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Abstract

The structural network of the brain, or structural connectome, can be represented by fiber
bundles generated by a variety of tractography methods. While such methods give qual-
itative insights into brain structure, there is controversy over whether they can provide
quantitative information, especially at the population level. In order to enable population-
level statistical analysis of the structural connectome, we propose representing a connec-
tome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We
equip this manifold with the Ebin metric, a natural metric structure for this space, to get
a Riemannian manifold along with its associated geometric properties. We then use this
Riemannian framework to apply object-oriented statistical analysis to define an atlas as the
Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing
framework for diffeomorphic construction of image atlases, allowing us to construct a mul-
timodal atlas by simultaneously integrating complementary white matter structure details
from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework
with 2D data examples of connectome registration and atlas formation. Finally, we build
an example 3D multimodal atlas using T1 images and connectomes derived from diffusion
tensors estimated from a subset of subjects from the Human Connectome Project.

1. Introduction

Tractography is one way to represent a structural connectome, or structural network of a
brain, which consists of brain regions that are physically connected by a network of neu-
ronal bundles that make up the white matter of that brain. It is not currently possible to
image individual neurons in a living brain non-invasively. Instead, we can use diffusion-
weighted magnetic resonance images (DWMRI) to infer the pathways of coherent bundles
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of neurons that cross through other bundles in white matter and connect with end points
in gray matter. There are a variety of tractography algorithms used to infer these white
matter pathways, ranging from local methods that integrate local orientation information
to form individual streamlines to global methods that estimate all fiber tracts simultane-
ously. Deterministic (Basser et al., 2000) and probabilistic (Behrens et al., 2003) streamline
integration methods are easy to compute, but they suffer from accumulation of local orien-
tation errors leading to tract reconstructions biased toward shorter and straighter tracts.
Conversely, global estimation methods (Jbabdi et al., 2007; Christiaens et al., 2015) in-
corporate prior anatomical knowledge while ensuring that tractography is consistent with
the underlying data. However, these global methods have convergence issues, sensitivity to
initialization and priors, and a tendency to have estimated tracts end in the middle of white
matter regions. Biases in tract reconstruction introduced by either local or global methods
affect the accuracy of quantitative measures such as track density and connection strength.

Geodesic tractography algorithms, first introduced by O’Donnell et al. (2002), use a
combination of local and global information to determine tracts by formulating white matter
pathways as geodesic curves under a Riemannian metric derived from the DWMRI data. In
the original work, O’Donnell et al. (2002) use the inverse diffusion tensor as the Riemannian
metric. As described by Lenglet et al. (2004), the inverse diffusion tensor metric has a
connection to Brownian motion through the Laplace Beltrami operator on the resulting
Riemannian manifold. The inverse tensor metric favors paths that follow the principal
eigenvector of the diffusion tensor, as this is the locally optimal direction to move. However,
geodesic curves for this metric do not consistently follow the principal eigenvector of the
diffusion tensor, and tend to be overly straight in regions where the white matter fibers
are bending, losing association with the underlying anatomy in these areas. This problem
has been addressed by several strategies to improve the adherence of geodesics to the white
matter geometry, including “sharpening” the inverse diffusion tensor (Fletcher et al., 2007),
using the adjugate of the diffusion tensor (Fuster et al., 2016), and using a conformal
metric (Hao et al., 2014). One advantage to the geodesic tractography formulation is that we
can do uncertainty and confidence interval analysis of the tractographies following (Sengers
et al., 2021).

These tractography techniques help to give insight into the structure of a single brain,
but it remains an open challenge to quantitatively measure how these structural connectome
pathways vary in a population. To do such a population analysis, we first need a common
frame of reference, or atlas space, where spatial differences between subjects’ white matter
can be measured.

Initially, white matter atlases were constructed by aligning DWMRI to an anatomical
template, then transforming and averaging the associated tensor field or distribution func-
tion field. For example, Mori et al. (2008) construct a diffusion tensor imaging (DTI) atlas
by registering the DWMRI of multiple subjects to a standardized anatomical template.
They build the DTT atlas by transforming the diffusion tensors for each subject (Alexander
et al., 2001) and then taking the Euclidean average of the transformed diffusion tensors
at each voxel. This approach does not use the white matter directionality information
encoded in the diffusion images during the registration. It also suffers from the fact that
the Euclidean average of diffusion tensors does not take into account the directionality
and tends to be fatter (i.e., less anisotropic) than the input tensors (Fletcher and Joshi,
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2007). Another approach by Yeh et al. (2018) is to register g-space diffusion images into
an anatomical template and estimate the spin distribution function (SDF) at each voxel in
the template. Then the SDF's are averaged on a per-voxel basis. While this method does
take into account the directionality of the white matter in a local neighborhood, it does
not take into account consistency of long-range white matter connections. These methods
both rely on low-accuracy registration to the anatomical template image, because at the
time high-accuracy diffeomorphic registrations could not be used as they did not preserve
the continuity of pathway directions across voxels (Yeh et al., 2018).

The field then focused on constructing atlases directly from tractography. These meth-
ods are adept at finding well-known tracts, but they generally require significant expert
curation to remove the many false-positive fibers and tracts they create (Zhang et al.,
2018). Additionally, variation of population-level tractography characteristics like fiber
density of tracts is as likely to be reflective of the tractography process chosen as it is of the
underlying physical white matter. These and other biases in tractography quantification
are well-characterized by Jeurissen et al. (2019).

