Combined carbon, hydrogen, and clumped isotope fractionations reveal differential reversibility of hydrogenotrophic methanogenesis in laboratory cultures

3

1 2

Jeemin H. Rhim^{a,1,*} and Shuhei Ono^a

^a Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. jrhim@alum.mit.edu (J. H. Rhim), sono@mit.edu (S. Ono)

¹ Present address: Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA

* Corresponding author: jrhim@alum.mit.edu

10 11

A manuscript prepared for submission to Geochimica Cosmochimica Acta

12 13

1516

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

14 Abstract

Stable isotope analysis has been widely used to aid the source identification of methane. However, the isotopic (13C/12C and D/H) and isotopologue (13CH₃D and 12CH₂D₂) signatures of microbial methane in natural environments are often different from those in laboratory cultures in which methanogens are typically grown under optimal conditions. Growth phase and hydrogen (H₂) concentration have been proposed as factors controlling the isotopic compositions of methane produced via hydrogenotrophic methanogenesis, but their effects on the relationship among carbon, hydrogen and doubly-substituted "clumped" isotopologue systems have not been assessed in a quantitative framework. Here we experimentally investigate the bulk (δ^{13} C and δ D) and clumped $(\Delta^{13}CH_3D)$ isotopologue compositions of methane produced by hyperthermophilic hydrogenotrophic (CO₂-reducing) methanogens using batch and fed-batch systems at different growth phases and H₂ mixing ratios (Methanocaldococcus bathoardescens at 82 or 60 °C and on 80 or 25% H₂; Methanothermobacter thermautotrophicus ΔH at 65 °C and on 20, 5 or 1.6% H₂). We observed a large range (18 to 63%) of carbon isotope fractionations, with larger values observed during later growth phase, consistent with previous observations. In contrast, hydrogen isotope fractionations remained relatively constant at $-317 \pm 25\%$. Linear growth was observed for experiments with M. bathoardescens, suggesting that dissolution of gaseous H₂ into liquid media became the rate limit as cell density increased. Accordingly, the low (and undersaturated) dissolved H₂ concentrations can explain the increased carbon isotope fractionations during the later growth phase. The δD and $\Delta^{13}CH_3D$ values indicated departure from equilibrium throughout experiments. As the cell density increased and dissolved H₂ decreased, Δ¹³CH₃D decreased (further departure from equilibrium), contrary to expectations from previous models. Our isotopologue flow network model reproduced the observed trends when the last H-addition step is less reversible relative to the first three H-addition steps (up to CH₃-CoM). In this differential reversibility model, carbon, hydrogen and clumped isotopologue fractionations are largely controlled by the reversibility of the first three H-addition steps under high H₂ concentrations; the last H-addition step becomes important under low H₂. The magnitude of depletion and decreasing trend in Δ^{13} CH₃D values were reproduced when a large ($\geq 6\%$) secondary clumped kinetic isotope

effect was considered in the model. This study highlights the advantage of combined bulk and clumped isotope analyses and the importance of physiological factors (growth phase) and energy availability (dissolved H₂ concentration) when using isotope analyses to better understand methanogenic metabolisms and methane cycling processes.

1 Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Methane (CH₄) is an important energy source, a potent greenhouse gas as well as a potential biosignature in subsurface and extraterrestrial environments. Stable carbon (δ^{13} C) and hydrogen (δD) isotope ratios have been extensively used to apportion the relative contributions of different methanogenic pathways, e.g., acetoclastic vs. hydrogenotrophic methanogenesis (Welhan and Lupton, 1987; Whiticar, 1990; Sherwood Lollar et al., 2002; Flores et al., 2008; Sherwood Lollar et al., 2008; Pohlman et al., 2009; Baldassare et al., 2014). More recently, technological advances have allowed the precise measurements of the abundance of multiply-substituted or "clumped" isotopologues of methane (e.g., ¹³CH₃D and ¹²CH₂D₂; Ono et al., 2014; Stolper et al., 2014; Young et al., 2016; Gonzalez et al., 2019). Methane clumped isotopologue abundance has in some cases served as an isotopic geothermometer and provided temperature estimates that are consistent with environmental temperatures (e.g., Stolper et al., 2015; Wang et al., 2015; Young et al., 2017). While both bulk and clumped isotopic compositions of methane can help identify the source(s) of methane, some factors complicate the interpretation of the isotopic signatures. For example, overlapping isotopic signatures in δ^{13} C and δ D often lead to ambiguous source identifications (e.g., Schoell, 1988; Whiticar, 1990, 1999; Pohlman et al., 2009; Etiope and Sherwood Lollar, 2013), and some microbial methane samples from surface environments (e.g., freshwater lakes, swamps, and cow rumen) have yielded unreasonably high temperature estimates for clumped isotopologue equilibrium (e.g., Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2017; Young et al., 2017). In particular, there are significant discrepancies between the bulk and

clumped isotopic signatures observed in natural samples of microbial methane and those produced by laboratory cultures that presumably use the same metabolic pathway (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Okumura et al., 2016; Young et al., 2017; Gruen et al., 2018; Giunta et al., 2019; Douglas et al., 2020). In general, the δ^{13} C and δ D values of microbial methane in marine environments, where hydrogenotrophic methanogenesis is thought to be a primary methanogenic pathway, tend to indicate isotopic equilibrium with CO₂ and H₂O. In contrast, the δ^{13} C and δ D values observed in laboratory cultures often indicate kinetic isotope effect (i.e., a departure from equilibrium). Similarly, the Δ^{13} CH₃D values, representing the relative abundance of ¹³CH₃D clumped isotopologues, measured from microbial methane in marine and deep subsurface sediments indicate internal isotopic equilibrium whereas those from pure cultures carry strong kinetic isotope signatures (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2017; Young et al., 2017; Gruen et al., 2018). It has been suggested that anaerobic oxidation of methane (AOM) is required for isotopic equilibrium of marine microbial methane. Recent studies have reported observations consistent with this hypothesis (Ash et al., 2019; Giunta et al., 2019; Zhang et al., 2021). However, it remains unclear whether microbial methanogenesis alone can produce near-equilibrium isotope signatures without the external oxidative process (e.g., Okumura et al., 2016; Turner et al., 2021; Gropp et al., 2022; Ono et al., 2022).

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Previous studies that investigated the factors controlling isotope fractionation during microbial methanogenesis shed some light on the cause of the observed discrepancy. Multiple studies have investigated the changes in the carbon isotope fractionation factor ($^{13}\alpha$) during hydrogenotrophic methanogenesis and have identified growth phase and/or hydrogen partial pressure (pH_2) as important controlling factors (Games and Hayes, 1978; Fuchs et al., 1979a; Belyaev et al., 1983; Balabane et al., 1987; Krzycki et al., 1987; Botz et al., 1996; Valentine et al.,

2004; Penning et al., 2005; Londry et al., 2008; Yoshioka et al., 2008; Hattori et al., 2012; Okumura et al., 2016; Topçuoğlu et al., 2019; Nguyen et al., 2020). In general, carbon isotope fractionation increases (lower $^{13}\alpha$ values) at low pH_2 such that the apparent magnitude of fractionation is close to that expected at CH₄-CO₂ equilibrium. These observations corroborate the differential reversibility hypothesis, which predicts that the variation in carbon isotope fractionation is a result of the changes in reversibility in the enzymatic steps of the hydrogenotrophic methanogenesis pathway (Valentine et al., 2004).

The effect of *p*H₂ on hydrogen isotope fractionation has been investigated by comparing pure cultures grown on high concentrations of H₂ against cocultures containing hydrogenotrophic methanogens and syntrophic heterotrophic bacteria (e.g., *Syntropothermus lipocalidus* str. TGB-C1 and *Methenothermobacter thermautotrophicus* str. ΔH) (Yoshioka et al., 2008; Hattori et al., 2012; Okumura et al., 2016). Cocultures provide a means to create relatively low H₂ conditions (e.g., 6.8 to 64.9 Pa; Okumura et al., 2016) compared to high *p*H₂ conditions (>10⁵ Pa) often used for pure cultures grown on H₂. So far, to the best of our knowledge, no experiment has observed the magnitude of hydrogen isotope fractionation expected at CH₄-H₂O equilibrium (*ca.* –178‰ at 25 °C; Horita and Wesolowski, 1994; Gropp, Iron and Halevy, 2021) that is often observed in natural samples of microbial methane in marine environments. If the differential reversibility hypothesis can be applied to hydrogen isotope system, higher reversibility and near-equilibrium hydrogen isotope fractionation are expected at lower H₂ environments. This would suggest that the H₂ concentrations tested in experiments so far were not low enough to produce near-equilibrium hydrogen isotope signatures.

Laboratory experiments investigating methane clumped isotope fractionation during hydrogenotrophic methanogenesis have only been conducted in batch cultures under high pH_2

conditions (e.g., Stolper et al., 2015; Wang et al., 2015; Young et al., 2017; Gruen et al., 2018; Giunta et al., 2019). Isotope models relating the dissolved H_2 concentration and $\Delta^{13}CH_3D$ values have been proposed and predict changes in $\Delta^{13}CH_3D$ values toward equilibrium (i.e., increase in $\Delta^{13}CH_3D$ values toward 6‰ at 25 °C) at low H_2 concentrations (e.g., Stolper et al., 2015; Wang et al., 2015), consistent with the overall concept of the differential reversibility hypothesis. However, direct investigations of $\Delta^{13}CH_3D$ values produced at different growth phases or H_2 concentrations are needed to validate whether the differential reversibility model can be applied to clumped isotopologue systematics.

In this study, we cultured two different species of methanogens, *Methanocaldococcus* bathoardescens and *Methanothermobacter thermautotrophicus* str. ΔH , in batch and fed-batch systems under a pH_2 range from 1.6 kPa to 80 kPa and simultaneously measured $\delta^{13}C$ and δD of CO_2 and H_2O (carbon and hydrogen sources for CH_4) as well as the $\delta^{13}C$, δD and $\Delta^{13}CH_3D$ of the product (CH_4). We present isotopologue flow network model results along with the estimated dissolved H_2 concentrations and measured isotopologue ratios to explain the observed fractionation trends by the effects of differential reversibility at the last H-addition step. We propose the $\delta^{13}C$, δD and $\Delta^{13}CH_3D$ trajectories expected for a wide range of dissolved H_2 concentrations encompassing both natural environments and experimental conditions (10^{-9} to 10^{-2} M H_2) that can be applied for future investigations of these isotope signatures for source identifications of methane.

2 Materials and Methods

133 2.1 Organisms

132

- 134 Cultures of *Methanocaldococcus bathoardescens* were provided by James F. Holden (University
- of Massachusetts, Amherst). Culture medium for *M. bathoardescens* was prepared following the
- "282 mod" recipe (Ver Eecke *et al.*, 2012) containing (L⁻¹): 0.34 g KCl, 4.00 g MgCl₂·6H₂O, 0.14
- 137 g KH₂PO₄, 3.45 g MgSO₄·7H₂O, 18 g NaCl, 0.25 g NH₄Cl, 0.14 g CaCl₂·2H₂O, 2.0 mL
- 138 Fe(NH₄)₂(SO₄)₂·6H₂O (0.1% w/v), 10.0 mL trace element solution SL-10 (DSMZ 320), 5.00 g
- NaHCO₃, 10.0 mL vitamins solution (DSMZ 141). Resazurin was omitted, and 2 mM cysteine and
- 140 1 mM sulfide were used as reducing agents instead of dithiothreitol.
- Methanothermobacter thermautotrophicus str ΔH (DSM 1053) was purchased from the
- 142 German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). The
- seed culture was transferred to and maintained in mineral medium modified from DSMZ 1523
- 144 containing (L⁻¹): 0.50 g KH₂PO₄, 0.40 g MgSO₄·7H₂O, 0.40 g NaCl, 0.40 g NH₄Cl, 0.05 g
- 145 CaCl₂·2H₂O, 1.00 mL trace element solution SL-10 (DSMZ 320), 4.00 g NaHCO₃, 1.00 mL
- vitamins solution (DSMZ 503). The medium was reduced with 1 mM sulfide.

147 2.2 Culture conditions

- Table 1 summarizes the conditions for culture experiments conducted in this study. M.
- bathoardescens was grown at 82 or 60 °C and on 80 or 25% H₂, and M. thermautotrophicus ΔH
- 150 was grown at 65 °C and on 20, 5 or 1.6% H₂.

151 2.2.1 Batch cultures

M. bathoardescens batch culture series was prepared in 100 mL of "282mod" medium described above in 200 mL bottles with 2 bars absolute pressure of H_2/CO_2 (80:20). Each bottle was inoculated with 2% (v/v) of pre-culture in exponential growth phase. Cultures were incubated at 82 °C. At given timepoints, culture headspace was sampled for gas chromatography and $\delta^{13}C_{CO2}$ analysis. Medium was sampled for cell counts with a counting chamber (CTL-HEMM-GLDR, LW Scientific; depth = 0.1 mm) and phase-contrast light microscope. Immediately after sampling, the entire remaining culture was sacrificed by adding 5 mL of 1 M sodium hydroxide. The headspace of a killed culture was used for methane purification and subsequent isotopologue analysis.

2.2.2 Fed-batch cultures

All fed-batch culturing experiments were carried out using a 2-L glass bioreactor (Ace Glass) equipped with a fritted gas dispersion tube (Ace Glass), pH meter (ML-05990-40; Cole-Parmer), temperature monitor/controller, liquid sampling port and a condenser leading to the gas outlet (Figure 1). Both the culturing apparatus and 1.7 L of medium were sterilized by autoclaving at 121 °C for 20 minutes. A set of mass flow controllers was used to control the flow rates of H₂, CO₂ and He (or N₂) to achieve desired mixing ratios of H₂, xH₂, (80, 25, 20, 5 and 1.6%) in the influent gas (Table 1). A column filled with copper was placed between the gas tanks and the reactor and heated to 450 °C to remove trace amounts of oxygen in the incoming gas mixture (Wolfe, 2011). After the reactor was heated to desired temperatures (82, 65 or 60 °C), vitamin solution was added and the pH was adjusted to 6.0 and 7.0 (for *M. bathoardescens* and *M. thermautotrophicus*, respectively) while bubbling with the gas mixture (20% CO₂). Cysteine (2 mM) and sulfide (2 mM) or cysteine (2 mM) and titanium citrate (0.1 mM) were added as reducing agents before adding a 2% (v/v) of inoculum. Effluent gas from the reactor was passed through a

condenser (12 °C) which is followed by an additional column filled with CaCl₂ for water removal, and directly connected to an on-line gas chromatography system or a gas sampling bag (Cali-5-BondTM, Calibrated Instruments, Inc., McHenry, MD, USA) (Figure 1). Each gas sample was collected for at least 5 minutes (typically between 5 and 12 minutes) such that the sampling interval is comparable to or longer than the residence time of methane in the reactor headspace (~5 minutes).

