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Abstract

This is the first part of a two paper sequence in which we prove the global-in-z stability of the
classical Prandtl boundary layer for the 2D, stationary Navier-Stokes equations. In this part, we
provide a construction of an approximate Navier-Stokes solution, obtained by a classical Euler-
Prandtl asymptotic expansion. We develop here sharp decay estimates on these quantities. Of
independent interest, we establish without using the classical von-Mise change of coordinates,
proofs of global in x regularity of the Prandtl system. The results of this paper are used in the
second part of this sequence, [IM20] to prove the asymptotic stability of the boundary layer as
€ = 0and z — 0.

1 Introduction
We consider the Navier-Stokes (NS) equations posed on the domain Q := (0, 00) x (0, 00):
utul, + vuy + Py = eAuf, (1.1)
utv, + vuy + Py = A,
us, + vy =0,
We are taking the following boundary conditions in the vertical direction

[, 0] ly—o = [0,0],  [u5(2,Y),v"(z,Y)] =% [up(z, 00), vE(z, 00)). (1.4)
which coincide with the classical no-slip boundary condition at {Y = 0} and the Euler matching
condition as Y 1 co. We now fix the vector field

[ug,vg]:=[1,0],  Pg=0 (1.5)

as a solution to the steady, Euler equations (¢ = 0 in (1.1)) - (1.3)), upon which the matching

condition above reads [u®, v°] Yoo, [1,0].

Generically, there is a mismatch at Y = 0 between the boundary condition (|1.4)) and that of an
inviscid Eulerian fluid, which typically satisfies the no-penetration condition, v¥|y—y = 0. Given
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this, it is not possible to demand convergence of the type [u®,v¢] — [1,0] as € — oo in suitably
strong norms, for instance in the L sense. To rectify this mismatch, Ludwig Prandtl proposed
in his seminal 1904 paper, [Pr1904], that one needs to modify the limit of [u®,v¢] by adding a
corrector term to [1,0], which is effectively supported in a thin layer of size /¢ near {Y = 0}.
Mathematically, this amounts to proposing an asymptotic expansion of the type

u®(z,Y) = 1+u2(w,\2)+0(\/§) :ﬂg(x,é)—i—O(\/E), (1.6)

where the rescaling % ensures that the corrector, u, is supported effectively in a strip of size /2.

p’
The quantity ag is classically known as the Prandtl boundary layer, whereas the O(y/¢) term will
be referred to in our paper as “the remainder”. Motivated by this ansatz, we introduce the Prandtl
rescaling

Y
We now rescale the solutions via
f(z,Y
Ul i= @), Vo) = ) (18)
which satisfy the following system
UUz +VEU, + P, = AUS, (1.9)
PS
USVy +VEVy + - = AVS, (1.10)
U+ Ve =0, (1.11)
Above, we have denoted the scaled Laplacian operator, A, := 83 +e02.
We now expand the rescaled solution in a more detailed manner compared to (1.6)), as
0 SNy N No
Usi=1+u)+ Y et(up+up)+ezu=a+e2u
i=1
0 1 M1 i 1 NI Ny Ny
VEi=w, +vp+ Z ez (vp +vif ) + g2 v, teTv=10+¢e72 v, (1.12)
=1
N1+1 i . Nl i . No
Pei= ) c2Pi4 ) c2Pp+ez P
i=0 i=1
Above,
[, vg] o= (1,0, [up,vp] = lup(z,y),vp(z,y)], [ulp, vp] = [up(@,Y),vp(2, V)], (1.13)

and the expansion parameters N1, No will be specified in Theorem for the sake of precision. We
note that these are not optimal choices of these parameters, but we chose them large for simplicity.
Certainly, it will be possible to bring these numbers significantly smaller.

Motivated by the leading order of the right-hand side of the first two equations of , we
make the following definitions:

Yy
ug=1+u), D= —/ Oty (1.14)
0
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The divergence-free vector field [ag, 172] solve the classical stationary Prandtl system, which we will
now introduce. On the other hand, the divergence-free vector field [ug, vg] are homogenized so as
to decay as y — 0o. The effectiveness of the ansatz , and the crux of Prandtl’s revolutionary
idea, is that the leading order term ﬂg (and its divergence-free counterpart, 172) satisfy a much
simpler equation than the full Navier-Stokes system, known as the Prandtl system,

U Dty + D)0yt — Oiti) + P, =0,  P) =0,  dp1y+ vy =0, (1.15)

which are supplemented with the boundary conditions
770 0 0 0 Yo o
Uy |z=0 = U, (y), tp|y=0 = 0, Up|y=cc = 1, v, = —/0 o T (1.16)

This system is simpler than - in several senses. First, due to the condition P]?y = 0,
we obtain that the pressure is constant in y (and then in z due to the Bernoulli’s equation), and
hence is really a scalar equation.

In addition to this, by temporarily omitting the transport term @gayag, one can make the formal
identification that ag@x ~ Oyy, which indicates that is really a degenerate, parabolic equation,
which is in stark contrast to the elliptic system - . From this perspective, x acts as a
time-like variable, whereas y acts as a space-like variable. We thus treat - as one would
a typical Cauchy problem. Indeed, one can ask questions of local (in z) wellposedness, global (in x)
wellposedness, finite-z singularity formation, decay and asymptotics, etc,... This perspective will
be emphasized more in Section |1.2

The main purposes of this work is to

(1) Provide a rigorous construction of each of the terms in the approximate solution, [, v] from
(1.12) with precise estimates on the error created by such an approximation:

FR :(U8U£ + ‘/EU'yE + ng - AeUa) - ({“jx + 'D'ay + pr - Asﬂ)
pe P ) (1.17)
Gri=(UVy + VIV + - = AV) = (a0, + 00, + —* = Ac0).

(2) Provide a proof of global-in-z regularity and decay for the nonlinear and linearized Prandtl
equations in physical (x, y) coordinates and in particular does not rely on the von-Mise change
of coordinates.

The role that x plays as a “time” variable will be discussed from a mathematical standpoint
in Section [1.2] The present paper can be regarded as a global-in-x version of the constructions
obtained in [GI18b], all of which required x << 1 (local in z). Another purpose of this article is
to provide in physical (z,y) coordinates, a proof of global regularity of the nonlinear and linearized
Prandtl equations, as compared to [Ser66], [Iy19], both of whom relied on the “von-Mise” transform,
which has little hope to be useful in the Navier-Stokes setting.

We draw a parallel to the unsteady setting in which [MWT15] provided an energy-estimate based
proof of local in time existence to the Prandtl equations, without using the Crocco-transform. The
(z,y) coordinate system (and energy estimates in this coordinate system) have proven to translate
most effectively to the Navier-Stokes setting than these classical transforms (von-Mise transform,
Crocco transform) that are particular to the simplified Prandtl setting. Indeed, the construction
of the approximate solution, [@,v], that we provide in this article is used in the companion paper,
[IM20], in which we prove the stability of [, v].



1.1 Asymptotic Expansion and Datum

First, we note that, given the expansion (1.12)), we enforce the vertical boundary conditions for
1=0,..N1, j=1,...]Nq,

u;(:c,O) = —uly(x,0), v%(x,O) = —vgfl(:c,O), [u, v]|y=0 = 0, (1.18)
v},(x, o0) = u; x,00) =0, ug(m, o0) = vjé(x,oo) =0, [t, V]]y=0c = 0. (1.19)

which ensure the no-slip boundary condition for [U¢,V¢] at y = 0,00. As we do not include an
Euler field to cancel out last vp , we need to also enforce the condition vév 'ly—o = 0, which is a
particularity for the Ni’th boundary layer.

The side {x = 0} has a distinguished role in this setup as being where “in-flow” datum is pre-
scribed. This datum is prescribed “at the level of the expansion”, in the sense described below (see
the discussion Surrounding equations (1.22)). Moreover, as © — oo, one expects the persistence of
just one quantity from , which is the leading order boundary layer, [u vp], and the remaining
terms from are expected to decay in z. This decay will be established rigorously in our main
result.

We shall now describe the datum that we take for our setting. First, we take the outer Euler
profile to be

[uf, v, PR := [1,0,0] (1.20)

as given. We have selected (|1.20]) as the simplest shear flow with which to work. Our analysis can
be extended with relatively small (but cumbersome) modifications to general Euler shear flows of
the form

[U%,U%,p]%} = [u%(Y%O?OL (1'21)

under mild assumptions on the shear profile u%(Y).

Apart from prescribing the outer Euler profile, we also get to pick “Initial datum”, that is at
{x = 0} of various terms in the expansion . Specifically, the prescribed initial datum comes
in the form of the functions:

Uple=o = Up(y),  vhle=o =2 VE(Y), (1.22)

fori =0,...,N1, and j = 1,.., N7. Note that we do not get to prescribe, at {x = 0}, all of the terms
appearing in - On the one hand, to construct [ ‘ ;f)], we use that ui obeys a degenerate
parabohc equation, with x occupylng the time-like Varlable and y the space- hke variable and that
v, can be recovered from w;, via the divergence-free condition. Therefore, only up];c 0 1S necessary
to determine these quantities.

It is useful at this point to introduce the systems satisfied by the “leading order” boundary
layer ([u),)]) and the “intermediate” boundary layers, [u},vt], for i = 1,...,N;. We note that
these systems are derived rigorously in Appendix [A| by substituting the expansion into the
system — and systematically collecting terms contributing to each order in /e.

First, as we have discussed in — (1.16), the vector-field [ ] satisfies the pressure-free

Prandtl equations, which read:
U0, + V90,u) — Optig =0, (x,y) € (0,00) x (0,00) (1.23a)

y
—/O Dy, (1.23b)



Wlo—o = U)(y) =14+ Up(y),  @ly—0=0,  Uly—cc = 1. (1.23c)

In the main theorem below, Theorem we will state a smallness condition on the perturbation
of the initial datum from a particular self-similar profile, the Blasius profile @, ( introduced below
in (1.27) — (1.29))). Indeed, the object we will ultimately analyze here will be the perturbation:

al = 2 , 0.=2 . (1.24)

Above, 0 < 0, << 1 is a small parameter introduced by hypothesis ([1.35)) in the main result below.
The quantities above satisfy the equation

Uy D i) + Up Oyl + VuOyllyy + Ty Oy iy — Oy = 6, Q(ily), T), (1.25a)
/ Byl (1.25b)

1 _ - -
p|x 0= 5*( (y) - U*(an))7 u2|y=0 =0, Up‘yzoo =0. (1'25C)

Above, the forcing Q(ﬁg, 172) contain quadratic terms, and will be perturbative using the smallness
of d, << 1 in the main theorem below.

