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Abstract

Effectiveness and interpretability are two essential prop-
erties for trustworthy Al systems. Most recent studies in
visual reasoning are dedicated to improving the accuracy
of predicted answers, and less attention is paid to explain-
ing the rationales behind the decisions. As a result, they
commonly take advantage of spurious biases instead of ac-
tually reasoning on the visual-textual data, and have yet
developed the capability to explain their decision making
by considering key information from both modalities. This
paper aims to close the gap from three distinct perspec-
tives: first, we define a new type of multi-modal explana-
tions that explain the decisions by progressively traversing
the reasoning process and grounding keywords in the im-
ages. We develop a functional program to sequentially ex-
ecute different reasoning steps and construct a new dataset
with 1,040,830 multi-modal explanations. Second, we iden-
tify the critical need to tightly couple important compo-
nents across the visual and textual modalities for explain-
ing the decisions, and propose a novel explanation genera-
tion method that explicitly models the pairwise correspon-
dence between words and regions of interest. It improves
the visual grounding capability by a considerable margin,
resulting in enhanced interpretability and reasoning perfor-
mance. Finally, with our new data and method, we perform
extensive analyses to study the effectiveness of our explana-
tion under different settings, including multi-task learning
and transfer learning. Our code and data are available at
https://github.com/szzexpol/rex.

1. Introduction

One of the fundamental goals in artificial intelligence is
to develop intelligent systems that are able to reason and
explain with the complexity of real-world data to make de-
cisions. While explaining decisions is an integral part of
human communication, understanding and reasoning, ex-
isting visual reasoning models typically answer questions
without explaining the rationales behind their answers. As a
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Reasoning Process:

Select (comb) Select (heart)

e

g

Explanation: Because both

Question: What is common to the
comb and the heart?
Answer: color.

are red.

Figure 1. Illustration of our explanation that is derived from the
reasoning process (with different reasoning steps color coded) and
explicitly grounds key objects in the image.

result, despite the significantly increased accuracy achieved
by powerful deep neural networks [2, 16,21,23,26,35], ex-
isting methods commonly take advantage of spurious data
biases [27] and it is difficult to understand if they make de-
cisions by truly understanding the causal relationships be-
tween multi-modal inputs and the answers.

An important line of research to tackle the issues is to
improve the interpretability of visual reasoning models with
multi-modal explanations [7,22,28,31,39,40,43]. While
showing usefulness in highlighting important visual regions
and providing user-friendly textual descriptions, these ap-
proaches suffer from two major limitations: (1) Existing
explanations are typically defined in the forms of attention
maps or free-formed natural language. Attention maps cap-
ture the salient regions for generating the answers but fall
short of explaining how different regions contribute to the
decision-making process. On the other hand, unconstrained
textual explanations could be highly diverse and often in-
consistent when explaining the same decision. Both of them
lack the capability to illustrate the reasoning process be-
hind a decision. (2) The explanations of different modal-
ities are loosely connected and modeled with separate pro-
cesses [22,31,40]. This not only undermines the capability
of explaining models’ rationales with multiple modalities,
but can also result in contradictory explanations [40]. For



instance, textual explanations “The apple is above the pear”
and “The pear is above the apple” have opposite meanings
but could share the same attention map. We address the
aforementioned challenges from two distinct perspectives
(i.e., data and model), and propose an integrated framework
that consists of a new type of explanations, a functional pro-
gram, and a novel explanation generation method.

From the data perspective, instead of independently
modeling explanations of a single modality without consid-
ering the reasoning process, we introduce a new Reasoning-
aware and grounded EXplanation (REX) that is derived by
traversing the reasoning process and tightly coupling key
components across the visual and textual modalities. As
shown in Figure 1, it is constructed based on the consecutive
reasoning steps (e.g., select, common) for decision making,
and explicitly grounds key objects (e.g., comb, heart) with
visual regions to elaborate how they contribute to the an-
swer. The structured reasoning process also naturally allevi-
ates the variance of natural language, and enables models to
pay focused attention to important information for reason-
ing instead of the language structure. To automatically con-
struct our explanations, we develop a functional program
to progressively execute the reasoning steps and query key
information from scene graphs [14, 19], and collect a new
dataset with 1,040,830 multi-modal explanations.