2.3 Analytical procedures

175

176

177

178

179

180

- 181 2.3.1 Gas chromatography
- Mixing ratios of headspace gases were measured using a gas chromatograph (GC-2014, Shimadzu,
- 183 Columbia, MD, USA), equipped with a packed column (Carboxen-1000, 5' by 1/8", Supelco,
- Bellefonte, PA, USA) with argon carrier gas at 140 °C. A thermal conductivity and a methanizer-
- flame ionization detector were used to quantify the mixing ratios of H₂, N₂, CH₄ and CO₂. The
- following compositions of commercial and in-house standard gases were used for calibration: 7%
- 187 CO, 15% CO₂, 4% O₂, 4.5% CH₄ balanced in N₂ (Supelco; P/N 501743); 4% CH₄, 20% CO₂, 2%
- 188 CO balanced in N₂ (MESA International Technologies, Inc.); 80% H₂, 20% CO₂ (Airgas). The
- accuracy of GC analyses was $\pm 5\%$ of measured values. Headspace samples from experiments B.82
- and F.82.80 were analyzed via manual syringe injection, and all other experiments were measured
- on-line GC using a gas sampling valve with a 500µL injection loop (VC-SL500CW, VICI Valco,
- Houston, TX, USA) (Figure 1).
- 193 2.3.2 δ^{13} C_{CO2} analysis
- The carbon isotopic composition of headspace CO_2 ($\delta^{13}C_{CO2}$) was measured using a dual-inlet
- isotope-ratio mass spectrometer (IRMS; MAT 253, Thermo-Fisher). CO₂ from subsamples of the
- headspace gas collected from serum bottles (batch cultures) or at the exhaust (fed-batch cultures)

- 197 was purified by cryogenically separating water and CO₂ from H₂, N₂ and CH₄ into a cold trap at – 198 196 °C and warming up the trap to -80 °C and freezing the eluted CO₂ in a sample vial. The isotope 199 ratios are normalized against VPDB using two CO₂ references (OzTech Trading Corporation; δ¹³C = -40.49% and -10.38% VPDB). Typical analytical precision for δ^{13} C analysis is ± 0.2 %.
- 201 δD_{H2O} analysis 2.3.3

200

- 202 The hydrogen isotopic composition of media water (δD_{H2O}) was measured using two different 203 methods. For Experiments F.82.80 and F.60.80, δD_{H2O} was measured using a dual-inlet IRMS. 204 Water samples were reduced with zinc following a previously described method (Coleman et al., 205 1982). The isotope ratios are normalized against VSMOW using H₂ references (OzTech Trading 206 Corporation; $\delta D = -124.83\%$ and -49.52% VSMOW). For Experiments F.82.25, F.65.20 and 207 F.65.5, δD_{H2O} was measured using cavity ring-down spectrometry (L-1102i WS-CRDS, Picarro, Sunnyvale, CA, USA) at the University of Massachusetts Amherst. Samples were vaporized at 208 209 110 °C. International reference standards (IAEA, Vienna, Austria) were used to calibrate the 210 instrument to the VSMOW-VSLAP scale and working standards were used with each analytical 211 run. Long-term averages of internal laboratory standard analytical results yield an instrumental 212 precision of 0.5‰.
- 213 Methane isotopologue analysis 2.3.4
- 214 Methane samples were purified following the preparative GC method described by Wang et al. 215 (2015). For batch culture experiment (B.82), the headspace of each killed serum bottle was 216 attached to the preparatory GC setup, and a stream of helium (carrier gas for GC) replaced the 217 headspace more than three times its volume. For fed-batch experiments, multi-layer foil sampling 218 bags (Cali-5-BondTM, Calibrated Instruments, Inc., McHenry, MD, USA) used to collect

downstream headspace gas at the exhaust were directly connected to the sample preparation system. The relative abundances of methane isotopologues $^{12}\text{CH}_4$, $^{13}\text{CH}_4$, $^{12}\text{CH}_3\text{D}$ and $^{13}\text{CH}_3\text{D}$ were measured using a tunable infrared laser direct absorption spectroscopy (TILDAS) described previously (Ono et al., 2014; Wang et al., 2015). Values of $\delta^{13}\text{C}$ and δD of methane analyzed via TILDAS were calibrated via measurements of natural gas standards NGS-1 and NGS-3 (Wang et al., 2015) using the reference values reported in Hut (1987). To correct for the nonlinearity in the spectroscopic analysis described by Ono et al. (2014), methane samples with a range of δD values (ca. -400% to +200% vs. VSMOW) were thermally equilibrated over platinum catalyst at 250 °C for at least two weeks and measured on TILDAS along with samples.

- 228 2.3.5 Isotope notation and calculation of isotope fractionation factors
- 229 Bulk isotope values are reported using standard delta notation:

$$\delta^{13}C = \frac{\binom{13}{C}\binom{12}{C}_{\text{sample}}}{\binom{13}{C}\binom{12}{C}_{\text{VPDB}}} - 1$$
 (Eqn. 1)

$$\delta D = \frac{(D/H)_{\text{sample}}}{(D/H)_{\text{VSMOW}}} - 1$$
 (Eqn. 2)

where VPDB and VSMOW are Vienna Pee Dee Belemnite and Vienna Standard Mean Ocean Water, respectively. The factor of 1000 was omitted from (Eqn. 1) and (Eqn. 2), following the IUPAC recommendations (Coplen, 2011). Natural gas samples with published $\delta^{13}C$ and δD values (NGS-1 and NGS-3) were used for the calibration of $\delta^{13}C$ and δD values of methane analyzed via TILDAS (Wang et al., 2015). Experimental samples were considered to contain methane isotopologues at or sufficiently close to their natural abundances, hence the following approximations are valid within analytical uncertainty: $^{13}C/^{12}C \approx [^{13}CH_4]/[^{12}CH_4]$ and D/H $\approx \frac{1}{4}$ [$^{12}CH_3D$]/[$^{12}CH_4$]. The abundance of $^{13}CH_3D$ clumped isotopologue is reported as $\Delta^{13}CH_3D$, a

metric representing the deviation of the abundance of ¹³CH₃D from a random distribution of isotopes among isotopologues ¹²CH₄, ¹³CH₄, ¹²CH₃D and ¹³CH₃D (Ono et al., 2014; Wang et al., 2015):

$$\Delta^{13}\text{CH}_3\text{D} = \frac{[^{13}\text{CH}_3\text{D}][^{12}\text{CH}_4]}{[^{13}\text{CH}_4][^{12}\text{CH}_3\text{D}]} - 1$$
 (Eqn. 3)

- The value of Δ^{13} CH₃D was calibrated by equilibrating methane at 250 °C using Pt catalyst (Ono et al., 2014).
- The isotope fractionation factor (α) is defined as the ratio of relative abundances of isotopes between a substrate and its product. For a batch experiment (B.82), isotope fractionation factors are calculated assuming an irreversible closed system isotope effect, based on the conventional Rayleigh equation (Mariotti et al., 1981). For the reduction of CO₂ to CH₄:

$$(^{13}\alpha - 1) \cdot \ln f = \ln \frac{\delta^{13}C + 1}{\delta^{13}C_0 + 1}$$
 (Eqn. 4)

- where f is the fraction of CO₂ remaining; $^{13}\alpha$ is the kinetic isotope fractionation factor for $^{13}\text{C}/^{12}\text{C}$; and $\delta^{13}\text{C}$ and $\delta^{13}\text{C}_0$ are the isotopic compositions of CO₂, with the subscript '0' indicating the initial time point (t=0).
- The bulk isotope fractionation factors for fed-batch experiments (F.82.80, F.60.80, F.82.25, F.65.20 and F.65.5) were calculated as follows:

$$^{13}\alpha_{\text{CH4/CO2}} = \frac{\delta^{13}C_{\text{CH4}} + 1}{\delta^{13}C_{\text{CO2}} + 1}$$
 (Eqn. 5)

$$^{2}\alpha_{\text{CH4/H2O}} = \frac{\delta D_{\text{CH4}} + 1}{\delta D_{\text{H2O}} + 1}$$
 (Eqn. 6)

The equilibrium fractionation factors for carbon ($^{13}\alpha_{eq}$; Horita, 2001), hydrogen ($^{2}\alpha_{eq}$; Horibe and Craig, 1995) and clumped ($\Delta^{13}\text{CH}_3\text{D}_{eq}$; Ono et al., 2014) isotope systems were calculated based on experimental and/or theoretical calibrations.

The clumped isotopologue fractionation factor $^{13}\text{CH}_3\text{D}$ relative to $^{12}\text{CH}_4$ ($^{13,2}\alpha$) can closely approximate the product of $^{13}\alpha$ and $^2\alpha$, following the rule of geometric mean (Bigeleisen, 1955). The deviations from the rule is quantified by the "gamma-factor" ($^{13,2}\alpha = \gamma$ $^{13} \cdot \alpha \cdot ^2\alpha$) as defined by Wang et al. (2016). For example, $\gamma = 1$ when there is no clumped isotopologue effect.

259 2.3.6 Data processing

255

256

257

258

261

262

263

264

265

260 Methanogenesis reaction,

$$CO_{2(g)} + 4 H_{2(g)} \rightarrow CH_{4(g)} + 2 H_2O_{(l)}$$
 (Eqn. 7)

consumes 5 molecules of gas and produce 1 molecule of gas and water that is mostly in liquid phase. Because of this decrease in volume, the flow rate of effluent gas (Q_{out}) during fed-batch experiments does not equal to the flow rate of the influent gas (Q_{in} : 200 mL/min) and can be lower by up to 25% for our experimental conditions. Based on the stoichiometry of the reaction (Eqn. 7), the flow rate of effluent gas was calculated from the mixing ratios of H₂ and CH₄:

$$Q_{out} = \frac{x_{H2}^{in}}{4x_{CH4}^{out} + x_{H2}^{out}} \cdot Q_{in}$$
 (Eqn. 8)

- where x_{H2}^{in} and x_{H2}^{out} are H₂ mixing ratios of the influent and effluent gases, respectively, and x_{CH4}^{out} is CH₄ mixing ratio of the effluent gas measured by the GC.
- The total methane production rate (MPR; mol/hr) was calculated from GC measurements of x_{CH4}^{out} and Q_{out} calculated above:

$$MPR = \frac{P}{RT} \cdot Q_{\text{out}} \cdot \chi_{CH4}^{out}$$
 (Eqn. 9)

270 where R is gas constant (8.314 m³·Pa/mol/K), and T and P are temperature (K) and headspace pressure ($\approx 10^5$ Pa) during measurements. Cell-specific MPR (csMPR; mol/cell/hr) was calculated 271 by dividing MPR by the total number of cells in the reactor: 272

$$csMPR = \frac{MPR}{N_c \cdot V_{liq}}$$
 (Eqn. 10)

- where N_c is cell density (cells/m³), V_{liq} is the volume of media (m³). 273
- 274 Estimating dissolved H₂ concentrations in the liquid medium

279

280

281

282

283

284

286

275 For our experiments, the concentration of dissolved H₂, [H₂], is lower than what is expected from 276 the saturation gas solubility and pH₂ in the influent gas. This is because of 1) high water vapor 277 pressure in the reactor headspace during hyperthermophilic experiments and 2) the slow kinetics 278 of H₂ dissolution from gas phase to liquid media. We considered the following to estimate [H₂].

Water vapor pressure in the reactor headspace, when saturated (pH₂O_{sat}), can be as high as 0.51 bars at 82 °C, 0.25 bars at 65 °C, and 0.20 bars at 60 °C (Haynes et al., 2016). If headspace gas was saturated with water vapor, pH₂ in the gas headspace for our fed-batch reactor can be lower by a factor of two compared to dry gas mixing ratios measured by GC. To consider the water vapor pressure in headspace (and bubbles), we estimated the pH_2O -corrected pH_2, vP as:

$$pH_{2,VP} = xH_2 \cdot (p_{reactor} - pH_2O_{sat})$$
 (Eqn. 11)

where p_{reactor} is the total pressure of reactor, pH₂O_{sat} is the saturation water vapor pressure 285 calculated as a function of temperature. The total pressure of reactor was assumed to be 1 bar. Headspace pressures were measured without inoculation and did not exceed over 1.05 bars.

In addition, the mass transport limit of H₂ from gas to dissolved phases can result in significant discrepancies between actual [H₂] and the [H₂] values expected at saturation with the gas phase H₂ (e.g., Pauss et al., 1990; Jud et al., 1997). The mass balance of H₂ for the liquid phase can be expressed as:

$$\frac{d[H_2]}{dt} = -(H_2 \text{ consumption rate}) + k_L a \cdot (K_H p H_{2,VP} - [H_2])$$
 (Eqn. 12)

where H_2 consumption rate is 4 times the MPR, and $k_L a$ is the global mass transfer coefficient (e.g., hr^{-1}), which quantifies the rate of mass transfer for the whole reactor under a specific experimental condition. K_H is the Henry's law constant for H_2 (mol/L/Pa), calculated as a function of temperature and salinity following Chabab et al. (2020). The steady state solution for (Eqn. 12) is:

$$[H_2] = K_H \cdot pH_{2,VP} - \frac{4 \cdot MPR}{k_L a}$$
(Eqn. 13)

The values of k_{La} were estimated based on the following equation:

$$k_L a = \frac{D}{\delta \cdot V_{\text{lig}}} \cdot a \tag{Eqn. 14}$$

where D is the diffusivity coefficient for H₂ (m²/hr); a is the sum of the surface area at the headspace-medium interface (A_h) and total surface area of bubbles (A_b) (m²); and δ is the thickness of the diffusion layer (m). Using the δ values of 1 μ m and 0.5 μ m and other parameters specific to the experimental setup of this study (Table 2), $k_L a$ values of 380 and 760 hr⁻¹ were used in (Eqn. 13) to calculate [H₂]. The parameter $k_L a$ is unique to a specific experimental condition and therefore varies between studies; however, the $k_L a$ range of 380 to 760 hr⁻¹ falls reasonably within the ranges reported previously (e.g., 0.16 h⁻¹, Pauss et al., 1990; 220–1540 h⁻¹, Jud et al., 1997).

Following are brief justifications of the values used in Table 2. D is a typical diffusion coefficient for H₂ at 25 °C, 5.0×10^{-5} cm² sec⁻¹ (Macpherson and Unwin, 1997). A_b is a function of the geometry and the number of bubbles, which is determined by the relationship between the size and residence time of bubbles and Q_{gas} . The upward velocity of bubbles for small bubbles (radius < 0.1 cm) was calculated following Park et al. (2017). The residence time and total volume of bubbles can be calculated for a known travel distance (i.e., height of the medium) and, from this, the total area of bubbles, A_b , was calculated. Finally, the surface area at the headspace-medium interface (A_b) is calculated from the reactor dimension.

2.3.8 Isotopologue flow network model

To examine the isotopologue data in this study with respect to the modeled [H₂] values, we applied the isotopologue flow network model adapted from Wang et al. (2015). The model calculates the expected isotopologue compositions of CH₄ as well as the intermediate carbon-containing species. During hydrogenotrophic methanogenesis (Eqn. 7), CO₂ is reduced to CH₄ via seven reactions and six intermediate carbon species. Following Wang et al. (2015) and Cao et al. (2019), we reduced the number of intermediate species to three by treating species with the same redox state as the same pool (Figure 2A). Two sets of input parameters required for the model are reversibilities (φ) for enzymatic reactions in the methanogenesis pathway and kinetic isotope effect (KIE) intrinsic to enzymatic reactions.

The first set of input parameters, metabolic reversibility (ϕ) , is the ratio of backward to forward fluxes for an enzymatically-mediated reaction (Rees, 1973; Hayes, 2001). Previous models have used a range of ϕ values between 0 and 1, where $\phi=0$ is fully kinetic (non-equilibrium) and $\phi=1$ is fully reversible (equilibrium). Stolper et al., (2015) assumed $\phi=1$ for all except for the last H-addition step, which was varied. Wang et al. (2015) implemented a gradual

and uniform departure from equilibrium ($\varphi = 1 \rightarrow 0$) for all H-addition steps. Cao et al. (2019) tested binary cases, where φ is either 0 or 1 for each H-addition step. More recently, Gropp et al. (2021) re-evaluated these three models with calculated equilibrium fractionation factors and concluded that models in Wang et al. (2015) and Cao et al. (2019) can produce a range of carbon isotope fractionation observed in the natural environment with certain combinations of φ . This highlights the importance of φ , both in its degree of equilibrium at a given step and in its overall variation among the four H-addition steps, in determining the outputs of isotopologue flow network models. In this work, we parameterized φ values for the four H-addition steps as a function of H₂ by assuming Michaelis–Menten kinetics, as described in Wang et al. (2015):

$$\varphi_n = 1 - \frac{[H_2]}{K_{m,n} + [H_2]}$$
 (Eqn. 15)

where n=1 to 4, representing the four H-addition steps (Figure 2A), and $K_{m,n}$ is the effective half-saturation constant. According to the model for the energy conservation of hydrogenotrophic methanogenesis, the last step (reduction of methyl-CoM to CH₄) is exergonic and expected to be less reversible compared to other steps (Thauer et al., 2008; Thauer, 2011; Ono et al., 2022).