In order to get a more complete anatomical atlas, Toga et al. (2006) argue for the
integrated derivation of multimodal atlases using techniques such as spatial normalization
to produce more comprehensive atlases. Some attempts have been made to create a multi-
modal population atlas from T1 and DWMRI images. Gupta et al. (2016) rigidly register
the DWMRI into the same space as the T1 template image and then apply the same de-
formations used to create the T1 template to the DWMRI before estimating the diffusion
tensors from the transformed DWMRI. This approach puts the DWMRI and T1 images
in the same space, but does not use the white matter structure to inform the creation of
the T1 atlas. Other previous work on multichannel registration of diffusion and T1 MRI
include Avants et al. (2007), who use a Euclidean image match metric on the diffusion
tensors, and Uus et al. (2020), who use local angular correlation on the orientation distri-
bution functions (ODFs). Like the white matter-only atlases approaches discussed above,
these methods only take local information into consideration and thus do not preserve the
consistency of long-range white matter connections. They do demonstrate that registra-
tion quality is improved over single channel registration when complementary channels are
combined in the objective function.

We are motivated to find an approach that can preserve the best aspects of these atlas
and tractography methods, while mitigating their weaknesses. Specifically, we want to
create a white matter pathway atlas that preserves local orientations and other anatomical
information while maintaining the continuity and integrity of long-range connections. We
then want a method to bring subjects into that atlas space to enable statistical quantification
of both structural connectivity and geometric variability of white matter structure across a
population.

To meet these goals, we describe the metric matching framework presented by Campbell
et al. (2021) in more detail and then extend it by combining diffeomorphic metric matching
with diffeomorphic image matching to enable the construction of both a multimodal white
and gray matter atlas simultaneously for the first time. This formulation preserves geodesics
transformed by diffeomorphisms, which meets our objective to use local diffusion data and
maintain the integrity of long-range connectomics as inferred by tractography (Cheng et al.,
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2015). We demonstrate that long-range connections are preserved by performing geodesic
tractography on the resulting atlas.

1.1 Contributions of the Article

In this paper, we contribute a mathematical framework for diffeomorphic metric match-
ing that is compatible with existing image matching frameworks to enable the creation of
integrated multimodal atlases. We start by using the concept from geodesic tractography
to represent connectome fibers as geodesics of a metric, that is, each brain’s white mat-
ter structure is represented as a point on the infinite-dimensional manifold of Riemannian
metrics. This manifold is then equipped with the diffeomorphism-invariant Ebin metric to
compute distances and geodesics between connectomes. We explain how this Riemannian
manifold is the foundation for the algorithm for diffeomorphic metric registration of struc-
tural connectomes and the statistical groupwise metric atlas estimation algorithm. We then
extend this model by including an image matching term in those algorithms. Finally, we si-
multaneously estimate an integrated multimodal white matter pathway and T1 MRI-based
image atlas for the first time. This article is an extended version of the Information Process-
ing in Medical Imaging (IPMI) conference paper (Campbell et al., 2021), where we expand
the results of the conference proceedings in several major directions. Most importantly, the
joint white matter pathway and T1 MRI-based image atlas model is newly introduced and,
in contrast to Campbell et al. (2021) which only contained 2D examples, we now present
3D atlas construction examples.

2. Structural Connectomes as Riemannian Metrics

In the white matter of the brain, the diffusion of water is restricted perpendicular to the
direction of the axons. Diffusion-weighted MRI measures the microscopic diffusion of water
in multiple directions at every voxel in a 3D volume. Thus, the directionality of white
matter in the brain can be locally inferred. Traditionally, global connections of the white
matter have been estimated by a procedure called tractography, which numerically computes
integral curves of the vector field formed by the most likely direction of fiber tracts at each
point. DTI models anisotropic water diffusion with a 3x3 symmetric positive definite tensor,
D(z), at each voxel, z € M, where the manifold M C R3 is the image domain. The principal
eigenvector of D(x) is aligned with the direction of the strongest diffusion.

Riemannian metrics that represent connectomics of a subject have been developed in
diffusion imaging by O’Donnell et al. (2002) and include the inverse-tensor metric § =
D(z)~1. However, the geodesics associated with the inverse-tensor metric tend to deviate
from the principal eigenvector directions and take straighter paths through areas of high
curvature.

In this work we build on the algorithm developed by Hao et al. (2014), which estimates
a spatially-varying function, a(z) : M — R, that modulates the inverse-tensor metric to
create a locally-adaptive Riemannian metric, go = ¢®® §. We briefly describe the method
here for completeness but refer the reader to Hao et al. (2014) for details. This adaptive
connectome metric, g, is conformally equivalent to the inverse-tensor metric and is better at
capturing the global connectomics, particularly through regions of high curvature. Figure 1
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shows how well the geodesics of each metric match the integral curve of the vector field.
The connectome metric geodesics are very closely aligned with the integral curves.

The geodesic between two end-points, p,q € M, associated with the inverse-tensor
metric, §(z) = D(z)~', minimizes the energy functional, £, while the geodesic associated
with the connectome metric, gq(z) = e*® D(z)~!, minimizes the energy functional, E,.

1 1
E(y) = /0 (T'(t), T(t))gdt,  Ealy) = /0 T (1), T(t)) 4t (1)
where v : [0,1] = M, v(0) =p, v(1) =¢q, T = Cfi—z.

Analyzing the variation of E, leads to the geodesic equation, grad a = 2V 7T, where
the Riemannian gradient of o, grad o = §—* (%, %, ceey %), and V7T is the covariant
derivative of T" along its integral curve.

