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Abstract

Unsupervised domain adaptation for semantic segmentation
has been intensively studied due to the low cost of the pixel-
level annotation for synthetic data. The most common ap-
proaches try to generate images or features mimicking the
distribution in the target domain while preserving the se-
mantic contents in the source domain so that a model can
be trained with annotations from the latter. However, such
methods highly rely on an image translator or feature extrac-
tor trained in an elaborated mechanism including adversarial
training, which brings in extra complexity and instability in
the adaptation process. Furthermore, these methods mainly
focus on taking advantage of the labeled source dataset, leav-
ing the unlabeled target dataset not fully utilized. In this pa-
per, we propose a bidirectional style-induced domain adap-
tation method, called BiSIDA, that employs consistency reg-
ularization to efficiently exploit information from the unla-
beled target domain dataset, requiring only a simple neural
style transfer model. BiSIDA aligns domains by not only
transferring source images into the style of target images but
also transferring target images into the style of source images
to perform high-dimensional perturbation on the unlabeled
target images, which is crucial to the success in applying con-
sistency regularization in segmentation tasks. Extensive ex-
periments show that our BiSIDA achieves new state-of-the-
art on two commonly-used synthetic-to-real domain adap-
tation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-
CityScapes. Code and pretrained style transfer model are
available at: https://github.com/wangkaihong/BiSIDA.

Introduction
Deep learning methods for semantic segmentation (Long,
Shelhamer, and Darrell 2015), the problem of dividing the
pixels in an image into mutually exclusive and collectively
exhaustive sets of class-labeled regions, have gained increas-
ing attention. Research progress is hindered by the difficulty
of creating large training datasets with accurate pixel-level
annotations of these regions.

As a consequence, the use of synthetic datasets has be-
come popular because pixel-level ground truth annotations
can be generated along with the images. Unfortunately,
when deep models that were trained on synthetic data are
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used to segment real-world images, their performance is typ-
ically limited due to the domain gap between the training
and testing data. Domain adaptation methods seek to bridge
the gap between the source domain training data and the tar-
get domain testing data. We here focus on unsupervised do-
main adaptation (UDA), the problem of adapting a model
that was trained with a labeled source domain dataset, by
using an unlabeled target domain dataset and optimizing its
performance on the target domain.

To perform domain alignment on a pixel-level or feature-
level basis, existing methods (Tsai et al. 2018; Hoffman et al.
2018; Vu et al. 2019; Luo et al. 2019; Li, Yuan, and Vascon-
celos 2019; Choi, Kim, and Kim 2019) typically use adver-
sarial training (Goodfellow et al. 2014), and training with the
aligned data is then supervised by a loss computed with the
annotation of the source domain dataset. However, the use
of adversarial training typically comes with extra complex-
ity and instability in training. Alternative approaches (Zou
et al. 2018; Vu et al. 2019; Li, Yuan, and Vasconcelos 2019;
Choi, Kim, and Kim 2019) seek to exploit information about
the unlabeled target dataset by performing semi-supervised
learning including entropy minimization (Grandvalet and
Bengio 2004), pseudo-labeling (Lee 2013) and consistency
regularization. However, these approaches either just play
an auxiliary role in the training process besides supervised
learning, or fail to take full advantage of the target dataset.

In this paper, we propose Bidirectional Style-induced Do-
main Adaptation (BiSIDA) that takes better advantage of the
unlabeled dataset and optimizes the performance of a seg-
mentation model on the target dataset. Our pipeline includes
a supervised learning branch that provides supervision us-
ing annotations in the source dataset and an unsupervised
branch for learning from the unlabeled target dataset with-
out requiring its annotation. The two branches are executed
in parallel. To perform domain adaptation, we constructed
a non-adversarial yet effective pre-trained style-induced im-
age generator that performs style transfer. In the supervised
learning branch, the style-induced image generator trans-
fers the style of a source domain images to become the
style of a target style image. In the unsupervised branch,
the image generator performs high-dimensional perturba-
tions on target domain images with consistency regulariza-
tion by transferring the target input image into a set of im-
ages that each match one of the source image styles through
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a self-supervised approach. Consequently, the unlabeled tar-
get dataset is utilized efficiently and the domain gap is re-
duced effectively.