From the model perspective, unlike existing methods
[7,22,28,31,40] that model key components in different
modalities with separate processes, we propose a novel ex-
planation generation method that explicitly models the cor-
respondence between important words and regions of inter-
est. It takes into account the semantic similarity between
features of the two modalities, and incorporates an adaptive
gate to ground words in the visual scene. Our method im-
proves the visual grounding by a large margin, resulting in
enhanced interpretability and reasoning performance.

To summarize, our contributions are as follows:

(1) We present REX, a new type of reasoning-aware and
visually grounded explanations. Our explanation differen-
tiates itself with its strong correlation with the reasoning
process and the tight coupling between different modalities.
We develop a functional program to automatically construct
our new dataset with 1,040,830 multi-modal explanations.

(2) We propose a novel explanation generation method
that goes beyond the conventional paradigm of indepen-
dently modeling multi-modal explanations [7, 28, 40], and
leverages an explicit mapping to ground words in the visual
regions based on their correlation.

(3) We demonstrate the effectiveness of our data and
method with extensive experiments under different settings,
including multi-task learning and transfer learning. We also
analyze different visual skills and their correlation with the
reasoning performance.

2. Related Works

This paper is related to previous efforts on visual ques-
tion answering (VQA), multi-modal explanation datasets
for visual reasoning, and explanation generation models.

Visual question answering. Visual reasoning is com-
monly framed as a VQA task. There is a large body of
research on constructing VQA datasets [3,4,9, 12, 13,29,

,43] and developing VQA models [2,8, 10,11,16,17,21,

,33,35,42]. Early VQA datasets typically collect human-
annotated questions through crowd-sourcing [3,9,43]. Sev-
eral recent studies [12, 13] propose to use functional pro-
grams to automatically generate questions based on pre-
defined rules and enable more balanced distributions of
question-answer pairs. There is also an increasing inter-
est in investigating different types of visual reasoning, e.g.,
scene text understanding [4], reasoning on dynamic context
[32], and knowledge-based reasoning [29]. These data ef-
forts lead to the development of computational approaches
for improving different components of VQA models, in-
cluding multi-modal fusion [8, 17, 42], attention mecha-
nism [2, 16], and inference process [10, 11, 33]. Vision-
and-language pretraining [21, 23, 26, 35] has also shown
usefulness in VQA for enhancing the understanding of
multi-modality. Our framework is complementary to ex-
isting efforts in VQA. It augments existing VQA data with
reasoning-aware and visually grounded explanations, and
enables the development of VQA models with enhanced in-
terpretability and reasoning performance.

Multi-modal explanations for visual reasoning. There
is a dearth of studies that construct multi-modal explana-
tion datasets for visual reasoning. The pioneering work [31]
collects 41,817 textual explanations annotated by humans
on the VQA datasets [3, 9], and develops a visual pointing
task to highlight important regions. To automatically build
large-scale explanation datasets, Li et al. [22] propose to
convert captioning annotations [25] to textual explanations.
By estimating the similarity between captions and ques-
tions, it generates 269,786 synthetic explanations. Zellers et
al. [43] propose a multi-choice VQA dataset with 264,720
questions and each question is associated with a correct ex-
planation. While the work has annotated regions of interest
for the questions, as their dataset focuses on movie scenes,
about 91% of the regions are related to human characters
and over 40% of the explanations can not be grounded on
them. The key differentiators of our explanation lie in its
correlation with the reasoning process for problem-solving
and the explicit coupling between the key components in
different modalities. Our dataset offers 1,040,830 struc-
tured and visually grounded explanations that are aware of
the decision-making process and ground various keywords
in the images.

Generating multi-modal explanations. Aiming to de-
velop visual reasoning models that are capable of explain-
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Question: s the plate on the table both
dirty and silver?

