t′)), so that σ is
the observation noise and f is drawn from a GP with mean
function µ(t) and k(t, t′) as the covariance function. When
using GPs, we can compute the posterior predictive distri-
bution, p(f(t∗)|D), D := {t,y}, over new data points
t∗ is given by p(f(t∗)|D, θ) = N (µ∗f |D,Σ

∗
f |D) where

µ∗f |D = Kt∗t(Ktt+σ2I)−1(y−µ(t))+µ(t∗) and Σ∗f |D =

Kt∗t∗ −Kt∗t(Ktt + σ2I)−1Ktt∗ with KA,B := k(A,B).

3.1. Volt and Magpie

We make the common assumption that both the data S(t),
and volatility V (t), have paths with log-normal marginal
distributions. We therefore place the following joint SDE
structure over s(t) = logS(t) and v(t) = log V (t),

ds(t) = µsdt+ V (t)dW (t)

dv(t) = −σ
2

2
dt+ σdZ(t).

(1)

The drift term in Equation (1), −σ
2

2 dt, arises from the log-
transformation of the volatility, and ensures that forecast
distributions over volatility have a constant mean (for fur-
ther details see Appendix B.2). Furthermore, this struc-
ture allows us to derive closed form expressions for and
auto-covariance functions associated with both log-data and
log-volatility, allowing us to define the Volt model.

Equation (1) gives a relationship between the log-price and
log-volatility that is mirrored by many stochastic volatility
models, including GARCH and SABR, where the volatility
of the price is itself governed by an SDE (Bollerslev, 1986;
Hagan et al., 2002). By recasting Equation (1) as a system
of GPs we can move from an SDE sampling approach to a
proper forecasting system based on historical observations.

A Gaussian Process Perspective Since for any finite
collection of time points, t = {ti}Ni=1, the observations
v = v(t) and s = s(t) each have a multivariate normal
distribution, v and s now correspond to Gaussian processes.
Therefore we only need to derive the mean and covariance
functions of the two processes to fully cast our problem as
one of forming predictive distributions from GPs.

As v(t) is a scaled Wiener process with constant drift term,
the autocovariance function is

Kv(t, t
′) = σ2 min {t, t′} (2)

and the mean is µv(t) = −tσ
2

2 so that, v(t) ∼
GP (µv(t),Kv(t, t

′)). Conditional on a realization of
V (t) = exp v(t), s(t) is also described by a Gaussian pro-
cess with E[s(t)] =

∫ t
0
µsdt = tµs and ,

Cov(s(t), s(t′)) =

∫ min{t,t′}

0

V (t)2dt = Ks(t, t
′;V (t)),

(3)

producing our model over log-data:

s(t) ∼ GP (tµs + s(0),Ks(t, t
′;V (t))) . (4)

The final Volt model is then a hierarchical composition of
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Gaussian processes:

v(t) ∼ GP(mv(t),Kv(t, t
′))

V (t) = exp (v(t))

s(t) ∼ GP(ms(t),Ks(t, t
′;V (t)))

S(t) = exp (s(t)) ,

(5)

The log-volatility is distributed as a Gaussian process de-
pendent on the the time inputs, the mean mv , and the volvol
hyperparameter σ and has a Brownian motion covariance
(Eq. 2). Given a realization of a volatility path over time
and the parameters of the log-linear mean, the log-price is
also distributed as a Gaussian process with covariance given
by Eq. 3. To generate predictions using the log-volatility
and log-price GPs we first must infer both a volatility path
from the observed time series, S = S(t), and the hyperpa-
rameters of both the data and volatility models. A complete
derivation of the GPs in Equation (5) is in Appendix B.2.

Magpie For the sake of deriving the covariance functions
associated with the log-data and log-volatility processes, we
have left the mean functions of the data GP in Equation (5)
as a simple linear function. While we may believe that there
are nontrivial trends in the data over time, we also believe
that these trends may be more complex than simple polyno-
mial or periodic functions, and in the context of applications
like finance and climatology are likely to change over time
with evolving market or climatological conditions.