We modeled differential reversibility by changing the $K_{m,n}$ values (Eqn. 15) and compared the following three cases:

- 1) equilibrium end-member scenario with a high $K_{m,n}$ of 10^4 M for all reactions (n=1 to 4),
- 2) uniform reversibility scenario with a $K_{m,n}$ of 5×10^{-5} M for all reactions (n=1 to 4), and
- 3) differential reversibility scenario with a $K_{m,n}$ of 5×10^{-5} M for the first three reactions (n=1 to 3) and a $K_{m,4}$ of 10^{-8} M (less reversible) for the last reaction.

The $K_{\rm m}$ value of 5×10^{-5} M approximates the experimentally determined $K_{\rm m}$ values for hyperthermophilic methanogens (66 μ M for three *Methanocaldococcus* species; Ver Eecke *et al.*, 2012). The lower $K_{\rm m}$ value of 10^{-8} M makes the last reversible step largely unidirectional down to

a low [H₂] of ~ 10^{-8} M. For reference, the minimum threshold pH₂ estimated for pure cultures is 6.5 Pa ($ca.~5\times10^{-8}$ M at 25 °C), and the theoretical pH₂ at thermodynamic equilibrium for hydrogenotrophic methanogenesis is 0.1 Pa ($ca.~1\times10^{-9}$ M at 25 °C) assuming [CO₂]/[CH₄] = 1 (Lovley, 1985; Thauer et al., 2008).

The values of KIEs are the second set of required input parameters for the model. KIEs are experimentally determined only for the last reaction catalyzed by methyl-coenzyme M reductase (Scheller et al., 2013). KIEs for other reactions are chosen to reproduce the kinetic end-member solution and maintain the consistency with equilibrium fractionations (Supplementary Material; Table S1). Equilibrium fractionation factors (α^{eq}) estimated by quantum mechanical calculation (Gropp et al., 2021; Ono et al., 2021) constrain the model solution for the equilibrium end-member scenario (Figure 2B). We use α^{eq} values estimated at 82 °C (experimental temperature for B.82 and F.82.80) by Gropp et al. (2021) for fractionations between intermediates and H₂O_(g) or CO_{2,(g)}. Then, α^{eq} values against H₂O_(l) were calculated from those against H₂O_(g), using experimentally derived α values between H₂O_(l) and H₂O_(g) (Horita and Wesolowski, 1994).

3 Results

3.1 Batch culture experiment

The trends observed with increasing $\delta^{13}C_{CH4}$ values and decreasing δD_{CH4} and $\Delta^{13}CH_3D$ values (Table 3) were consistent with those previously reported for a batch culture experiment with M. bathoardescens (Gruen et al., 2018). The carbon, hydrogen and clumped isotope fractionation factors ($^{13}\alpha$, $^2\alpha$ and γ , respectively) calculated following Gruen et al. (2018) were comparable to those reported previously (Supplementary Material, Figure S1D, S1E and S1F).

3.2 Fed-batch culture experiments (*M. bathoardescens*)

370

387

388

389

390

391

- 371 The growth of M. bathoardescens in fed-batch experiments were characterized by linear increase 372 in cell density (Supplementary Material, Figure S2A, S2D and S2G), consistent with previous 373 observations with M. bathoardescens in fed-batch experiments (Ver Eecke et al., 2012). $^{13}\alpha$ 374 decreased from 0.957 to 0.944 during F.82.80 (82 °C, 80% H₂; Figure 3A4; Figure 4A) and from 375 0.982 to 0.964 during F.60.80 (60 °C, 80% H₂; Figure 3B4; Figure 4A). ²α increased from 0.674 376 to 0.708 during F.82.80 (Figure 3A5; Figure 4B) and from 0.672 to 0.730 during F.60.80 (Figure 377 3B5; Figure 4B). Δ^{13} CH₃D values decreased from $1.25 \pm 0.48\%$ to $-0.29 \pm 0.47\%$ during F.82.80 378 (Figure 3A6; Figure 4C) and from $1.52 \pm 0.58\%$ to $0.06 \pm 0.17\%$ during F.60.80 (Figure 3B6; 379 Figure 4C). These Δ^{13} CH₃D values are lower than those expected at equilibrium (4.1% at 82 °C 380 and 4.6% at 60 °C). Notably, the changes in Δ^{13} CH₃D were in the direction away from the values 381 expected at equilibrium, unlike $^{13}\alpha$ and $^{2}\alpha$ values that changed toward equilibrium values. The 382 changes in bulk isotope values ($\delta^{13}C_{CO2}$, $\delta^{13}C_{CH4}$, δD_{H2O} and δD_{CH4}) during F.82.80, F.60.80 and 383 F.82.25 are reported in Table 4 and Supplementary Material, Figure S3. Note that, for F.82.25, the absolute δ¹³C_{CH4} values for F.82.25 are higher compared to those of F.82.80 because different 384 385 sources of CO₂ were used for the experiments.
- 386 3.3 Fed-batch culture experiments (*M. thermautotrophicus*)
 - The growth patterns of *M. thermautotrophicus* in fed-batch experiments were characterized by distinct periods of exponential growth during the first 26 and 12 hours for F.65.20 (65 °C, 20% H₂) and F.65.5 (65 °C, 5% H₂), respectively (Supplementary Material, Figure S4A and S4D). For F.65.5, *x*H₂ in the supply gas was decreased from 5% to 1.6% after 55 hours, such that enough biomass can be established at 5% H₂ before further decreasing the *x*H₂ to 1.6% (minimum *x*H₂

achievable with the experimental setup). After decreasing the xH_2 to 1.6%, the cell density remained relatively constant for the remainder of the experiment, and xCH_4 and csMPR decreased (Supplementary Material, Figure S4F; Table 5). $^{13}\alpha$ decreased from 0.966 to 0.950 during F.65.20 and from 0.957 to 0.938 during F.65.5 (Figure 3D4 and 3E4; Figure 4A). $^2\alpha$ slightly increased during F.65.20 and did not change significantly during F.65.5 (Figure 3D5 and 3E5; Figure 4B). $\Delta^{13}CH_3D$ values decreased over time, moving away from that expected at equilibrium, as was observed in M. bathoardescens experiments (Figure 3D6 and 3E6; Figure 4B). Notably, the magnitudes of depletion (i.e., low $\Delta^{13}CH_3D$ values) observed during F.65.20 and F.65.5 are comparable to those observed during batch experiments with mesophilic methanogens, which tend to produce lower $\Delta^{13}CH_3D$ values compared to thermophilic methanogens (open vs. filled circles; Figure 4C). The changes in bulk isotope values ($\delta^{13}Cc_{O2}$, $\delta^{13}C_{DIC}$, $\delta^{13}Cc_{H4}$, δD_{H2O} and δD_{CH4}) during F.65.20 and F.65.5 are reported in Table 5 and Supplementary Material, Figure S5.

3.4 Dissolved H₂ in the liquid medium

The results of [H₂] calculations are shown in Figure 3. Overall, the results show undersaturation in [H₂] with respect to headspace for high density and fast-growing cultures (Figure 3A1–4E1). Media become more undersaturated over time (i.e., at higher cell density; Figure 3A2–3E2) due to the increase in total H₂ consumption rate, which corresponds with the increase in MPR (Figure 3A3–3E3). The difference between the maximum [H₂]^{eq} and minimum [H₂] values (with lower $k_L a$) was the largest, between 2-fold and >10-fold, at the highest temperature (82 °C; F.82.80 and F.82.25), whereas the difference was <2-fold at lower temperatures of 65°C and 60°C. The lower range of [H₂] was calculated using the minimum $k_L a$ value required to avoid a negative [H₂] in all experiments (350 h⁻¹), and the higher range of [H₂] was calculated with a $k_L a$ value of 350 h⁻¹, twice as much as the minimum value (Figure 3A3–3E3).

3.5 Isotopologue flow network model

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

The equilibrium end-member scenario shows uniform values across the [H₂] range that correspond to values expected at equilibrium (-51% for δ^{13} C, -151% for δ D and 6% for Δ^{13} CH₃D at 82 °C, yellow dotted lines; Figure 5). The isotope values change as a function of [H₂] in the uniform reversibility and differential reversibility scenarios (red dashed line and blue solid line, respectively; Figure 5). The δ^{13} C and Δ^{13} CH₃D profiles show significant difference between uniform and differential reversibility scenarios; in the differential reversibility scenario, δ^{13} C and Δ^{13} CH₃D values decrease to local minima with decreasing [H₂] at a [H₂] range between the two $K_{\rm m}$ values assigned (i.e., $K_{\rm m,1-3}=5\times10^{-5}$ M and $K_{\rm m,4}=10^{-8}$ M; Figure 2D), and values increase toward the equilibrium values with decreasing [H₂] when all four steps become reversible ([H₂] \lesssim 10^{-7} M) (Figure 5A and 5C). The low δ^{13} C values between the two $K_{\rm m}$ values are less than the value expected for equilibrium. On the other hand, the model predicts that δD values increase monotonically toward equilibrium with decreasing [H₂], and uniform and differential reversibility scenarios were similar overall. In the differential reversibility scenario, δD show two inflection points corresponding to the two different $K_{\rm m}$ values ($K_{\rm m,1-3}$ 5×10⁻⁵ M and $K_{\rm m,4}$ of 10⁻⁸ M). In the Discussion section below, we provide further interpretations for the patterns of isotope fractionation factors ($^{13}\alpha$, $^{2}\alpha$) and clumped isotopologue abundance ($\Delta^{13}CH_3D$) observed during fed-batch experiments in this study in light of [H₂] and isotopologue flow network model results.

4 Discussion

Our results—from combined analyses of δ^{13} Cco₂, δ^{13} Cch₄, δ Dh₂o, δ Dch₄ and Δ^{13} CH₃D—confirm previous observations that $^{13}\alpha$ values decrease with decreasing pH₂ (Penning et al., 2005; Londry et al., 2008; Okumura et al., 2016; Topçuoğlu et al., 2019; Nguyen et al., 2020) and shed some

new light on the behavior of hydrogen isotope and clumped isotopologue systems at different growth phases and [H₂]. The observed values of consistently low δD_{CH4} and $\Delta^{13}CH_3D$ (relative to equilibrium) suggest primarily kinetic fractionations for hydrogen and clumped isotope systems under our experimental conditions. However, the apparent decrease in $\Delta^{13}CH_3D$ values (i.e., further departure from equilibrium) for later growth phase and low [H₂] was unexpected and contrasts previous model predictions based on the differential reversibility hypothesis (e.g., Stolper et al., 2015; Wang et al., 2015). Using the modeled values of [H₂] in the fed-batch system and results of isotopologue flow network model, we discuss the observed patterns of $^{13}\alpha$ (section 4.1); $^2\alpha$ and $\Delta^{13}CH_3D$ (section 4.2); limitations of the model and broader implications for interpreting the isotopic signatures of natural methane samples (section 4.3).

447 4.1 High cell density during stationary growth phase leads to low $[H_2]$ and lower than equilibrium $^{13}\alpha$

Lower $^{13}\alpha$ values (larger carbon isotope fractionation) were observed during later growth phase within a single experiment and at lower xH_2 across experiments (Figure 3A4–3E4; Figure 4A). The decrease in $^{13}\alpha$ coincides with the transition from exponential phase to stationary phase for M. thermautotrophicus (Figure 3D2 and 3E2) or later linear growth for M. bathoardescens (Figure 3A2–3C2). Our observation is consistent with previous culture studies that reported decreasing $^{13}\alpha$ values as a function of growth phase (e.g., Botz et al., 1996; Valentine et al., 2004) and experiments with lower pH_2 (Valentine et al., 2004; Londry et al., 2008; Okumura et al., 2016; Topçuoğlu et al., 2019; Nguyen et al., 2020). Some studies have also reported $^{13}\alpha$ values lower than equilibrium value (i.e., larger than equilibrium isotope fractionation) (e.g., Botz et al., 1996; Valentine et al., 2004; Penning et al., 2005; Okumura et al., 2016; Topçuoğlu et al., 2019), similar to the observations in this study (e.g., F.82.80, F.82.25 and F.65.5 in Figure 3A4–3E4 and Figure 4A).

In addition to causing physiological changes, later growth phase with high cell density leads to low [H₂] due to the increase in total H₂ consumption rate. The decrease in [H₂] at high cell density is important to consider for the hydrogenotrophic methanogenesis reaction because of its 4:1 H₂:CH₄ stoichiometry (Eqn. 7) and poor solubility of H₂. While the dissolved concentrations of highly soluble gases (e.g., CO₂) can be close to equilibrium with the headspace, the dissolved concentrations of poorly soluble gases (e.g., H₂ and CH₄) can be far away from equilibrium with the gas phase. Higher partial pressure of water vapor at saturation (*p*H₂O_{sat}) in the reactor headspace during (hyper)thermophilic incubations should also be considered (Eqn. 11), as it would further lower the [H₂] in liquid media. The observed linear growth for *M. bathoardescens* (Figure 3A2–3C2) suggests that growth and methane production rates were limited by the supply (=dissolution) rate of H₂.

Accurate measurement of [H₂] for methanogenic media can be challenging. Previous studies measured [H₂] for fed-batch reactors or chemostats by sampling liquid media into serum vials and measuring pH₂ in the headspace (e.g., Ver Eecke et al., 2012; Stewart et al., 2016; Topçuoğlu et al., 2018, 2019). For example, Topçuoğlu et al. (2019) reported [H₂] values (prior to inoculation) of 82 ± 2 and 21 ± 6 μ M for high and low H₂ experiments, respectively. These values are lower and higher than the saturation concentrations (516 and 10 μ M) based on the dry H₂ mixing ratios of 86.6 and 1.6% for high and low H₂ experiments, respectively. Here, high pH₂O_{sat} at higher temperatures (0.51 bars at 82°C) can explain lower [H₂] compared to calculations for dry headspace. Higher than saturation [H₂] values may indicate entrainment of H₂ microbubbles in addition to dissolved H₂ (e.g., McGinnis et al., 2015). After inoculation, microbial consumption of H₂ would affect the steady state dissolved concentrations of gases in the liquid due to relatively slow rate of H₂ dissolution (Eqn. 12). For example, in anaerobic fermentors where H₂ is produced

by microbial processes, the liquid-to-gas mass transport limit resulted in as much as 80 times oversaturation of H₂ compared to the headspace gas (Pauss et al., 1990). On the other hand, in chemostat cultures where methanogens consume H₂ (i.e., gas-to-liquid transport), the dissolved H₂ concentration was found to be 10 times lower than the saturation with respect to gas phase (Jud et al., 1997). Because methanogens use dissolved form of H₂, we estimated [H₂] under each experimental condition to assess the effect of the dissolved H₂ concentration on isotope fractionation.