Answer: no.

|

Reasoning Process:

Select (table)
Relate (plate, table)
Verify (silver, plate)

*
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Explanation:

%
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- a is dirty
Because - a is dirty

Figure 2. Illustration of the process for sequentially constructing our explanation. Partial explanations are shown to the right of the
corresponding reasoning steps, and information collected from different steps is highlighted with their corresponding colors. The final

explanation is obtained at the end of the reasoning process.

ing their answers, several works propose to automatically
generate multi-modal explanations. Park er al. [31] use a
long short-term memory (LSTM) model to generate the tex-
tual explanations, and highlight important visual evidence
with attention maps. Later on, Wu et al. [40] improve the
model by correlating the attention for answering questions
and generating explanations. Li et al. [22] propose a multi-
task learning paradigm to simultaneously generate answers
and explanations. Instead of predicting explanations from
scratch, Zellers et al. [43] adopt a multi-choice task set-
ting whose goal is to select the correct explanation out of
four candidates. Marasovi¢ et al. [28] develop an integrated
method that incorporates pretrained language models with
object recognition models. Dua et al. [7] frame both VQA
and explanation generation as generative tasks, and sequen-
tially generates words in answers and explanations. There
are also studies [39, 4 1] that leverage generated or ground
truth multi-modal explanations to improve the reasoning
performance. Different from the aforementioned methods
that independently model visual or textual explanations,
our proposed method explicitly links words with the cor-
responding image regions based on their semantic similar-
ity. The enhanced visual grounding capability brought by
our method not only improves the interpretability and rea-
soning performance, but also plays a key role in distilling
knowledge from explanations into question answering.

3. Reasoning-aware and Grounded Explana-
tion

Answering visual questions would benefit from capabil-
ities of reasoning on multi-modal contents and explaining
the answers. This section presents a principled framework
for visual reasoning with enhanced interpretability and ef-
fectiveness. It advances the research in visual reasoning
from both the data and the model perspectives with: (1) a
new type of multi-modal explanations that explain decision
making by traversing the reasoning process, together with
a functional program to automatically construct the expla-
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nations, and (2) an explanation generation method that ex-
plicitly models the relationships between words and visual
regions, and simultaneously enhances the interpretability as
well as reasoning performance.

3.1. Data

The goal of our proposed data is to offer an explanation
benchmark that encodes the reasoning process and ground-
ing across the visual-textual modalities. Compared to pre-
vious explanations for visual reasoning [22, 31, 43], it has
two key advantages: (1) Grounded on the reasoning pro-
cess, it elaborates how different components in the visual
and textual modalities contribute to the decision making,
and reduces variance or inconsistency in textual descrip-
tions; and (2) Instead of modeling textual and visual ex-
planations as separate components, our explanation consid-
ers evidence from both modalities in an integral manner,
and tightly couples words with image regions (i.e., for vi-
sual objects, their grounded regions instead of object names
are considered in the explanations). It augments visual rea-
soning models with the capability to explain their decision
making by jointly considering both modalities, resulting in
enhanced interpretability and reasoning performance.

Figure 2 illustrates the paradigm for constructing our ex-
planation. To answer the question “Is the plate on the table
both dirty and silver?”, one needs to locate the table, find
the plate on top of it based on their relationship, and in-
vestigate the cleanliness as well as the color of the plate.
We represent each reasoning step with an atomic operation,
e.g., select and verify, and leverage a functional program to
sequentially construct the explanation by traversing the rea-
soning steps and accumulating important information (e.g.,
visually grounded objects and their attributes). Upon fin-
ishing the traversal, our final explanation not only elabo-
rates the decision making with concrete textual description
(i.e., the plate is dirty but not silver thus the answer is no),
but also supports the explanation with visual evidence (i.e.,
grounded regions for the plate and the table).