The intermediate boundary layers, [up, vp] 1 =1,... Ny, satisfy the linearized Prandtl system
(with contributed forcing):

S0, + Ui, + V90yul, + U0, u) — Oful, = Fi\Y, (1.26a)

o = / b, = b — vy, (1.26b)
Y

u;)|$:0 = Up(y), U;’y:() = _uiE‘yZOa uzio‘y:oo =0. (1.26¢)

We note that, by our convention, uf,

as y — oo, and cancel out the i’th Euler contribution at {y = 0}. Above, the forcing term F,ﬁ

are the boundary layer correctors. This means that they vanish
9 is
due to contributions of size O(e2) of lower order boundary layers ([, v]), 7 =0,...i — 1) which
need to be cancelled out through the introduction of [u vp]

On the other hand, to construct the Euler profiles [uE,vE] for ¢ = 1,.., N1, we use an elliptic
problem for vy, (in the spe01al case of ((1.20) -, it is in fact Avy, = 0). As such, we prescribe the datum
for vi;, as is displayed in , and then recover u', via the divergence-free condition. Therefore,
only v E|w 0 is necessary to determine these quantities.

1.2 Asymptotics as z — o0

We will now discuss more precisely the role of the z-variable, specifically emphasizing the role
that x plays as a “time-like” variable, controlling the “evolution” of the fluid. The importance of
studying the large x behavior of both the Prandtl equations and the Navier-Stokes equations is not
just mathematical (in analogy with proving global wellposedness/ decay versus finite-x blowup),
but is also of importance physically due to the possibility of boundary layer separation, which is a
large x phenomena (which was noted by Prandtl himself in his original 1904 paper).

We shall discuss first the large-x asymptotics at the level of the Prandtl equations,
, which govern [ﬂg, ] It turns out that there are two large-x regimes for [ ] dependmg
on the sign of the Euler pressure gradient:



1) Favorable pressure gradient, 9, PF < 0: [a?, 70
P

) exists globally in x, and becomes asymptoti-
cally self-similar,

(2) Unfavorable pressure gradient, 8, P% > 0, [ﬂg,z’)o

»] may form a finite-z singularity, known as
“separation”.

In this work, our choice of [1, 0] for the outer Euler flow guarantees that we are in setting (1), that
of a favorable pressure gradient.

This dichotomy above was introduced by Oleinik, [0S99], [Ol67], who established the first
mathematically rigorous results on the Cauchy problem - (1.16)). Indeed, Oleinik established
that solutions to - are locally (in z) well-posed in both regimes (1) and (2), and
globally well-posed in regime (1) (under suitable hypothesis on the datum, which we do not delve
into at this stage).

Now, we investigate what it means for [ag, Ug] to become asymptotically self-similar. In order to
describe this behavior more quantitatively, we need to introduce the Blasius solutions. Four years
after Prandtl’s seminal 1904 paper, H. Blasius introduced the (by now) famous “Blasius boundary
layer” in [Blas1908], which takes the following form

’x(’@xo:’zil 2f'(z) — f(z

[, v2°) = [f(2), N f(2) = f(2)], (1.27)
o Y

Pim (1.28)

=0, PO =0, fleo=1 TPy (1.29)

where above, [’ = 0,f(z) and z( is a free parameter. Physically, zo has the meaning that at
x = —uxg, the fluid interacts with the “leading edge” of, say, a plate (hence the singularity at
x = —xg). Our analysis will treat any fixed zyp > 0 (one can think, without loss of generality,
that g = 1). In fact, we will make the following notational convention which enables us to omit
rewriting xy repeatedly:

[y, U] = [}, D)) (1.30)

We emphasize that the choice of 1 above could be replaced with any positive number, without loss
of generality.

The Blasius solutions, [af°, v79] are distinguished solutions to the Prandtl equations in several
senses. First, physically, they have demonstrated remarkable agreement with experiment (see
[Sch00] for instance). Mathematically, their importance is two-fold. First, they are self-similar, and
second, they act as large-x attractors for the Prandtl dynamic. Indeed, a classical result of Serrin,
[Ser66], states:

lim |t — il e — O (1.31)
for a general class of solutions, [ﬂg, 172] of (L.15).

This was revisited by the first author in the work [Iy19], who established a refined description

of the above asymptotics, in the sense

189 — @l S o(1)(z)” 37, for any 0 < o, << 1, (1.32)

which is the essentially optimal decay rate from the point of view of regarding ﬂg as a parabolic
equation with one spatial dimension. Both the work of [Iy19] and the work of [Ser66] relied crucially



on the “von-Mise” change of variables, which interacts poorly with the Navier-Stokes equations.
The purpose of the present article is present an alternative proof of these results, using only energy
methods in the physical (z,y) coordinate system.

The case of (2) above (the setting of unfavorable pressure gradient) has been treated in the
work of [DMT5] as well as in the paper of [SWZ19] for the Prandtl equation with 9, P¥ > 0 (which
appears as a forcing term on the right-hand side of - in their setting). These results
establish the physically important phenomenon of separation, which occurs when 8ya2(m, 0)=20
for some x > 0, even though the datum starts out with the monotonicity ayug(o, 0) > 0.

1.3 Main Theorem

The theorem we prove here is

Theorem 1.1 (Construction of Approximate Solution). Fiz N1 = 400 and Ny = 200 in (1.12)).
Fix the leading order Euler flow to be

[uf, v, PRl == [1,0,0]. (1.33)
Assume the following pieces of initial data at {x = 0} are given for i =0,...,N1, and j = 1,...Ny,
uple=o =: Up(y), Vplamo =: VA(Y) (1.34)

where we make the following assumptions on the initial datum (1.34]):

(1) Fori =0, the boundary layer datum Ug(y) is in a neighborhood of Blasius, defined in ((1.27)).
More precisely, we will assume

1T (y) — @0, 9)) )™ oo < b, (1.35)

where 0 < §, << 1 is small relative to universal constants, where mq, £y, are large, explicitly
computable numbers. Assume also the difference Ug(y) — ux(0,y) satisfies generic parabolic
compatibility conditions at y = 0 as specified in Definition[A.5

(2) Fori=1,..,Ni, the boundary layer datum, U;(-) is sufficiently smooth and decays rapidly:
U5 w) ™ e S 1, (1.36)

where m;, {; are large, explicitly computable constants (for instance, we can take my = 10,000,
Ly = 10,000 and m;r1 = m; — 5, iv1 = £; — 5), and satisfies generic parabolic compatibility
conditions at y = 0 (described specifically in Definition .
(3) The Euler datum Vi(Y) satisfies generic elliptic compatibility conditions, which we define
specifically in Definition [A.3
Define o, = 10,%' Then for i =1,...,Ny, for M < m; and 2k + j < {;, the quantities [u, v}

P> Up
and [u%,ng] exist globally, x > 0, and the following estimates are valid

10505 (@0 — @) () M| oo S Bua) TR (1.37)
10505 (00 — 2.)(2) M| e S 6 () 3R (1.38)
(=) 0h i ul || oo < ()7 F 3t (1.39)



||<z>Makaﬂ'v;HLoo < (g)~ih—doe (1.40)
(Y Oy ) 0k vig | e < ()27, (1.41)
(Y 0y) 0k il | e S ()2 R (1.42)

The following estimates hold on the contributed forcing:
1030k Fr () 5597 5| + VE|| 008 G () 553 | < &5, (1.43)

Remark 1.2. Although we do not state it as part of our main construction, a consequence to the
our construction will be Lemmas [6.1]— which are “aggregated estimates”, that is, estimates on
the full approximate solution [u, ] which follow from those stated above in Theorem and by
taking summation according to ([1.12]).

1.4 Existing Literature

The boundary layer theory originated with Prandtl’s seminal 1904 paper, [Pr1904]. First, we
would like to emphasize that this paper presented the boundary layer theory in precisely the present
setting: for 2D, steady flows over a plate (at Y = 0). In addition, Prandtl’s original paper discussed
the physical importance of understanding for large x, due to the possibility of boundary layer
separation.

We will distinguish between two types of questions that are motivated by the ansatz,
First, there are questions regarding the description of the leading order boundary layer, [ug, vg]
and second, there are questions regarding the study of the O(1/2) remainder, which, equivalently,
amounts to questions regarding the validity of the asymptotic expansion .

A large part of the results surrounding the system ((1.15 - were already discussed in
Section [1.2] although the results discussed there were more concerned with the large z asymptotic
behav1or. We point the reader towards [DMI15] for a study of separation in the steady setting,
using modulation and blowup techniques. For local-in-x behavior, let us supplement the references
from Section with the results of [GI18b], which established higher regularity for -
through energy methods, and the recent work of [WZ19] which obtains global C* regularity using
maximum principle methods. One can think of the present article as a global version of the article
[GI18D).

We now discuss the validity of the ansatz ((1.6). The classical setting we consider here, with
the no-slip condition, was first treated, locally in the = variable by the works |GI18al] - [GI18b],
[GVM18], and the related work of [GI18c]. These works of [GI18a] - |[GI18b| are distinct from that
of [GVMI1§]| in the sense that the main concern of [GI18al - [GI18b] are z-dependent boundary layer
profiles, and in particular addresses the classical Blasius solution. On the other hand, the work of
[GVM18] is mainly concerned with shear solutions (U(y),0) to the forced Prandtl equations (shears
flows are not solutions to the homogeneous Prandtl equations), which allows for Fourier analysis
in the x variable. Both of these works are local-in-x results, which can demonstrate the validity of
expansion for 0 < a < L, where L << 1 is small (but of course, fixed relative to the viscosity
). We also mention the relatively recent work of [GZ20], which has generalized the work of [GI18al
- [GI18D] to the case of Euler flows which are not shear for 0 < x < L << 1.

We also point the reader towards the works |[GN14], [Iy15], [Iy16a] - [Iy16c], and [Iy17]. All of
these works are under the assumption of a moving boundary at {Y = 0}, which while they face
the difficulty of having a transition from Y = 0 to Y = oo, crucially eliminate the degeneracy of ﬂg
at {Y = 0}, which is a major difficulty posed by the boundary layer theory. The work of [Iy16a] -



[Iy16¢] is of relevance to this paper, as the question of global in x stability was considered (again,
under the assumption of a moving {Y = 0} boundary, which significantly simplifies matters).

For unsteady flows, there is also a large literature studying expansions of the type . We
refrain from discussing this at too much length because the unsteady setting is quite different from
the steady setting. Rather, we point the reader to (an incomplete) list of references. First, in the
analyticity setting, for small time, the seminal works of [SC98|, [SC98] establish the stability of
expansions (1.12)). This was extended to the Gevrey setting in [GVMMI6], [GVMM?20]. The work
of [Mael4] establishes stability under the assumption of the initial vorticity being supported away
from the boundary. The reader should also see the related works [As91], [LXY17], [MT0g|, [TW02],
IWWZ17].