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

As shown in Figure 6A, the modeled [H₂] range under our experimental conditions (ca. 7) to 410 µM) is lower than the [H₂] range expected for typical batch cultures (e.g., 0.6 to 1.2 mM for 1 to 2 bars of 80% H₂ headspace) and partially overlaps with the [H₂] range found in cow rumen (0.1 to 50 μM; Smolenski and Robinson, 1988; Janssen, 2010, and references therein; Wang et al., 2015); but it is higher than the [H₂] range found in typical freshwater (5 to 75 nM; Robinson and Tiedje, 1982; Conrad et al., 1985; Conrad et al., 1987; Kuivila et al., 1989) and marine sediments (2 to 60 nM; Novelli et al., 1987; Lin et al., 2012). In the differential reversibility scenario for the isotopologue flow network model, δ^{13} C values decrease with a decrease in [H₂] for [H₂] <1 mM (between 10^{-6} and 10^{-3} M; Figure 5A). This is consistent with the decreasing $^{13}\alpha$ values observed during fed-batch experiments with a decrease in $[H_2]$ (due to increase in cell density) or xH_2 (mixing ratios for different experiments) for the modeled [H₂] range between 7 and 410 µM (between 7×10^{-6} and 4×10^{-4} M; Figure 6B). In addition, the $^{13}\alpha$ values during the fed-batch experiment conducted at 82 °C and 80% H₂ (F.82.80; $^{13}\alpha = 0.95 \pm 0.01$; Table 4, Figure 4A) were lower compared to the $^{13}\alpha$ value for batch experiment conducted at the same temperature and initial xH₂ (B.82.80; $^{13}\alpha = 0.98$; Supplementary Material, Figure S1D). Considering that [H₂] in batch cultures at high headspace pressure (1 to 2 bars) and xH₂ (80%) can reach millimolar levels (0.6

to 1.2 mM; Figure 6A), the difference in $^{13}\alpha$ values observed between fed-batch and batch experiments is also consistent with the overall correlation between low $^{13}\alpha$ and low [H₂]. Similarly, the difference in $^{13}\alpha$ observed between F.60.80 and F.82.80, despite the same xH₂ of 80%, may be explained by the difference in [H₂]. Because of lower temperature and pH₂O_{sat}, [H₂] is significantly higher at 60 °C compared to that at 82 °C (e.g., Figure 3A1 vs. 3B1).

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

Besides the general correlation between low $[H_2]$ and low $^{13}\alpha$ values, our isotopologue flow network model reproduced $^{13}\alpha$ values lower than equilibrium value (i.e., larger than equilibrium fractionation) observed during later growth phases in the differential reversibility scenario (Figure 5A). When [H₂] is between 5×10^{-5} and 10^{-8} M (i.e., $K_{m,1-3}$ and $K_{m,4}$, respectively), reactions up to CH₃-CoM are largely reversible (φ_1 to $\varphi_3 \simeq 1$). As a result, δ^{13} C of the methyl group of CH₃-CoM approaches to equilibrium value (-52\% at 82\circ C; Gropp et al., 2021). The reversibility of the last step is relatively low above 10⁻⁸ M H₂ in our model, and this step can result in kinetic isotope fractionation of up to -40% ($^{13}\alpha = 0.96 \pm 0.01$, assayed at 60 °C; Scheller et al., 2013). Accordingly, the maximum overall fractionation of $\sim -92\%$ (= -52 - 40%) can be achieved when the first three steps are fully reversible (φ_1 to $\varphi_3 \simeq 1$) and the last step is fully kinetic ($\varphi_4 \simeq 0$). This is consistent with the minimum $^{13}\alpha$ value (0.908, or fractionation of -92‰) in the differential reversibility scenario simulated at 60 °C in our study (yellow solid line; Figure 6B). Previous studies have also reported lower than equilibrium $^{13}\alpha$ values, which were interpreted as the growth phase effect (e.g., Botz et al., 1996). The non-monotonic nature of carbon isotope fractionation as a function of [H₂] has been recently suggested in model studies (Gropp et al., 2021; Gropp et al., 2022; Ono et al., 2022). This study provides an experimental demonstration of the production of $^{13}\alpha$ values lower than the equilibrium value. At much lower $[H_2]$ (i.e., $<10^{-8}$ M), the last step of methanogenesis becomes reversible and equilibrium fractionation is expected (-57% at 60 °C, -51% at 82 °C;

- Figure 6B). Future experiments under a sub-μM [H₂] range are needed to validate the increase in ¹³α values toward the equilibrium value that is predicted by the model.
- 531 4.2 Differential reversibility can explain the observed hydrogen and clumped isotopologue 532 systematics

533 Previous culture studies have so far exclusively produced non-equilibrium hydrogen isotope 534 fractionation (Valentine et al., 2004; Yoshioka et al., 2008; Hattori et al., 2012; Kawagucci et al., 2014; Stolper et al., 2015; Okumura et al., 2016; Gruen et al., 2018). In this study, $^{2}\alpha$ values 535 significantly lower than equilibrium value were observed ($^{2}\alpha = 0.69 \pm 0.02$, Figure 3A5–3E5, 536 Figure 4B vs. $^{2}\alpha^{eq} = 0.81$ at 60 °C and 0.82 at 82 °C). In the differential reversibility scenario (blue 537 solid line; Figure 5B), δD values stay relatively constant for the [H₂] range between 5×10⁻⁵ and 538 539 10^{-8} M (i.e., $K_{m,1-3}$ and $K_{m,4}$, respectively) and significantly increase toward equilibrium value with decreasing [H₂] for [H₂] $\leq 10^{-8}$ M. This is consistent with our isotope data for fed-batch 540 experiments for the modeled [H₂] range between 7 and 410 μ M (between 7×10^{-6} and 4×10^{-4} M), 541 542 where relatively constant $^{2}\alpha$ values were observed (Figure 6C).

543

544

545

546

547

548

549

550

551

The relatively constant ${}^2\alpha$ for modeled [H₂] between 10^{-5} M and 10^{-8} M in the differential reversibility scenario (Figure 5B) and observed in our experiments (Figure 6C) can be explained with a large KIE associated with the last step of methanogenesis (CH₃-CoM to CH₄ reduction; reaction 4, Figure 2A). As described above in section 4.1, reactions up to CH₃-CoM are reversible (φ_1 to $\varphi_3 \simeq 1$) in the differential reversibility scenario for the [H₂] range between 5×10^{-5} and 10^{-8} M. Consequently, the three H atoms in the methyl group of CH₃-CoM are isotopically equilibrated with the surrounding water (δ D_{CH₃-CoM} = -122% at 82 °C; Gropp et al., 2021). The reversibility of the last step is relatively low at [H₂] $\geq 10^{-8}$ M in our model, and this step can result in large kinetic isotope fractionation. For reference, Scheller et al., (2013) reported experimentally

determined values of primary KIE ($k_{\rm H}/k_{\rm D}$) of 2.44 (i.e., ^{2,P} α of 0.41) and secondary KIE of 1.17 (i.e., ^{2,S} α of 0.85) at 60 °C for the last step in reverse direction. The addition of the last H atom from water (e.g., $\delta D_{\rm H2O} = -50\%$) to the equilibrated CH₃-CoM with the ^{2,P} α and ^{2,S} α values above would result in the final $\delta D_{\rm CH4}$ of -343% (= [$^{3}/_{4}$ · (-122/1000+1) · (0.85) + $^{1}/_{4}$ · (-50/1000+1) · (0.41)] – 1), which is comparable to the range observed in our experiments (-339 ± 34%; Table 4; Table 5).

These experimental and model results together suggest that the persistent non-equilibrium signatures observed for hydrogen isotope system in this study and previous studies are results of differential reversibility with a lower reversibility (larger KIE) at the last H-addition step. It follows that, in our model setup, hydrogen isotope fractionation approaches to equilibrium values at sub-μM ranges of [H₂] (solid line, Figure 6C). Future experiments with direct measurements and precise control of [H₂] (e.g., continuous cultures) at sub-μM levels are needed to validate this hypothesis.

The distinct pattern of decreasing $\Delta^{13}\text{CH}_3\text{D}$ values observed for clumped isotope system (Figure 3A6–3E6; Figure 6D) is in sharp contrast with previous isotope model results. Previous studies suggest a positive correlation among the overall metabolic reversibility, $^2\alpha$ and $\Delta^{13}\text{CH}_3\text{D}$, and this relationship has been used to explain experimental and environmental data (e.g., Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2017). In this study, $\Delta^{13}\text{CH}_3\text{D}$ values decreased with decreasing [H₂] (higher reversibility), and this pattern was reproduced in the differential reversibility model scenario (blue solid line, Figure 5C). The major difference from previous model results is attributed to the decreasing pattern of $\Delta^{13}\text{CH}_3\text{D}$ observed for the [H₂] range of 10⁻⁶ to 10⁻³ M (Figure 6D), which is lower than the range expected for typical batch cultures and partially overlaps with the range found in cow rumen (Figure 6A). Previous culture studies are

limited to end-point batch experiments, e.g., 0.6 to 1.2 mM for 1 to 2 bars of 80% H₂ headspace (Stolper et al., 2015; Wang et al., 2015; Young et al., 2017; Gruen et al., 2018; Giunta et al., 2019). Thus, more culture studies in fed-batch systems or continuous cultures at [H₂] spanning from \leq 10⁻⁶ to 10⁻³ M would help resolve the discrepancy between different model predictions about the relationship between $^2\alpha$ and Δ^{13} CH₃D.

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

It is worth noting that the two inflection points in the Δ^{13} CH₃D profile occur around $K_{\rm m,1-}$ ₃ of 5×10^{-5} and $K_{\rm m,4}$ of 10^{-8} M. The effect of assigned $K_{\rm m}$ values on the $\Delta^{13}{\rm CH_3D}$ profile was evident from sensitivity test results (Supplemental Material, Figure S6). $K_{m,1-3}$ of 5×10^{-5} M resulted in the best fit to the Δ^{13} CH₃D values measured from the fed-batch experiments in this study (e.g., panel C vs. panels A, B, D or E; Supplemental Material, Figure S6). This is likely not a coincidence, given that the experimentally determined $K_{\rm m}$ value for hyperthermophilic methanogens is close to the assigned value $(6.6 \times 10^{-5} \text{ M} \text{ for three } Methanocaldococcus \text{ species};$ Ver Eecke et al., 2012). Because our experiments were done at the modeled [H₂] range between 7 and 410 μ M, we cannot empirically assess the fit of the lower $K_{m,4}$ value in the differential reversibility scenario. For example, varying $K_{m,4}$ between 10^{-10} and 10^{-6} M has negligible effect on the Δ^{13} CH₃D profile for [H₂] $\geq 10^{-6}$ M; for [H₂] $\leq 10^{-6}$ M, however, the Δ^{13} CH₃D profile changes such that the [H₂] at which Δ^{13} CH₃D reaches equilibrium depends on $K_{m,4}$ (panels F–J; Supplemental Material, Figure S6). Future experiments at sub-µM levels of [H₂] are needed to properly determine the threshold $K_{m,4}$ value for the last step of methanogenesis (which may depend on the species) that would equilibrate Δ^{13} CH₃D signatures from hydrogenotrophic methanogenesis. However, the $K_{m,4}$ value of 10^{-8} M used in this study is reasonable, considering that equilibrium Δ^{13} CH₃D signatures in microbial methane have been found in marine sediments where the typical [H₂] range is between 2 and 60 nM (Novelli et al., 1987; Lin et al., 2012; Figure 6A).

Another characteristic pattern of the clumped isotope system observed in our experiments was significant depletion in $^{13}\text{CH}_3\text{D}$ with anti-clumped (negative) $\Delta^{13}\text{CH}_3\text{D}$ values at low [H₂] or $x\text{H}_2$ (Figure 3A6–3E6; Figure 6D). The differential reversibility scenarios shown in Figure 5C and Figure 6D successfully reproduce not only the decreasing trend but also anti-clumped $\Delta^{13}\text{CH}_3\text{D}$ values that fit the range of $\Delta^{13}\text{CH}_3\text{D}$ values observed in this study (minimum of –4.1‰). Sensitivity test results indicated that secondary clumped isotope fractionation of $\geq 6\%$ (i.e., $^{8}\gamma \geq 0.994$) is required to produce a distinct decreasing pattern with negative $\Delta^{13}\text{CH}_3\text{D}$ values at [H₂] $\geq 10^{-5}$ M (i.e., lower end of our experimental range) (panels A–F; Supplemental Material, Figure S7). The $^{8}\gamma$ value of 0.990 (i.e., 10‰ secondary clumped isotope fractionation) resulted in the profile that best fits both the decreasing trend and magnitude of depletion in measured $\Delta^{13}\text{CH}_3\text{D}$ values (Figure 5C, Figure 6D). Varying the magnitude of primary clumped isotope fractionation ($^{9}\gamma$) without any secondary isotope fractionation ($^{8}\gamma$ =1) did not reproduce the observed patterns in $\Delta^{13}\text{CH}_3\text{D}$ (panels G–L; Supplemental Material, Figure S8).

- 4.3 Limitations of the isotopologue flow network model and implications for interpreting the isotope signatures of natural methane samples
- Overall, our results are in general agreement with previous studies regarding the importance of [H₂] and the growth phase as controlling factors of bulk isotope signatures (e.g., Games and Hayes, 1978; Fuchs et al., 1979a; Belyaev et al., 1983; Balabane et al., 1987; Krzycki et al., 1987; Botz et al., 1996; Valentine et al., 2004; Penning et al., 2005; Londry et al., 2008; Yoshioka et al., 2008; Hattori et al., 2012; Okumura et al., 2016; Topçuoğlu et al., 2019; Nguyen et al., 2020) as well as clumped isotope signatures (e.g., Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2020).
- While we explored three different cases—including the differential reversibility scenario—for the isotopologue flow network model, there is much complexity associated with the

biochemical inner workings of methanogenesis that is not captured in the model. The model uses a constant KIE value per H-addition step, assuming that each step is catalyzed by the same enzyme across the range of [H₂] examined in this study (10⁻⁹ to 10⁻² M). This may not be true for Haddition steps that can be catalyzed by more than one enzyme (i.e., isoenzymes). There are at least two sets of isoenzymes known to catalyze the second and fourth H-addition steps during hydrogenotrophic methanogenesis. The fourth step of methanogenesis (the reduction of methenyl-H₄MPT⁺ to methylene-H₄MPT) involves either the oxidation of H₂ or the oxidation of the reduced form of F₄₂₀ (F₄₂₀H₂), where the former is catalyzed by H₂-forming N^5 , N^{10} -methylene-H₄MPT dehydrogenase (Hmd) and the latter is catalyzed by F₄₂₀-dependent N⁵,N¹⁰-methylene-H₄MPT dehydrogenase (Fmd) (von Bünau et al., 1991; Reeve et al., 1997). Previous studies have shown that Mtd increases in expression, relative to Hmd, under H₂ limitation (Reeve et al., 1997; Hendrickson et al., 2007; Topcuoğlu et al., 2019). The isoenzyme switching from Hmd to Mtd under H₂ limitation has been suggested to allow a greater expression of carbon isotope fractionation (Valentine et al., 2004) and may apply for hydrogen and clumped isotope systems as well.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

Another set of isoenzymes, MCR I and MCR II (sometimes referred to as MR I and MR II), catalyzes the fourth and last H-addition steps of hydrogenotrophic methanogenesis (Pihl et al., 1994; Reeve et al., 1997). The relative abundances of MCR I and MCR II have been shown to be determined largely by growth phase, where MCR II is preferentially expressed during exponential phase and MCR I during linear or stationary phase (Rospert et al., 1990; Bonacker et al., 1992; Pihl et al., 1994). Whether distinct KIEs are associated with these isoenzymes remains unclear; however, considering that MCR I and MCR II have different substrate affinities (i.e., K_m values for CH₃-S-CoM and H-S-HTP) and catalytic rates (Bonacker et al., 1993), it is possible that these

isoenzymes for the rate-limiting step of last H-addition impart distinct KIEs. Future studies combining a proteomic or transcriptomic approach and isotope analyses are needed to evaluate the effect of isoenzyme switching on isotope fractionation during hydrogenotrophic methanogenesis.