To enforce the desired condition where the tangent vectors, T', of the geodesic match
the vector field, V', of the unit principal eigenvectors of D(x), we minimize the functional,

F(a) = [, ||lgrad o — QVVVHgdx. The equation for « that minimizes F'(«) is
Aga = 2divg(Vy V), (2)

where div and A are the Riemannian divergence and Laplace-Beltrami operator. We dis-
cretize the Poisson equation in Equation (2) using a second-order finite difference scheme
that satisfies both the Neumann boundary conditions g% = (grada, @) = (2Vy'V, ) and
the governing equation on the boundary. We then solve for .

Note that we can use this method to match the geodesics of the connectome metric to
other vector fields defining the tractogram, e.g., from higher-order diffusion models that
can represent multiple fiber crossings in a voxel. In particular, for tractography based on
fiber orientation distributions (FODs), we can use the techniques presented in Nie and Shi
(2019) to generate the vector field V.

R
1
1

——— Al

e Inverse Tensor Metric Geodesic Connectome Metric Geodesic ® Integral Curve

Figure 1: A geodesic of the inverse-tensor metric (blue) and adaptive metric (orange), along
with an integral curve (black) associated with the principal eigenvectors for a synthetic
tensor field (left) and a subject’s connectome metric from the Human Connectome Project
(center). Right shows a detailed view of the metric in the corpus callosum.

The fundamental result of the purposed method is the fact that a metric tensor field is
estimated such that a given vector field is a geodesic vector field of the estimated Riemannian
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metric. It is in this sense that the estimated metric field captures the geometry of the white
matter as inferred by tractoraphy. This metric field that captures the tractography will be
the primary driving force for the registration algorithms. We will now develop registration
and atlas construction algorithms that leverage the rich geometric structure of Manifold of
all Riemannian Metrics.

3. The Geometry of the Manifold of all Riemannian Metrics

Once we have estimated a Riemannian metric for a human connectome, it is a point in the
infinite-dimensional manifold of all Riemannian metrics, Met(M ), where M is the domain
of the image. We will equip this space with a diffeomorphism-invariant Riemannian metric,
called the Ebin or DeWitt metric (Ebin, 1970; DeWitt, 1967). The invariance of the infinite-
dimensional metric under the group of diffeomorphisms Diff (M) is a crucial property, as it
guarantees the independence of an initial choice of coordinate system on the brain manifold.
As we will base our statistical framework on this infinite-dimensional geometric structure,
we will now give a detailed overview of its induced geometry on Met(M ).

Let M be a smooth n-dimensional manifold; for our targeted applications n will be two
or three. We denote by Met(M) the space of all smooth Riemannian metrics on M, i.e.,
each element g of the space Met(M) is a symmetric, positive-definite (g) tensor field on M.
It is convenient to think of the elements of M as being point-wise positive-definite sections
of the bundle of symmetric two-tensors S2T*M, i.e., smooth maps from M with values
in S2T*M. Thus, the space Met(M) is an open subset of the linear space I'(S*T*M) of
all smooth symmetric (g) tensor fields and hence itself a smooth Fréchet-manifold (Ebin,
1970). Furthermore, let Diff (M) denote the infinite-dimensional Lie group of all smooth
diffeomorphisms of the manifold M. Elements of Diff (M) act as coordinate changes on the
manifold M. This group acts on the space of metrics via pullback

Met(M) x Diff (M) — Met(M),  (g,¢) = ¢"g = g(Tp-, Tep-) . 3)
In an analogous way we can define the pushforward action
Met(M) x Diff(M) = Met(M),  (9,0) = 9= (¢7") g (4)

It is important to note that the geometries of the metrics g and ¢*g (¢.g resp.) are also
related via ¢. In particular, geodesics with respect to g are mapped via ¢ to geodesics with
respect to p*g (via =1 for ¢.g, resp.). On the infinite-dimensional manifold Met(M ), there
exists a natural Riemannian metric: the reparameterization-invariant L?-metric. To define
the metric, we need to first characterize the tangent space of the manifold of all metrics:
Met (M) is an open subset of I'(S?T*M). Thus, every tangent vector h is a smooth bilinear
form h : TM xp TM — R that can be equivalently interpreted as a map TM — T*M.
The L?-metric is given by

GY(h,k) = /M Tr (g hg k) vol(g), (5)

with g € Met(M), h,k € Ty Met(M) and vol(g) the induced volume density of the metric
g. This metric, introduced in Ebin (1970), is also known as the Ebin metric. We call
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the metric natural as it requires no additional background structure and is consequently
invariant under the pushforward and pullback actions of the diffeomorphism group, i.e.,

Gy(h, k) = Gorg(©"h, 0" k) = Gy, g(0sh, 0sk) (6)

for all ¢ € Diff(M), g € Met(M) and h,k € T, Met(M). Note that the invariance of the
metric follows directly from the substitution formula for multi-dimensional integrals.

The Ebin metric induces a particularly simple geometry on the space Met(M ), with ex-
plicit formulas for geodesics, geodesic distance and curvature. In the following theorem and
corollary, we will present the most important of these formulas, which will be of importance
for our proposed metric matching framework.

First we note that a metric g € Met(M ), in local coordinates, can be represented as a
field of symmetric, positive-definite n x n matrices that vary smoothly over M. Similarly,
each tangent vector at g can be represented as a field of symmetric n X n matrices. By
the results of Freed et al. (1989); Gil-Medrano and Michor (1991); Clarke (2013b), one can
reduce the investigations of the space of all Riemannian metrics to the study of the geometry
of the finite-dimensional space of symmetric, positive-definite n x n matrices. The point-
wise nature of the Ebin metric allows one to solve the geodesic initial and boundary value
problem on Met(M) for each © € M separately. Consequently the formulas for geodesics,
geodesic distance and curvature on the finite-dimensional matrix space can be translated
directly to results for the Ebin metric on the infinite-dimensional space of Riemannian
metrics.