To address these deficiencies in using simple mean functions
in modeling nonstationary signals we replace the simple
mean functions typically found in GP models with exponen-
tial moving averages (EMA) (Nau, 2014). We use the EMA
with a limited number of terms, defined as

EMA(s)i+1 =α[si + (1− α)si−1 + (1− α)2si−2

+ · · ·+ (1− α)k−1si−(k−1)]
(6)

where α = 2/(k + 1) is a hyperparameter governing the
smoothing of the moving average. A smaller value of k uses
only more recent observations, enabling a closer match of
the data, whereas a larger value of k uses more data and
smooths the data more.

While we focus on the EMA in Equation (6), Magpie nat-
urally extends to alternate moving averages, such as lag-
corrected moving averages. We provide comparisons of
these alternate moving averages, as well as the effect of the
k hyperparamter in Appendix Figure 8 and in the extended
results of Section 4. With Equation (6) we can define the
Magpie mean function as mEMA(ti+1, s) = EMA(s)i+1.

We close this section by noting that moving from a linear to
a exponential moving average mean for the GPs breaks the
connection with the SDEs described in Section 3.1, making
the combination of Volt and Magpie necessarily a practical

approach, rather than an entirely theoretically motivated
approach.

3.2. Inference

Here we outline the procedure for using a series of price
observations to train the hyperparameters of the GPs in
Equation 5, and form the associated posterior predictive dis-
tributions. In general the training procedure can be thought
of as a three step process: a) use a Gaussian Process Copula
Volatility (GPCV) model to infer a volatility path, V , given
a sequence of observations S, b) learn the hyperparame-
ters of the GP in log-volatility space by maximizing the
Marginal Log-Likelihood (MLL) with respect to the GPCV
inferred volatility, c) learn the hyperparameters of the GP in
log-data space by maximizing the MLL with respect to the
observed prices, using the kernel generated by the GPCV
inferred volatility path. Note that our use of the GPCV to
estimate volatility is a modelling choice and we could al-
ternatively have used any other volatility estimation model
such as GARCH.

Inferring Volatility from Training Data One challenge
in formulating the model outlined in Equation (5) is the
need to have both data and volatility observations for some
range of training observations. To estimate the volatility, we
use a variant of Gaussian copula process volatility (GPCV)
model first proposed by Wilson and Ghahramani (2010).
Our GPCV model uses a warped Gaussian process to model
the variability of the responses, w(t), according to:

f(t) ∼ GP(c,Kv(t, t
′))

γ(f(t)) = exp{f(t)}
w(t) ∼ N (0, γ2(f(t))).

(7)

We use the kernel derived from log-volatility SDE in Equa-
tion (5) to infer the latent function f(t), and use variational
inference (Hensman et al., 2013; 2015) to train the model.
See Appendix B.3 for further details.

Following Wilson and Ghahramani (2010), we consider the
responses as the log-returns of the data, that is: w(ti) =
logS(ti)− logS(ti−1). We construct a volatility prediction
over times 0, · · · , t− 1 by drawing posterior samples from
f(t) and passing them through the warping function σ(·);
so our estimate for V (t) is

V̂ (t) :=
1

J

J∑
j=1

γ(fj(t)), fj(t) ∼ q(f(t)|w(t), v, θ), (8)

where q(f(t)|w(t), v, θ) is our approximate posterior distri-
bution over the latent function f(t). We demonstrate that
our approach is able to correctly estimate the true volatility
in Figure 1, where the volatility and price are drawn from a
SABR volatility model (Hagan et al., 2002).
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Training the Gaussian Processes Given the volatility
path associated with the training data learned using a GPCV,
we assume a Gaussian process priors over the log-volatility
and log-data according to Equation (5). Given the volatil-
ity over the training data, the single hyperparameter of the
log-volatility model is the σ2 term describing the volvol.
The hyperparameters of the log-data model are just the pa-
rameters of the mean in Equation (5), of which there are
none if we are using a non-parametric mean like Magpie.
To train we maximize the MLL of the models with respect
to their hyperparameters using gradient based optimization
(Rasmussen and Williams, 2008, Chapter 5). The total com-
putational cost for inference in Volt, regardless of the use of
a Magpie mean, is just the cost of training one variational
GP and two standard GP models on evenly spaced data,
which can be done efficiently via exploiting the (Toeplitz)
structure of the data (Wilson and Nickisch, 2015).