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

Despite the limitations mentioned above, insights gained from the empirical relationships among bulk ($^{13}\alpha$, $^{2}\alpha$) and clumped ($\Delta^{13}CH_3D$) isotope systems investigated in this study help us better understand isotope fractionation during hydrogenotrophic methanogenesis and to interpret the isotope signatures of natural methane samples. Several studies suggested AOM as the mechanism for equilibration of Δ^{13} CH₃D and Δ^{12} CH₂D₂ values of microbial methane (Ash et al., 2019; Giunta et al., 2019; Zhang et al., 2021). A recent controlled culture study has shown that KIE associated with AOM can drive the Δ^{13} CH₃D value of residual methane toward and even beyond values expected for internal equilibrium (Ono et al., 2021). Results of this study further elucidate whether (near-)equilibrium isotope signatures in microbial methane require reequilibration by external processes such as anaerobic oxidation of methane (AOM). The model results in this study indicate that a very low (sub-nM) [H₂] may be required to achieve nearequilibrium Δ^{13} CH₃D under our experimental conditions (Figure 5C), and methanogenesis may not occur at this low [H₂] (e.g., Hoehler et al., 2001; Ono et al., 2022). While this conclusion does not exclude the possibility of methanogenesis-driven equilibration of Δ^{13} CH₃D, it highlights the challenge of relating certain isotopologue signals to specific metabolisms.

The non-monotonic trajectory of Δ^{13} CH₃D predicted for hydrogenotrophic methanogenesis may have important implications for interpreting natural methane samples from a broader range of environments. In general, natural samples from freshwater ecosystems show clumped isotope abundances that indicate strong KIE (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017; Gruen et al., 2018; Giunta et al., 2019; Douglas et al., 2020). The lowest value

of clumped isotope abundance measured from laboratory cultures so far is a Δ^{13} CH₃D value of – 6.4‰ from a *Methanosarcina acetivorans* culture grown on methanol (Douglas et al., 2020). In freshwater environments, methanogenesis pathways besides the hydrogenotrophic pathway (i.e., acetoclastic and methylotrophic pathways) are considered more widespread compared to marine environments. Currently, a leading hypothesis regarding the interpretation of freshwater microbial methane clumped isotope signatures is that Δ_{18} and Δ^{13} CH₃D signatures are primarily controlled by methane production rates, irrespective of the biochemical pathway. For example, Douglas et al. (2020) presented isotope model trajectories where Δ_{18} and Δ^{13} CH₃D values of pure and enrichment cultures of methanogens using different substrates (H₂/CO₂, trimethylamine, acetate, and methanol) monotonically increases with decreasing methane production rates. If the non-monotonic trajectory of Δ^{13} CH₃D during hydrogenotrophic methanogenesis predicted in this study applies similarly to other methanogenic pathways as a function of substrate concentration, existing interpretative frameworks may need to be updated accordingly.

5 Conclusion

We cultured two different species of methanogens, *Methanocaldococcus bathoardescens* and *Methanothermobacter thermautotrophicus* (ΔH), in batch and fed-batch systems and measured the $\delta^{13}C$ and δD of the substrates (CO_2 and H_2O) as well as the $\delta^{13}C$, δD and $\Delta^{13}CH_3D$ of the product (CH_4). The results of the fed-batch experiments confirm previous observations, where carbon isotope fractionation ($^{13}\alpha = 0.96 \pm 0.02$) approaches and often exceed the magnitude expected at CH_4 - CO_2 equilibrium (e.g., Botz et al., 1996; Valentine et al., 2004; Penning et al., 2005; Okumura et al., 2016; Topçuoğlu et al., 2019), while hydrogen isotope fractionation remains significantly larger ($^2\alpha = 0.67 \pm 0.01$) than that expected at CH_4 - H_2O equilibrium (Figure 4). The observed low $\Delta^{13}CH_3D$ values indicate kinetic isotope effects, with an apparent decrease in $\Delta^{13}CH_3D$ values with

decreasing pH₂. The isotopologue flow network model presented showed our observations—large carbon isotope fractionation, depleted hydrogen isotope signatures, and distinct decreasing Δ^{13} CH₃D values with decreasing pH₂—can be explained by differential reversibility, in which the last step of methanogenesis is less reversible compared to the preceding three H-addition reactions. In addition, including secondary clumped KIE in the model reproduced the magnitude of depletion in Δ^{13} CH₃D values observed in our experiments. Future studies focusing on controlled H₂ limitation experiments at sub- μ M concentrations and conducting proteomic or transcriptomic analyses in parallel may improve our interpretations of the bulk and clumped isotope signatures used for methane source identification.

Acknowledgment

We thank J. F. Holden (University of Massachusetts, Amherst) for providing the *M. bathoardescens* culture used in this study; T. Bosak for providing lab facilities to support our culturing work; J. Sun for laboratory assistance for *M. thermautotrophicus* experiments; and D. Boutt (University of Massachusetts, Amherst) for analyzing δD_{H2O}. This work was supported by the NASA Astrobiology Institute "Rock-Powered Life" project under cooperative agreement NNA15BB02A. J.H.R. was also supported by the Grayce B. Kerr Fellowship, the Robert R. Shrock Fellowship and the Callahan Dee Fellowship at MIT.

Appendix A. Supplementary Material

Research Data that supports this research publication can be found in the Supplementary Material at [Link].

References

713

- Ash J. L., Egger M., Treude T., Kohl I., Cragg B., Parkes R. J., Slomp C. P., Lollar B. S. and
- Young E. D. (2019) Exchange catalysis during anaerobic methanotrophy revealed by
- 716 12CH2D2 and 13CH3D in methane. Geochemical Perspect. Lett. 10, 26–30.
- 717 Balabane M., Galimov E., Hermann M. and Létolle R. (1987) Hydrogen and carbon isotope
- fractionation during experimental production of bacterial methane. Org. Geochem. 11, 115–
- 719 119.
- 720 Baldassare F. J., McCaffrey M. A. and Harper J. A. (2014) A geochemical context for stray gas
- investigations in the northern Appalachian Basin: Implications of analyses of natural gases
- from Neogene-through Devonian-age strata. Am. Assoc. Pet. Geol. Bull. 98, 341–372.
- Belyaev S. S., Wolkin R., Kenealy W. R., DeNiro M. J., Epstein S. and Zeikus J. G. (1983)
- Methanogenic Bacteria from the Bondyuzhskoe Oil Field: General Characterization and
- Analysis of Stable-Carbon Isotopic Fractionation. *Appl. Environ. Microbiol.* **45**, 691–697.
- 726 Bigeleisen J. (1955) Statistical mechanics of isotopic systems with small quantum corrections. I.
- general considerations and the rule of the geometric mean. J. Chem. Phys. 23, 2264–2267.
- Bonacker L. G., Baudner S., Mörschel E., Böcher R. and Thauer R. K. (1993) Properties of the
- two isoenzymes of methyl-coenzyme M reductase in Methanobacterium
- thermoautotrophicum. Eur. J. Biochem. 217, 587–595.
- Bonacker L. G., Baudner S. and Thauer R. K. (1992) Erratum: Differential expression of the two
- methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as described
- immunochemically via isoenzyme-specific antisera (European Journal of Biochemistry,
- 734 Vol. 206, No. 1). Eur. J. Biochem. 207, 1129.
- Botz R., Pokojski H.-D., Schmitt M. and Thomm M. (1996) Carbon isotope fractionation during

- bacterial methanogenesis reduction. **25**, 255–262.
- von Bünau R., Zirngibl C., Thauer R. K. and Klein A. (1991) Hydrogen-forming and coenzyme-
- F420-reducing methylene tetrahydromethanopterin dehydrogenase are genetically distinct
- enzymes in Methanobacterium thermoautotrophicum (Marburg). Eur. J. Biochem. 202,
- 740 1205–1208.
- Cao X., Bao H. and Peng Y. (2019) A kinetic model for isotopologue signatures of methane
- generated by biotic and abiotic CO2 methanation. *Geochim. Cosmochim. Acta* **249**, 59–75.
- Chabab S., Théveneau P., Coquelet C., Corvisier J. and Paricaud P. (2020) Measurements and
- predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground
- hydrogen storage application. *Int. J. Hydrogen Energy* **45**, 32206–32220.
- Coleman M. L., Shepherd T. J., Durham J. J., Rouse J. E. and Moore G. R. (1982) Reduction of
- Water with Zinc for Hydrogen Isotope Analysis. *Anal. Chem.* **54**, 993–995.
- Conrad R., Goodwin S. and Zeikus J. G. (1987) Hydrogen metabolism in a mildly acidic lake
- sediment (Knaack Lake). FEMS Microbiol. Lett. 45, 243–249.
- Conrad R., Phelps T. J. and Zeikus J. G. (1985) Gas metabolism evidence in support of the
- juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake
- sediments. *Appl. Environ. Microbiol.* **50**, 595–601.
- Coplen T. B. (2011) Guidelines and recommended terms for expression of stable-isotope-ratio
- and gas-ratio measurement results. *Rapid Commun. Mass Spectrom.* **25**, 2538–2560.
- 755 Douglas P. M. J., Gonzalez Moguel R., Walter Anthony K. M., Wik M., Crill P. M., Dawson K.
- 756 S., Smith D. A., Yanay E., Lloyd M. K., Stolper D. A., Eiler J. M. and Sessions A. L.
- 757 (2020) Clumped Isotopes Link Older Carbon Substrates With Slower Rates of
- Methanogenesis in Northern Lakes. *Geophys. Res. Lett.* **47**, 1–10.

- 759 Douglas P. M. J., Stolper D. A., Eiler J. M., Sessions A. L., Lawson M., Shuai Y., Bishop A.,
- Podlaha O. G., Ferreira A. A., Santos Neto E. V., Niemann M., Steen A. S., Huang L.,
- 761 Chimiak L., Valentine D. L., Fiebig J., Luhmann A. J., Seyfried W. E., Etiope G., Schoell
- M., Inskeep W. P., Moran J. J. and Kitchen N. (2017) Methane clumped isotopes: Progress
- and potential for a new isotopic tracer. *Org. Geochem.* **113**, 262–282. Available at:
- 764 https://doi.org/10.1016/j.orggeochem.2017.07.016.
- Douglas P. M. J., Stolper D. A., Smith D. A., Walter Anthony K. M., Paull C. K., Dallimore S.,
- Wik M., Crill P. M., Winterdahl M., Eiler J. M. and Sessions A. L. (2016) Diverse origins
- of Arctic and Subarctic methane point source emissions identified with multiply-substituted
- isotopologues. *Geochim. Cosmochim. Acta* **188**, 163–188. Available at:
- 769 http://dx.doi.org/10.1016/j.gca.2016.05.031.
- Ver Eecke H. C., Butterfield D. A., Huber J. A., Lilley M. D., Olson E. J., Roe K. K., Evans L.
- J., Merkel A. Y., Cantin H. V. and Holden J. F. (2012) Hydrogen-limited growth of
- hyperthermophilic methanogens at deep-sea hydrothermal vents. *Proc. Natl. Acad. Sci. U.*
- 773 S. A. **109**, 13674–13679.
- Etiope G. and Sherwood Lollar B. (2013) Abiotic methane on earth. Rev. Geophys. 51, 276–299.
- Flores R. M., Rice C. A., Stricker G. D., Warden A. and Ellis M. S. (2008) Methanogenic
- pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor.
- 777 *Int. J. Coal Geol.* **76**, 52–75.
- Fuchs G., Moll J., Scherer P. and Thauer R. (1979a) Activity, acceptor specificity and function
- of hydrogenase in Methanobacterium thermoautotrophicum. *Hydrog. Their Catal. Act.*,
- 780 *Struct. Funct., Work. Meet.*, 83–92.
- Fuchs G., Thauer R., Ziegler H. and Stichler W. (1979b) Carbon Isotope Fractionation by

- Methanobacterium thermoautotrophicum. 9, 135–139.
- 783 Games L. M. and Hayes J. M. (1978) Methane-producing bacteria: natural frac ~ onatio ~ s of
- 784 the stable carbon isotopes. **42**, 1295–1297.
- Giunta T., Young E. D., Warr O., Kohl I., Ash J. L., Martini A., Mundle S. O. C., Rumble D.,
- Pérez-Rodríguez I., Wasley M., LaRowe D. E., Gilbert A. and Sherwood Lollar B. (2019)
- Methane sources and sinks in continental sedimentary systems: New insights from paired
- clumped isotopologues 13CH3D and 12CH2D2. *Geochim. Cosmochim. Acta* **245**, 327–351.
- Gonzalez Y., Nelson D. D., Shorter J. H., McManus J. B., Dyroff C., Formolo M., Wang D. T.,
- Western C. M. and Ono S. (2019) Precise Measurements of 12CH2D2 by Tunable Infrared
- Laser Direct Absorption Spectroscopy. *Anal. Chem.* **91**, 14967–14974.
- Gropp J., Iron M. A. and Halevy I. (2021) Theoretical estimates of equilibrium carbon and
- hydrogen isotope effects in microbial methane production and anaerobic oxidation of
- methane. *Geochim. Cosmochim. Acta* **295**, 237–264. Available at:
- 795 https://doi.org/10.1016/j.gca.2020.10.018.
- Gropp J., Jin Q. and Halevy I. (2022) Controls on the isotopic composition of microbial methane.
- 797 *Sci. Adv.* **8**.
- Gruen D. S., Wang D. T., Ko M., Stewart L. C., Goldhammer T., Holden J. F., Hinrichs K. and
- Ono S. (2018) ScienceDirect Experimental investigation on the controls of clumped
- isotopologue and hydrogen isotope ratios in microbial methane. **237**, 339–356.
- Hattori S., Nashimoto H., Kimura H., Koba K., Yamada K., Shimizu M., Watanabe H., Yoh M.
- and Yoshida N. (2012) Hydrogen and carbon isotope fractionation by thermophilic
- hydrogenotrophic methanogens from a deep aquifer under coculture with fermenters.
- 804 *Geochem. J.* **46**, 193–200.