BiSIDA performs image transfer from the source to the
target domain using an image generator in the supervised
phase similar to existing methods. However, to facilitate
generalization, our model synthesizes images with seman-
tic content from the source domain, and with a style that is
defined by a continuous parameter that represents a “mix”
of source and target domain styles, instead of transferring
the style directly to the target domain. Consequently, the
stochasticity of the whole process facilitates not only the
training on the original images but also the gradual adapta-
tion towards the target domain. The resulting image is then
sent along with its corresponding pixel-level annotation to
compute a supervised cross-entropy loss to train the segmen-
tation model.

BiSIDA employs consistency regularization in the unsu-
pervised phase to yield consistent predictions on randomly
perturbed inputs without requiring their annotations. We ap-
ply our style-induced image generator as an augmentation
method and transfer each target domain image together with
a number of randomly sampled source domain images, just
as in the supervised phase, but in an opposite direction. A
series of images with identical content but different styles
from source domain images is generated. Given that super-
vised learning is performed on source images that are trans-
ferred with combined styles of source images and target
images, our model will be more adapted and more likely
to produce correct predictions when target domain images
are transferred towards the direction of the source domain
images. Meanwhile, our image generator provides a high-
dimensional perturbation that keeps the semantic content as
indicated by (French et al. 2019) for consistency regular-
ization in a computational affordable way. To further im-
prove the quality of predictions, BiSIDA passes the trans-
ferred images through the self-ensemble of the trained seg-
mentation models and obtains a pseudo-label for the unla-
beled target domain image. The training of the segmenta-
tion model on the original target domain image, augmented
with only brightness and contrast perturbations, is guided by
its pseudo-label. Information within the unlabeled target im-
ages is learned through consistency regularization, and the
model adapts to the target domain. Our method utilizes an-
notations from the labeled source dataset, exploits knowl-
edge from the unlabeled target dataset, and performs gradual
adaptation between the source and the target domain from
both sides. In conclusion, our key contributions include:

1. A Bidirectional Style-induced Domain Adaptation
(BiSIDA) framework that incorporates both target-guided
supervised and source-guided unsupervised learning. We
also show that domain adaptation is achievable in a bidi-
rectional way through a continuous parameterization of
the two domains, without requiring adversarial training;

2. A non-adversarial continuous style-induced image gen-
erator (CSIIG) that performs a high-dimensional source-
guided perturbation on target images for consistency reg-
ularization.

3. Extensive experiments show that our BiSIDA achieves
new state-of-the-art on two commonly-used synthetic-
to-real domain adaptation benchmarks: GTA5-to-
CityScapes and SYNTHIA-to-CityScapes.

Related Works
Image-to-image Translation. Recent progress in image-to-
image translation that transfers the style of an image while
preserving its semantic content has inspired research in var-
ious related areas, including image synthesis and reducing
domain discrepancy. Typical image-to-image translation ap-
proaches include CycleGAN (Zhu et al. 2017) and Dual-
GAN (Yi et al. 2017), which keep cycle-consistency in ad-
versarial training to preserve the semantic content of images
when transferring the style of image. UNIT (Liu, Breuel, and
Kautz 2017) and MUNIT (Huang et al. 2018) address the
problem by mapping images into a common latent content
space. Neural style transfer offers an alternative way to per-
form image-to-image translation (Gatys, Ecker, and Bethge
2016), but its optimization process is computationally im-
practical. Several works (Johnson, Alahi, and Fei-Fei 2016;
Li and Wand 2016; Ulyanov et al. 2016; Ulyanov, Vedaldi,
and Lempitsky 2017; Dumoulin, Shlens, and Kudlur 2017)
proposed improvements, but these methods are limited since
the style to be transferred is either fixed or the number
of styles is limited. BiSIDA uses a technique from image-
to-image translation, ‘Adaptive Instance Normalization,’ or
AdaIN (Huang and Belongie 2017), in which an encoder ex-
tracts a feature map from a given input image and a decoder
upsamples the feature map back to the original size of the
input.

Semi-supervised Learning. When the gap between
source and target domains becomes small, the problem
of unsupervised domain adaptation intriguingly degener-
ates to a the problem of semi-supervised learning. Pseudo-
labeling (Lee 2013), a commonly-used semi-supervised
learning method, takes high-confidence predictions on the
unlabeled dataset as one-hot labels, guiding further train-
ing. Entropy minimization (Grandvalet and Bengio 2004)
can be seen as a “soft assignment” of the pseudo-label on
the unlabeled dataset. Recently, consistency regularization
has gained attention due to its outstanding performance as a
semi-supervised learning method. The Mean-Teacher (Tar-
vainen and Valpola 2017) approach minimizes consistency
loss on an unlabeled image between the output of a student
network and the ensemble of itself, a teacher network. Fix-
match (Sohn et al. 2020) further outperforms Mean-Teacher
by performing pseudo-labeling and consistency regulariza-
tion between images with different degree of perturbations
and achieves state-of-the-art performance on several semi-
supervised learning benchmarks.