Decomposing the reasoning process with atomic op-



Operation Semantic
Select Selecting a specific category of objects.
Exist Examining the existence of a specific type of objects.
Filter Selecting the targeted objects by looking for a specific attribute.
Query Retrieving the value of a attribute from the selected objects.
Verify Examining if the targeted objects have a given attribute.
Common Finding the common attributes among a set of objects.
Same Examining if two groups of objects have the same attribute.
Different Examining if two groups of objects have different attributes.
Compare Comparing the values of an attribute between multiple objects.
Relate Connecting different objects using their relationships.
And/Or Logical operations that combine results of previous operations.

Table 1. Atomic operations to represent the reasoning process.

erations. We define a vocabulary of atomic operations by
characterizing and abstracting functions for question gener-
ation in the GQA dataset [ 1 2]. Given the 127 different types
of operations in GQA, we first follow [5] and represent each
operation as a triplet, i.e., <operation, attribute, category >,
and then categorize the original operations in GQA pro-
grams based on their semantic meanings. As shown in Table
1, we define 12 atomic operations that cover the essential
steps for answering various types of visual questions: some
require localizing a specific type of objects (select, exist);
some require reasoning on attributes of the objects (filter,
query, verify, common, same, different, compare, relate);
and others require logical reasoning (and, or).

Traversing reasoning process with a functional pro-
gram. With the defined atomic operations, we develop a
functional program to traverse the reasoning process by per-
forming the corresponding operations and sequentially up-
dating the explanation based on the collected information.
Inspired by [12, 13], we represent the reasoning process as a
directed graph, where nodes denote the reasoning steps and
edges represent their dependencies. As shown in Figure 2,
starting from the initial reasoning step (i.e., Select (table)),
we recursively construct the partial explanation for the cur-
rent node (shown to the right of each node in Figure 2) and
pass it to its dependent nodes. Our final explanation is ob-
tained at the last reasoning step (i.e., And). To construct the
partial explanation for each node, we design a set of tem-
plates based on the semantic meanings of the atomic oper-
ations (see our supplementary materials for details). The
proposed templates dynamically combine the information
extracted within the current node and those transited from
its dependent nodes in the previous steps. For example, tem-
plate for the relate operation locates a new object based on
its relationship with objects selected in the previous nodes.

The aforementioned paradigm allows efficiently travers-
ing the reasoning process and constructing explanation that
elaborates how a decision is made based on the visual and
textual modalities. It not only enables the construction of

our new GQA-REX dataset with 1,040,830 multi-modal ex-
planations (data statistics and qualitative examples provided
in the supplementary materials), but also plays a key role in
improving the interpretability and accuracy of visual rea-
soning models, as detailed in the next subsection.

3.2. Explanation Generation Model

Explaining the rationale behind a decision requires rea-
soning on visual and textual evidence and elaborating their
relationships.  Existing explanation generation methods
[22,28,31,40] model textual and visual explanations with
separate processes, and pay little attention to how key com-
ponents in each modality correlate with each other. As a re-
sult, they have limited capability of generating explanations
that jointly consider both modalities and ground words in
the images. With the overarching goal of improving the in-
terpretability and accuracy of visual reasoning models, we
propose a novel explanation generation model that couples
related components across the two modalities and generates
the explanation based on their relationships.

Figure 3 illustrates an overview of our method. The prin-
cipal idea behind the method is to explicitly measure the
semantic similarity between words and visual regions, and
leverage it to generate multi-modal explanation with en-
hanced visual grounding. Specifically, unlike conventional
methods [22,28,31,40] that generate the explanation solely
based on textual features 7; € R'*" (e.g., LSTM hidden
state for predicting the i** word), we further measure the
similarity between the textual features 7; and visual fea-
tures V€ RV*Pand compute the probability of linking
the current word with different regions S; € R1*/:

eli-Vn
Sp= (1)
S etV
j=1

where IV denotes the total number of image regions, D is
the dimension of features, and n is the index for an image
region. T - V is the dot product between two features and
corresponds to their cosine similarity.