3.3. Predictions

In Volt, we condition the log-volatility GP on a log-path
inferred by GPCV and the log-data GP on historical obser-
vations of log-price and draw samples from the posterior
distributions, producing a mixture of log-normal distribu-
tions over data. Sampling the posterior requires sample Nv
log-volatility paths, v∗, over the test inputs and for each of
these we generate a kernel Ks(t, t

′, V ∗), and sample Ns
data paths, S∗ = exp(s∗), producing Nv ×Ns samples.

In the Gaussian process viewpoint of Section 3.1, standard
Monte Carlo simulation of an SDE procedure is equivalent
to sampling log-volatility paths, v∗ = v(t∗), from the prior
distributions of Equation (5) up to time T rather than the
posterior distribution (Sauer, 2012). With the prior samples
of S∗T = exp(s∗T ), we can form a Monte Carlo estimate
of future distributions over price. However, the distinc-
tion between this type of approach and our approach for
sampling with Volt is that Volt samples from the posterior
distributions over volatility and data conditional on obser-
vations, while the SDE based approaches sample from the
prior distribution over volatility.

Rollout Predictions The Magpie mean only allows for
predictions one step ahead, so we do our forecasting in
a rollout fashion. That is, we use observations s0, . . . , st
to sample ŝt+1 from the GP posterior p(st+1|s0, . . . , st),
then condition our GP (and Magpie mean) on ŝt+1 in
order to sample ŝt+2 from the updated GP posterior
p(st+2|s0, . . . , st, ŝt+1), and so on. These rollout forecasts
are critical to the Magpie framework. By sequentially sam-
pling the price forecasts and updating the GP with each
observation we allow for trend reversals in the moving av-
erage mean in a way that is not possible with other GPs.
Rollouts are unnecessary for traditional means because the
conditional means over each time step factorize into a single

multivariate Gaussian distribution.

4. Forecasting
In both financial and climatological applications we are
considering the data as stochastically evolving and are thus
interested in forecasting distributions over outcomes, rather
than point estimates. For this reason we use calibration and
negative log likelihood as our primary measures of interest,
rather than an accuracy metric like mean squared error.

We compute the calibration at percentile p by computing
the frequency with which the true observation is less than
the empirically computed pth quantile of the forecast distri-
bution. More specifically, for a forecast of the price stock
S at time T and percentile p we compute the empirical
quantile of the forecast qT where P̂(ST < qT ) = p. We
can then compute the calibration at p as the empirically
observed frequency of the event ST < qT by calculat-
ing Cp = 1

K

∑
k I{STk

<qTk
} as the average frequency of

ST < qT over K different forecasts. If our forecasts are
well calibrated then this empirical frequency will be close
to p for each value of p; therefore by computing the cali-
bration of our forecasts at a range of percentiles, p, we can
determine the overall calibration of the forecast distribution.
Such a calibration metric is similar to those explored for
regression in Kuleshov et al. (2018).

Note that for accurate calibration to occur in this setting our
forecast distribution must match the empirical observations
at all quantiles. We could not, for example, just forecast
that a price increases some fixed percentage of the time that
matches the observed frequency of the price increased and
expect to achieve accurate calibration.

4.1. Stock Price and Foreign Exchange Rate
Forecasting

As Volt and Magpie are primarily inspired by financial time
series models, forecasting distributions over stock prices is
a core application of our approach. We compare Volt and
Magpie to baseline models of GPs with standard kernel and
mean functions. Along with these GP models, we include
probabilistic LSTMs where we optimize a predicted mean
and variance at each time step with respect to the negative
log-likelihood (NLL) which have been previously used in a
quantitative finance setting (Chauhan et al., 2020). All mod-
els assume the marginal distributions of the observations are
normally distributed, thus we model the log-price of stocks
in each case.