Note that the space of Riemannian metrics, Met(M ) with the Ebin metric, is not met-
rically complete and not geodesically convex. Thus the minimal geodesic between two Rie-
mannian metrics may not exist in Met(M ), but only in a larger space; the metric completion
Met(M), which consists of all possibly degenerate Riemannian metrics. This construction
has been worked out in detail by Clarke (2013a) — including the existence of minimizing
paths in Met(M). In the following proof, we will omit these details and refer the interested
reader to the article Clarke (2013a) for a more in-depth discussion. In Theorem 1, we
present an explicit formula for the minimizing geodesic in Met(M) that connects two given
Riemannian metrics.

Theorem 1 (Minimizing geodesics) For go, g1 € Met(M) we define

k(x) =log (g5 ' (2)g1(2)) ,  ko(z) = k(x) — Trlk(e)) (7)

n
n Tr(ko(x)?
(@) = YAetlgo(@)). b(x) = Yaetl(gr(@), wl) = VIEREE
b(x) cos(k(x)) — a(x)) () = th(x) sm(n(a:))‘
a(z)
Then the minimal path g(t,z) with respect to the Ebin metric in Met(M) that connects go
to g1 is given by

q(t,x) =1+t

2
(q2 —I—T’Q); go €xp (arctaZ(T/Q) kO) 0< k<,
4
g=1449"9 k=0, (10)
4 4
+bs\ n +b n
(1= 22207 9ol o) + (5571 = §)" 11y w2,
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t=0 t=1/6 t=2/6 t=3/6 t=4/6 t=5/6 t=1

Figure 2: An example of an interpolating geodesic between two metric tensors on the grid
with respect to the Ebin metric (5), where the left and the right ellipse fields represent
the boundary metrics. One can observe the behavior of the Ebin metric by following the
deformations of the ellipses representing the metric tensor.

where 1 denotes the indicator function in the variable t. We suppressed the functions’
dependence on t and x for better readability.

Proof This theorem is essentially a reformulation of the minimal geodesic formula given
in (Clarke, 2013b, Theorem 4.16). In fact, noting that the Ebin metric (5) is point-wise,
we can restrict ourselves to each x € M. By (Clarke, 2013b, Theorem 4.5), we know
that in the case of 0 < k(x) < m, g1(z) is in the image of the Riemannian exponential
map starting at go(z), and the Riemannian exponential is a diffeomorphism between U :=
ST M\ (—o0, —4/n]go(x) and its image. Here S?TM denotes the vector space of all
symmetric (0,2) tensors at x € M. Using the formula of the inverse exponential map in
(Clarke, 2013b, Theorem 4.5) we calculate the preimage of g1 (z),

4 (% cos k(x) — 1) go(z) + Mgo(az)ko(w) 0 < k(z) <,

n k(z)a(x)

4 (55 —1) gola) =0

Expy' g1, =

The geodesic formula in the case of 0 < x(x) < 7 then follows immediately from (Clarke,
2013b, Theorem 4.4). For the case of k(z) > =, by (Clarke, 2013b, Theorem 4.14) the
minimal geodesic between go(z) and g¢;(z) is given by the concatenation of the straight
segments from go(x) to the zero tensor and from the zero tensor to g;(z), which gives the
last statement and finally proves the result. |

An example of calculating a geodesic in the space Met(M) using the explicit formula
is visualized in Figure 2. The ellipse in the fifth row and fourth column, and the one in
the first column and row of this figure are examples of geodesic paths that include possibly
degenerate Riemannian metrics from the completion Met(M). Note that handling these
degenerate cases are well understood and we did not observe any numerical issues associated
with such cases.

Next, we recall that the geodesic distance of a Riemannian metric is defined as the
infimum of all paths connecting two given points,

1
distatet (g0, 91) = inf/ \/Gq(0rg, Org)dt, (12)
0

8



INTEGRATED CONSTRUCTION OF MULTIMODAL ATLASES

where the infimum is taken over all paths ¢ : [0, 1] — Met(M) with g(0) = go and g(1) = g.
As a direct consequence of Theorem 1, we obtain the explicit formula for the distance
function given in Corollary 2.

Corollary 2 (Geodesic distance) Let go,g1 € Met(M) and let k, ko, a, b and k be as
in Theorem 1. Let 6(x) = min{m, k(x)}. Then the squared geodesic distance of the Ebin
metric is given by

distaet (90, g1)% = % /M (a(2)? — 2a(x)b(x) cos (0(z)) + b(z)?) dz. (13)

Proof Using Theorem 1, we obtain the formula of the minimal geodesic that connects
go and g;. By calculating the time derivative 0yg(t), the final statement follows from the
definition of the geodesic distance (12) by a direct computation. |

Having equipped the space of Riemannian metrics with the distance function (13), we
can consider the Fréchet mean, g, of a collection of metrics, g1, ... gy, which is defined as a
minimizer of the sum of squared distances.

N
g = argmin Y _ distie(9, i). (14)
9 =1

One could directly minimize this functional using a gradient-based optimization procedure.
As our distance function is the geodesic distance function of a Riemannian metric and since
we have access to an explicit formula for the minimizing geodesics, we will instead use the
iterative geodesic marching algorithm, see e.g. Ho et al. (2013), to approximate the Fréchet
mean: Given N Riemannian metrics g;, we approximate the Fréchet mean via § = gy,
where §; is recursively defined as go = go, gi(x) = g(1/(i + 1), z) and where g(t, ) is the
minimal path, as given in Theorem 1, connecting §;—1 to the ¢-th data point g;. Thus one
only has to calculate N geodesics in total in the space of Riemannian metrics, whereas a
gradient-based algorithm would require one to calculate N geodesic distances in each step
of the gradient descent.

