

@INPROCEEDINGS{Li2021-gu,
title = "The shallow and deep hypothesis: linking flow paths,
biogeochemical reactions, and stream chemistry in the Critical
Zone",
author = "Li, Li and Zhi, Wei and Stewart, Bryn and Wen, Hang and Xiao,
Dacheng and Barnard, Holly and Kirchner, James and Perdrial,
Julia and Shanley, James and Sullivan, Pamela and Williams,
Kenneth",
abstract = "How does the physical and chemical structure of the Critical
Zone (CZ), defined as the zone from treetops to the bottom of
groundwater, govern its hydro-biogeochemical functioning?
Multiple lines of evidence from past and newly emerging research
have prompted the shallow and deep partitioning
concentration-discharge (C-Q) hypothesis. The hypothesis states
that in-stream C-Q relationships are shaped by distinct source
waters from flow paths at different depths. Base flows are often
dominated by deep groundwater and mostly reflect groundwater
chemistry, whereas high flows are often dominated by shallow
soil water and thus mostly reflect soil water chemistry. The
contrasts between shallow soil water versus deeper groundwater
chemistry shape stream solute export patterns. In this context,
the vertical connectivity that regulates the shallow and deep
flow partitioning is essential in determining chemical
contrasts, biogeochemical reaction rates in soils and parent
rocks, and ultimately solute export patterns. This talk will
highlight insights gleaned from multiple lines of recent studies
that include collation of water chemistry data from soils,
rocks, and streams in intensively monitored watersheds,
meta-analysis of stream chemistry data at the continental scale,
and integrated reactive transport modeling at the hillslope and
watershed scales. The hypothesis underscores the importance of
subsurface vertical structure and connectivity relative to the
extensively studied horizontal connectivity. It also alludes to
the potential of using streams as mirrors for subsurface water
chemistry, and the potential of using C-Q relationships to infer
flow paths and biogeochemical reaction rates and the response of
earths subsurface to climate and human perturbations. Broadly,
this simple conceptual framework links CZ subsurface structure
to its functioning under diverse climate, geology, and land
cover conditions.",
publisher = "ui.adsabs.harvard.edu",
volume = 2021,
pages = "H51D--04",
month = dec,
year = 2021
}