UDA for Semantic Segmentation. Current methods in
UDA for segmentation can be categorized into adversarial
and non-adversarial methods. “FCN in the wild” (Hoffman
et al. 2016) was the first to perform a segmentation task
under UDA settings and align both global and local fea-
tures between domains through adversarial training. Other
works (Hoffman et al. 2018; Tsai et al. 2018; Vu et al. 2019)
tried to align features in one or multiple feature levels. The
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Figure 1: The proposed training framework BiSIDA: It consists of two branches that are executed in parallel: 1) The supervised
branch (top) augments a source-domain image xs through our continuous style-induced image generator (CSIIG) with the style
of a target-domain image. A supervised segmentation loss Ls is computed with the corresponding annotation of the source
image. 2) In the unsupervised learning branch (bottom), a target domain image and a series of source domain images are used
to produce the corresponding transferred images x̃t,i. Then each of these images passes through the teacher network to generate
a set of probability maps p̃t,i. BiSIDA computes an average of these maps to generate a pseudo-label qt, which is then used to
compute the loss Lu for consistency regularization. In both branches, BiSIDA allows for the option to skip the image generator
for some of the input images (dotted line).

adversarial alignment process of each category between do-
mains can be treated adaptively (Luo et al. 2019; Wang et al.
2020). Choi, Kim, and Kim, 2019, trained an image transla-
tor in an adversarial way and took its output to perform con-
sistency regularization. Li, Yuan, and Vasconcelos, 2019,
applied bidirectional learning in which an image translator
and a segmentation model guide each other’s training in a
mutual way. Pseudo-labeling is also performed to enhance
performance.

Non-adversarial methods include a variety of techniques.
Curriculum DA (Zhang, David, and Gong 2017) and Py-
CDA (Lian et al. 2019), for example, adopt the concept of
curriculum learning and align label distributions over im-
ages, landmark superpixels, or regions. CBST (Zou et al.
2018) utilizes self-training to exploit information from the
target domain images. DCAN (Wu et al. 2018) applies
channel-wise alignment to merge the domain gap from both
the pixel level and the feature level. Recently, Yang and
Soatto, 2020, proposed to align pixel-level discrepancy by
performing a Fourier transformation. Combined with en-
tropy minimization, pseudo-labeling and model ensemble,
their method achieves current state-of-the-art performance.

The work that maybe most resembles ours is by Choi,
Kim, and Kim, 2019, However, our method does not rely

on a strong image translator that needs to be trained in an
adversarial way as theirs. Furthermore, our method of adopt-
ing consistency regularization is able to exploit information
more efficiently and effectively from target images by virtue
of our high-dimensional perturbation method.

Method
In the UDA setting, the dataset from the source do-
main S consists of a set of images XS = {xs,i}i=1,...,NS

with their corresponding pixel-level annotations Y S =
{ys,i}i=1,...,NS , and the dataset from the target domain T
consists of a set of images XT = {xt,i}i=1,...,NT with-
out annotations. The task is, given a segmentation model,
to optimize the performance of this model on the target
domain using the annotated source dataset (XS , Y S) and
the target images XT without annotations. The architecture
of BiSIDA is shown in Figure 1. Our approach uses self-
ensembling (Tarvainen and Valpola 2017), which consists
of two segmentation networks, a student network F s and a
teacher network F t, both having the same architecture (blue
in Fig. 1). Given source and target domain images, xs and
xt, during one iteration of the training process, lossesLs and
Lu are computed that in turn are used to update the weights
of F s and F t.
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Continuous Style-induced Image Generator
We propose a continuous style-induced image generator
(CSIIG) G that is built on top of the AdaIN image-to-image
style transfer generator g, which combines content image c
and style image s using a content-style trade-off parame-
ter α. We can combine source and target styles by control-
ling this parameter α in a continuous manner from 0 to 1,

G(c, s, α) = g(αt̂+ (1− α)tc), (1)

where tc is the feature map describing the content image c,
and t̂ is a combination of content and style feature maps tc
and ts, which are both extracted by a fixed pretrained en-
coder. Finally, BiSIDA ensures that the generated output
yields RGB values in the range of [0, 255] by clipping.