- 805 Hayes J. M. (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. 806 Rev. Mineral. Geochemistry 43, 225–277. 807 Haynes W. M., Lide D. R. and Bruno T. J. (2016) CRC handbook of chemistry and physics: a 808 ready-reference book of chemical and physical data. 97th Editi., CRC Press, Boca Raton, 809 Florida. 810 Hendrickson E. L., Haydock A. K., Moore B. C., Whitman W. B. and Leigh J. A. (2007) 811 Functionally distinct genes regulated by hydrogen limitation and growth rate in 812 methanogenic Archaea. 2007. 813 Hoehler T. M., Alperin M. J., Albert D. B. and Martens C. S. (2001) Apparent minimum free 814 energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic 815 marine sediment. FEMS Microbiol. Ecol. 38, 33–41. 816 Horibe Y. and Craig H. (1995) D/H fractionation in the system methane-hydrogen-water. 817 Geochim. Cosmochim. Acta 59, 5209-5217. 818 Horita J. (2001) Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. 819 Geochim. Cosmochim. Acta 65, 1907–1919. 820 Horita J. and Wesolowski D. J. (1994) Horita and Wesolowski 1994. Geochim. Cosmochim. Acta 821 **58**, 1–13. 822 Hut G. (1987) Status of Stable Isotope Reference and Intercomparison Material stored by the 823 IAEA as per 87-01-01. Consult. Gr. Meet. Stable Isot. Ref. Samples Geochemical Hydrol. 824 *Investig.*, 34–37. Available at: 825 https://inis.iaea.org/collection/NCLCollectionStore/ Public/18/075/18075746.pdf.
 - balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed

Janssen P. H. (2010) Influence of hydrogen on rumen methane formation and fermentation

826

- 828 Sci. Technol. 160, 1–22. 829 Jud G., Schneider K. and Bachofen R. (1997) The role of hydrogen mass transfer for the growth 830 kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J. Ind. 831 Microbiol. Biotechnol. 19, 246–251. 832 Kawagucci S., Kobayashi M., Hattori S., Yamada K., Ueno Y., Takai K. and Yoshida N. (2014) 833 Hydrogen isotope systematics among H2–H2O–CH4 during the growth of the 834 hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH . 835 Geochim. Cosmochim. Acta 142, 601–614. 836 Krzycki J. A., Kenealy W. R., DeNiro M. J. and Zeikus J. G. (1987) Stable Carbon Isotope 837 Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, 838 or Carbon Dioxide-Hydrogen. Appl. Environ. Microbiol. 53, 2597–2599. 839 Kuivila K. M., Murray J. W., Devol A. H. and Novelli P. C. (1989) Methane production, sulfate 840 reduction and competition for substrates in the sediments of Lake Washington. Geochim. 841 Cosmochim. Acta **53**, 409–416. 842 Lin Y. S., Heuer V. B., Goldhammer T., Kellermann M. Y., Zabel M. and Hinrichs K. U. (2012) 843 Towards constraining H2 concentration in subseafloor sediment: A proposal for combined
- Londry K. L., Dawson K. G., Grover H. D., Summons R. E. and Bradley A. S. (2008) Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri.

 Org. Geochem. 39, 608–621.

analysis by two distinct approaches. Geochim. Cosmochim. Acta 77, 186–201.

- Lovley D. R. (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria.
 Appl. Environ. Microbiol. 49, 1530–1531.
- Macpherson J. V and Unwin P. R. (1997) Determination of the Diffusion Coefficient of

851 Hydrogen in Aqueous Solution Using Single and Double Potential Step 852 Chronoamperometry at a Disk Ultramicroelectrode. Anal. Chem. 69, 2063–2069. 853 Mariotti A., Germon J. C., Hubert P., Kaiser P., Letolle R., Tardieux A. and Tardieux P. (1981) 854 Experimental determination of nitrogen kinetic isotope fractionation: Some principles; 855 illustration for the denitrification and nitrification processes. *Plant Soil* **62**, 413–430. 856 McGinnis D. F., Kirillin G., Tang K. W., Flury S., Bodmer P., Engelhardt C., Casper P. and 857 Grossart H. P. (2015) Enhancing surface methane fluxes from an oligotrophic lake: 858 Exploring the microbubble hypothesis. *Environ. Sci. Technol.* **49**, 873–880. 859 Nguyen T. B., Topçuoğlu B. D., Holden J. F., LaRowe D. E. and Lang S. Q. (2020) Lower 860 hydrogen flux leads to larger carbon isotopic fractionation of methane and biomarkers 861 during hydrogenotrophic methanogenesis. Geochim. Cosmochim. Acta 271, 212–226. 862 Novelli P. C., Scranton M. I. and Michener R. H. (1987) Hydrogen distributions in marine 863 sediments, Limnol. Oceanogr. 32, 565–576. 864 Okumura T., Kawagucci S., Saito Y., Matsui Y., Takai K. and Imachi H. (2016) Hydrogen and 865 carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-866 enriched conditions: implications for the origin of methane and its isotopic diagnosis. *Prog.* 867 Earth Planet. Sci. 3, 1–19. 868 Ono S., Rhim J. H., Gruen D. S., Taubner H., Kölling M. and Wegener G. (2021) Clumped 869 isotopologue fractionation by microbial cultures performing the anaerobic oxidation of 870 methane. Geochim. Cosmochim. Acta 293, 70–85. 871 Ono S., Rhim J. H. and Ryberg E. C. (2022) Rate limits and isotopologue fractionations for 872 microbial methanogenesis examined with combined pathway protein cost and isotopologue flow network models. Geochim. Cosmochim. Acta 325, 296-315. Available at: 873

874 https://doi.org/10.1016/j.gca.2022.03.017. 875 Ono S., Wang D. T., Gruen D. S., Sherwood Lollar B., Zahniser M. S., McManus B. J. and 876 Nelson D. D. (2014) Measurement of a doubly substituted methane isotopologue, 13CH3D, 877 by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 86, 6487–6494. 878 Park S. H., Park C., Lee J. Y. and Lee B. (2017) A Simple Parameterization for the Rising 879 Velocity of Bubbles in a Liquid Pool. *Nucl. Eng. Technol.* **49**, 692–699. 880 Pauss A., Andre G., Perrier M. and Guiot S. R. (1990) Liquid-to-Gas mass transfer in anaerobic 881 processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation 882 process. Appl. Environ. Microbiol. 56, 1636–1644. 883 Penning H., Plugge C. M., Galand P. E. and Conrad R. (2005) Variation of carbon isotope 884 fractionation in hydrogenotrophic methanogenic microbial cultures and environmental 885 samples at different energy status. Glob. Chang. Biol. 11, 2103–2113. 886 Pihl T. D., Sharma S. and Reeve J. N. (1994) Growth phase-dependent transcription of the genes 887 that encode the two methyl coenzyme M reductase isoenzymes and N5-888 methyltetrahydromethanopterin:Coenzyme M methyltransferase in Methanobacterium 889 thermoautotrophicum ΔH. J. Bacteriol. 176, 6384–6391. 890 Pohlman J. W., Kaneko M., Heuer V. B., Coffin R. B. and Whiticar M. (2009) Methane sources 891 and production in the northern Cascadia margin gas hydrate system. Earth Planet. Sci. Lett. 892 **287**, 504–512. 893 Rees C. E. (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction 894 processes. Geochim. Cosmochim. Acta 37, 1141–1162. 895 Reeve J. N., Nölling J., Morgan R. M. and Smith D. R. (1997) Methanogenesis: Genes, 896

Genomes, and Who's on First? J. Bacteriol. 179, 5975–5986.

897 Robinson J. A. and Tiedje J. M. (1982) Kinetics of hydrogen consumption by rumen fluid, 898 anaerobic digestor sludge, and sediment. Appl. Environ. Microbiol. 44, 1374–1384. 899 Rospert S., Linder D., Ellermann J. and Thauer R. K. (1990) Two genetically distinct methyl-900 coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and 901 ΔH. Eur. J. Biochem. **194**, 871–877. 902 Scheller S., Goenrich M., Thauer R. K. and Jaun B. (2013) Methyl-Coenzyme M Reductase from 903 Methanogenic Archaea: Isotope E ff ects on the Formation and Anaerobic Oxidation of 904 Methane. 905 Schoell M. (1988) Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10. 906 Sherwood Lollar B., Lacrampe-Couloume G., Voglesonger K., Onstott T. C., Pratt L. M. and 907 Slater G. F. (2008) Isotopic signatures of CH4 and higher hydrocarbon gases from 908 Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons. *Geochim*. 909 Cosmochim. Acta 72, 4778–4795. 910 Sherwood Lollar B., Westgate T. D., Ward J. A., Slater G. F. and Lacrampe-Couloume G. (2002) 911 Abiogenic formation of alkanes in the earth's crust as a minor source for global 912 hydrocarbon reservoirs. *Nature* **416**, 522–524. 913 Smolenski W. J. and Robinson J. A. (1988) In situ rumen hydrogen concentrations in steers fed 914 eight times daily, measured using a mercury reduction detector. FEMS Microbiol. Lett. 53, 915 95–100. 916 Stewart L. C., Llewellyn J. G., Butterfield D. A., Lilley M. D. and Holden J. F. (2016) Hydrogen 917 and thiosulfate limits for growth of a thermophilic, autotrophic Desulfurobacterium species 918 from a deep-sea hydrothermal vent. Environ. Microbiol. Rep. 8, 196–200.

Stolper D. A., Martini A. M., Clog M., Douglas P. M., Shusta S. S., Valentine D. L., Sessions A.

920 L. and Eiler J. M. (2015) Distinguishing and understanding thermogenic and biogenic 921 sources of methane using multiply substituted isotopologues. Geochim. Cosmochim. Acta 922 **161**, 219–247. 923 Stolper D. A., Sessions A. L., Ferreira A. A., Santos Neto E. V., Schimmelmann A., Shusta S. S., 924 Valentine D. L. and Eiler J. M. (2014) Combined 13C-D and D-D clumping in methane: 925 Methods and preliminary results. *Geochim. Cosmochim. Acta* **126**, 169–191. Available at: 926 http://dx.doi.org/10.1016/j.gca.2013.10.045. 927 Teramoto M., Fujita S., Kataoka M. and Hashimoto K. (1970) Effect of Bubble Size on the 928 Selectivity of Consecutive Gas-Liquid Reactions. In Meeting of the Society of the Chemical 929 Engineers (Japan) pp. 79–82. 930 Thauer R. K. (2011) Anaerobic oxidation of methane with sulfate: On the reversibility of the 931 reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr. 932 Opin. Microbiol. 14, 292–299. 933 Thauer R. K., Kaster A. K., Seedorf H., Buckel W. and Hedderich R. (2008) Methanogenic 934 archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 935 579–591. 936 Topçuoğlu B. D., Meydan C., Orellana R. and Holden J. F. (2018) Formate hydrogenlyase and 937 formate secretion ameliorate H 2 inhibition in the hyperthermophilic archaeon 938 Thermococcus paralvinellae. *Environ. Microbiol.* **20**, 949–957. 939 Topçuoğlu B., Meydan C., Nguyen T., Lang S. and Holden J. F. (2019) Growth Kinetics, Carbon 940 Isotope Fractionation, and Gene Expression in the Hyperthermophile Methanocaldococcus 941 jannaschii during Hydrogen-Limited Growth and Interspecies Hydrogen Transfer Begüm. 942 **85**, 1–14.

- Turner A. C., Korol R., Eldridge D. L., Bill M., Conrad M. E., Miller T. F. and Stolper D. A.
- 944 (2021) Experimental and theoretical determinations of hydrogen isotopic equilibrium in the
- 945 system CH4–H2–H2O from 3 to 200 °C. *Geochim. Cosmochim. Acta* **314**, 223–269.
- 946 Available at: https://doi.org/10.1016/j.gca.2021.04.026.
- Valentine D. L., Chidthaisong A., Rice A., Reeburgh W. S. and Tyler S. C. (2004) Carbon and
- hydrogen isotope fractionation by moderately thermophilic methanogens. *Geochim*.
- 949 *Cosmochim. Acta* **68**, 1571–1590.
- Wang D. T., Gruen D. S., Lollar B. S., Hinrichs K.-U., Stewart L. C., Holden J. F., Hristov A.
- N., Pohlman J. W., Morrill P. L., Könneke M., Delwiche K. B., Reeves E. P., Sutcliffe C.
- N., Ritter D. J., Seewald J. S., McIntosh J. C., Hemond H. F., Kubo M. D., Cardace D.,
- Hoehler T. M. and Ono S. (2015) Nonequilibrium clumped isotope signals in microbial
- 954 methane. *Science* (80-.). **348**, 428–431.
- Wang D. T., Welander P. V. and Ono S. (2016) Fractionation of the methane isotopologues
- 956 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus
- capsulatus (Bath). *Geochim. Cosmochim. Acta* **192**, 186–202. Available at:
- 958 http://dx.doi.org/10.1016/j.gca.2016.07.031.
- Welhan J. A. and Lupton J. E. (1987) Light hydrocarbon gases in Guaymas Basin hydrothermal
- 960 fluids: thermogenic versus abiogenic origin. *Am. Assoc. Pet. Geol. Bull.* **71**, 215–223.
- Whiticar M. J. (1990) A geochemial perspective of natural gas and atmospheric methane. *Org.*
- 962 *Geochem.* **16**, 531–547.
- Whiticar M. J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and
- 964 oxidation of methane. *Chem. Geol.* **161**, 291–314.
- Wolfe R. S. (2011) *Techniques for cultivating methanogens*. 1st ed., Elsevier Inc.

966 Yoshioka H., Sakata S. and Kamagata Y. (2008) Hydrogen isotope fractionation by 967 Methanothermobacter thermoautotrophicus in coculture and pure culture conditions. 968 Geochim. Cosmochim. Acta 72, 2687–2694. 969 Young E. D., Kohl I. E., Lollar B. S., Etiope G., Rumble D., Li (李姝宁) S., Haghnegahdar M. 970 A., Schauble E. A., McCain K. A., Foustoukos D. I., Sutclife C., Warr O., Ballentine C. J., 971 Onstott T. C., Hosgormez H., Neubeck A., Marques J. M., Pérez-Rodríguez I., Rowe A. R., 972 LaRowe D. E., Magnabosco C., Yeung L. Y., Ash J. L. and Bryndzia L. T. (2017) The 973 relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling 974 isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203. 975 235–264. 976 Young E. D., Rumble D., Freedman P. and Mills M. (2016) A large-radius high-mass-resolution 977 multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, 978 N2, CH4 and other gases. *Int. J. Mass Spectrom.* **401**, 1–10. 979 Zhang N., Snyder G. T., Lin M., Nakagawa M., Gilbert A., Yoshida N., Matsumoto R. and 980 Sekine Y. (2021) Doubly substituted isotopologues of methane hydrate (13CH3D and 981 12CH2D2): Implications for methane clumped isotope effects, source apportionments and 982 global hydrate reservoirs. Geochim. Cosmochim. Acta 315, 127–151. Available at: 983 https://doi.org/10.1016/j.gca.2021.08.027. 984

986 Tables

Table 1. Summary of experiments.

Experiment	Organism	Temp. (°C)	xH2 (%)	System
B.82	Methanocaldococcus bathoardescens	82	80	Batch
F.82.80	Methanocaldococcus bathoardescens	82	80	Fed-batch
F.82.25	Methanocaldococcus bathoardescens	82	25	Fed-batch
F.60.80	Methanocaldococcus bathoardescens	60	80	Fed-batch
F65.20	$\textit{Methanothermobacter thermautotrophicus} (\Delta H)$	65	20	Fed-batch
F.65.5	$\textit{Methanothermobacter thermautotrophicus} (\Delta H)$	65	5→1.6	Fed-batch

Table 2. Parameters used for model calculation described in 2.3.7.

Parameter	Values used (range)	Sources/Notes
ľb	0.05 cm (0.025 to 0.1 cm)	Teramoto <i>et al.</i> (1970)
D	$5\times10^{-5}~cm^2/sec$	Macpherson and Unwin (1997)
Ab	200 cm^2	Calculated for a gas flow rate of 200 mL/min, medium height of 20 cm, and bubble radius of 0.05 cm; Park et al. (2017)
Ah	177 cm ²	Calculated for a known reactor I.D. = 15 cm

Table 3. Results for batch culture experiment (Experiment B.82). *Methanocaldococcus bathoardescens* was grown at 82 °C on 80% H₂. The headspace pressure decreased, as 5 moles of gas were consumed to produce 1 mole of gas (Eqn. 7). Therefore, volumes (in mL) of H₂, CO₂, and CH₄ were calculated assuming 4:1:1 reaction stoichiometries and mixing ratios for H₂: CO₂:CH₄ measure by GC (Table 3; Supplementary Material, Figure S1).