When the regularity setting goes from analytic/ Gevrey to Sobolev, there have also been several
works in the opposite direction, which demonstrate, again in the unsteady setting, that expansion
of the type should not be expected. A few works in this direction are [G00], [GGN15a],
[GGN15Db], [GGN15¢]|, [GNI11], as well as the remarkable series of recent works of |[GrNgl7a],
[GrNg17h], |GrNgl8] which settle the question and establish invalidity in Sobolev spaces of ex-
pansions of the type . The related question of L? (in space) convergence of Navier-Stokes
flows to Euler has been investigated by many authors, for instance in [CEIV17], [CKV15], [CV18§],
[Ka84], [Mas98], and [Sul2].

There is again the related matter of wellposedness of the unsteady Prandtl equation. This
investigation was initiated by [OS99], who obtained global in time solutions on [0, L] x R for
L << 1 and local in time solutions for any L < oo, under the crucial monotonicity assumption
Oyuli—o > 0. The L << 1 was removed by [XZ04] who obtained global in time weak solutions
for any L < oco. These works relied upon the Crocco transform, which is only available under
the monotonicity condition. Also under the monotonicity condition, but without using the Crocco
transform, [AWXY15] and [MW15] obtained local in time existence. [AWXYT5| introduced a
Nash-Moser type iterative scheme, whereas [MW15] introduced a good unknown which enjoys an
extra cancellation and obeys good energy estimates. The related work of [KMVWI4| removes
monotonicity and replaces it with multiple monotonicity regions.

Without monotonicity of the datum, the wellposedness results are largely in the analytic or
Gevrey setting. Indeed, [DiIGV18|, [GVM13|, [IV16], [KV13], [LCS03], [LMY20], [SCI8] - [SCIg],
[IVI19] are some results in this direction. Without assuming monotonicity, in Sobolev spaces,
the unsteady Prandtl equations are, in general, illposed: [GVDI10], [GVNI2]. Finite time blowup
results have also been obtained in [EE9T7], [KVW15], [HHO3|]. Moreover, the issue of boundary layer
separation in the unsteady setting has been tackled by the series of works [CGMIS8], [CGIM1S],
[CGM19| using modulation and blowup techniques.

The above discussion is not comprehensive, and we have elected to provide a more in-depth of
the steady theory due to its relevance to the present paper. We refer to the review articles, [E00],
[TeT7] and references therein for a more complete review of other aspects of the boundary layer
theory.

1.5 Notational Conventions

We first define (in contrast with the typical bracket notation) (z) := 1+ x. We also define the
quantity

z = = (1.44)




due to our choice that g = 1 (which we are again making without loss of generality). The cut-off
function x(-) : Ry — R will be reserved for a particular decreasing function, 0 < y < 1, satisfying

lfor0<2z2<1
) = =25 1.45
x(z) {Ofor2§z<oo ( )

Regarding norms, we define for functions u(zx,y),

1
Jull o= oz, = ( [ dedy)”, Jullai= sup_fuo.g)l (1.46)
(zy)eQ

We will often need to consider “slices”, whose norms we denote in the following manner

1

lJullrz = (/u(%y)pdy)p- (1.47)

We use the notation a < b to mean a < Cb for a constant C, which is independent of the parameters
€,0. We define the following scaled differential operators

7]
Vei={oa, |, Ac:=08yy+eds. (1.48)

NG
For derivatives, we will use both 0, f and f, to mean the same thing. For integrals, we use the
notation [ f := fo y)dy, that is, it is a one-dimensional integral, and moreover, we will omit

repeating dy. These conventlons are taken unless otherwise specified (by appending a dy or a dx),
which we sometimes need to do. We will often use the parameter d to be a generic small parameter,
that can change in various instances. The constant Cs will refer to a number that may grow to oo
as § J 0.

1.6 Overview of Strategy

The first step we take is to insert the proposed expansion of our approximate solution, ,
into the rescaled Navier-Stokes equations - . The multiscale nature of the alternating
Euler-Prandtl terms in requires us to carefully group terms based on both (1) order of e
and (2) the scale on which they vary y = L% versus Y. This produces a sequence of parabolic

systems for the boundary layer terms, - for the nonlinear Prandtl layer (i = 0),
- for the linearized Prandtl layers (i = 1,...,Ny). This procedure also produces
elliptic equations for each of the Euler terms, (in fact these are harmomc Our analysis is
concerned with analyzing the boundary layer equations, (A.37] and m

On one hand, one observes from - that the system governing all of the boundary
layers (including the nonlinear Prandtl layer after subtracting out the Blasius flow) is the linearized
system displayed below, which we write in abstract form:

Uyt + udyiip + VpOyu + V9ytip — Ogu = F, (1.49a)

/ O, (1.49b)

u|z=0 = uo(y), uly—0 = g(x), Uly—co = 0. (1.49c¢)

Above, [up,vp| stands for a background boundary layer profile. In almost all cases, we will take

lup,vB] = [u), vy]. However, in a few cases, we also want to be able to take just the Blasius flow
[up,vp] = [tx, U], SO we work in this abstract framework to unify these treatments.
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On the other hand, one observes that the precise form of the forcing F' and the boundary
condition g(z) in the abstract problem ((1.49a)) — (1.49¢c) (which play the role of F;,SZ) in (A.46),
which itself is defined in (A.45)), and up(z) in (A.48))) depends in a delicate manner on the lower
order terms in the expansion for ¢ = 1,..., N1. Therefore, the core of our strategy involves
propagating an induction which establishes the bounds - iteratively: we prove
— ({1.38]) which initiates the induction. Then, fixing ¢ > 1, assuming the bounds - hold
for 0,...,7 — 1, we obtain strong enough bounds on (1.49al) — (1.49¢|) to close the induction. We
point the reader to estimates - , which quantifies precisely (in terms of regularity, x
decay, and z decay) how the inductive bounds on 0, ...,i—1 feed into the forcing and the boundary
condition for the ¢’th boundary layer.

To close the entire argument, given precise estimates on F' and g(x), which we now can regard
as inputs to (1.49al) — (1.49¢), we need to establish strong enough bounds on the corresponding
solution to the linearized problem, [u, v]. This is achieved in Section [2|through a sequence of coupled
weighted energy estimates. These estimates rely on several ingredients: introducing a “von-Mise”
good unknown, (2.7, introducing several delicate weighted norms, — (2.20), and a cascade
of bounds obtained through carefully chosen multipliers (Lemmas - which enable us to
control these norms on the solution. All the while, we need to strike a delicate balance between
the inductively available estimates on the inputs F, g(z) with controlling a strong enough norm to
propagate the inductive hypothesis.

As a final remark, let us discuss the organization of the article. As we have mentioned above,
Appendix [A]is devoted to carefully performing the multiscale analysis that is required in order to
collect the equations governing the various terms appearing in . We also incidentally obtain
estimates - , which are straightforward consequences of the harmonicity in .
Section [2| studies the abstract problem (|1.49al) — ((1.49¢|). In fact, we take g(x) = 0; every instance
in which we invoke the estimates from Section [2| we perform homogenizations to translate the
boundary condition g(x) into the forcing. In Section |3, we apply the results of Section [2[ to the
nonlinear Prandtl layer, thereby establishing the i = 0 case, - of the main result. In
Section [4] we study the linearized Prandtl layers, ¢ = 1,..., N7 — 1 and close the bounds -
. Section [5|is devoted to studying the final Prandtl layer, ¢ = Ny, which is largely similar to
the i = 1,... N7 — 1 case but requires an additional cutoff argument at y = oo, which contributes
extra error terms that need to be controlled carefully. Finally, Section [f]is devoted to accumulating
“aggregated estimates” on the complete background profiles, [u,v], which can be thought of as a
consequence of the estimates of the individual components — and the summation in
(11.12)).

2 Abstract Linearized Prandtl Equations

2.1 Formulation and Good Variables

In this section, we analyze an abstract formulation of the linearized Prandtl equations against
a background vector-field [up, vp]:

UBUy + 0, UB + VBOyU + VO UB — Uyy = F, (2.1

)

U= — /y Oz u, (2.2)
0

)

)

U|y:0 = 77|y=0 = u|y=oo =0,

u‘zzO = UO(y)

11



In this article, we will be making two choices of the background field: either [up,vp] := [u), 7)) =
[, ] + 6. [0, 00] or [ap,Up] := [tx,?s]. To thus unify the treatment of these two choices, we

introduce a parameter d,, which we will select to either take the value . in the first case or 0 in
the second case. Subsequently, we define

0
D>

o0 (2.5)

[, 5] = [, ] + 810, 87].

We note that importantly, [up, vp] will be solutions to the nonlinear, homogeneous, Prandtl equa-
tions:

u0;up + @Bayﬂg — 851]3 =0. (2.6)

Let now % be the associated stream function to the unknowns [u,7]. We introduce the good
variables,
1 UBz

= — = = — — @ = — = — (v
q:= a5’ U :=0yq 5 (u g V), \7 +q 25 (v+ 5 V). (2.7)

It will be necessary to invert the above transformations, that is go from (U,V) +— (u,v). To do
this, we record the following:

u = 0yt = Oy{tupq} = upU + upyg, (2.8a
v = =00 = —0,{upq} = upV — up.q. (2.8b)
Inserting now (2.8a)) — ([2.8b)) into the left-hand side of (2.1)) yields
UBUgz + UBLU + ﬁBayu + T}ayﬂB — Uyy
:ﬂBC{)I{fLBU + ﬂByq} + an(aBU + ﬂByq) + ﬁBay{ﬁBU + ﬂByq} + fLBy(fLBV — @qu) — Uyy
=|up|*U, + 2(aplips + 0BUBy)U + upTaUy, + (iBUBey + UBUByy)q — Uyy
=T[U] + tpyyyq — uyy,

where the transport operator 7 [U] is defined by
T[U] = (’EB)QUI + Q_LB’I_}BUy + Q’EByyU. (2.9)

We note that the Prandtl equation, (2.6)), has been invoked on @ g to go from the third to the fourth
line above. To summarize, we generate the following identity

TIU] + yyyq — d5u = F. (2.10)
As our estimates will be in terms of the good variables introduced above, we set the notation
(O*U)o(y) := 0FU| = and U .= 9FU. (2.11)

As a final notational point, since our definition of U depends on the choice of normalizing back-
ground flow, 4 p, when it is not clear from context we will emphasize this dependance by introducing
the notation

Ulis) = = (u— i‘_ﬁi}’w. (2.12)

However, in the vast majority of cases, this will be clear from context and we will thus omit the
dependence of upg.