Target-guided Supervised Learning
The supervised branch of BiSIDA performs an iterative pro-
cess, in which images xs,i and xt,i are used to compute a loss
value Ls,i, for i = 1, . . . ,max{NS , NT } iterations. For no-
tation simplification, we drop the index i in the following. In
each iteration, BiSIDA first performs a brightness and con-
trast perturbation A on each source domain image xs. The
perturbation is governed by a uniformly-distributed random
variable. The resulting perturbed imageA(xs) is then passed
through our style-induced image generator G to perform
style transfer using the target domain image xt. The random
perturbation is computed by sampling a uniform distribu-
tion U(0, 1) to produce the content-style trade-off parame-
ter α that controls the style of the transferred image x̃s =
G(A(xs), xt, α). Generated image x̃ is then passed into the
student segmentation network F s, which computes a prob-
ability map ps = F s(x̃s) that describes, for each pixel, the
probability of the pixel belonging to a category j.

Finally, BiSIDA computes the cross-entropy loss for the
supervised branch of its model, Ls, between the probability
map ps and the pixel-level annotation ys belonging to xs:

Ls = −
1

HW

H×W∑
m=1

J∑
j=1

ys,m,j log(ps,m,j), (2)

where H and W are the height and width of the image, and
J is the number of categories of the segmentation. Loss Ls
is then used to train F s. BiSIDA has an alternative way to
compute Ls that skips the image generation and passes a
source image, after the brightness and contrast perturbation,
directly into F s . It is advised to use this alternative for at
least some of the input images (with probability 1−ps→t) if
BiSIDA is used with an image generator that creates blurry
output images, which in turn make it difficult for F s to seg-
ment properly.

Source-guided Unsupervised Learning
To start with, we introduce the generation of the pseudo-
label that guides the self-learning on the target dataset.
Given that our model is more adapted to the source do-
main where our supervised learning is performed, the qual-
ity of produced pseudo-label is generally higher. Conse-
quently, pseudo-label will be computed from target im-
ages transferred to the direction of the appearance of the

source domain in our framework. Similar to the supervised
learning branch, BiSIDA first performs a random bright-
ness and contrast perturbation A on a target domain im-
age xt. The resulting image A(xt) is style-transferred using
k randomly-sampled source images {xs,i}ki=1 as style im-
ages by the style-induced image generator G with probabil-
ity pt→s, yielding x̃t,i = G(A(xt), xs,i, α). With probabil-
ity 1−pt→s, the image generator is skipped, and {x̃t,i}ki=1 =
{A(xt)} with k = 1 (this is only needed if an image gener-
ator is used with BiSIDA that produces low-resolution im-
ages).

BiSIDA passes transformed images {x̃t,i}ki=1 through the
teacher model F t individually to acquire stable predictions
p̃t,i = F t(x̃t,i). BiSIDA then averages these predictions to
compute the probability map pl = 1

k

∑k
i=1 p̃t,i that is used

to define the pseudo-label of xt as follows. BiSIDA employs
a sharpening function, which is widely adopted in various
semi-supervised learning methods (Berthelot et al. 2019), to
re-arrange the distribution of the probability map pl:

p4l,i = Sharpening(pl, T )i =
p

1
T

l,i∑J
j=1 p

1
T

l,j

, (3)

where the ‘temperature’ T is a control parameter.
Finally BiSIDA computes the pseudo-label qt =

argmax(p4l ), which it then uses to compute the loss Lu of
its unsupervised learning branch. Concretely, BiSIDA per-
turbs the target image xt using the random brightness and
contrast perturbationA and passes it through the student net-
work F s to compute the probability map pt = F s(A(xt)).
In this way, BiSIDA performs consistency regularization be-
tween two images perturbed in different ways from an iden-
tical target image xt.

In practice, the categories present in a segmentation may
be represented by a wide range of pixel numbers (imbalance)
or pixel values (complexity). The imbalance and complexity
found in training datasets causes the model to bias its pre-
diction toward popular or easier categories, especially if it
is trained by relying on labels that are not guaranteed to be
accurate, as may apply to pseudo-labels learned in a semi-
supervised manner. To address this problem, BiSIDA em-
ploys a class-balanced reweighting mechanism in computing
the unsupervised loss Lu as follows. It first determines the
prior distribution of the categories, by computing, for each
category j, the proportion dj of pixels labeled j in all im-
ages of the dataset. BiSIDA then computes the reweighting
factor w for each class j as:

wj =
1

λ dγj
, (4)

where λ and γ are hyper-parameters. This yields the final
unsupervised loss Lu =

− 1

HW

H×W∑
m=1

[1(max(pl,m) ≥ τ)
J∑
j=1

wjqt,m,j log(pt,m,j)],

(5)

where τ is a confidence threshold that has the following
function: For each pixel, we assume that the pseudo-label
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Figure 2: Sample results (column “BiSIDA”). Target-domain testing images from the CityScapes dataset (column “Images”)
were segmented by BiSIDA on the GTA5 dataset. The ground truth segmentation (“GT”) and results of a model trained only
with source domain images (“Source only”) are also shown. Note that our method is capable of capturing rare and difficult
categories, such as traffic lights and signs.

