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Synopsis
We propose a novel method that integrates generative image priors with
subspace constrained MRSI reconstruction. A sufficient and flexible image

representation was first generated by adapting a pretrained StyleGAN to subject-specific
anatomical images. We validate that StyleGAN can be flexibly

adapted to
accurately represent different contrast of the same subject. The adapted GAN
prior is then used to model the spatial coefficients in the

subspace-based
reconstruction. Improved performance over the original subspace reconstruction
in the SPICE framework is demonstrated using

simulation and in vivo data.

Introduction
Low-dimensional subspace models have been shown to be effective in improving
the speed, resolution, and SNR tradeoffs for MRSI . Particularly,
the

SPICE framework exploits the partial separability of high-dimensional MRSI
signals and represents each voxel FID as linear combination of a small set of

temporal
basis functions, dramatically reducing the dimensionality of the imaging
problem. While the subspace model has been highly effective,

investigations
into using effective complementary spatial constraints have been limited .
Recently, with the advances in deep neural network (NN) based

image
presentations/generators, deep image prior has been used to improve the spatial
coefficient estimation in SPICE . However, it has been shown

that the
unsupervised deep image prior suffered from noise overfitting, and other GAN-based
priors may not have sufficient representation power

(inaccurate reconstruction
even with full images as the data) . We propose here a new method to enhance the
subspace MRSI reconstruction that uses

a subject-specific StyleGAN-based prior
as an effective constraint for the unknown spatial coefficients .
We validated the sufficiency of the learned

prior in representing images at
different contrasts and demonstrated improved subspace reconstruction using the
prior. The proposed method may be

integrated with more advanced nonlinear
spectral prior(s) to create more advanced MRSI reconstruction methods.

Theory and Methods
Subject-adaptive StyleGAN prior

While the potential of deep generative models for image reconstruction has been shown , there are two major issues for using them for MRSI

reconstruction: (1) insufficient image representation accuracy for many generative models (including GAN) and (2) the lack of high-SNR, high-resolution

in vivo MRSI training data. We address the first issue by using the powerful multi-scale representation model StyleGAN v2 , and the second issue by a

strategy that adapts pretrained StyleGAN to subject-specific image manifold. Intermediate layer optimization (ILO) method  (better exploiting the latent-

space structures) is also used to address the challenging GAN inversion problem during the adaptation step (further reducing the representation error)

and the reconstruction step. Specifically, given a StyleGAN  with parameters  that was pretrained using 100K T1w&T2w images from HCP

database , we adapt its representation to a subject-specific high-resolution reference image by solving:

where  denotes the latent variables of GAN, and  the brain mask (as MRSI only reconstructs the brain region). To solve Eq.(1), the latent was

determined by ILO with fixed , and then the is updated with fixed latent  . The regularization term constrains that the adapted manifold does not

deviate dramatically from the one captured by the pretrained StyleGAN.

Subspace MRSI reconstruction using adapted StyleGAN prior

We propose the following subspace reconstruction formulation using the adapted StyleGAN prior as constraints for the unknown spatial coefficients: 

where  represents the Fourier encoding operator with B  inhomogeneity effects and  the noisy (k,t)-space data (assuming nuisance signals

removed). The phase was initialized by a SPICE reconstruction with a strong spatial regularization (smooth phase assumption). The first

regularization enforces the StyleGAN prior and the second is a mild weighted  penalty with an edge-weighted finite-difference operator . 

We solved Eq.(2) by first determining as:

and
update  as:

The GAN inversion subproblem in (3) is solved
by ILO with an  accounting for general resolution differences
between the generated images and the

spatial coefficients. The subproblem in
(4) is a GAN prior constrained linear least-squares. The final spatial
coefficients were constructed as: 
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ŵ rec 

= arg , (3)ŵ rec  min
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Results
In vivo data were acquired to evaluate the proposed method (with IRB approval). High-resolution MRSI data were acquired from healthy volunteers using

the sequence from Wang et al.  with TR/TE=1100/30ms, matrix size=64x64x12, FOV=220x220x64mm . Interleaved water navigator images (WatNav)

were also available from the same data.

We first validated the sufficiency of the adapted StyleGAN. Accurate reconstruction of subject-specific T1w images (from the same session) were

produced by the StyleGAN representation (Fig.2, based on both visual inspection and relative errors), which can also be observed for the WatNav

images from the MRSI data. Both the original SPICE and the proposed method were used for reconstruction (Fig.3). Less artifacts are observed in the

reconstructed metabolite maps from the propose method.

A simulation was performed to further validate that the proposed model can flexibly adapt to contrast changes thus with minimal bias. The ground truth

spatiotemporal images were generated from the WatNav images with spatiotemporal interpolation and temporal basis determined by SVD of the

ground truth. The SPICE and proposed reconstructions were performed on simulated data with added noise. Fig.4 shows that the proposed method

achieved a higher SNR and lower error than the original SPICE method.

Conclusion
We proposed a novel MRSI reconstruction method that combines subspace
modeling and a subject-adaptive generative image prior. The adapted GAN

prior exhibited
sufficient representation capability for the spectroscopic images and achieved improved reconstruction as demonstrated by

experimental data.
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Figures

Figure 1. The proposed reconstruction methodology with the two key
steps highlighted. Step 1: Adapt a pretrained GAN to a subject-specific image

manifold
using reference images readily available from MRSI experiments; Step 2:
Reconstruction of target spatial coefficients with adapted GAN prior as

constraint.

Figure 2. GAN adaptation
results: (a) The original T1 w images from a subject. (b) The StyleGAN
reconstruction results after adaptation to assess

representation accuracy. (c) The
original water images from the subject. (d) The StyleGAN reconstruction results
of water images. The overall

representation errors are well below 5%. These low
errors demonstrate that the pretrained StyleGAN2 from public dataset can be
effectively adapted to

the subject-specific image manifold and flexibly to
different contrasts, supporting its utility to represent MRS images.
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Figure 3. In vivo results:
(a) Anatomical reference image (T1w) for different slices (b)-(e) Metabolic
maps for the corresponding slices reconstructed by

proposed method (left three
columns) and SPICE (right three columns), respectively. The regularization
parameters were selected to achieve the same

data consistency level. Results
from the proposed method exhibit noticeably less noise. (f) Spectra from the
proposed method (left two columns) and

SPICE (right two columns), the
corresponding voxels are marked by the triangle and circle as shown in the T1w
images.

Figure 4. Simulation
results: Ground truth images in (a) are simulated from interpolated water
images (128×128×12×64 spatiospectral encodings). Noisy

images in (b) are generated by adding Gaussian
noise into ground truth. (c) and (d) show the reconstruction results from the
original SPICE

reconstruction and proposed method, respectively. The proposed
method produced reconstructions with better contrast, less noise artifacts and a

lower reconstruction error.
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