12



2.2 Norms and Embeddings
2.2.1 Norms on the Solutions

First, we introduce some parameters which will dictate regularity and z-decay that we control
in our energy norms. As such, we fix

lmar = index of y regularity

L
Emae = index of x regularity = | —=- |,

Mumaz = index of z decay.

Each time we invoke the estimates we are about to develop in Sections [3 [d we will specify the
choice of these regularity parameters, ¢4z, Kmazs Mmaz-

We will perform parabolic-type energy estimates on . Our energies will capture the decay
claimed in (L.39). We will define the following spaces (recall the definition of U () from (2-11)):

1
1Ul1x0 :=lapU W (@) || oo 12 + oullapU™ (@) =2 77 || + VAU ()"
+ V@B UM ly=o (@)~ | 2, (2.13)
1Ulx,,. =laBUE (@) o 12 + a0 S @) =277 27| 4 [VapUF @)=+ 2m), (2.14)

for m =1,...,mpmq, and for k£ =0, .., knas + 1. Define also

L 6. m = L o m
U x =[|apd, UM (@) 277 2" | + |[VapUS (@) 277 2" | oo 12, (2.15)

k+%,m
for m =0, ..., Mmaz, kK =0, ..., kmaz- Finally, define
— T x l_o'*
101l , =508 @ >k+2 losors + IVEBUS ()3

+ 1/, U (@) 27 |yl 2, (2.16)
- 1 —Ox m l—O'ak m
iy, .. =|lapU (z >k+ lLge 2 + VAU (@) 27727, (2.17)

form=1,..,mpe: and k =0, ..., kynaz.
It is convenient also to introduce the following notation, which can compactify sums of norms

k—1
o PO HUHXM+ZO(1UHXW+||U||X Lo AP P
J
k
10,y o= D (101x,,0 + W,y + WU, )

Jj=0

On one occasion we will need to consider “finite”-z versions of the norms Xy, o, X m (to run a
Gronwall-type argument precisely). We give the following notation for this. Fix 0 < X, < cc.

_ — _ _1_
U510, = sup_ a0 ) + a0 0,0, 15
STS Ak

+ ||vﬂBUg,(,k) (@), 2(0,X,)L2 T v UByU () ’y o(z U*||L§(O,X*)L§a (2.18)

_ 1
Ul Xk x. = S lapU ™ (@)E 2| 2 + [apU™ (@) 277 2" | 2 0,x. 12
ST Ax
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+ IVapU (@) 2| L2 0., 25 (2.19)

As a final notational point, as the norms in (2.13]) — (2.17)) depend on the choice of background
flow, up, we will on occasion choose to emphasize this dependance through the notation:

Ul x, ofam) =110BU ) (@) ||y 12 + ou[apU® ()27
+ VB U ly=o ()"~ | 2, (2:20)

and so on. However, in the vast majority of cases, it will be clear from context and we will suppress
the dependence on upg.

5 ?Sk) <$>k—0* ||

2.2.2 Norms on the Background

In addition to norms on the actual solution (introduced above), we also introduce norms in
which we keep track of the background, [ap,vg]. Define

- J_
139, Dl = Y S 92050 (a) 1+ 220 ()10 g (2.21)
k<10 5<20
-0 ~ ko~ k+1 20,
189, Dllxyy, = > > sup [|03OFa0(x) TH+3720 (2)10]| o (2.22)
k<10 j<20 0ST=Xx

A few of our forthcoming estimates (for instance, (2.26)), (4.23)), (2.32)), (2.33)), are valid under the
following hypothesis on the background [ug, vp]:

12, 801y < 02a2. (2.23)

Note that we will explicitly say this in the hypothesis of each such lemma. Note also that we

interpret (2.23)) as a hypothesis on [up,v5] due to (2.5).
On the other hand, certain of our other estimates (for instance: Lemma Lemma Lemma
hold only under stronger assumptions on the background. Specifically, we define:

Definition 2.1. We refer to the following as our “Strong Inductive Estimate”:
mo 9k 97 (- - 3 ~1k—ito, ;
1{2)"° 0,0} (tip — Ux)||Lge S ()" 777277, 2k 4 j < linax (2.24)
. 1 j
1(2)™0 0807 (v — 0.) |l Lee S SZ(x) 1R RO 9k 4§ < Ll (2.25)
Each time we assume (2.24]) — (2.25)) as a hypothesis, we will explicitly state so.
yp ) P Yy

2.2.3 Embeddings

We state now the following Hardy-type inequality:

Lemma 2.2. Let [up,0p] be as in (2.5), and assume that [u vp] satisfies (2.23). For 0 <y << 1,
and for any function f € H}

_ 1 1.
||f||i5 SHlVupfy(z)? H%g + ?HUBfH%g- (2.26)
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Proof. We square the left-hand side and localize the integral based on z via

/ Py = / P dy+ / P =3 dy (2.27)

For the localized component, we integrate by parts in y via

[ %) dy = JowmrCay=- [ 2f f(E)dy = - / LGy )

We estimate each of these terms via
z _ -
| / vE IO dy] S Wl Vavamyillo < ofIE; + CoelVashlly.  (229)

For the far-field term, we estimate again via

z 1 z 1.
[ Pa=xCnan =1 [ glasl 0 - E)al S lasflt (230
We have thus obtained
= c,
113 < 8111 + CovallVamty 3 + ~sllan s, (231

and the desired result follows from taking ¢ small relative to universal constants and absorbing to
the left-hand side. O

2.3 Energy Estimates

We recall that the equations (4.1)), (4.10)), and (2.10|) are all equivalent. We will now perform
energy estimates in the formulation (2.10). We recall the notational convention used in this section

that, when unspecified, [ f:= [ fdy.

Lemma 2.3. Let [up,vg| be as in (2.5)), and assume that [u Ug satisfies (2.23)). Let U be a
solution to (2.10). Then the following estzmates are valid

U1 o Sllasle=oUoll7s + | F(x )22, (2.32)
U1, SIUN,,, s + la5le=oUoy™ |22 + I1F{x Y222, (2.33)
for 1 <m < mpqz.

Proof. We multiply by U{x)~27*22™ for m = 0, ..., Mmaz, which produces the following identity

/ TIUNU (z) =27 22" + / (~02U + apyyyq)U (x) 222" / FOU(z)~2-22m (2.34)

We first analyze the transport terms, which are energetic:

10
/T[U]U<$>_QU*ZQm dy :?3: / |ap|?U?(x) 727 2°™ + (0, + %) /U2BU2<x>_2”*_1z2m
1

~3 /(uBqu + EBﬂBy)U2<$>72o*z2m — m/quBU2<x>2”*%zzm1
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+/2ﬂ3yyU2<x>_2o*z2m

/|— 2U%(z) =20+ 2™ 4 (g, + /|UB’ U2 (g) =201 2m

+2/uByyU2( ) 720 5 2m m/quBU2< )20 3 22m -1 (2.35)
where we have invoked the nonlinear Prandtl equation satisfied by the background, [ﬂg, 62}. The

first two terms are energetic contributions, whereas the third term will be cancelled out below, see
(2.40)). For the fourth term, we estimate after integration over x via

[ [ stz S fapv e asU @, (230)
the former term has been controlled inductively by [|U]||x; ;-

We next analyze the diffusive term. Due to boundary contributions which exist only when
m = 0, it is convenient to first display the m = 0 calculation, which gives

- / Oyul (x) 27 dy =uy U (x,0)(x) > + / uyUy () =27 dy
—0,(@nU + s, @)U (,0)(2) 2% + [ 8,(as + a3, 0)U, o) " dy
=2up,U* (@, 0){z) " + / apUy(x) 27 dy + 2 / iy UU, (x) 2+ dy
* /aByquy<$>_20* dy
—um, U, 0)(a) " + [ anU ()20 2 [ U )
* % / Wy () (2.37)

and the contribution from the g term is

i S B .
/uByyqu<x> = 2/“Byyyyq2<f'3> 2o (2.38)

This term cancels exactly the fourth term from (2.37)). The first term from ([2.37)) is positive due to

> (2)73, (2.39)

l\’)\»—t

iy (,0) = Oyita(,0) + 8,010, (2, 0) 2 ()2 — 62.(x)”

where we have invoked the bootstrap (2.23)).

The third term from (2.37) combines with the third term from ({2.35)), which contributes the
following damping term

1 1 1
—5 Jamrrw e = =5 [, 0@ = 5 @, - )V, o

and we estimate the latter contribution after integration in = via

9 Lo _9 L - _1
/ / @y — Ty U (@)% 6%, |apU ()5 |2 + 65|1v/apU, ()~ 16 |2,
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where we have used the estimate ([1.37]), and the Hardy type inequality ([2.26]). Due to the smallness
of 0, these terms are absorbed into the left-hand side.
Next, we treat the case when m =1, ..., mypq,, Wwhich gives

—/65uU(x>_20*z2m :/quy<w)_2”*z2m+2m/quz2m_1<x>_2‘7*—§
= —20 _ 9% 1 [ 9
:/UBU?J2<‘T> - /2uByyU2<$> 7 2/uByyyy(12<x> 20 2m
* 2m/a3yyyq2<x>_20*_§22m_l —m(2m — 1) /EBUQsz_2<x>_2U*_1

+m(2m —1) /aByyq2<x>_2a*_lz2m_2, (2.41)

and the contribution from the ¢ term is
_ . [ _ _ 99,1 om_
/uByyqu<x> 204 Z2m — _ 5 /uByyyyq2 <.T> 20*Z2m _ m/uByyyq2<x> 204 2ZQm 1’ (242)

The first term on the right-hand side of (2.42)) cancels the third term from (2.41]). The remaining
terms from (2.41)) and (2.42)) are:

Tong = m/uByyqu(@%*éZle +m(2m — 1) /uByqu(x>20*lz2m2 (2.43)

For the m = 0 case, Ip 4 = 0, and therefore we do not need to estimate this term to prove (2.32).
Assume now m > 1. We can estimate the first term above via

_ — _1 — _ — _
!/UByyyq2<x> B P L Rl 17 U7 ()12
SllasUl[7s ()71 7% + [VapUy | 2z () 7>,

both of which are integrable according to the Xy norm, defined in , and which has been
controlled inductively for m > 1. The second term from Z,,, is estimated in a nearly identical
manner, when m > 2.