is correct if the maximum probability among all categories
exceeds the confidence threshold τ , and we thus should in-
clude it in the computation of the cross-entropy loss (indica-
tor function 1 returns 1). If the maximum probability is not
higher than τ , i.e., the pixel has a relatively flat category dis-
tribution, we do not take the pixel into account in computing
the loss Lu (indicator function 1 returns 0).

Optimization
To summarize, our BiSIDA framework comprises two pro-
cesses, a supervised learning process, performed on the la-
beled source dataset, and an unsupervised learning pro-
cess, performed on the unlabeled target dataset, using the
techniques consistency regularization and pseudo-labeling.
BiSIDA computes the final loss L, given a weight λu, as the
sum of the two losses Ls and the weighted Lu:

L = Ls + λuLu. (6)

During the training process, the weights of the student
network Fs are updated toward the direction of the weight
gradient computed via back-propagation of the loss L, while
the weights of the teacher network are updated as the expo-
nential moving averages of the corresponding weights of the
student network.

Concretely, the weight θti of the teacher network F t at
the ith iteration of the training process is updated as the ex-
ponential moving average of the weight θsi of the student
network F s as follows:

θti = ηθti−1 + (1− η)θsi (7)

given an exponential moving average decay η.

Experiments
We conducted extensive experiments on two commonly
used synthetic-to-real segmentation benchmarks. Compar-
isons with several state-of-the-art (SOTA) methods and ab-
lation studies are presented to show the effectiveness of our
BiSIDA framework. We visualize some segmentation results
in Figure 2.

Datasets
We used two synthetic-to-real benchmarks, GTA5-to-Ci-
tyScapes and SYNTHIA-to-CityScapes. The CityScapes
dataset (Cordts et al. 2016) consists of images of real street
scenes of spatial resolution of 2048×1024 pixels. It in-
cludes 2,975 images for training, 500 images for valida-
tion, and 1,525 images for testing. In our experiments, we
used the 500 validation images as a test set. The GTA5
dataset (Richter et al. 2016) includes 24,966 synthetic im-
ages with a resolution of 1914×1052 pixels that are obtained
from the video game GTA5 along with pixel-level annota-
tions that share all 19 common categories of CityScapes.
For the SYNTHIA dataset (Ros et al. 2016), we used the
SYNTHIA-RAND-CITYSCAPES subset, which contains
9,400 rendered images of size 1280×760 and shares 16
common categories with the CityScapes dataset.

Network Architecture
Image generator: We use the encoder/decoder architecture
of AdaIN (Huang and Belongie 2017). As in AdaIN, we
keep our continuous style-induced image generator light-
weighted and computationally affordable, and therefore
adopted the first several layers up to relu4 1 of a fixed
pre-trained VGG-19 network as the encoder in our experi-
ments. For the decoder, we reversed the order of layers in
the encoder and replaced the pooling layers by nearest up-
sampling (Huang and Belongie 2017).

Segmentation network: We chose the classical seman-
tic segmentation network FCN-8s (Long, Shelhamer, and
Darrell 2015) with a VGG16 backbone network, pre-trained
with ImageNet, for both the student and teacher network.

Training Protocol
We trained the continuous style-induced image generator
using randomly-cropped 640× 320 images, and a batch size
of 4. The ADAM optimizer was used with a learning rate of
1 × 10−5 and momentum of 0.9 and 0.999. To balance the
reconstruction of the content image and the extraction from
the style image (Huang and Belongie 2017), we used a style
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mIoU
(Zhang, David, and Gong 2017) 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 29.0

(Zou et al. 2018) 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9
(Tsai et al. 2018) 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

(Hoffman et al. 2018) 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
(Vu et al. 2019) 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1
(Wu et al. 2018) 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2
(Luo et al. 2019) 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

(Sankaranarayanan et al. 2018) 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1
(Li, Yuan, and Vasconcelos 2019) 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