Time (h)	cells/mL	H ₂ (mL) [†]	CO ₂ (mL) [†]	CH₄ (mL) [†]	δ ¹³ C _{CO2} (‰)	δ ¹³ C _{CH4} (‰)	δD _{H2O} (‰)	δD _{CH4} (‰)	Δ ¹³ CH ₃ D (‰)	CI
0.0	-	288.24	47.35	0.13	-34.9	-	-45.4	-	-	-
1.0	1.1E+6	281.61	50.49	0.53	-	-	-46.9	-	-	-
1.9	5.5E+6	258.65	44.57	6.83	-31.4	-	-	-	-	-
3.0	3.7E+7	125.88	13.33	36.98	-14.3	-47.1	-46.5	-407.6	0.48	0.20
4.0	3.6E+7	78.29	4.55	48.45	-25.1	-39.5	-	-409.6	0.38	0.19
5.0	7.4E+7	68.78	2.84	50.48	-	-	-	-	-	-
6.0	7.1E+7	35.52	2.60	58.35	-22.0	-	-	-	-	-
6.9	4.3E+7	53.28	2.11	53.90	-	-38.8	-46.0	-413.3	0.32	0.26

[†] volume of gas calculated based on mixing ratios and expected headspace pressure at the time of measurement; – values not determined; CI is the 95% confidence interval in permil (%).

 $\frac{1000}{1001}$

Table 4. Results for fed-batch experiments. *Methanocaldococcus bathoardescens* was grown at 82 °C and 80% H_2 (F.82.80); at 60 °C and 80% H_2 (F.60.80); and at 82 °C and 25% H_2 (F.82.25).

Experiment	Time (h)	cells/mL	H ₂ (%)	CO ₂ (%)	CH ₄ (%)	MPR (mol/h)	csMPR (pmol/cell/h)	$\delta^{13}C_{CO2}\left(\%\right)$	$\delta^{13}C_{CH4}(\%)$	CI	α_{CH4CO2}	δD _{H2O} (‰)	δD _{CH4} (‰)	CI	α _{CH4 H2O}	Δ ¹³ CH ₃ D (‰)) CI
F.82.80	0.0	6.8 × 10 ⁵	79.8	19.9	0.08	4.1 × 10 ⁻⁴	0.34	-39.9	-	-	*	-53.7	-	-	*	-	-
F.82.80	0.0	-	80.7	19.5	1.78	8.1 × 10 ⁻³	-	-	-	-	*	-	-	-	*	-	-
F.82.80	1.1	5.2×10^6	-	-	-	-	-	-	-	-	*	-	-	-	*	-	-
F.82.80	1.5	-	76.6	20.0	3.75	1.6 × 10 ⁻²	-	-21.3	-68.16	0.11	0.952	-53.8	-362.63	0.09	0.674	1.25	0.48
F.82.80	2.2	2.0×10^{7}	77.2	19.8	4.03	1.7×10^{-2}	0.48	-25.8	-76.62	0.09	0.948	-	-336.86	0.07	*	0.38	0.43
F.82.80	2.5	2.8×10^{7}	77.9	18.5	4.02	1.7×10^{-2}	0.34	-	-74.27	0.06	*	-	-331.75	0.08	*	-0.17	0.49
F.82.80	3.0	3.2×10^{7}	78.0	18.6	4.09	1.7×10^{-2}	0.30	-	-80.22	0.04	*	-	-333.61	0.04	*	0.07	0.83
F.82.80	3.5	4.1×10^{7}	-	-	-	-	-	-	-	-	*	-	-	-	*	-	-
F.82.80	3.7	4.5×10^{7}	77.0	19.2	3.92	1.7×10^{-2}	0.21	-	-77.90	0.06	*	-	-331.81	0.06	*	-0.29	0.47
F.82.80	22.0	-	-	-	-	-	-	-	-69.09	0.14	*	-54.0	-329.88	0.08	0.708	-0.01	0.27
F.60.80	0.0	5.8 × 10 ⁶	75.5	21.9	0.06	3.1 × 10 ⁻⁴	0.03	-	-	-	*	-	-	-	*	-	-
F.60.80	1.5	1.7×10^{7}	73.9	22.3	0.47	2.5×10^{-3}	0.08	-38.8	-56.42	-	0.982	-	-305.00	-	*	2.06	-
F.60.80	1.8	-	75.3	22.1	0.50	2.6×10^{-3}	-	-	-	-	*	-	-	-	*	-	-
F.60.80	2.8	1.4 × 10 ⁷	73.1	22.4	1.38	7.0×10^{-3}	0.29	-	-	-	*	-	-	-	*	-	-
F.60.80	3.3	-	75.1	22.2	1.90	9.2 × 10 ⁻³	-	-36.8	-60.14	0.10	0.976	-	-364.48	0.17	*	1.52	0.58
F.60.80	3.8	2.4×10^{7}	72.5	21.1	2.98	1.4 × 10 ⁻²	0.33	-	-	-	*	-	-	-	*	-	-
F.60.80	5.6	1.3 × 10 ⁸	74.0	21.1	4.14	1.8 × 10 ⁻²	0.08	-	-	-	*	-	-	-	*	-	-
F.60.80	6.4	-	74.5	21.0	3.94	1.7 × 10 ⁻²	-	-33.6	-68.88	0.11	0.964	-	-321.41	0.06	*	0.80	0.28
F.60.80	6.7	1.1 × 10 ⁸	71.7	21.3	3.64	1.7 × 10 ⁻²	0.08	-	-	-	*	-	-	_	*	-	_
F.60.80	7.8	1.4×10^{8}	73.9	21.4	3.91	1.7 × 10 ⁻²	0.07	-	-	-	*	-	-	-	*	-	-
F.60.80	8.9	1.9 × 10 ⁸	71.7	21.2	3.7	1.7 × 10 ⁻²	0.05	-	-	-	*	-	-	_	*	-	_
F.60.80	9.4	-	73.7	21.6	4.07	1.8 × 10 ⁻²	-	-32.6	-67.47	0.04	0.964	-	-314.58	0.04	*	0.06	0.17
F.82.25	0.0	1.0 × 10 ⁶	23.1	21.8	BDL	-	-	_	-	-	*	-	-	-	*	-	-
F.82.25	0.2	_	23.1	21.9	0.03	1.6 × 10 ⁻²	-	-14.0	-50.75	0.10	0.963	-40.4	-358.78	0.04	0.668	1.15	0.42
F.82.25	0.5	4.4×10^{6}	22.8	23.6	0.41	2.1×10^{-3}	0.27	-	-	_	*	-	-	-	*	-	_
F.82.25	1.7	1.3 × 10 ⁷	22.6	22.9	1.30	5.8 × 10 ⁻³	0.25	-	-	_	*	-39.9	_	_	*	_	_
F.82.25	2.3	9.1 × 10 ⁶	22.5	23.8	1.39	6.2×10^{-3}	0.38	-	-	_	*	_	_	_	*	_	_
F.82.25	2.8	9.6 × 10 ⁶	22.4	23.5	1.53	6.7×10^{-3}	0.39	_	-	_	*	-40.1	_	_	*	_	_
F.82.25	3.6	2.1 × 10 ⁷	22.4	23.8	1.56	6.8 × 10 ⁻³	0.18	_	-	_	*	-	_	_	*	_	_
F.82.25	4.4	7.4×10^{6}	22.5	23.9	1.47	6.5×10^{-3}	0.49	_	-	_	*	-40.0	_	_	*	_	_
F.82.25	4.9	2.4×10^{7}	22.4	24.2	1.57	6.8 × 10 ⁻³	0.16	-	-	_	*	_	_	_	*	_	_
F.82.25	5.2	2.8 × 10 ⁷	16.7	22.8	1.41	7.9 × 10 ⁻³	0.16	_	-	_	*	_	_	_	*	_	_
F.82.25	19.0	2.0×10^{8}	22.6	23.6	1.69	7.2×10^{-3}	0.02	_	-	_	*	_	_	_	*	_	_
F.82.25	22.5	1.0×10^{8}	22.6	23.9	1.51	6.6 × 10 ⁻³	0.04	_	_	_	*	_	_	_	*	_	_
F.82.25	24.5	9.6 × 10 ⁷	22.6	23.3	1.57	6.8×10^{-3}	0.04	_	_	_	*	_	_	_	*	_	_
F.82.25	24.7	-	22.4	23.9	1.82	7.7×10^{-3}	-	-12.0	-70.79	0.05	0.941	_	-328.61	0.09	*	-0.78	0.73
F.82.25	25.8	8.1 × 10 ⁷	22.5	23.0	1.65	7.7×10^{-3}	0.05	-12.0	-	-	*	_	-	-	*	-	-
F.82.25	26.8	1.0×10^{8}	22.2	2.0	2.05	8.5 × 10 ⁻³	0.05	_	_	_	*	_	_	_	*	_	_
F.82.25	43.7	1.0 × 10 ⁸	21.6	23.8	2.82	1.1 × 10 ⁻²	0.03	_	_	_	*	_	_	_	*	_	_
F.82.25	44.4	1.5 ^ 10	21.6	24.8	2.71	1.0 × 10 ⁻²	-	-9.9	-67.78	0.03	0.941	_	-327.72	0.05	*	-0.65	0.36
F.82.25	45.2	-	21.7	23.3	2.89	1.0 × 10 1.1 × 10 ⁻²	-	-10.3	-01.10	-	*	_	-	-	*	-0.00	-
F.82.25	52.5	2.1 × 10 ⁸	21.7	24.9	2.62	1.1 × 10 1.0 × 10 ⁻²	0.03	-10.0	-	-		-	_	-		-	-

⁻ values not determined; * not applicable; CI is the 95% confidence interval in permil (‰).

Table 5. Results for fed-batch experiments. *Methanothermobacter thermautotrophicus* was grown at 65 °C and 20% H₂ (Experiment F.65.20) and at 65 °C and 5–1.6% H₂ (Experiment F.65.5).

Experiment	Time (h)	cells/mL	H ₂ (%)	CO ₂ (%)	CH ₄ (%)	MPR (mol/h)	csMPR (pmol/cell/h)	δ13C _{CO2} (‰)	δ ¹³ C _{DIC} (‰)	$\alpha_{\text{CO2-DIC}}$	δ ¹³ C _{CH4} (‰)	CI	$\alpha_{\text{CH4-CO2}}$	δD _{H2O} (‰)	δD _{CH4} (‰)	CI	α _{CH4-H2O}	Δ ¹³ CH ₃ D (‰)	CI
F.65.20	0.0	2.3 × 10 ⁵	21.6	18.7	0.01	4.2 × 10 ⁻⁵	0.100	-15.3	-11.7	0.9963	-	-	*	-45.5	-	-	*	-	-
F.65.20	2.2	4.8×10^{5}	21.2	19.4	0.03	1.4×10^{-4}	0.161	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	5.8	1.2×10^{6}	21.1	19.3	0.10	4.6×10^{-4}	0.217	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	11.7	4.8×10^{6}	19.9	19.3	0.44	2.0×10^{-3}	0.241	-14.9	-10.5	0.9956	-48.35	0.15	0.966	-45.5	-361.81	0.62	0.669	0.33	0.57
F.65.20	22.8	4.8×10^{7}	19.5	17.9	0.69	3.1×10^{-3}	0.036	-14.9	-9.7	0.9947	-57.04	0.19	0.957	-	-363.27	0.27	0.667	-2.03	0.50
F.65.20	25.7	6.9×10^{7}	19.5	18.1	0.70	3.1×10^{-3}	0.025	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	28.1	7.7×10^{7}	19.5	18.1	0.70	3.1×10^{-3}	0.023	-	-9.7	*	-	-	*	-45.5	-	-	*	-	-
F.65.20	33.3	1.1×10^{8}	19.5	18.1	0.71	3.2×10^{-3}	0.016	-14.0	-	*	-	-	*	-	-	-	*	-	-
F.65.20	47.2	1.8×10^{8}	19.3	18.7	0.72	3.3×10^{-3}	0.010	-13.9	-9.4	0.9955	-62.12	0.16	0.951	-	-347.04	0.24	0.684	-1.28	0.87
F.65.20	53.2	2.1×10^{8}	19.2	19.3	0.74	3.3×10^{-3}	0.009	-13.6	-9.5	0.9958	-	-	*	-	-	-	*	-	-
F.65.20	70.2	2.9×10^{8}	19.3	18.1	0.76	3.4×10^{-3}	0.007	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	77.0	2.7×10^{8}	19.3	19.0	0.76	3.4×10^{-3}	0.007	-13.6	-9.4	0.9957	-62.94	0.21	0.950	-	-352.35	0.37	0.679	-1.09	0.65
F.65.20	94.9	3.1×10^{8}	19.4	18.8	0.78	3.5×10^{-3}	0.006	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	101.9	4.5×10^{8}	19.0	18.9	0.81	3.6×10^{-3}	0.005	-13.8	-9.6	0.9958	-63.30	0.34	0.950	-	-351.36	0.60	0.677	-1.91	0.54
F.65.20	102.4	3.9×10^{8}	19.2	19.5	0.80	3.6×10^{-3}	0.005	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	119.2	4.1×10^{8}	18.9	19.5	0.80	3.6×10^{-3}	0.005	-	-	*	-	-	*	-	-	-	*	-	-
F.65.20	122.8	-	-	-	-	-	-	-	-	*	-	-	*	-41.4	-	-	*	-	-
F.65.5	0.0	2.8 × 10 ⁵	4.9	20.3	0.01	5.3 × 10 ⁻⁵	0.105	-15.7	-11.4	0.9957	-	-	-	-44.9	-	-	*	-	-
F.65.5	1.7	4.7×10^{5}	4.8	19.6	0.04	1.8 × 10 ⁻⁴	0.213	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	4.9	1.1×10^{6}	4.5	20.7	0.09	4.8×10^{-4}	0.256	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	9.4	2.5×10^{6}	4.4	19.7	0.1	7.1 × 10 ⁻⁴	0.158	-	-	*	-57.96	0.23	0.957	-	-364.10	0.39	0.666	1.28	0.98
F.65.5	10.5	-	-	-	-	-	-	-15.5	-11.4	0.9959	-	-	-	-	-	-	*	-	-
F.65.5	11.8	5.9×10^{6}	4.4	19.6	0.14	7.2×10^{-4}	0.069	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	21.9	1.4×10^{7}	4.3	20.5	0.16	8.0×10^{-4}	0.032	-	-	*	-67.03	0.17	0.947	-	-371.68	0.23	0.658	-2.06	0.47
F.65.5	23.3	-	-	-	-	-	-	-15.2	-10.9	0.9956	-	-	-	-45.5	-	-	*	-	-
F.65.5	27.5	2.5×10^{7}	4.4	19.3	0.16	7.8×10^{-4}	0.017	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	30.3	2.7×10^{7}	4.4	19.0	0.16	7.8×10^{-4}	0.016	-	-11.0	*	-	-	-	-	-	-	*	-	-
F.65.5	46.0	5.1×10^{7}	4.3	20.6	0.17	8.4×10^{-4}	0.009	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	54.0	5.8×10^{7}	4.3	19.5	0.17	8.6 × 10 ⁻⁴	0.008	-15.3	-11.3	0.9959	-70.55	0.32	0.944	-45.2	-368.40	0.42	0.661	-2.92	0.84
F.65.5	72.5	6.6×10^{7}	1.6	20.3	0.06	2.5×10^{-4}	0.002	-15.6	-11.5	0.9958	-77.54	0.20	0.937	-	-365.27	0.32	0.665	-2.52	0.46
F.65.5	95.3	7.2×10^{7}	1.6	20.1	0.06	2.6 × 10 ⁻⁴	0.002	-	-	*	-76.93	0.17	0.938	-	-370.04	0.25	0.659	-4.13	0.46
F.65.5	97.3	-	-	-	-	-	-	-15.6	-11.4	0.9958	-	-	-	-	-	-	*	-	-
F.65.5	119.4	7.0×10^{7}	1.5	21.4	0.06	2.6 × 10 ⁻⁴	0.002	-	-	*	-	-	-	-	-	-	*	-	-
F.65.5	143.2	7.7×10^{7}	1.5	20.8	0.06	2.6 × 10 ⁻⁴	0.002	_	_	*	_	_	_	-43.5	_	_	*	_	_