Finally, upon integrating in x, we estimate the forcing terms via

| / / FU(z)~2 2™ dyda| S | Fiayd o =m0 (z) 472 (2.44)

To conclude the proof of the lemma, we integrate over z € [0, Xo] and then take the supremum
over Xg. Upon doing so, the first term from yields the first quantity in , the second
term from yields the second quantity in , the first and second terms from
give the third and fourth terms from , respectively. Upon using the elementary inequality

supy, | fOXO Jgdydz| < [ [|g|dydz, we appeal to the estimation of the error terms above. O

It is useful for us to state a “finite-x” version of the above estimate, which will be useful on one
occasion in the future. We formulate this as follows:

Corollary 2.1. Let [up,vp] be as in [2.5), and assume that [a),0))] satisfies (2.23). Fiz any
X, > 0. Assume the bootstrap bound

j _1
sup > Y lokagin (x, )| ()i 2R <62 (2.45)

0<e=Xs p90j<20
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Then
U1y 0 x. Shtsla=olUolgs + [IF(x )T 220, X.)L2: (2.46)
1U....x, SIUN, s + la5le=0Uoy™ 22 + | F () “ 2 2 0,x0 22 (2.47)
for 1 <m < mpmaq-
Proof. This follows upon repeating the proof of the previous lemma. O
We now estimate the X Im scale of norms, defined in .

Lemma 2.4. Assume the inductive hypotheses (2.24) — (2.25) . Let U be a solution to (2.10)).
Then the following estimates are valid for m =1, ..., Mgz, and any 0 < § << 1,

1_ =
0%, , SCsllUIIXq, + 81U, + 0IUIS, |+ [1F(@)2 =7 * + [Vapd,Uollz,, (2.48)
2 2 1
0%,  sSlvlk,. + ||U||A2><1 L HOIUIA,, +OIUIR, |+ CsllU,,
m ,m 0
2 3
[ () 222 + |y o yUoy™ 122 (2.49)
Proof. We apply the multiplier Uy (x)! 72922 for m = 0, ..., Mmaz, Which generates the identity
/7- 1 204 2m dy /82UU >1 204 2m dy
+/a3yyqux<m>1‘2"*z2m dy = /F(l)Um<x>1_2g*z2m dy. (2.50)
We will first analyze those terms coming from the first integral above in (2.50). We have
/7— 1 204 2m /|UB| U2< >1 204 2m + /ﬂB,(—)gUyUx<x>1—20*z2m
+ / 20,y UU, (z)1 272%™, (2.51)

The first term from (2.51)) is a positive contribution to the left-hand side. The second term, we
estimate via

_ — 204 _2m UB 1 = —Ox M — 1 _6oom
|/UBUBUyUx<x>1 20052 |§”%<$>2HOOHVUBUy<x> 2" pzllupUe(@)2™7 2" |12, (2.52)

where we have invoked the decay estimate on vp from (A.40) and (2.25)). For the third term from
(2.51]), we obtain

up _1_ _ 1_
| /UByyUU (@) 722 < | yy( Mool () =277 2" || L2 [upUs ()2~ 2™ | 2, (2.53)
where we have invoked the decay estimate on ﬁ%yy which results from combining (A.39) and (2.24]).
We now address the second term, containing —dy,u, from (2.50). For this, it is more convenient

to split into the case when m = 0 and when m > 1. We first treat the case when m = 0, in which
case we generate the following identity

~ / B2l ()27 = / g Usy (2)1727 dy + 1w, U (2) 1727 (1, 0). (2.54)
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We first treat the boundary contribution from above by expanding

Uy () 727 (2,0) =215, UU, (x)' 27" (,0)
=0, (up,U*(2)'727*) — tpgy U (2) 727 — (1 — 20,)up,U?(z) 27",  (2.55)

which, upon further integrating in z, is bounded above by HUH%(O .
For the first integral in (2.54)), we have

/quxy<x>1—2"* = /(aBUy + 2ty U + pyyq) Uy (z) 27" (2.56)
We treat each of the three terms above individually. The first term gives
_ 9% O [ _ 9 1 [ 9% 1—-20, [_ 9y
/uBUyny<x>1 20 = Q/UBU3<33>1 20% _ 2/u3xU5(x>1 20% _ 2/uBUy2(x> 20,
(2.57)

The first term above is energetic, while the third is clearly controlled by ||U ||§(0 , upon integrating
in x. We estimate the second term, after integration in x, via

| / / U222 S 1 22 (@)oo VAR ) 12 S 10 o, (2.58)

Bx
up
where we have invoked the decay estimate (A.39)) as well as (2.24).

For the second term from ([2.56|), we integrate by parts in y which gives

/ 2y Ul (x)' 727 = — / Uy UU, (x)! 727 — / Uy UyUy () 27 — g, UU,(z)' %7 (,0).
(2.59)

The first term above is identical to (2.53)), while the boundary contribution above is identical to
(2.55)). For the second term, we localize based on the value of z. First, when z > 1, we have (again
integrating in z)

_ —20, — 1 = —0x || |15 1-0,
[ [ 4,007 (1 x| Slamy ) o |VanU, (@) aaUs ) |
ngUHXo,OHU”X%’Ov (260)
where we have used that z > 1 to insert factors of up due to the boundedness of ﬂfgl when z > 1,

as well as the pointwise decay of up, from (A.39) and (2.24]). For the case when z < 1, we need to
invoke the norms Y1 ,, X1 0. Indeed, we estimate (again after integration in x)
2 b

'/ / Uy U () 727X ()] S 3y ()2 oo | Uy (@)~ 1T ()2~

—Ox 57 lfo'* 57 lfa'* 57 —Ox
<(Cs, [IVapUy ()| + 81V apUyy () 2= ) (CsyllapUs(z) 2~ || + b2l VapUsy () ~71)
<Gs|UII%,, +dllUl%,  +dlUl%,, +5HUH§V%’O- (2.61)

0

Nl

For the third term from (2.56)), we again integrate by parts in y which gives
/“Byquxy<x>120* =- /“Byyqux<x>12U* - /“ByyUUx<x>120*a (2.62)
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where the first term above cancels the third term from , and the second term above is identical
to (12.53).

We now handle the case when m = 1, ..., Myq.. Here, we do not acquire boundary contributions
at y = 0 as in the m = 0 case, but we generate commutators in z.

—/uyyUl«(@l_Q”*sz :/qumy@:)l_QU* —|—2m/qu5E<m>é_20*z2m_1
z/uBUway@:)lQU*ZQm—i-/QUByUny(:@l2‘7*22’"
+/ﬂ3yqumy(x>1_2U*z2m+2m/ﬁBUyUz@);_QU*sz_l
+4m/ﬂByUUx<m>;_2o*z2m_1 +2m/ﬂ3yqux<x>;_2“*z2m_l. (2.63)
For the first term in , we have

/ﬁBUyUmy<x>1_20*22m _ % /EBU5<$>1_20*2’2m _ /ﬂBny2<I‘>1_20*ZQm + T;l/ﬂBUy2<x>_2a*Z2m.
(2.64)

The third term from (2.64) is clearly bounded by [|U]%, by definition. We estimate the middle
term from (2.64)), upon integration over z, via

_ — 20, UBg ~ —0x
| / / U )20 S| 2 o) AU ()77 S U B, (2:69)

where we have invoked the decay estimate from (A.39).
For the second term from ([2.63]), we have

/ 203y UUyy (z)1 727 22" = — / 20y, UU, (z)1 727 22" — / 201, UU, ()2~ 2% z2m1
2 1—204 2m
- / UByUyUx<l'> AR (266)
Above, the first two terms are essentially estimated in an identical manner to (2.53)), whereas the

third term is estimated in an identical manner to (2.60) - (2.61)).
For the third term from (2.63]), we have

/ﬂByquxy<x>1_2a*z2m = /ﬂByyqum<l’>1_2U*Z2m — /’L_LByyUUx<:L‘>1_20*z2m

The first term above cancels the contribution from the third term from (2.50)). The second term
above is estimated in an identical manner to (2.53). For the third term above, we estimate via

= —204 ,2m = m— L q —1 g, L o,
|//%ByUgﬂfov)1 27| Sllpyy#® 1.?J<»”C>2||oo||§<93> 277U ()2~
- L o
SIU @) =277 || U () >~ |- (2.68)

We finally have the forcing term,

—20% 2m L. m 10, m
| / / FU, ()20 22| < |[F ()37 2 || Unl) 30 2. (2.69)
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To conclude the proof of the lemma, we integrate (2.50) over x € [0, Xy] and then take the supre-
mum over Xy. Upon doing so, the first term from (2.51)) and the first term from (2.57)) give the
positive quantities we need to control, according to (2.15). Upon using the elementary inequality

supy, | fOXO Jgdydz| < [ [|g]dydz, we appeal to the estimation of the error terms above. O

Lemma 2.5. Assume the inductive hypotheses (2.24) — (2.25)). Let U be a solution to (2.10). Then
the following estimates are valid for m =1, ..., Mmaz

||U||%/%70 SCslUI, , + 5HU||A2><%7O + 10y F ()= |* + a0, Vol 22, (2.70)
IIUIIQY%M S, + 5||U|!§(%7m +CsllUl%g + U1,y + 18y F ()= 2™?

+ H@B|z:03yonm|I%5- (2.71)

Proof. We apply the multiplier Uy<:1:>1_2"*z2m, for m =0, ..., Mynaz, to the vorticity formulation of
the equation, which produces

/a 7— 1 204 2m /aSUU >1 204 2m
+/ﬁy(ﬂByyyq)Uy<az>l_2“*22m = /8yFUy<:L‘>1_2(’*sz. (2.72)

We first address the terms arising from the 9,7 [U] contribution from (2.72)). Using the definition
of T[U] from ({2.9), this generates

/a 7— 1 204 2m /‘UB‘ nyU< >1 204 2m+2/UBUByU U< >1 204 2m
+/(EB?JT)B+ﬁByaB)Uy2<x>l_2a*22m+/’L_LBl_)BUyyUy<x>1_2‘7*22m
+/'ELByyyUUy<$>1_2U*Z2m+/ﬂByyUy2<$>1_20*22m~ (2‘73)

The first term from (2.73)) is energetic, and we rewrite it as

0
/IUBPUIyUy@)lQU*ZQm _;/‘UB‘2U5<$>1QU*ZQm—/UBquU5<w>1QJ*sz

1 — 20, _
—(;“”/WBFU;(@ 2. ,2m. (2.74)

We estimate the latter two quantities above upon integrating in x by ||U ||§(0 _, upon invoking the
decay |tup;| < (x)~!, according to (A.39) and (2.24). The same can be said for the third and sixth
terms from (2.73)). For the second term from ([2.73)), we estimate via

//UBUByU Uy ()27 22| S|ty ()2 ||oo | T5Ua () 27 2| [[U, (@)~ 2™

<o|UN%, +CsllUl,,,- (2.75)