3.1 The Induced Distance Function on the Diffeomorphism Group

We can use the geodesic distance function of the Ebin metric to induce a right-invariant dis-
tance function on the group of diffeomorphisms. As we will be using this distance function
as a regularization term in our matching functional, we will briefly describe this construction
here. We fix a Riemannian metric g € Met(M) and define the “distance” of a diffeomor-
phism ¢ to the identity via

distd i (id, ) = distdje (9, ©*g) = distiges (95 949), (15)

where the last equality is due to the invariance of the Ebin metric. To be more precise,
this distance can be degenerate on the full diffeomorphism group since the isometries of
the Riemannian metric g form the kernel of distp;g. For our purposes we will consider
the Euclidean metric for the definition of distpis. Thus the only elements in the kernel are
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translations and rotations. The right invariance of distp;g follows directly from the Diff (M )-
invariance of the Ebin metric. We note, however, that distp;g is not directly associated with
a Riemanian structure on the diffeomorphism group: the orbits of the diffeomorphism group
in the space of metrics are not totally geodesic and thus distp;g is not the geodesic distance
of the pullback of the Ebin metric to the space of diffeomorphisms. See also Khesin et al.
(2013) where this construction has been studied in more detail.

4. Computational Anatomy of the Human Connectome

Fundamental to the precise characterization and comparison of the human connectome of an
individual subject or a population as a whole is the ability to map or register two different
human connectomes. The framework of Large Deformation Diffeomorphic Metric Mapping
(LDDMM) is well developed for registering points (Joshi and Miller, 2000), curves (Glaunes
et al., 2008) and surfaces (Vaillant and Glaunes, 2005) all modeled as submanifolds of R? as
well as images modeled as an L? function (Beg et al., 2005).This framework has also been
extended to densities (Bauer et al., 2015) modeled as volume forms. We now extend the
diffeomorphic mapping framework to the connectome modeled as Riemannian metrics. The
diffeomorphism group deforms the domain, M, and acts naturally on the space of metrics,
Met(M), see Equation (4). With this action and a reparameterization-invariant metric, the
problem of registering two connectomes fits naturally into the framework of computational
anatomy.
Now the registration of two connectomes is achieved by minimizing the energy

E(p) = disthg(id, ) + A\ distige (90, p+91) (16)

over all such diffeomorphisms in Diff(M). Here distpig is a right invariant distance on
Diff and distye; is a reparameterization-invariant distance on the space of all Riemannian
metrics, e.g., the geodesic distance of the metrics studied above. The first term measures
the deformation cost and the second term is a similarity measure between the target and
the deformed source connectome. The invariance of the two distances is essential for the
minimization problem to be independent of the choice of coordinate system on the brain
manifold.

We use the distance function as introduced in Section 3.1 to measure the deformation
cost, i.e., distpig(id, @) = distpmet (g, pxg) = distames (g, ©*g) where g is the restriction of the
Euclidean metric to the brain domain. This choice greatly increases computational efficiency
since we can now use the formulas from Section 3 as explicit formulas for both terms of
the energy functional. To minimize the energy functional, we use a gradient flow approach
described in Algorithm 1, where the gradient on Diff(M) is calculated with respect to a
right invariant Sobolev metric of order one, which at the identity is given by

k

Gialu,) = [ g(Bu,v)dz + XY gl &)g(v,&)do (a7)

=1

where A > 0 is a weight parameter, g is the restriction of the Euclidean metric to the
brain domain and &i,...&; is an orthonormal basis of the harmonic vector fields on M.
This metric, sometimes called the information metric, has been first introduced by Modin

10
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(Diff (M) /Tso(g), G) Loe'e (Met (M), GE)

I:WH@*NO IIIg'—)VOl(g)
(Dens(M), GF'F)

Figure 3: Relations between the information metric on the diffeomorphism group, the Ebin
metric on the space of Riemannian metrics, and the Fisher-Rao metric on the space of
densities. The mappings I and III are Riemannian submersions and the mapping II is an
isometric embedding. Furthermore the diagram is commutative, i.e., I = I oIIl. Note, that
the Ebin metric G¥ and the Fisher-Rao metric GF'® are of order zero, while the information
metric G! is a first order Sobolev metric. This discrepancy in the orders of the metric is
explained by the fact that the mappings I and II contain a derivative.

(2015); see also Bauer et al. (2015). We choose this specific gradient because of the relation
of the information metric to both the Ebin metric on the space of metrics and the Fisher-
Rao metric on the space of probability densities. We summarize the relations between these
geometries in Figure 3; for a precise description of the underlying geometric picture we refer
to Khesin et al. (2013) and Bauer et al. (2015).

Note, that our framework allows for the immediate inclusion of points, curves, surfaces
and images in the registration problem. Image intensity information, for example, can be
easily incorporated in the registration problem by simply adding an appropriate similarity
measure for the image term (e.g. the standard L? metric between the deformed moving im-
age and the fixed image) to the energy functional. The minimization problem incorporating
image intensities naturally becomes:

E(p) = disthig(id, ) + M distife (g0, 0x91) + Ao dist? s (Io, @ul1) | (18)
where A1, Ao are the relative weights and @, I; = I; 0 go_l is the natural left action of Diff on
L? images. In this convention I; is called the moving image (g; the moving metric, resp.).
It is important to note that the energy functional only depends on ¢~ and not on ¢. To
see this we use the invariance of the geodesic distance on Diff and the definition of the
pushforward to rewrite (18) as

E(p) = distpg(id, o) + A1 distRge; (90, 1(To™ ', To™)) + Ao dist72(Io, 1o o™ 1). (19)

1

Consequently, we will use ¢~ rather than ¢ as our optimization variable, c.f. Algorithm 1

below.