To incorporate visual grounding with explanation gener-
ation, we leverage a transformation matrix M € RNVN*K to
map grounding results to the prediction of the next word:

yl =5 M )

where K is the number of vocabulary, M is a binary matrix,
and M;; = 1if the j'" token denotes the i*" region (i.e., we
use the token #i to represent grounding a word in the i*"
region). Since not every word in the explanation can be
grounded in the image, e.g., words like “is” do not have an
associated region, we further develop a gating function to
determine if the current word should be grounded:

gi = U(Wg ) Tz) 3)
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Figure 3. Overview of our explanation generation method.

where §; is the probability of grounding the i** word, W, €
R'*P denotes the trainable weights, and ¢ is the sigmoid
activation function. We use a balanced binary cross-entropy
loss to train the gating function:

+

c- . .
Ly=- Z < giloggit+ (1 —gi)log(1—gi) (4

where g; is the binary ground truth, C™ and C~ denote the
number of grounded and non-grounded words in the current
explanation, and C = C* + C~.

Upon obtaining the grounding probability ¢;, we adap-
tively combine the grounding results y{ with the prob-
abilities of different words derived from textual features
yzf = softmax(W; - T;) to determine the next word g;:

9i = giy! + (1 — ai)yl ()
where W € RE*PD represents trainable weights.

We train our model with a linear combination of the bal-
anced binary cross-entropy loss L, for the gating function
and the conventional cross-entropy loss for question an-
swering L, and explanation generation L., [22]:

L= Lons + Lemp + Lg (6)

With the aforementioned method that couples key com-
ponents from both modalities, we significantly improve the
model’s visual grounding capability, which leads to en-
hanced interpretability and reasoning performance.

4. Experiments

In this section, we present the implementation details
(Section 4.1), and conduct experiments to analyze the pro-
posed framework. We first experiment with the conven-
tional multi-task learning paradigm [22] (Section 4.2). It
demonstrates the effectiveness of our explanation in si-
multaneously enhancing the models’ accuracy and inter-
pretability, and highlights the significance of improving vi-

sual grounding with our model. We also conduct experi-
ments under the transfer learning paradigm and analyze dif-
ferent visual skills of the reasoning model, aiming to answer
the following research questions:

(1) Is the knowledge learned from the explanations trans-
ferable to question answering? (Section 4.3)

(2) How do different visual skills affect answer correct-
ness? (Section 4.4)

4.1. Implementations

Dataset. We experiment with our proposed GQA-REX
dataset, which is constructed based on the balanced training
and validation sets of GQA [12]. We optimize models on
the training set and evaluate their performance of explana-
tion generation on the validation set. To evaluate the reason-
ing performance, we adopt the balanced validation and test-
standard sets of GQA. Since the annotated bounding boxes
for visual grounding may not align with the visual inputs
(i.e., UpDown regional features [2]), we convert the ground-
ing annotations into a set of tokens by finding the input re-
gion that has the highest Intersection of Union (IoU) with
the ground truth bounding box (i.e., #i means the bound-
ing box is aligned with the i input region). We also exper-
iment with the recently introduced GQA-OOD dataset [15]
with out-of-distribution data (i.e., “tail” questions).

Evaluation. We evaluate models from multiple perspec-
tives, including reasoning performance, quality of explana-
tions, visual grounding, and recognition of attributes. We
use answer accuracy for evaluating reasoning performance.
For the quality of explanations, we follow [22,31,40] and
adopt five language evaluation metrics, including BLEU-
4 [30], METEOR [20], ROUGE-L [24], CIDEr [37], and
SPICE [!]. Similar to [12], visual grounding (i.e., Ground-
ing) is evaluated by aggregating grounded regions in the
predicted explanations and computing their IoU with the
ground truth. We evaluate the recognition of eight unique
types of attributes, including color, material, sport, shape,
pose, size, activity, and relation. We only consider samples
where the attributes do not appear in the questions to avoid
trivial solutions, and calculate the recall of predicting the
correct attributes in the explanations.

Model specification. We use the state-of-the-art Vi-
sualBert [21] with UpDown regional features [2] as the
backbone for visual reasoning (more details in the supple-
mentary materials). The model is pretrained on MSCOCO
[25] dataset without using annotations for question answer-
ing. Therefore, it enables us to study the transferability
of knowledge learned from our explanations. For explana-
tion generation, we adopt the language generator developed
in [40] as our baseline, and incorporate our method pro-
posed in Section 3.2 to enhance its grounding capability.