- values not determined; * not applicable; CI is the 95% confidence interval in permil (‰)

1004

Figure Captions

1006

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

Figure 1. Schematic diagram of the fed-batch culturing system

Figure 2. Schematic overview of the biochemical pathway involved in hydrogenotrophic methanogenesis and isotopologue flow network model scenarios in this study. (A) Overview of the biochemical pathway and enzymes associated with each step. Grey bubbles represent pools of cellular carbon, grouped into those with the same redox state. The four H-addition steps are labeled with numbers. Fd_{red}, reduced ferredoxin; Fd_{ox}, oxidized ferredoxin; MFR, methanofuran; H₄MPT, tetrahydromethanopterin; F₄₂₀, coenzyme F₄₂₀; CoM-HS, coenzyme M; CoB-SH, coenzyme B; Ftr, formyl-MFR: H4MPT formyltransferase; Mch, N⁵,N¹⁰-methenyl- H4MPT cyclohydrolase; Mtd, F_{420} -dependent N^5 , N^{10} -methylene-H₄MPT dehydrogenase; Hmd, H₂-forming N^5 , N^{10} -methylene-H₄MPT dehydrogenase; Mer, F₄₂₀-dependent N^5 , N^{10} -methylene-H₄MPT reductase; Mtr, N^5 methyl- H₄MPT:CoM methyltransferase; Mcr, methyl CoM reductase. Panels B, C and D show the three model scenarios tested in this study. $K_{m,n}$ values are effective half-saturation constants used to assign reversibilities to H-addition steps. (B) Equilibrium end-member scenario has a $K_{m,n}$ value of 10^4 M for all four H-addition steps (n=1-4). (C) Uniform reversibility scenario has a $K_{\rm m,n}$ value of 10⁻⁸ M for all four H-addition steps (n=1-4). (D) In differential reversibility scenario, the last step is less reversible compared to the preceding three H-addition steps ($K_{\rm m,1-3} = 5 \times 10^{-5}$ M; $K_{\rm m,4} = 10^{-8}$ M for the last step). **Figure 3.** Summary of fed-batch experiment results of this study. Each column (columns A–E) shows the result for each fed-batch experiment. The experiment names and conditions can be found at the top of each column. Each row (rows 1–6) shows a type of data. Modeled values of dissolved hydrogen concentration or [H₂] (µM; row 1), cell density (cells/mL; row 2), methane production rate or MPR (μmol/sec; row 3), carbon isotope fractionation factor or ¹³α (row 4), hydrogen isotope

fractionation factor or ${}^{2}\alpha$ (row 5), and methane clumped isotope abundance or Δ^{13} CH₃D (‰; row 6). For the [H₂] model results (row 1), open squares represent maximum [H₂] values expected at equilibrium with the dry headspace mixing ratios (xH₂). Filled circles represent [H₂] values expected at equilibrium that are corrected for saturation water vapor pressure (pH₂O_{sat}) at respective temperatures (0.51 bars at 82 °C, 0.25 bars at 65 °C and 0.20 bars at 60 °C). Triangles represent pH₂O_{sat}-corrected [H₂] values expected during methane production with two different kLa values: 700 h⁻¹ (down-pointing yellow triangles) and 350 h⁻¹ (up-pointing blue triangles). Refer to 2.3.7 for details. Grey horizontal lines in rows 4–6 represent the equilibrium $^{13}\alpha$, $^{2}\alpha$ and Δ^{13} CH₃D values expected at respective experimental temperatures. Grey vertical lines in column 5 for F.65.5 indicate the time at which xH₂ was switched from 5% to 1.6%. Each panel shares the y-axis with the panel to its left unless new axis tick marks are introduced. Note that the x-axes (incubation time) vary across experiments (across different columns). **Figure 4.** Changes in carbon ($^{13}\alpha$) and hydrogen ($^{2}\alpha$) isotope fractionation factors and $\Delta^{13}\text{CH}_{3}\text{D}$ values during hydrogenotrophic methanogenesis. Panels A, B and C, respectively, show ¹³α, ²α

values during hydrogenotrophic methanogenesis. Panels A, B and C, respectively, show $^{13}\alpha$, $^{2}\alpha$ and 23 CH₃D values measured in this study and reported in the literature, as a function of H₂ partial pressure (pH₂) in the supply gas. Color triangle and diamond symbols represent data from this study. Grey circles in panels A and B represent the $^{13}\alpha$ and $^{2}\alpha$ values from the literature (Games and Hayes, 1978; Fuchs et al., 1979b; Belyaev et al., 1983; Balabane et al., 1987; Krzycki et al., 1987; Botz et al., 1996; Valentine et al., 2004; Yoshioka et al., 2008; Hattori et al., 2012; Kawagucci et al., 2014; Okumura et al., 2016). Grey symbols in panel C represent the 13 CH₃D values obtained from pure culture hydrogenotrophic methanogenesis experiments in closed systems (Stolper et al., 2015; Wang et al., 2015; Young et al., 2017; Gruen et al., 2018; Giunta et al., 2019). Filled and open circles represent thermophilic and mesophilic temperatures,

respectively. Dashed lines represent the $^{13}\alpha$, $^2\alpha$ and $\Delta^{13}\text{CH}_3\text{D}$ values expected at equilibrium at temperatures indicated in the legend.

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

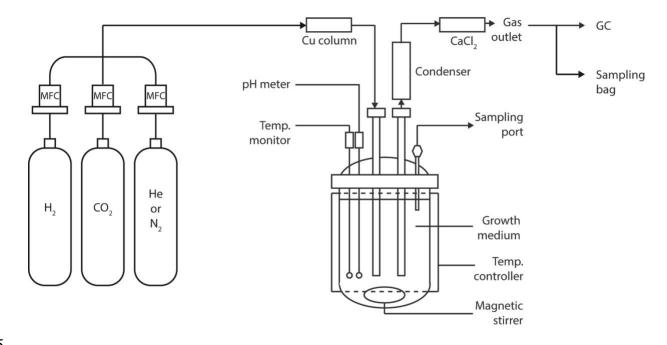
1067

1068

1069

1070

1071


1072

1073

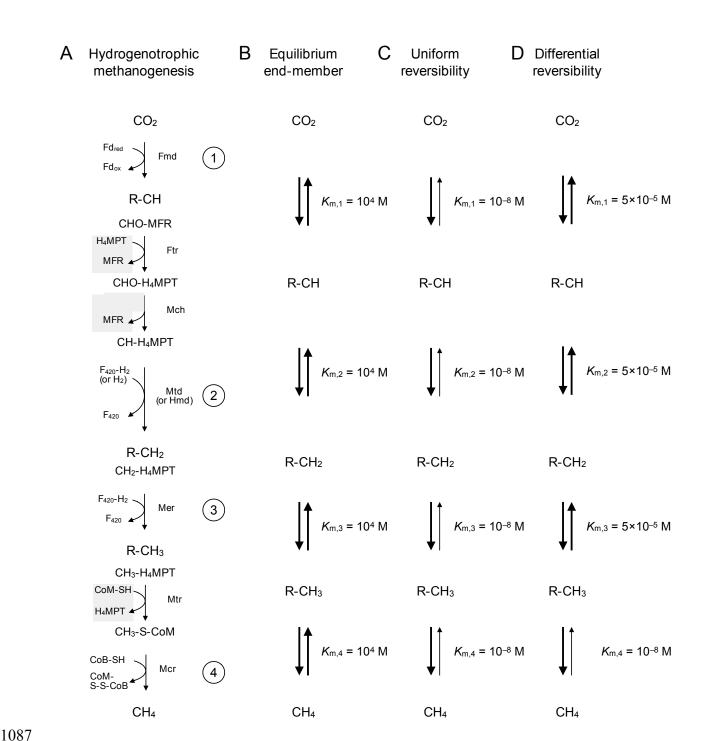

1074

Figure 5. Modeled carbon (δ^{13} C) and hydrogen (δ D) isotope and clumped isotopologue compositions (Δ^{13} CH₃D) of methane produced via hydrogenotrophic methanogenesis. Panel A, B, and C show the modeled δ^{13} C, δ D and Δ^{13} CH₃D values of methane, respectively. Dotted lines (yellow) show the model results at 82 °C for the equilibrium end-member scenario ($K_{m,1-4} = 10^4$ M). Dashed lines (red) show the results for the uniform reversibility scenario ($K_{m,1-4} = 10^{-8}$ M). Solid lines (blue) show a differential reversibility scenario, where the last H-addition step is less reversible compared to the preceding three H-addition steps ($K_{m,1-3} = 5 \times 10^{-5}$ M, $K_{m,4} = 10^{-8}$ M). **Figure 6.** Carbon ($^{13}\alpha$) and hydrogen ($^{2}\alpha$) isotope fractionation factors and Δ^{13} CH₃D values as a function of modeled dissolved H₂ concentration, [H₂]. Panel A shows the typical ranges of [H₂] observed in natural environments and culture studies. The [H₂] ranges for batch cultures studies were calculated assuming 1–2 bars of 80% H₂ in the headspace at 25 °C. Note that the pH₂ values for batch co-cultures (Okumura et al., 2016) are based on headspace mixing ratios and that [H₂] in the co-cultures are likely higher than $[H_2]^{eq}$ expected in equilibrium with pH_2 . Panels B, C and D compare the result of the isotopologue flow network model and experimental data from this study. Color symbols and corresponding experiment names are shown in the legend. Horizontal dashed lines represent the $^{13}\alpha$, $^2\alpha$ and $\Delta^{13}\text{CH}_3\text{D}$ values expected at equilibrium at corresponding temperatures as shown in the legend. Solid lines are modeled trajectories of $^{13}\alpha$, $^2\alpha$ and $\Delta^{13}CH_3D$ for the differential reversibility scenario based on the isotopologue flow network model results (see Figure 5). The horizontal error bars on triangle and diamond symbols (data from this study) show a range of [H₂] estimates under experimental conditions. Maximum [H₂] is the value expected when the medium is saturated with respect to headspace H_2 mixing ratio (x_{H2}) without considering water vapor pressure at corresponding incubation temperatures (pH₂O_{sat}) or biological consumption of H₂. The minimum [H₂] is the value calculated using Eqn. 13, which considers both the effect of pH₂O_{sat} and H₂ consumption by methanogens during experiments based on methane production rate (MPR). The horizontal error bars on grey and light blue symbols (environmental data; microbial and non-microbial methane, respectively) show the range of [H₂] values measured at the field site or estimated for the general type of environment (e.g., 2–60 nM for marine sediments; 0.1–50 μ M for cow rumen).

1083 Figures

Figure 1

Figure 2

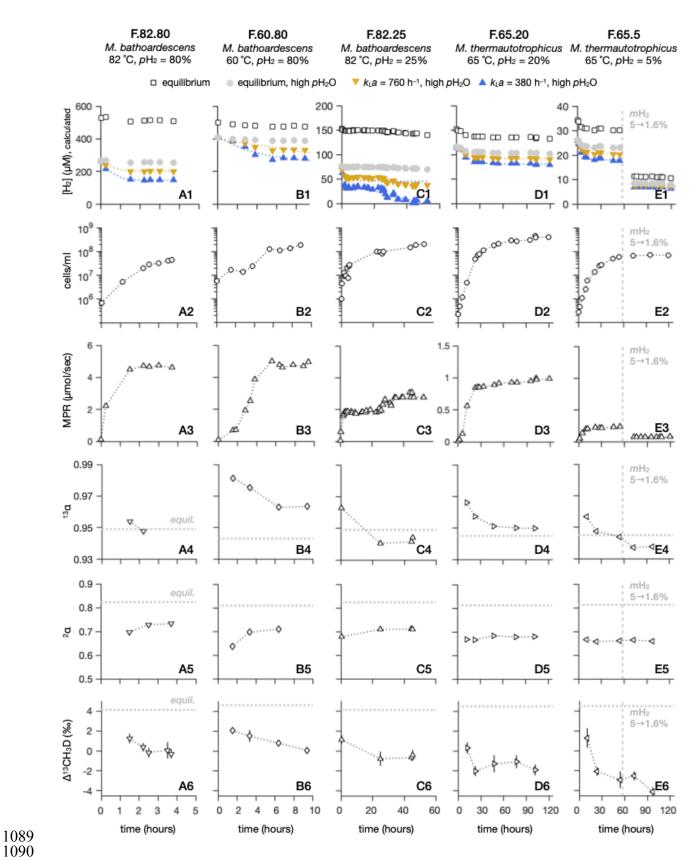


Figure 3

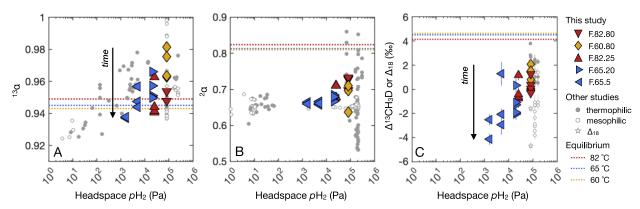


Figure 4

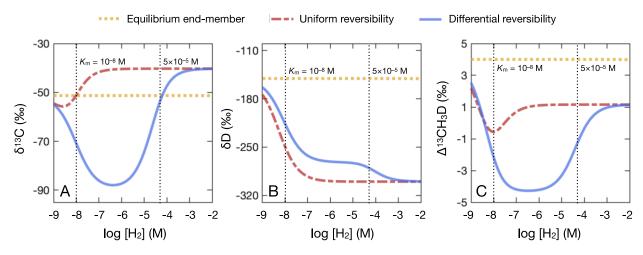
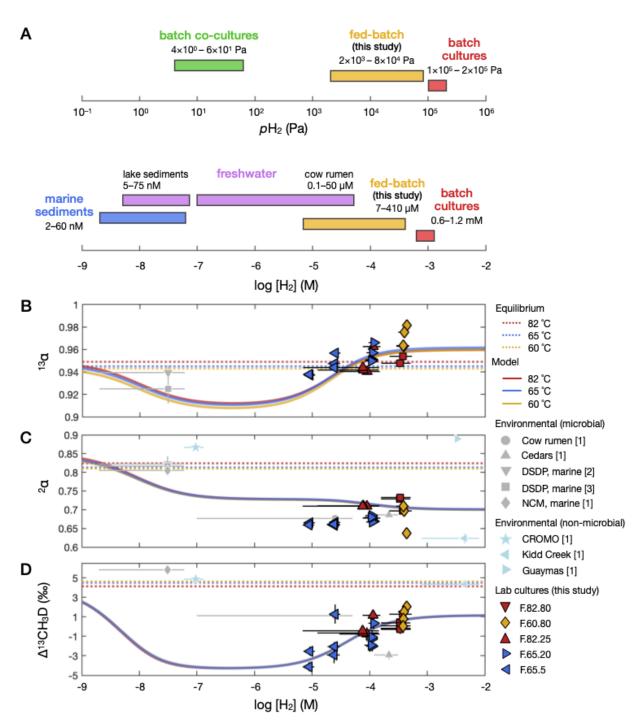



Figure 5

Figure 6