Figure 2 provides a representative comparison of forecasts
generated by GPs both with and without Volt and Magpie,
and the probabilistic LSTMs used here. Simpler probabilis-
tic models like standard GPs and probabilistic neural net-
works generally provide overconfident forecasts, and more
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to introduce a powerful forecasting method for stochasti-
cally generated time series. Volt deviates from the usual
assumptions of stochastic differential equation (SDE) mod-
els for financial and climatological models, and incorporates
historical data through GPs, allowing us to better estimate
expectations and forecast distributions. Magpie allows us
to replace the often over-simplified mean functions in Gaus-
sian process models with a nonstationary mean leading to
forecasts that more closely represent the data.

We have demonstrated that Volt and Magpie can outperform
competing methods in generating forecast distributions of
stochastically generated processes, with an emphasis on
financial and climatological applications. The strong pre-
dictive uncertainties allow our method to be used for price
forecasting and weather generation in a reliable way that
produces trustworthy forecasts that are well calibrated to
observations. Finally, we proposed a multi-task extension
to Volt that improves on Volt’s predictive calibration while
additionally allowing for the estimation of the relationships
between several assets at once.

The potential applications of our approach are broad, with
potential uses in financial domains such as automated trad-
ing and strategy development, and climatological research
in which Volt and Magpie could serve as a backbone for
large spatiotemporal climate models. In the future, it would
be useful to extend both the single and multi-task models to
use online variational inference (Bui et al., 2017; Maddox
et al., 2021b) to enable online deployment of scalable fore-
casting strategies. We hope our work will catalyze further
development of domain based prior kernels for Gaussian
processes, and applications of probabilistic machine learn-
ing to financial climatological data.
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Dai, Z., Álvarez, M. A., and Lawrence, N. D. (2017). Effi-
cient modeling of latent information in supervised learn-
ing using gaussian processes. In Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pages 5137–5145.

Diamond, H. J., Karl, T. R., Palecki, M. A., Baker, C. B.,
Bell, J. E., Leeper, R. D., Easterling, D. R., Lawrimore,
J. H., Meyers, T. P., Helfert, M. R., et al. (2013). Us
climate reference network after one decade of operations:
Status and assessment. Bulletin of the American Meteo-
rological Society, 94(4):485–498.

Elliott, R. J. and Kopp, P. E. (2001). Mathematics of finan-
cial markets. pages 361–380. Springer.



Stochastic Volatility Models as Gaussian Processes

Engle, R. F. (1982). Autoregressive conditional het-
eroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica: Journal of the econo-
metric society, pages 987–1007.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. (2018). Gpytorch: Blackbox matrix-
matrix gaussian process inference with gpu accelera-
tion. Advances in Neural Information Processing Systems,
31:7576–7586.

Gonzalvez, J., Lezmi, E., Roncalli, T., and Xu, J. (2019).
Financial applications of gaussian processes and bayesian
optimization. arXiv preprint arXiv:1903.04841.

Hagan, P. S., Kumar, D., Lesniewski, A. S., and Woodward,
D. E. (2002). Managing smile risk. The Best of Wilmott,
1:249–296.

Hamilton, J. D. (2020). Time series analysis. Princeton
university press.

Heaukulani, C. and van der Wilk, M. (2019). Scalable
bayesian dynamic covariance modeling with variational
wishart and inverse wishart processes. In Proceedings of
the 33rd International Conference on Neural Information
Processing Systems, pages 4582–4592.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaus-
sian processes for big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
pages 282–290.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015).
Scalable variational gaussian process classification. In Ar-
tificial Intelligence and Statistics, pages 351–360. PMLR.

Heston, S. L. (1993). A closed-form solution for op-
tions with stochastic volatility with applications to bond
and currency options. The review of financial studies,
6(2):327–343.

Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Ha-
randi, M. (2013). Combining multiple manifold-valued
descriptors for improved object recognition. In 2013
International Conference on Digital Image Computing:
Techniques and Applications (DICTA), pages 1–6. IEEE.

Kuleshov, V., Fenner, N., and Ermon, S. (2018). Accurate
uncertainties for deep learning using calibrated regression.
In International Conference on Machine Learning, pages
2796–2804. PMLR.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Mod-
eling long-and short-term temporal patterns with deep
neural networks. In The 41st International ACM SIGIR
Conference on Research & Development in Information
Retrieval, pages 95–104.