Training. We use Adam [ | 8] optimizer to train the mod-
els with batch size 128. For multi-task learning paradigm
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| BLEU-4 METEOR ROUGE-L CIDEr SPICE | Grounding | GQA-val GQA-test OOD-val OOD-test
VisualBert [21] - - - - - - 64.14 5641 4870  47.03
VisualBert-VQAE [22] | 42.56 3451 7359 35820 4039 | 31.29 65.19 5724 4920 4628
VisualBert-EXP [40] | 42.45 34.46 7351 35710 4035 | 3352 65.17 5692 4943  47.69
VisualBert-REX 5459 392 7856 46420 4680 | 67.95 66.16 5777 5026 4826

Table 2. Comparative results on explanation generation and question answering. GQA- and OOD- denote results on GQA and GQA-OOD.

Best results are highlighted in bold.

[22], we train the model to simultaneously predict answers
and explanations for 8 epochs. The learning rate is initial-
ized as 10~* and decayed once by 0.25 at the last epoch.
For the transfer learning paradigm (Section 4.3), we first
train the models on explanation generation for 8 epochs and
then fine-tune them under the multi-task learning paradigm
for 15 epochs. The learning rate is decayed at the 8" and
12" epoch, respectively.

4.2. Results

We first validate the effectiveness of our framework un-
der the multi-task learning paradigm [22]. We compared
our model (i.e., VisualBert-REX) with three approaches
with the same backbone, including the VQA baseline (i.e.,
VisualBert [21]), and two explanation generation methods
(i.e., VisualBert-VQAE [22] and VisualBert-EXP [40]).

As shown in Table 2, learning with both answers and
explanations (i.e., VisualBert-VQAE and VisualBert-EXP)
leads to a reasonable improvement over the counterpart us-
ing answers alone (i.e., VisualBert), and can further pro-
vide illustration of the decision-making process. It shows
that our proposed explanations can complement the answer
annotations and simultaneously increase the accuracy and
interpretability of visual reasoning models. However, it is
important to note that, the existing approaches lack the ca-
pability of correlating words with their corresponding re-
gions of interest, and thus have low visual grounding scores.
Differently, by explicitly modeling the correspondence be-
tween key components across the visual and textual modali-
ties, our VisualBert-REX method significantly increases the
visual grounding score, leading to further improvements in
the quality of the generated explanations and reasoning per-
formance. These observations validate the usefulness of our
explanations, and highlight the advantages of our expla-
nation generation method in augmenting visual reasoning
models with enhanced visual grounding capability.

In addition to the quantitative evaluation, we also per-
form qualitative analyses on the predicted answers and ex-
planations. As shown in Figure 4, our VisualBert-REX ex-
plains the rationales behind decisions with high-quality ex-
planations, which leads to more accurate answers. Unlike
VisualBert-VQAE and VisualBert-EXP that have difficul-
ties localizing the important regions (e.g., horse and car in
the 15¢ example), it accurately captures the key objects with

enhanced visual grounding capability and compares their
attributes to answer correctly. It also avoids hard-negative
objects (e.g., the large carriage on the road in the 2 sam-
ple) by investigating the relationships between objects (e.g.,
carriage on the grass). Moreover, while conventional meth-
ods generate answers without actually reasoning on the vi-
sual observations (e.g., without focusing on key objects in
the 3"¢ sample), our method faithfully answers the ques-
tions by reasoning on all regions of interest.

4.3.Is the knowledge learned from the explanations
transferable to question answering?

Previous methods either simultaneously answer ques-
tions and generate explanations [22] or generate explana-
tions for fixed answers [31,39,40], and pay little attention to
how transferable is knowledge learned from explanations.
Inspired by the recent study [36] that shows knowledge
learned from text corpus can enable few-shot visual ques-
tion answering, in this section, we evaluate the transferabil-
ity of the proposed reasoning-aware and grounded explana-
tion and analyze its usefulness in distilling knowledge from
the reasoning process into question answering.