4.1 Estimating the Atlas for a Population of Connectomes

Given a collection of connectomes modeled as points on an abstract Riemannian manifold,
we can directly apply least-squares estimation to define the average connectome. Thus the
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Algorithm 1 Inexact Metric Matching Algorithm

Inputs:
Fixed and moving metrics gg, g1; Fixed and moving images Iy, I
Initialize:

step size €; weight parameters A1, Ag; max iteration times MaxIter

¢ 1 E <+ 1id,0

for iteration = 0 : MaxIter do
pegn < (AT (g1 01 (dp) > Pushforward of gy by ¢
iy < I op7t > Pushforward of I; by ¢
E < EbinEnergy (.91, 90, ¢« 11, Lo, A1, A2) > Calculate energy by Equation (18)
v < A7YE. grad) > Transfer gradient w.r.t. information metric to L?
¥ < id —ev > Construct the approximation
ol popt > Update the diffeomorphism

end for

return ¢!

template estimation problem can be formulated as a joint minimization problem:
N

g= arggglin > " distdig (id, ;) + A distRye (9, (91),9) (20)
P =1
We use the iterative alternating algorithm proposed in Joshi et al. (2004) for solving the
above optimization problem: we alternate gradient steps between optimizing with respect to
each diffeomorphism, ¢;,i = 1,--- , N, and minimizing with respect to the metric average g.
In the metric optimization step we use the Fréchet mean algorithm described in Section 3.
The above procedure for estimating a connectome atlas can again be trivially extended
to jointly estimate an image atlas consistent with the connectome atlas. To estimate the
atlases jointly we use the following extended joint minimization problem:
N
g, 1= ar%min > " distdig(id, i) + A distRre (9, (9i)«g:) + Aadistia (1, (9i)- L) . (21)
/0 BT —
For the extended image-connectome atlas alternating algorithm at each iteration of the
algorithm, the atlas image is updated by the simple average of the deformed individual
subject images. This is a consequence of using the simple L? metric for the images. See
Algorithm 2 for details of this process.

4.2 Implementation Details

In this section, we describe some implementation details that are important for reliable and
efficient algorithm performance, particularly when applied to 3D brain data.

4.2.1 METRIC ESTIMATION

As done in Hao et al. (2014), we apply a mask to both the connectome metric estimation
process and the atlas-building algorithm for two reasons. First, it is important that we con-
strain the problem to biologically realistic white matter tracts by not allowing tractography

12
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Algorithm 2 Atlas Building Algorithm

Inputs:
metric fields G = {g1,...,9n}, images I = {I1,...,In}
Initialize:
max iteration times MaxIter
for iteration = 0 : MaxIter do
Jmean < FrechetMean(Q) > Section 3, compute with random order each time
Ihean < EuclideanMean([])
fori=1:N do

90;1 — MetriCMatChing(gmeana 9i» Imean, Iz) > Algorithm 1
gi < (¢i)+9i > Update g; by pushforward of ¢;
Ii < (i)« 1i > Update I; by pushforward of ¢;
end for
end for

return gpean

to flow through regions of CSF. Second, we avoid numeric issues associated with processing
air and other noisy regions outside the skull. This also speeds up computation, as we need
to look only at voxels inside the masked region instead of the entire image volume. Care
must be taken with both first and second derivatives to use an appropriate and accurate
finite difference stencil near the boundaries of the mask to ensure only points inside the
mask are used. When matching the geodesics to a vector field consisting of the principal
eigenvector directions, it is important to ensure that the eigenvector signs are consistent
prior to computing derivatives of the vector field.

4.2.2 ATLAS BUILDING

For the atlas building algorithm, we deform each individual mask into atlas space at each
outer iteration, and then apply the union of these deformed masks when computing the
current atlas estimate. For each iteration of the atlas building algorithm, we perform only
two iterations inside the metric matching function to avoid overfitting the individual metrics
to early estimates of the Fréchet mean. Though we have not observed any subject order-
related problems with the Fréchet mean calculation in practice, we randomize the order of
the subjects each time we compute the mean to avoid the possibility of introducing problems
related to subject order. In practice, we find the algorithm behaves well when we update €
in Algorithm 1 such that 1/e is approximately equal to the energy from (18).

For computational efficiency, all our algorithms are implemented in PyTorch, which
allows us to take advantage of the built-in GPU acceleration and automatic differentiation.
The computationally most expensive part in the geodesic distance of the Ebin metric is
the calculation of the matrix logarithm, i.e., the calculation of k = log(gy 'g1). Currently
the matrix logarithm function is not implemented in PyTorch, and other alternatives such
as the function provided by Scipy do not support automatic differentiation. Therefore we
calculate the Cholesky factorization of go = GGT. We aim to use this factorization to reduce
the eigendecomposition of the nonsymmetric matrix g, Lg1 to the eigendecomposition of the
symmetric matrix W = G~1g;(GT)~1: writing W = QAQT for the eigendecomposition of

13
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W, we directly obtain the eigendecomposition of gy L1 = VAV, where V = (GT)~1Q.
This in turn allows us to calculate k = log(gy 'g1) = V log(A)V 1.

Consequently, the bottleneck of our atlas building algorithm is the large amount of
eigendecomposition problems that have to be computed — in each iteration step we have to
solve N x Res eigendecompositions of n x n matrices, where Res is the resolution of the
image and n is the dimension of the domain.