Lázaro-Gredilla, M. and Titsias, M. K. (2011). Variational
heteroscedastic gaussian process regression. In Interna-
tional Conference on Machine Learning.

Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Gen-
erating random correlation matrices based on vines and
extended onion method. Journal of multivariate analysis,
100(9):1989–2001.

Liu, B., Kiskin, I., and Roberts, S. (2020). An overview of
gaussian process regression for volatility forecasting. In
2020 International Conference on Artificial Intelligence
in Information and Communication (ICAIIC), pages 681–
686. IEEE.

Liu, H., Erdem, E., and Shi, J. (2011). Comprehensive
evaluation of arma–garch (-m) approaches for modeling
the mean and volatility of wind speed. Applied Energy,
88(3):724–732.

Lloyd, J., Duvenaud, D., Grosse, R., Tenenbaum, J., and
Ghahramani, Z. (2014). Automatic construction and
natural-language description of nonparametric regression
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 28.

Luo, R., Zhang, W., Xu, X., and Wang, J. (2018). A neu-
ral stochastic volatility model. In Thirty-second AAAI
conference on artificial intelligence.

Maddox, W. J., Balandat, M., Wilson, A. G., and Bakshy, E.
(2021a). Bayesian optimization with high-dimensional
outputs. Advances in neural information processing sys-
tems.

Maddox, W. J., Stanton, S., and Wilson, A. G. (2021b).
Conditioning sparse variational gaussian processes for
online decision-making. Advances in Neural Information
Processing Systems, 34.

Matthews, A. G. d. G. (2017). Scalable Gaussian process in-
ference using variational methods. PhD thesis, University
of Cambridge.

Mehdizadeh, S., Kozekalani Sales, A., and Safari, M. J. S.
(2020). Estimating the short-term and long-term wind
speeds: implementing hybrid models through coupling
machine learning and linear time series models. SN Ap-
plied Sciences, 2:1–15.

Nau, R. (2014). Forecasting with moving averages. Fuqua
School of Business, Duke University, pages 1–3.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural
information processing systems, 32:8026–8037.



Stochastic Volatility Models as Gaussian Processes

Philipov, A. and Glickman, M. E. (2006). Multivariate
stochastic volatility via wishart processes. Journal of
Business & Economic Statistics, 24(3):313–328.

Rakitsch, B., Lippert, C., Borgwardt, K., and Stegle, O.
(2013). It is all in the noise: Efficient multi-task gaussian
process inference with structured residuals. Advances in
neural information processing systems, 26:1466–1474.

Rasmussen, C. E. and Williams, C. K. I. (2008). Gaussian
processes for machine learning. Adaptive computation
and machine learning. MIT Press, Cambridge, Mass., 3.
print edition.

Requeima, J., Tebbutt, W., Bruinsma, W., and Turner, R. E.
(2019). The gaussian process autoregressive regression
model (gpar). In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1860–1869.
PMLR.

Rosenkrantz, W. A. (2003). Why stock prices have a log-
normal distribution. Department of Mathematics and
Statistics, University of Massachusetts at Amhers.

Rouah, F. D. (2007). The sabr model. https:
//www.frouah.com/finance%20notes/The%
20SABR%20Model.pdf.
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formulation described in the rest of the paper, unlike Wilson and Ghahramani (2010)’s softplus transformation of the latent
process. Wilson and Ghahramani (2010) also study the exponential parameterization for a few experiments.

We note that γ(t) is a daily volatility and to convert to an annualized volatilty like in the rest of the paper, we need to rescale
it by a factor of 1/

√
t, so that γ̂(t) = γ(t)/

√
t.

Inference Scheme Following Hensman et al. (2013; 2015), we want to compute the ELBO as

log p(y) ≥ Eq(f)(log p(y|f))− KL(q(u)||p(u)), (13)

where p(y|f) is the GPCV volatility likelihood and KL(q(u)||p(u)) is the Kullback-Leibler divergence between the the
variational distribution q(u) = N (m,S) and the prior p(u). We need to optimize q(u), our free form variational distribution
and estimate Eq(f)(log p(y|f)) using Bayesian quadrature as in Hensman et al. (2015).