Specifically, we consider a transfer learning paradigm:
first training the models on explanation generation with our
complete training set, and then fine-tuning them on both ex-
planation generation and question answering with a subset
of 1%, 5%, and 10% of training data. The subsets are cre-
ated by randomly sampling the specific proportions of ques-
tions from each reasoning type, so that the overall statistics
about different reasoning tasks are well preserved. We eval-
uate models on the complete validation set regardless of the
amount of training data. To demonstrate the transferability
of the knowledge learned from our explanations, we com-
pare the aforementioned method with three alternatives: We
first consider (1) a VQA-only and (2) a multi-task learning
baseline. They are identical to those discussed in Section
4.2 but trained only on the respective subsets, and thus do
not benefit from the knowledge transferred from explana-
tions. (3) To validate that the improvements achieved by
transfer learning come from the explanations instead of ac-
cess to additional questions, we further compare with a self-
supervised learning method that pretrains the model on all
training questions under the BERT [6] paradigm and then
fine-tunes it on the subsets for question answering. Two ob-
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Question: Are both the car and the
horse the same color?

Answer: yes. and #2 is white.

SRRV S =
uestion: Does the carriage on the Predicted Answer: no.
grass appear to be black and small?

Answer: yes.

b
I VR

£
R ,
Predicted Answer: white.

Question: What color do you think the
balloon to the right of the giraffes is?

Answer: white. right of #2 is white.

Predicted Answer: yes.
Explanation: Because #1 is black

Explanation: Because there is #1
on #2 that is black and not small.

Explanation: Because #1 to the

Predicted Answer: yes.
Explanation: Because #1 and #2
are both black.

4

Predicted Answer: no.
Explanation: Because #1 is black

& RV e
Predicted Answer: no.
Explanation: Because there is #1
on #2 that is black and not small.

I E \'L

Predicted Answer: yes.
Explanation: Because there is #1

it Y
Predicted Answer: white.
Explanation: Because #1 to the
right of #2 is white.

Explanation: Because #1 to the
right of #1 is white.

Figure 4. Qualitative results for explaining models’ decision-making process. Visual grounding is represented with the token #.

1% 5% 10%
GQA OOD GQA O0OOD GQA O0OOD
VQA-only VisualBert 4141 27.11 4853 3378 51.79 37.83
Multi-task learnin VisualBert-EXP  41.70 27.09 49.36 3450 52.83 38.33
J VisualBert-REX 4042 2395 50.30 35.69 53.90 40.08
Self-supervised learning VisualBert 45.06 30.62 52.12 38.68 54.74 40.12
Transfer 1 . VisualBert-EXP  51.32 3526 56.34 4120 57.65 43.15
ransier fearning VisualBert-REX ~ 57.07 40.03 6128 4502 6190 45.98

Table 3. Comparative results for models trained using different proportions of answer annotations.

Results are reported on the balanced

validation set of GQA and the validation set of GQA-OOD. Best results are highlighted in bold.

servations can be made on the results reported in Table 3:

Knowledge transferred from the explanations plays
a key role in question answering. By incorporating our
explanations, models trained under the multi-task learning
paradigm outperform the VQA-only baseline despite the
scarcity of data. Moreover, with more abundant knowl-
edge transferred from the explanations, the transfer learning
method improves the performance by a large margin and
achieves the best results regardless of the amount of answer
annotations. It is notable that VisualBert-REX with only
10% of answers achieves comparable performance to Visu-
alBert trained on the complete training set. On the contrary,
while self-supervised learning also increases the reasoning

performance, it is not as effective as transfer learning. These
observations demonstrate the transferability of knowledge
learned from our explanations, and highlight its role in es-
tablishing understanding of the reasoning process for more
efficient learning on visual reasoning.