20

For the fourth term from ([2.73]), we estimate via
|//UB“BUyyU (@) =27 22 S5 ()2 oo |V ABUyy (2) 27 2™ oo | Uy () =7 2|
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<Gs||lU%,... +<5||U||2y%7m- (2.76)
Finally, for the fifth term from (2.73)), we estimate via

— 1-204 2m| < || 2m 2 U -1 5, U —0x

| UpyyyUUy(z) 27" Sllapyyyz™™ () 2 [[|[U () "2~ |[|[Uy{z) =
<Cs|lUl%,, +3IUNT, - (2.77)

L
For the second term from (2.72)), we integrate by parts once in y to obtain
—/8Squ<$>1_2g*z2m :/uyyUyy<w>1_2U*z2m +2m/uyyUy<x>é_2”*zzm_1

+ =0ty Uy (2) 727 (2, 0). (2.78)

We first handle the boundary contribution from above, after integration in z

/ Uy U,y () 727 (2,0) dx = / 3upy,U, (x,0)(x)' 27 da. (2.79)
We next address the main term from , for which we get
/“yyUyy@)l_za*ng :/QBUyZy<x>1_2U*Z2m+/3aByyUUyy<x>1_20*22m
+/BUByUyUyy<95>1_2U*Z2m+/UByyquyy<x>1_20*22m
= / upUp, (x)! 272%™ 4 / 3t gy UUyy () 272%™
— / gﬂByyUy2<x)1_2°*z2m — /3mﬂByUy2<x>é_2‘7*22m_l
= Bumoy i, Uy, 0P (@) 7 4 [ U (2) 72022 (280
We now handle the middle term from (2.78)), which produces

2m/uyyUy<:E>§_2“*z2m_1 :2m/ﬂBUyyUy<1:>§_20*z2m_1 —I—Gm/ﬂByyUUy(:E)é_Q”*sz_l

+6m/uByU;<x>%2U*22m1 +2m/uByyquy<x>é2U*22m1.
(2.81)
Finally, we handle the third term from (2.72)), which produces

195, 9m-
/8y(UByny)Uy<$>1_20*22m = _/“Byyquyy<95>1_2U*Z2m _Qm/uByyquy<93>2 20w g2m=l,
(2.82)

These two contributions cancel out the last terms from (2.80) and (2.81]). The remaining error
terms from (2.80)) - (2.81)) are all easily seen to be controlled by ||U ||§(O +U ||%(0 .

We now treat the terms from the forcing, F (), In the case when m = 0, we have upon integration
over x,

I//f?yFUy<w>12"*zm| S 10y F () =72 || Uy () =7 2™].
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To conclude the proof of the lemma, we integrate the identity over z € [0, Xo] and then take
the supremum over Xj3. Upon doing so, the first term from , the term and the fifth
term from , and the first term from give the positive quantities we need to control,
according to (2.16). Upon using the elementary inequality supy, | fOXO Jgdydz| < [ [|g|dydz,
we appeal to the estimation of the error terms above. O

We can successively differentiate the system in 9, and re-apply Lemmas [2.5] with minor

modifications (estimating lower order commutators) in order to give

Lemma 2.6. Assume the inductive hypotheses (2.24) — (2.25). Let U be a solution to (2.10). Fiz
k<kmar+ 1,0 <m < mpae- For any 0 < § << 1, the following estimates are valid:

1011, SIUI,,._, + llas0sUsy™|I; + |08 F ()20 22 + Wlx,, s, (2.83)
||U|!A2xk+%’m SIUI%,.,., + |\U||A2><k+%ym1 +OlU %o + 5||U||%/k+%O
+ [0 F ()i 2 4 VB, Uoy™ 72 + Cs Ul (2.84)
HU||§/H%W SIUl%,.,, + 5“U”§%+%,m HIUX, oy + 1050, F(a) 122
+ HﬂBayaﬁonmH%; + Cs[|U] 2y - (2.85)

3 Nonlinear Prandtl Layer, i = 0

We will establish the following proposition on the nonlinear Prandtl equations.

Proposition 3.1. Assume the data Ug(y) satisfies (1.35)). Let £y be as in (1.35)). Then there exists
a unique global solution to the Prandtl system which converges asymptotically to Blasius:

10509 (w0 — @) ()™ || e < Sula) 3R 5 o (3.1)
10£02 (80 — 5.) (=)0 | e S Bufar) TR, (3.2)

for 2k + 5 < {y.

In order to establish this proposition, we proceed in a few steps. We define the rescaled pertur-
bations

) = Uy + 0,7, Ty = Uy + 6,7,

which upon immediately relabeling ag — u and 172 — v, satisfy the following system:

Us Opt 4+ UOp Uy + Vs Oyt + U0y Ty — Uyy = 0, Q(u, D), (3.3)
with initial datum
1 _
lom = 5 (O0(y) — 5.(0,1)) = uols), (3.4

and quadratic nonlinearity —Q(u,?) := u0,u + v0yu. We note that the initial datum uo(y) is size
1, but the nonlinearity is size d, in (3.3).
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We now define the norms in which we control the solution to (3.3]). Specifically, we control the
Xp, norm as defined below, where we take the background flow to be #, in all the definitions (2.13))
- (2.17):

’UHXPO : Z Z HUHka[u*] + HUHXk+1 (4] + ”UHY+1 [+] + Z ‘UHXkoJrlm[u*]a (35)
k=0 m=0 m=0
Ul n. =303 Wl e + AR 2 PUTRES S P
k=0m=0 m=0
(3.6)

Lemma 3.1. Assume (1.35), and the parabolic compatibility conditions in Definition . Then,
the following estimate is valid:

ZZ 0B 10, g U, ) S Couta+ 8PV lxy,). (37)
k=0 m=0

where P(-) is a quartic polynomial.

Proof. Motivated by (3.3)), we define [up, Up] = [tx, U+ and F := §,Q(u,v). We now apply estimates
(2.83) — (|2.85]), which can be applied since the background [u., v.] is trivially seen to satisfy the

inductive hypotheses (2.24]) — (2.25) and the bootstrap hypothesis (2.23)), as .. = 0 for this choice
of background. Moreover, straightforward Sobolev embeddings establish the nonlinear estimates

ZHB"” w,0) @) 4 050, Q(u, v) (@) M| S Uy - (3-8)

O

We now address the top order estimate, for which we apply Lemma but with the choice of
background flow [up,vp] := [u« + 5*&2,6* + 6*172]. Indeed, applying 95*! to (3.3)), we obtain the
identity

ap0ut ) + o9 ap + W9, up + vp0u* Y — 2uFTY = B, (3.9)

where we define the forcing (that contains only lower order terms now)

kE+1
—Friq :_Z< * )(aﬂ BONT Iy, + OF 10,000 + 9o T T uy, + oM I, 000)
j=1
+ u8k+2u* +u 8k+1v* + v0yu (kH) uxaﬁﬂﬂ*. (3.10)
Motivated by (3.9)), we define
(k+1) 1

_ k) _ UBy (k1)
b= o (u Ly ) (3.11)

Urv1 := 0y{ v

Due to the norms themselves depending on the background flow, we define the modified norms:

ko mo
100, =il iam + D D N0W g + 100y g +IUIR, o (312)
k=0 m=0 2m ’
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ko mo
o 2
||U||XP . =1l . fan) + kzo ZO U1, 5@ + 11U HX ] T \|U||Yk+%ymyx* (@]
m=
(3.13)

We are now ready to prove Proposition

Proof of Proposition[3.1. This follows by repeating essentially identically the proof of Lemma [2.3]
on the system ([3.9)), with & = ko. More precisely, we proceed via a continuation argument. Fix any
0 < X, < c0. Applying ([2.47)), we obtain the bound

mo mo
2 ko+2— 2
Z Huko-i-lHXo,myx* [@5] SCpata + Z || Fg1 ()™ 2 U*Zm”];g(o,x*)j;g

m=0 m=0
ko mo

SCpata + Z Z HUHka[u*] + HUHX g ”UHY ]
k=0 m=0

+ 0 L([[U] xp, x.,)- (3.14)

Adding together (3.7) and -, we obtain
HUﬁ}X Scmm+ﬂA%WWx%m) (3.15)

Consulting now the definitions (3 . ,and (3.12), it is easy to see that Ul xpy x. S HU||XP .
Consulting the definition (2.21]) and applymg astandard Sobolev interpolation gives that [u, v|[x, .,

_1
|Ul|xp, . - Therefore, estimate (3.15) implies that the d,.” required in ([2.45) continues to hold with

_1
an improved factor of d,,*. By a standard continuation argument, we can send X, — oo to obtain
the bound

HUH%KPO ,SCData (3.16)
From here, the claimed estimates (3.1]) — (3.2)) again follow. O

4 Intermediate Prandtl Layers, : =1,... ,N; — 1

We are now ready to consider the intermediate Prandtl terms in the approximate solution.
Specifically, we consider the following problem

a0l + ubul, + V90Ul + vLdyuh — Opul, = F{Y, (4.1)
%:/'@%, 5 = v} — v |yo, (4.2)
Yy

where we will fix for now ¢ = 1, ..., N7 — 1, as the ¢ = N7 case needs to be modified slightly, which is
treated in the next section below. These equations are supplemented with the boundary conditions

u;|y=0 = _UfE|y=0a U;‘;‘y—wo =0, U;i)’le) = U;(y). (4.3)

The forcing F)p @ in is defined in . We recall the hypothesis on the initial datum, U (y),
is given by (|1.36 - In addition, we w1ll assume inductively that the boundary layer profiles for
7 =0,...,i — 1 and the Euler profiles for j = 0, ...,7 have already been constructed to satisfy the
estimates in Theorem [1.I} Our main proposition here is that the estimates in Theorem [1.I] continue
to hold for j = ¢, thereby verifying the induction.