It turns out that the GPU implementation of torch.linalg.eig is not well-designed
for solving eigendecomposition of numerous small matrices. The extremely low speed made
our algorithms unusable for any experiments in 3D. To speed up these calculations, we re-
implement the eigendecomposition based on the work of Lenssen et al. (2019), which leads
to an order of magnitude increase in performance.

Powered by the torch.autograd module, we can now easily solve the gradient of the
Ebin energy in Algorithm 1 without a closed-form gradient solution. Our 3D atlas build-
ing code, including both metric-only matching and joint matching, will become publicly
available at https://github.com/aarentai/Atlas-Building-3D.

4.2.3 GEODESIC TRACTOGRAPHY

Several computational strategies have been proposed to compute white matter tractography
as geodesic curves. O’Donnell et al. (2002) develop a level set approach to solve the Eikonal-
type equation of the geodesic distance transform from a seed point. Fletcher et al. (2007)
extend this approach to simultaneously solve for the entire set of minimal geodesics between
two brain regions by solving two Hamilton-Jacobi PDEs. These Hamilton-Jacobi PDEs can
be solved quickly on GPUs using the method of Jeong et al. (2007). While these strategies
are better choices for a production pipeline, for this paper we chose to directly integrate
the geodesic equation from seed points using the principal eigenvector at each seed as the
initial direction for shooting.

Given a Riemannian metric g, we compute the corresponding Christoffel symbol I' via

k _1 = kl agjl 0gi 89z‘j
U = QZZ:Q oxt + oxi 9zl )’ (22)

where g% denotes the components of the inverse metric tensor. Together with the position
~ and velocity ¥, the Christoffel symbols enable us to find the acceleration % at time ¢ by
solving the geodesic equation ;y(k) + Ffjf'}/(i)ﬁ(j ) = 0, which gives

@) = = 500 420 500 | ThGE) Th() The®) | | 4@ | (23)
() Tho®) Thoe) ] L4

where 5(*)

,4*) are the components of the acceleration vector % and velocity vector #.
After the initial conditions for the position and velocity are given and ;'y(k)(()) is com-

puted, we update the acceleration at subsequent time steps using a fourth-order Runge-

Kutta scheme (Press et al., 1986). See also the function algo.geodesic.geodesicpath()

in our open access repository.
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5. Results

We first demonstrate our framework in 2D using synthetic data and 2D data extracted from
brain images. Next, we construct a 3D connectome atlas from DWMRI for a subset of sub-
jects from the Human Connectome Project. We show that we can use the complementary
information from T1-weighted MRI for those same subjects to build an integrated multi-
modal atlas. Finally, we demonstrate that the multimodal atlas preserves both local and
long-range connectivity information by computing both whole-brain and seed region-based
geodesic tractography of the atlas.

5.1 2D Simulated Data

We verified our method by generating vector fields whose central integral curves are a family
of parameterized cubic functions. We used the method of parallel curves to add vectors for
additional integral curves parallel to the central curve with a distance k € [—0.2,0.2] from
the central curve. We then constructed tensors whose principal eigenvectors align with the
generated vector fields and that have a specified major axis to minor axis ratio of 6:1.

We first estimated the adaptive metric conformal to the inverse-tensor metric such that
the geodesics of the adaptive metrics align with the integral curves of the simulated vector
fields. After finding the connectome metric for each subject, we ran 400 iterations of the
atlas building Algorithm 2 using only the metric distance as shown in (20) to estimate the
atlas in Figure 4. To help the diffeomorphisms update smoothly, we set A\; = 100 in (16)
and the step size € = 5 in Algorithm 1.

We compared a geodesic of the atlas starting from a particular seed point with geodesics
of the four connectome metrics starting from the atlas seed point mapped into individual
space. Figure 4 shows these individual geodesics in atlas space before and after applying
the diffeomorphisms. We see that the atlas geodesic is nicely centered in the middle of
the undeformed individual geodesics as expected. Also, the deformed individual geodesics
align well with the atlas geodesic. The upper right panel shows the mean distance between
the atlas geodesic and deformed subject geodesic in atlas space in different stages. After
75 iterations of optimization, we can see the distance of the four pairs of geodesics almost
converged.

5.2 2D Real Data

To illustrate how our method works with real data, we used two subjects from the Human
Connectome Project Young Adult (HCP) dataset Glasser et al. (2013). For each subject,
we fit a diffusion tensor model to the images with a b-value of 1000 using dtifit from
FSL Basser et al. (1994) and generated a white-matter mask based on fractional anisotropy
values thresholded between 0.25 and 1. To process in 2D, we extracted a single axial
slice from each image along with the x and y components of the associated tensors. We
estimated the adaptive connectome metric from the inverse-tensor metric associated with
the 2D diffusion tensors. We would like to emphasize that the 2D atlas construction is only
for illustrative purposes. In real human data no tract is expected to live in a single plane
and 2D processing is not appropriate.
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Figure 4: Left and center: geodesics of four synthetic metrics starting from the atlas seed
point (X) mapped into each metric’s space. Upper right: mean distance trend between
atlas geodesic and every deformed subject geodesic in atlas space. Lower right: estimated
atlas with geodesic (orange) overlaid on geodesics from the four metrics deformed into atlas
space.

To generate the atlas shown in Figure 5, we ran atlas building with only the metric
distance terms from (20) for 5000 iterations with A\; = 100, ¢ = 1, which took 50 minutes
on an Intel Xeon Silver 4108 CPU. The regularization term, A;, balances the magnitudes
of the diffeomorphisms from each subject’s connectome metric to the atlas. To ensure that
the final geodesics in the atlas also follow the major eigenvectors of the atlas tensors, we
solve for the a conformal factor for the atlas as described in Section 2.