As T is generally pretty small, we set the inducing points, u, to be the training data points, e.g. {ti}Ti=1. We initialize the
variational mean m to be the logarithm of the running standard deviation of the log returns, and the variational covariance to
be Kuu(Kuu +KuuΣyKuu)−1Kuu where Σy is the negative Hessian at the initial value of m.

Computational and memory costs then run at about O(T 3) time. In the future, we hope to use sliding windows for the
inducing points, enabling mini-batching, reducing the cost to O(T 3

window) time (Hensman et al., 2015). Finally, our inference
scheme is simply a more flexible version of the fixed-form heteroscedastic scheme used in Lázaro-Gredilla and Titsias
(2011), which we found to be too inflexible to fit rougher volatility paths well.

Multi-task Parameterization We follow the ICM-like model parameterization of Dai et al. (2017) by parameterizing
q(u) = N (m,Sx ⊗ ST ) and assume that p(u) = N (µ(u),Kuu ⊗KTT ). Then we need to compute q(f) which can be
done for single-task models as q(f) = N (KfuK

−1
uum,Kff + KfuK

−1
uu (S −Kuu)K−1uuKuf ). In the multi-task setting,

this is algebraically written as:

q(f) = N ((Kfu ⊗KTT )(Kuu ⊗KTT )−1m,

(Kff ⊗KTT ) + (Kfu ⊗KTT )(Kuu ⊗KTT )−1(Sx ⊗ St − (Kuu ⊗KTT ))(Kuu ⊗KTT )−1(Kfu ⊗KTT )>)

= N
(
(KfuK

−1
uu ⊗ I)m, (Kff ⊗KTT ) + (KfuK

−1
uu ⊗ I)(Sx ⊗ St − (Kuu ⊗KTT ))(KfuK

−1
uu ⊗ I)>

)
= N

(
(KfuK

−1
uu ⊗ I)m, (Kff −KfuK

−1
uuKuf ⊗KTT ) + (KfuK

−1
uu SxK

−1
uuKuf ⊗ St)

)
(14)

Note that the variational mean term is a batch matrix vector multiplication, while the variational covariance form is a sum of
two Kronecker products. Together we can sample from the posterior distribution in O(T 3 + P 3) time by using Kronecker
identities as described in Rakitsch et al. (2013).

In the multi-task setting, we also initialize the variational covariance to be the average initial covariance across tasks and
the variational intertask covariance to be the covariance of m across tasks. The intertask covariance is a P × P matrix
parameterized as rank one plus diagonal; we regularize it with a LKJ prior with η = 5.0 (Lewandowski et al., 2009).

Additionally, we exploit Kronecker identities to efficiently compute the KL divergence in the variational distribution so that
training stays at O(T 3 + P 3) time by broadly following the approach of Dai et al. (2017).

B.4. Model Training

All models were trained in GPyTorch (Gardner et al., 2018) and PyTorch (Paszke et al., 2019) on either a single 24GB
GPU or a single 12GB GPU; the multi-task wind experiment used a 48GB Titan RTX GPU. Training time was negligible,
with models typically taking less than 1 minute to train. For training, we use 500 steps of Adam with learning rate 0.1 and
optimize through the log marginal likelihood.

Multitask GPs We use the ICM model of Bonilla et al. (2007). Like in the GPCV setting, we use a rank one plus diagonal
intertask covariance, regularized with a LKJ prior (Lewandowski et al., 2009). By structure exploitation, these models cost
O(P 3 + T 3) for fitting and O(P 3 + T 3) for posterior sampling when using Matheron’s rule (Maddox et al., 2021a).