25
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Proposition 4.1. Given initial datum U;;(y) which satisfies (1.36) and the parabolic compatibility
conditions in Definition there exists a unique solution to (4.1) for all x > 0, and moreover
which satisfies the following estimates, for 2k + j < ¢;,

(=)™ 50|l ge S ()27 72t (4.4)

()™ 0k || oo < (x) "1 R72T0n, (4.5)

4.1 Homogenizations

In this subsection, we will manipulate (4.1]) so that the results from Sectioncan be used. First,
we homogenize the boundary condition at Y = 0 in (4.3) by introducing the following quantities

u' =y, — ¢(2)up(x,0) = up, + ¢(2)ulp(z, 0) (4.6)
17" ::v]'j uEx x,0)( 2/ o(w) dw + 20 )é e ,0)/0 we' (w) dw, (4.7)
v’ i=0" — ' (z, 00). (4.8)

o(-) is a C* function satisfying the following properties: ¢(0) = 1, ¢ is supported on [0,1), and
fo z)dz = 0. First, we note that the pair defined above is divergence-free. Second, we note that
the mtegratlon by parts identity

L/ wi (w) / 6(w) dw + w(0) [ymoe — WH()wmp = O, (4.9)
0

by definition of ¢ guarantees that ¥'|,—c = ?72.131:00-
We now take the notational convention of dropping the superscript ¢ for this section, as ¢ will

be fixed, so:
[u, v] := [u’, v"].
By the specification in (4.6)), we get the homogenized system for [u, v], which we will analyze,
uux+u u+v8u+v8u uyy:F(i), ( )
Uy + vy = 0, ( )
u‘yzo = ’l_)|y:0 = u|y:00 =0, (4.12)
ulz=0 = Up(y) + ¢(y)ui(0,0) =: uo(y). (4.13)

Above, the new forcing is defined to be F®) = Féi) + HI(,i), where HI(,i) contains those terms coming
from the homogenization process, and is specifically given by

HY) = (2, (2, 0) + 6(2)ipsu(w, 0) + (2) 2006 (2)ulp (0

(,0)
—Ugqu:p z,0)( %/ o(w dw+upy2<1>éuiE(x,0)/0 we' (w) dw

_ 2<1x>ag¢'(z)uE(3:, 0) — <i>¢”(z)uE(:U, 0). (4.14)

We now note that (| - — (4.13) is of the form (2.1)) — (2.4). In this case, we use as the

background profile [up,vp] := [ug, ).
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4.2 Estimates on the Forcing

We will need estimates on the forcing, F®.
Lemma 4.1. The forcing F() = F;,Si) + Hzgi) satisfies the following estimates
1(y3y)* (202 FO ()M || e S ()70 (4.15)
1(y3y)* (200 FO () M| 2 S ()76, (4.16)
for M <my;, k+25 <.

Proof. We first estimate the terms in Hj(,i), Which has been defined in (4.14). First, due to the
localization in z, we have immediately that ||H HLz < (x )i HH;(zZ)HLgO-

[SIE

IS | g S|l (2, 0)] + [[apg || 2o [l (2, 0)] + 1|55 | e [ (, 0) | ()
_ ; 1 1 )
+ [ty o[l (2, 0) ()2 + () 77 [ty || oo [ulp (2, 0))]

(@) 4 (2) 77 4+ (@) 7T 4 ()T (@) (@) 4 ()2 S (a) s,

where we have 1nvoked estimates - for the estimates on up, vp, and (| - - for

estimates on u’, (and derivatives thereof)
We now address the terms in F,S’), which has been defined in (A.45)). First, according to the

definition (A.2), we have

(4.17)

7 1—2 7
le 2 Fll €3 10w us el zge + Nl S 100ubllza + el iz S 0wl 5o

j=1 k=0 j=1
_ i—1 i—2
. . - i . i}
+10suiglloo D Nupliz + Nz Y N0supllnge + 10wty Hlzz Y lugllzge
=0 k=1 k=1
Slx) 71, (4.18)

where we have invoked estimates - , which are assumed inductively to hold for the 0
through ¢ — 1’th boundary layers, as well as estimates which is also assumed inductively to
hold up to the ¢’th Euler layer.

We now arrive at the terms

7 i—2
172601 Sllop Mg Y lludy g + luby g D lvpllce + Ioh g Z iyl

i—2 i i—2
+ gy lzz > 05 e + D lluby 0k ll2 +672 > [Ohup, |l
k=1 j=1

k=0

»MU\

-1
§<x)*%+<x>*£+6i222< 4+2o*+52>3z 4+20*+ (z)~

<(z) 16, (4.19)
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where we have used the inductive estimates ((1.37)) - (1.42]), as well as the estimate

Y
el Bl zz = lludy ( /0 Sy V)12 S Vellyulylisllviy g S Vel@) 5, (4.20)

where we have invoked estimate ([1.37]) on ugy and the inductively assumed estimate (T.41]) on v%, .
We now, in consultation with (A.45) and (A.44]), need to estimate the term

le=2 0, B |12 < 73 /yoo 0 HD |1z + 75| /yoo 0u Tz + <7 /:O OcBevy 1z
Sw e ()2 O HY (e + &) T 0T e + 221|(y) T Ou Acv) |1
S e T ) IR ||(2)2 RO 1 + €72 T (@) 35 (2) 20, T | e
+e2 (@) A5 |[(2) 2T 0, At 1ge
S VEG)TH o2

for a small but fixed x > 0. Above, we have, upon consulting the definitions (A.11)) and (A.15)),
used the estimate

3 K 7 3 K 7 _5
(=) 01D |l 150 + 11(2) 27700 TPl ge S VE(T) 2. (4.22)

Consulting (A.45), the final term we need to estimate is ez b,k ||le/ S ez <x>_%, where we have

prI

again used the inductive estimates (1.37)) - (1.40) as well as (A.39).

The Lj° estimates work in a nearly identical manner, with an extra factor of <:1:)_i relative to
the L12/ estimates appearing. O

4.3 Embeddings
We now state embedding estimates that are valid for the above norms.

. . . . .
Lemma 4.2. The following estimate is valid, for 0 < j < 3,

T 2y ™| g < U () 9757 (4.23)

Proof. We integrate

oo o
|U(])‘2<$>23+%—20* <Z>2mZ S‘ / 2U(])U§j)<x>2j+%—2cf* <Z>2mi| + 2mi| / |U(])|2<x>23—20* <Z>2mi_1|.
Y Y
(4.24)
We integrate the first quantity from (4.24) now in = to get

I/ 2UDUP () 743727 ()] SIIUPH )T 277 ()™ [[|[UP ()~ (=)™
Yy

+ [UD ()T =270 ()| [| UG+ ()T +1=0+ ()|
1 '—l—o* m; j | =0« msg
+ JUD () =270 )™ [|UD (@)= (2™ || S U, (4-25)

We integrate the second quantity from (4.24) to get

[0 Py o) U i ho ) UG (@)
Y
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HUD (@) =7 ()™ |[|UD () =270 (2)™ Y S U1, (4.26)
where we have invoked estimate [2.26] ]

We now use the estimates in Lemma to recover estimates on uw and v (and derivatives
thereof) that are required from Proposition

Lemma 4.3. Let [u;,v;] satisfy equation (4.1). Then the following estimates are valid

)™ Ok 0N 1 < () ~F 3+ (Ul + 1) (4.27)
)™ k0|2 S ()3 R+ (U]l + 1) (4.28)
(=)™ 0kl e < ()T E 34 (U + 1) (4.29)
()05 00 [l S ()~ TR 550 (U + 1), (4.30)

for2k+ 35 < ¥4;.

Proof. We will establish (£.27) - (4.30) for the quantities [u,v]. To translate back to [u},v}], we
simply appeal to (4.6]) - ( f ), and the corresponding estimates for uZE (,0) from ((1.42)).
We first set j = k = 0 and address (4.27)) and (4.29). In this case, we use the formula

l_0'* i 57 l_o'* i 77 i q l_o'*
ludar) 177 (2)™ | nge <[apU (@)1= (2)™ | nge + [[apyy(2)™ ||L°°H§<ﬂ?)4 g
l_o-*
SIU) ™7 e S NU | xp s (4.31)

where we have invoked estimates and , for the final step we use (4.23]). The proof of
the L? bound, , follows by replacing Ly° by Lz in the estimate (4.31)).

For v, we only need to treat the case when j = 0, as when j > 1 we use the divergence-free
condition to appeal to (4.29). The k > 0 case works in an analogous manner to & = 0, which we
now demonstrate. For , we use the standard Hardy inequality

1 1, 1io,
lollze S lyuallze S (@)2 1{2)uallrz S (@)2 () (|U] 2. (4.32)
To address (4.30]), we may perform a standard Sobolev embedding
1 1 1 1 _ 1 _3
llzge S llvliZallvglze < (@)™ 2 7 [Ullap) 2 (@) [Ullxp)2 S @) 75 (Ul (4.33)
Next, we move to the k = 0,5 = 1 case from (4.27)). For this, we simply expand via

) 1_ B ) 1 B ‘ 1
ey ()™ ()3 | . SITSTy ()™ ()37 | 2 + (100, U ()™ ()57 |2

— m; l—0-* my —Ox
SlapUy(2)™ (@) 2~ ||z + U )™ (@)™ 2 S U] (4.34)

Next, we move to the k = 0, j = 2 case from (4.27)). For this, we simply use the equation (4.10)
to obtain

gy (=)™ () = 3. SIED ()™ (@) || + [l ()™ )= | g2 + @hgudz)™ (@)~ |2

+ opuy ()™ (@) 7 1z + ot ()™ (2) =7 (|2 S 1+ U2,

where we have invoked the estimate on the forcing, (4.16)).
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Next, we move to the & = 0,7 = 1 case from (4.29)), which follows from a straightforward
Sobolev embedding,

3 RPN . P
[y (2)™ () £~ | Loe Slluy(z)™ (z)2 ™ Zglluyy<2>ml<w>1 "z

AN _ 1, 2
+ [luy(2) ™ (z) 2 U*HL2Huy< 2)™ N )z “Nze S 1+ 1Ullxp-

Next, we jump to the the k = 0,j = 2 case from (4.29)). For this, we use the equation (4.10]) to
rewrite
ety ()™ Nl 2e SIFD(2)™ 150 + |Trua(z)™ | nge + @y (2)™ | 150
+ |78y (2)™ | g + ([0t (2)™ || Lge
_23 _5 5 , _ , 1 _5
(@) T+ (2) 7T flua (2) 177 (2) ™ (g + [l () (2)™ [loo @) 177 (2)™ || e ) 7177
0,01 PSR vy - 34, 0 ;0\ 5.4,
+ 10 {2) 2 loolluy (2) ™ (@) 177 | ge () =27 4 (|52 177 || Lo |, (2) 2| Lo (2) 177
)18 + (2) U (4.35)
where we have invoked the estimate on the forcing, (4.15)). Higher order x derivatives work by

commuting with x0,, whereas higher order y derivatives work by invoking the equation as in
(4.35)). O

4.4 Closing the Induction

We will now need initial data estimates

Lemma 4.4. Let (0¥U)g := 0%U|,—o. Assume the compatibility condition on U;; from Definition
and estimate (1.36]). Then the following estimates are valid,

150 YoM I3 + 1/ a0, D5V )o ()M 13 < 1. (4.36)

Proof. According to the definition (4.13), and due to the compatibility condition placed on the
datum, U/(-), (A.49), we have the compatibility u|,—o(0) = U}(0) + ¢(0)u;(0,0) = 0 = uly—(0).