5.3 3D Metric Atlas

We used six subjects from the Human Connectome Project Young Adult (HCP) dataset Glasser
et al. (2013) in this experiment as shown in Figure 6. For each subject, we fit a diffusion
tensor model to the images using b-values of 1000, 2000, and 3000 using dtifit from
FSL Basser et al. (1994) and generated a white-matter mask by keeping voxels with frac-
tional anisotropy between 0.25 and 1. We rigidly registered the T1 images for each subject
using brainsfit from Johnson et al. (2007), and applied that rigid registration to the
subject’s white matter mask and diffusion tensors, being sure to reorient the individual
tensors. We estimated « for the adaptive connectome metric from the inverse-tensor metric
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Figure 5: Left: diffeomorphism from HCP subjects (103818, 111312) to the atlas. Center:
each subject’s connectome metric and a geodesic (blue, red) starting from the atlas seed
(X) mapped to subject space. Right: atlas and a geodesic (orange) starting at the seed (X).
Subject geodesics are mapped to atlas space (blue, red). Bottom: detailed view of corpus
callosum.

associated with the diffusion tensors after smoothing them with a Gaussian filter, 0 = 1.5
and cleaning any tensors that were not positive semi-definite. The estimated o was clipped
to the range [—2,2] before applying it the inverse-tensor metric associated with the un-
smoothed diffusion tensors to create the adaptive connectome metric. In the atlas building
process, we used the metric distance terms from (20) and set the step size ¢ = 0.005 in
Algorithm 1 and A1 = 1.0. For 800 iterations, the algorithm took about 12 hours on an
Nvidia Titan RTX GPU, which features 24GB VRAM.

To generate the T1 atlas for this experiment, we computed the mean of each subject’s
T1 image after deforming it by the diffeomorphism found from the metric atlas construction.
As shown in Figure 7, the white matter atlas looks reasonable, but the T1 atlas is blurry,
especially in gray matter regions because the atlas construction process is not using any
gray matter information to guide the diffeomorphisms in these regions.

5.4 3D Joint Atlas

We used the same six subjects to construct a joint T1 and metric atlas by adding in the
image matching term as shown in (21). We set the weight of the image term, A9 in (18),
to 1.0 x 10~8, which balances the image term loss to approximately the same magnitude as
the metric term loss. All other parameters were kept the same as in the metric-only atlas
building process. The resulting metric and T1 atlases are shown in Figure 7. Note how
much more well-defined the gray matter regions are when the T1 information is included
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Figure 6: Axial, coronal, and sagittal views of the 6 HCP subjects’ T1 images and their
metrics colored by the direction of the principal eigenvector of the inverse of the metric.
Red is oriented from left to right, green from anterior to posterior and blue from inferior to
superior directions.

in the optimization process. At the same time, the metric atlas is not degraded by adding
this term in, and may even be slightly better than before.

The whole-brain tractography shown in Figure 8 was performed by seeding eight geodesics
per voxel in the white matter mask, stopping when each geodesic left the averaged white
matter mask. Individual tracts were created by drawing seed regions in the atlas space
and transforming the regions back to subject space. Each voxel in the seed region had 27
seeds. Geodesics terminated when fractional anisotropy dropped below 0.2 for the subject
tractography, or when the geodesic left the averaged white matter mask for the atlas trac-
tography. Other than the seed region and FA thresholding, we did not apply any stopping
or rejection criteria based on angle, tract length, anatomical priors or any of the other tech-
niques used to clean up false positives. We performed tractography visualization using 3D
Slicer (www.slicer.org) via the SlicerDMRI project (http://dmri.slicer.org) (Norton et al.,
2017; Zhang et al., 2020). Note that the whole-brain tractography can also be registered to
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Metric Only Matching Joint Matching

Figure 7: Axial, coronal and sagittal views of the T1 and metric atlas. Left columns: the
atlas produced using only the metric matching term. Right columns: the atlas produced
using metric and image matching terms jointly.

the O’Donnell atlas using the WhiteMatterAnalysis toolkit (O’Donnell and Westin, 2007;
O’Donnell et al., 2012; Zhang et al., 2018) in order to do clustering based on that atlas
if desired. Example tracts for the genu of the corpus callosum, corticospinal tract, and
cingulum computed by integrating geodesics of the joint atlas are shown in Figure 9.

6. Conclusions

In this paper, we introduce a novel framework for statistically analyzing structural connec-
tomes by representing them as a point on the manifold of Riemannian metrics, enabling us
to perform geometric statistics. Using this representation, we build a framework for connec-
tome atlas construction based on the action of the diffeomorphism group and the natural
Ebin metric on the space of all Riemannian metrics. Because this framework is compat-
ible with existing image atlas construction frameworks, we are then able to construct an
integrated multimodal atlas using complementary white matter and cortical information
from DWMRI and T1-weighted MRI simultaneously. In future work we plan to investigate
in more detail the convergence properties of the proposed algorithms and quantitatively
compare our approach to other existing methods. We expect this new methodology to open
up opportunities for a deeper understanding of structural connectomes, their variabilities
and their relationships to cortical structure.
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Figure 8: Top row: metric colored by orientation overlaid on T1 for joint atlas of six HCP
individuals. Bottom row: whole-brain geodesic tractography for joint atlas, with tract
segments colored by their orientation.

Figure 9: Examples of joint atlas tractography generated from seeds placed in atlas seed
regions, with tract segments colored by orientation. Left: axial view of tractography seeded
in the genu of the corpus callosum. Center: coronal view of tractography seeded in the
corticospinal tract. Right: axial view of tractography seeded in the cingulum.
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