(Yang and Soatto 2020) 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
(Wang et al. 2020) 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4

(Choi, Kim, and Kim 2019) 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5
Ours 89.3 40.9 82.5 30.9 24.7 20.9 26.9 32.1 81.8 33.1 81.6 53.4 20.3 83.0 24.8 29.4 0.0 28.6 36.6 43.2

Table 1: Comparison of our BiSIDA model with other methods on the GTA5-to-CityScapes benchmark using models with
VGG-16 as backbone. The mIoU represents the average of individual mIoUs among all 19 categories between GTA5 and
CityScapes.
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(Zhang, David, and Gong 2017) 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

(Vu et al. 2019) 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6
(Tsai et al. 2018) 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6
(Luo et al. 2019) 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3
(Zou et al. 2018) 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 40.7
(Wu et al. 2018) 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4 41.7

(Sankaranarayanan et al. 2018) 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 42.1
(Chen, Li, and Gool 2018) 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2 41.7

(Chen et al. 2019) 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0
(Choi, Kim, and Kim 2019) 90.1 48.6 80.7 2.2 0.2 27.2 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 38.5 46.6

(Li, Yuan, and Vasconcelos 2019) 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1
(Yang and Soatto 2020) 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5 47.3

Ours 87.4 42.4 79.0 17.0 0.1 23.9 2.8 22.9 82.0 80.4 51.1 19.1 76.7 33.3 14.4 41.2 42.1 48.7

Table 2: Comparison of our framework with other methods on SYNTHIA to CityScapes benchmark using models with VGG-16
as backbone. The mIoU represents the average of individual mIoUs among all 16 categories between SYNTHIA and CityScapes
while the mIoU∗ represents that among 13 common categories excluding wall, fence and pole.

weight of 0.1 in calculating the loss function of the image
generator.

The segmentation model was trained on images ran-
domly cropped to 960 × 480 pixels with batch size of 1.
On the GTA5 dataset, we applied the ADAM optimizer with
a learning rate of 1 × 10−5, weight decay of 5 × 10−4 and
momentum of 0.9 and 0.999. For the SYNTHIA dataset, we
adopted the SGD optimizer with a learning rate of 1×10−5,
momentum of 0.99 and and weight decay of 5 × 10−4.
We follow conventions from previous works and set the ex-
ponential moving average decay for the teacher model to
0.999 (Choi, Kim, and Kim 2019) and the confidence thresh-
old τ in the pseudo-label generation process to 0.9 (French,
Mackiewicz, and Fisher 2018). The probability of perform-
ing target-guided image transfer ps→t and source-guided

image transfer pt→s is 0.5. The number k of source images
for style transfer, the unsupervised weight λu, and the sharp-
ening temperature T are set to 4, 1, and 0.25, respectively,
based on pilot experiments. We also determined, in a pilot
trial, the reweighting parameters γ and λ, by inspecting the
distribution of the number dj of pixels per category j and its
inverse, ensuring that the weightwj serves to emphasize cat-
egories with smaller number of pixels sufficiently (Eq. 4. We
fixed γ = 1/3 and λ = 5 for the experiments on SYNTHIA
and around 1/6 and 1 for the experiments on GTA V.

The CSIIG and two segmentation networks F s and F t are
trained on a NVIDIA Tesla V100 GPU.
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Image generator mIoU mIoU*
MUNIT (480× 480) 36.7 43.4
MUNIT (960× 480) 36.5 43.2

FDA (β = 0.01) 29.0 34.0
FDA (β = 0.03) 32.1 37.9
FDA (β = 0.1) 32.3 38.6
FDA (β = 0.3) 30.0 35.7
Ours (AdaIN) 42.1 48.7

Table 3: Comparison with two different architectures of im-
age generators. 480× 480 means input images to the gener-
ator are cropped to 480×480 pixels, while 960×480 means
images are cropped to 960×480. mIoU represents averaged
mIoU over 16 classes and mIoU* over 13 classes.

Comparisons with SOTA Methods
We first compare the performance of BiSIDA on the
GTA5-to-CityScapes benchmark with that of other methods
with VGG-16 as the backbone (Table 1), using the mean
Intersection-over-Union (mIoU) metric, where the mean is
taken over all categories. Our results reveal that BiSIDA
outperforms most competitive methods, especially TGCF-
DA+SE (which employs adversarial training as augmenta-
tion), by 1.6% (i.e., 0.7 pp).