Visual grounding is important for transferring
knowledge. Compared to VisualBert-EXP, VisualBert-
REX with enhanced visual grounding capability achieves
much better results under the transfer learning paradigm,
demonstrating the advantages of our method under various
training paradigms. More importantly, it highlights the sig-
nificance of visual grounding for developing better under-
standing of the reasoning process and transferring knowl-



Recall Rate  Pearson’s Correlation

Color 56.01 0.742
Material 49.27 0.708
Sport 72.77 0.575
Shape 40.64 0.548
Pose 74.80 0.417
Size 65.31 0.574
Activity 46.58 0.666
Relation 29.00 0.182

Table 4. Recall rates for capturing key concepts related to different
visual skills, and their correlation with the reasoning performance.

edge from explanations to question answering.

4.4. How do different visual skills affect answer cor-
rectness?

Answering visual questions involves performing vari-
ous visual skills [38], e.g., recognition of objects’ attributes
such as colors and positional relationships. Existing studies
assess these skills by categorizing questions into different
groups and analyzing them separately [3,9, 12, 38]. While
showing usefulness in studying the models’ capability of
tackling different types of questions, they fall short of ex-
plaining the relationship between successfully performing a
skill and correctly answering the question. In this paper,
we use a more explicit approach to analyze how various
skills affect the answer correctness. Specifically, we eval-
uate the recognition of eight common attributes based on
the model’s capability to derive the corresponding concepts
in the explanations, e.g., a successful recognition of color
requires the model to explain its decision with the key col-
ors, and leverage recall rates of capturing the concepts for
quantitative analyses. In Table 4, we report the evaluation
scores of different skills and their Pearson’s correlation with
the predicted probabilities on the correct answers. We make
two observations on the results:

Recognition of attributes is important for answering
correctly. Our results show that the recall rates for all at-
tributes have reasonable correlation with the reasoning per-
formance, which validates the importance of capturing key
attributes in the images for answering visual questions.

Attributes do not contribute equally to answer cor-
rectness. It is notable that the model has diverse per-
formance on recognizing different attributes, and the dif-
ferences in the correlation between skills and answer cor-
rectness are also significant (e.g., recognition of colors v.s.
recognition of relations). The results indicate that, while it
is important for humans to capture different key attributes
in order to answer correctly, the attributes do not contribute

equally to the decision making of a computational model.

Our results shed light on the underlying decision mak-
ing of visual reasoning models, and reveal the influences of
various visual skills on answer correctness.

5. Discussion

We introduce REX, a principled framework with a new
type of reasoning-aware and grounded explanations, a func-
tional program for automatically constructing explanations,
and a novel explanation generation method that explicitly
couples key components in different modalities. Experi-
mental results demonstrate the usefulness of our framework
in explaining the models’ decision-making process and im-
proving the visual reasoning performance. They also high-
light the critical need to increase models’ visual grounding
capability for understanding the reasoning process.

Limitations. Despite the aforementioned advantages of
our data and model, we believe there is still a large room
for interpretable visual reasoning. While the proposed data
offers multi-modal explanations derived from a diverse set
of images and vocabulary, it may still fail to cover all types
of real-world problems. For example, some questions may
require external knowledge that is unavailable in the given
visual-textual data [29]. One possible direction to address
the challenges is to incorporate explanations with vision-
and-language pretraining on external knowledge base (e.g.,
[34]), as our experiments show the effectiveness of transfer-
ring knowledge with explanations.

6. Broader Impact

Endowing Al systems the ability to elaborate their
decision-making process with high quality multi-modal ex-
planations is an important step toward trustworthy Al It
could fundamentally address the critical needs in opening
the black-box of Al algorithms. We therefore envision this
work to offer new opportunities to a wide range of domains
especially those taking interpretability and transparency as
a high priority, such as healthcare, finance, and legislation.
The new paradigm highlighting multi-modal understanding,
and the large-scale dataset with diverse high-quality expla-
nations may spur innovations and developments in these ar-
eas. The explanation generation model elucidates the rea-
soning process and key components in decision making, al-
leviating safety or fairness risks of decision-critical appli-
cations. We hope that this work would be a useful resource
and open a new avenue for the community to develop inter-
pretable and transparent Al systems.
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