Data Space GPs We use a standard Gaussian likelihood for these responses on the log transformed data and optimize both
the scale of the volatility as well as the noise term, initializing the noise to be 10−4. As these models reduce to a standard
exact GP conditional on volatility, computational and memory costs then run at O(T 3) time.
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C. Experimental Details
C.1. Details from Section 4.1

We source daily closing prices for stocks in the Nasdaq 100 for 2 years prior to January 2022. Volt models are trained
according to the outline in Section 3.2, and standard GPs are implemented and trained via GPyTorch and BoTorch (Gardner
et al., 2018; Balandat et al., 2020). The LSTM model is implemented with 2 hidden layers each with 128 units and takes the
form

f(st, st−1, st−2, st−3, st−4) = {µ̂t+1σ̂t+1}

where µ̂t+1 is the predicted mean at time t+ 1, and σ̂t+1 is the predicted standard deviation at time t+ 1.

For each stock in our universe we select 25 cutoff times at which we generate forecasts, using the preceding 400 observations
as training data. At each cutoff time we forecast the log closing price 100 days into the future, and compute the calibration
and negative log likelihood of the forecasts 75 to 100 days out. We specifically focus on longer horizon forecasts, as it is
generally a harder task for which out of the box methods are ill-suited.

Stock Prices Wind Speeds FX
Volt + Magpie 5.88± 0.02 4.28± 0.16 −1.69± 0.02

Volt + Con. 4.69± 0.03 3.38± 0.05 −1.60± 0.02
Matérn + Magpie 9.80± 0.27 12.13± 0.81 4.23± 0.30

Matérn + Con. 7.74± 0.21 18.03± 1.90 −0.36± 0.04
SM + Magpie 147.84± 1.84 110.07± 7.81 562.67± 15.71

SM + Con. 80.43± 0.57 70.14± 5.03 356.55± 11.98
LSTM 49.95± 0.59 45.13± 1.82 10.66± 0.44

Volt-VHGP + Con. 4.76± 3.05 5.75± 0.44 −1.58± 0.03
Volt-VHGP + Magpie 6.97± 1.24 5.91± 0.34 −1.66± 0.02

GPCV 5.45± 1.51 4.89± 0.04 −1.79± 0.02

Table 2. Negative log likelihoods (NLLs) per test point for the methods compared on both the stock forecasting and wind speed tasks,
averaged of tens of thousands of forecasts. While there is a slight improvement in NLL from using a constant mean, the inclusion of
Magpie is central to achieving high calibration.

C.2. Details from Section 4.2

We source data from Diamond et al. (2013) for the 2021 calendar year. Wind measurements are taken at 15 minute intervals
for all 154 stations in the observation network. In order to treat the observed wind speed as log-normally distributed we add
1 to each observation (to shift the 0 m/s observations to a value of 1), and then model the log of the resulting time series.

Figure 9 compares the performance of Volt alone and Volt with Magpie mean functions with various smoothing parameters.
Magpie means aid in calibration, although the effect is less pronounced as we see with stock forecasting in Figure 3.

A key distinction between wind speed forecasting and stock price forecasting is that wind speeds tend to revert to a consistent
level, whereas stock prices may increase by thousands then stabilize at a new level. For this reason we explore the use
of mean reversion in our rollout forecasts. To add mean reversion to the rollouts we simply adjust the posterior mean
of the GP towards the mean of the training data by a factor of θ. That is, rather than sampling from the GP posterior
st∗ ∼ N (µ∗f |D|Σ

∗
f |D) we sample from st∗ ∼ N (µ∗f |D − θ(µ

∗
f |D −

1
N

∑
i si)|Σ∗f |D).

In this mean reversion setting, θ controls the speed at which rollouts tend to revert towards the mean. At θ = 0 we are in the
standard GP prediction case, at θ = 1, we only ever sample from a distribution centered around the mean of the training
observations. Figure 10 provides a comparison of the calibration under differing levels of mean reversion for Volt. The
standard Volt rollouts are in general well calibrated for this problem, but we see that just a small amount of mean reversion
can increase the overall calibration notably.

C.3. Details from Section 5

In Figure 11, we construct a multi-task SABR volatility model with correlations given by the farthest right panel and
volatility processes given as the blue lines in the left three panels. We then use our multi-task GPCV model to estimate
and predict the true volatilities for each task in the left three panels, while also estimating the true relationships between