We present the performance of our and other methods
on the SYNTHIA-to-CityScapes benchmark using two met-
rics (Table 2). Due to fewer training data and less realistic-
looking images, this task is more difficult than the previous
one. However, BiSIDA outperforms the current state-of-the-
art method by a margin of 3.8% (or 1.6 pp) over 16 cate-
gories.

Ablation Studies
Effect of our continuous style-induced image genera-
tor and domain parameterization: We substitute our con-
tinuous style-induced image generator from our BiSIDA
paradigm with two high-performing image generating meth-
ods, namely MUNIT (Huang et al. 2018) and FDA (Yang
and Soatto 2020), to evaluate its influence on BiSIDA
performance when tested on the SYNTHIA-to-CityScapes
benchmark with VGG-16 as the backbone. In contrast to
ours, both these two methods generate images without loss
of resolution: MUNIT is trained in a complicated adversar-
ial manner through cycle consistency, while FDA computes
the transferred images through Fourier transformation in a
deterministic way without any pretraining process. The ex-
periment revealed that neither method was able to produce
a mix of styles between source and target images and pa-
rameterize domains as well as our continuous style-induced
image generator.

Concretely, we pretrained a MUNIT model using im-
ages from both the source and target domains (cropped to
480×480 pixels due to memory limitations) for 340,000 iter-
ations and fixed it during the following experiments. For the
sake of a fair comparison, we ran two separate experiments
with the pretrained MUNIT model using images cropped
to 480 × 480 and 960 × 480, respectively. For the experi-

S2T T2S PL SE GTA SYN
29.3 28.9D 34.7 32.0D 31.8 31.4D D 35.1 40.2D D D 35.4 40.8D D D 39.4 41.8D D D D 43.2 42.1

Table 4: Ablation study on the style-induced image trans-
fer and unsupervised modules. S2T stands for Source-
domain-to-Target-domain image transfer, T2S stands for
Target-domain-to-Source-domain image transfer, PL stands
for pseudo-labeling and SE stands for self-ensembling.
GTA represents the mIoU (16 classes) from the GTA5-to-
CityScapes dataset while SYN represents the mIoU from the
SYNTHIA-to-CityScapes dataset.

ments on FDA, we also used input images of size 960× 480
and applied various β values ranging from 0.01 to 0.3. For
the MUNIT and FDA experiments, we set ps→t and pt→s
to 1 because of the improved quality of generated images.
We observed that the BiSIDA performance with MUNIT or
FDA as the image generator is significantly lower than the
BiSIDA performance with CSIIG (see Table 3). We suggest
that the results with MUNIT are inferior to the results with
our CSIIG due to the lack of domain parameterization by
MUNIT. The results with FDA are worse than with MU-
NIT, most likely because the Fourier transformation cannot
generate high-dimensional image perturbations for unsuper-
vised learning. We suggest that the significantly lower ac-
curacy of both methods is also due to the continuous pa-
rameterization between two domains of our method, which
facilitates the generation of high-quality pseudo-labels and
enables gradual domain adaptation. Moreover, we found that
the computational burden of BiSIDA with MUNIT is more
than ten times larger than BiSIDA with CSIIG (138 h versus
13 h training time).

Effect of Source-to-Target (S2T) and Target-to-Source
(T2S) Style-induced image transfer, unsupervised learn-
ing via pseudo-labeling (PL), and self-ensembling (SE):
In this ablation study, we removed all four techniques, S2T,
T2S, PL, and SE, from BiSIDA, as well as all meaning-
ful combinations of these techniques. Results are presented
in Table 4. Removing all four techniques yields a baseline
model that does not include any transfer learning but simply
consists of a single semantic segmentation network that is
trained on the labeled source images and then tested on the
target images (see 3rd column in Fig. 2). The ablation of the
target-guided image transfer CSIIG means we deactivated
the unsupervised learning branch of BiSIDA and report re-
sults on supervised style transfer learning. We then tested
three more cases that include variations of the unsupervised
learning branch of BiSIDA, ablating PL, SE, and PL & SE.

As we can observe from the results in Table 4 rows 2
and 3, the source-guided and target-guided image transfer
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cbPert T2S mIoU mIoU*
32.2 38.6D 32.1 38.5D 41.8 48.3D D 42.1 48.7

Table 5: Experiments on augmentation methods on
SYNTHIA-to-CityScapes. cbPert represents contrast and
brightness perturbation, T2S represents source-guided im-
age translation performed on target-domain images. mIoU
represents averaged mIoU over 16 classes and mIoU* over
13 common classes.

each improved the performance on both benchmarks when
applied without the other techniques. It is also worth noting
that the improvement over the baseline brought by the target-
guided image transfer is smaller than that of the source-
guided imaged transfer since the target domain images trans-
lated with styles from source domain cannot provide bet-
ter self-guidance without having the source domain aligned
to the intermediate continuous space. A more significant
performance leap is shown when these two transfers are
performed simultaneously, especially on the SYNTHIA-to-
CityScapes benchmark where the domain gap is larger than
that of the GTA5-to-CityScapes, showing the advantage of
our bidirectional style-induced image translation method.

As for the modules in the unsupervised learning branch
of BiSIDA, when pseudo-labeling is disabled, we use the
probability maps to compute the unsupervised loss, and the
problem is transformed to entropy minimization. When self-
ensembling is disabled, the probability maps are generated
by the segmentation model itself. From the results in Table 4
rows 5 and 6, we conclude that both pseudo-labeling and
self-ensembling contribute to a similar degree in enhanc-
ing the performance of BiSIDA. Additionally, we also ob-
serve that most of the improvement on GTA5-to-CityScapes
comes from the application of the unsupervised learning
modules (PL, SE) while the improvement on SYNTHIA-
to-CityScapes, on the other hand, comes from the style-
induced image translation process. We thus suggest that the
challenge in the GTA5-to-CityScapes benchmark is to per-
form feature-level alignment while the challenge for the
SYNTHIA-to-CityScapes benchmark is to perform pixel-
level alignment.

Effect of brightness and contrast pertubation and
source-guided image transfer: To learn more about the ef-
fectiveness of the brightness-and-contrast perturbation and
source-guided image transfer performed on target images
in the unsupervised learning branch of BiSIDA, we con-
ducted an ablation study that removes either or both per-
tubation techniques with all other settings fixed. We used
the SYNTHIA-to-CityScapes benchmark, where pixel-level
alignment plays a more important role. The results, shown
in Table 5, reveal that the introduction of source-guided im-
age transfer significantly improves performance by a large
margin. The experiment also shows that the brightness and
contrast perturbation is not a sufficiently strong perturbation

weight 0.1 0.5 1.0 5.0 10.0
mIoU 37.8 41.9 42.1 39.8 38.6
mIoU* 44.3 48.1 48.7 46.3 45.2

Table 6: Comparison with different unsupervised loss
weights λu. mIoU represents averaged mIoU over 16 classes
of SYNTHIA-to-CityScapes and mIoU* represents that over
13 classes.

method for consistency regularization. It only helps slightly
when the source-guided image transfer is also applied, pre-
sumably because it enhances the stochasticity in the high-
dimensional perturbation process.

Discussion
Unsupervised learning weight: In our BiSIDA, the unsu-
pervised loss weight λu is a crucial hyperparameter to bal-
ance the focus of our model between the supervised learning
on the labeled source dataset and the unsupervised learning
on the unlabeled target dataset. We investigate the effect of
using different unsupervised loss weights on our method, we
conducted an experiment on the SYNTHIA-to-CityScapes
benchmark with five different unsupervised loss weights.

The results in Table 6 reveal that when the weight is too
small, the benefit of unsupervised learning is limited and
consistency regularization cannot be performed effectively.
When the weight is too large, the model fails to achieve sat-
isfying performance. A reason may be that the model be-
comes bias prone and prefers an easier category in the early
stage of training. We found that our model reaches a peak in
performance when the weight λu is set to 1.

Number of style images used in source-guided image
transfer: We also explore the effect of the number of source
domain style images k in the unsupervised phase. The re-
sults indicate that when the number of style images is small
(fewer than 4), the model achieves suboptimal performance,
probably because the quality of the generated pseudo-label
is undermined, while increasing the number of style images
(more than 4) is also not beneficial since it increases the
computational costs without improving performance.

Conclusion
We proposed a Bidirectional Style-induced Domain Adapta-
tion (BiSIDA) framework for training a semantic segmenta-
tion model via target-guided supervised learning and source-
guided unsupervised learning. The framework is particularly
useful for solving segmentation problems where the labels
for the target domain images are expensive to acquire but
labels for source domain images are are not, e.g., because
the source domain images might be synthesized. With the
employment of our continuous style-induced image gener-
ator, we show the effectiveness of learning from unlabeled
target datasets by providing high-dimensional perturbations
for consistency regularization. Furthermore, our work also
reveals that the alignment of source and target domains from
both directions is achievable without requiring adversarial
training.
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