Therefore, Uy(y) = MzZZ(y) ’gyd"‘zgj’( Y) s a sufficiently smooth, rapidly decaying function, satisfy-
ing the estimates - due to the corresponding hypothesw (1.36). For higher order z-derivatives,

we derive the initial datum by evaluatmg equatlon at {x = 0}. For the first derivative, we

) 0% FO)102u(0.) .

obtain Uy|z—0 = T:?)':(O ) r;ovlg U — \u0|2 Y Uy. We now note that the quotient, %(0’), is
P

bounded due to the compatibility condition from Definition . Higher order derivatives follow

in an analogous manner, so we omit the details. O

Proof of Proposition [{.1. The result follows immediately from our a-priori estimates, Lemmas
and coupled with the initial datum estimates, and the forcing estimates, ,
which provides the a-priori estimate ||U||x, < 1. When applying Lemmas and
we have made the choice [kmaz, Cmazs Mmaz] = [ki, €, mi]. We have also invoked that, due to (3.1)) -
(3-2), we take [up, Vp] := [ts, Us] + b4 [ﬂ,vg] = [ug,v |, and the strong inductive hypotheses,
- hold according to Proposition We subsequently use Lemma to obtain the estimates
required by Proposition [I.I] It is then a standard matter to repeat all of the above estimates in

the framework of a Galerkin method to obtain existence and uniqueness. O
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5 Final Prandtl Layer, i = NV;

In this subsection we perform the cut-off argument that is required for the final Prandtl layer. A

cut-off is required for the boundary layer, [u)', v¥1], as we need to ensure the boundary conditions

p U
UZJ)V (z,0) = UIJ)V 1(z,00) = 0 simultaneously. We first define the auxiliary profiles, [u,,v,] through

the following system,
U9 Ouup + Uyt + D90y up + Tp0y iy — Opup = FINY, (5.1)
y
Uy = / Oplip, (5.2)
0

with initial and boundary conditions

up|z:0 = UéVl (y)7 up|y=0 = —Ugl (:L'a 0)7 up|y=oo =0, (53)
We subsequently define [ui,v 1 vf,v 1] by cutting off [u,,vp] in a divergence-free manner via
N1 v _ Oo\ﬁy /\/‘Ey d/_/oo\ﬁl /ﬁy_d, 5.4
up . X(\/g<1‘> )UP /ac <1',> <.Z',>X ( .%'/ )UP €z - <$/> <x/>X ( <1'/> )UP x, ( . )
B =X (Ve 5 )Ty (5-5)

{z)

As we only need to verify the boundary conditions UI],V x,0) = UIJ,V 1(x,00) = 0, we have the freedom
to choose the scale of the cut-off function. In this particular case, we have selected to cut-off at
scale \@% for convenience, but other choices are certainly possible. For convenience of notation,
we define

[TNE Y Ry [TVEL L VEY
Uy = /x <x/> <x/>X( v ) pd /I <JZ,> <IL”>X(<$/>) pd s (5.6)

so that u)t = X(\f< T)Up + Uy
Due to the presence of cutting off [u,,v,], this creates an additional output error which we
denote by F\, and define as

— oo (@0 1 Vey , ey
Foim = e (s O oGy
g X”(@ \/>

)vp—i-u ux—i—ﬁoi (fy

M) ()
£ Ve Ve 2, Vey
(z)2 <x>)p 2< >X(<>)py 8y x (- (<>

We now estimate the output forcing, Fr, Gr, which is defined through (A.60)),

Jup + Uy

DE) (5)

Lemma 5.1. Let 0 < 5 <11, and k =0 or 1. Then,
10208 Fr () 07773 || 4 /2| 010k G () 075 | < &, (5.8)

Proof. Consulting definition (A.60), we have that Gr = 0, and so we just need to estimate Fg.

N-
Moreover, we have Fr = FN+! 4 ¢~ %" F | where FM*1 is defined in (A.59). First of all, by our
choice of parameters N1, No, we have in a nearly identical fashion to m - ) the estimate

N1—Nop 19

1(y3y)* (20, ) FNF M| 5 S e ()70, (5.9)

31



We now need to estimate the terms arising from (5.7)). Indeed,

_ Ny Nj—No 1 N 1 1 1
I By == (< ol + o + )l + ()10l
x)?2 €T)4

3

€2 1 N
- gl + Ny lage + 103y lug + I1ES¥lz3 )
(z)> (z)>
N1—N.:
<emT o (z)Titen (5.10)
Higher order 0, and 0, derivatives work in the same manner. This establishes (/5.8)). O

We now establish our main result:

Proof of Theorem [1.1. This follows from Propositions and Lemma [5.1 O

6 Background profiles u, v

We recall the definition of [u,?] from (1.12). In addition, for a few of the estimates in our
analysis, we will require slightly more detailed information on these background profiles, in the
form of decomposing into an Euler and Prandtl component. Indeed, define

N1 . Ny X
1 - 1 :
Up:=1Up+ » erup, Up =) c2u. (6.1)
i=1 =1

We will now summarize the quantitative estimates on [, 7].
Lemma 6.1. For 0 < j,m,k, M,l <20, the following estimates are valid
J (08, MOk 1 i
162 (y3y) ™ 0y ua’™ 2 [loo + || = 83027 [loo <Cij, (6.2)
j magk= j+E+1 oo i+l
||az(yay) 8yvx 20z HOO + ”aax’l)(lf 2 HOO SCkJ’
_1ad _ ikl ; _ ikl
e 2|04 (Y Oy ) g (x) T2 oo + 04(Y Oy ) 5O (a) T2 oo <Cij,
102.(y0y ) Oy up ()M (x)+2 || 0o <Ch jm
. L1
182.(y0y ) 0P () ()7 T272 || 0o <Chjnr

Proof. This is proven by combining estimates (A.39)), (1.37)), (1.38), (4.4), (4.5), (A.35)), (A.36). O

We will need estimates which amount to showing that # remains a small perturbation of ag for
all z.

3
z for0<z<7y

Lemma 6.2. Define a monotonic function b(z) := { , where b € C*°. Then

1 forl1<z
10508 (@ — D) () 3+ 55 oo < Ci 5, (6.7)
-0 _
1§&§1andl<_£§1, (6.8)
(2) ul)
P
_ _1
|ty ly=o(@)| 2 (x) 2 (6.9)



Proof. For estimate , we simply appeal to the definition and to the corresponding
estimates ([1.39)) - (1.42]), and subsequently the fact that —% + 0. < —5—10 by our choice of o, in
Theorem [L.1]

We now move to the first assertion in (6.8). For the upper bound \ﬂ2| < z,we have

=0 _
u u
) < 1 S Ve + VEIOE — )l S 15T, (6.10)

where we have invoked (A.39)) and (1.37). For the lower bound ﬁg 2 z for 0 < z <1, we appeal to
the elementary algebraic identity

z 1 z
2 (1 u%—m)ai’ (6.11)

U
after which we invoke that @, = z for 0 < z < 1, and the estimate

Uy — Usx
|2 < 6 (x) 11 for 0 < 2 < 1, (6.12)

~
*

For the second assertion in ([6.8]), we note that it suffices to establish 1 < ]ﬁ;)] < 1. In addition,
this means that we can localize to 0 < z < 1. Using (|1.12)

U
Y plloo5282 (I + e+ pr|oo>

62||

i=1 b(2)
SVE(() 2 + <$>7+(’*)~ (6.13)
We now arrive at estimate . For this, we have

N1 { '
iy (,0) =9y (,0) + 9y () — ) (2,0) + _ £ (VEulpy (2, 0) + up (2,0))
i=1
M L 3 3 1
2e) 73 = bula) T+ e (VR TE — (2) T 2 () (6.14)

where we have used the first term above satisfies 0yt (z,0) 2 (x>_% by properties of the Blasius

profile, (|A.42)), as well as the estimates (1.37)), (1.42), and (1.39). O

We will need to remember the equations satisfied by the approximate solutions, [, v], which we
state in the form of a lemma.

Lemma 6.3. The following identity holds

Ully + Vlly = Uy, + C, (6.15)
where ¢ is defined by
N1 . . . N1 o Ny . )
C= > (erulp, + FR 4 G+ et + Y et ED 4 €F) + £ + FYH 4 g (6.16)
=1 i=1 =1

Proof. We appeal to the identities (A.1) and (A.5)) developed in the Appendix, which verify the

identity (6.15]). O
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We now define the auxiliary quantity
Q1= Uy + VU, (6.17)
We record relevant estimates on these quantities now.

Lemma 6.4. For any j, k,m > 0,

[(202)* (y0,)"¢| SVE(z)~1+50) (6.18)
|(@02)* (29, ¢| SVe(a) (0 (6.19)
(@02)* (y3,)"a| Sufz) ™2, (6.20)
Proof. This proof follows upon combining (6.16)) and the estimates - . O

A Derivation of Approximate Solution Equations

In this section, we perform a detailed derivation of all equations satisfied by the various terms

in expansion ((1.12)).

A.1 Asymptotic Expansions

We first calculate the quadratic expression

Ny N,
i . . N. . . ] N
Ue0,U° —(a0+ Y b (ulp + ) + % u) (a0, + 3 ch(Buudy + 0,u]) + £ F )

i =
ppa,—I—Z(e?(u@u —i—upxup)—i-}" )—i—Z(m@uE—l—}"())
P (aaxu+uaxa) + My, +5](V1) + Fprt (A1)
where we have denoted,
7 1—2 . . 7
. i . i1 ;
.7-;(,” = 2 83;%*125221] +e2ufy siﬁxu];—i-a z u;flzei(?xu‘};
j=1 k=0 J=1
_ i-2 . i—1 -2
+658xu§525%u§+6 2 u;_l £20, u teT o, ul 12521/5 (A.2)
j=0 k=1 k=1
. -1 . -2
A i1 ; . i , i
fg) =¢ 2 uZE_IZ&??@quE +e2 sty ezul, (A.3)
Jj=1 J=1
N . N Ny
51(\}) =£72 0, uévl Zaiqu + sTuéVl Zﬁ@xug +e72 uzj,vl ZsZ@mulg
j=1 j=1 k=1
. Ni-1
+e2 Opuy' Y ezu. (A4)
k=1
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We next calculate

N1—-1

=1

. , N
(uy * 255 Veupy + up,) + ETQuy>

Tyl * Z G (%“py rig,m) +65) + i gy

.

Ni+1)
+€N g( S (va u+6yuv> + M2y,
where we have defined
X i—2 i—1
_ +1 I i—1 k
g,&’) Zlg s2uey+52uéyg 5211];—1—62@;,1 52ulgy
k=0 k=1
k _ —1 : 1 1 =2 k
1 = i—1 J =0 <k
E €20 Upy g €2 Up+¢€2 U €2 Upy,
j:l k=0
1 k41
g}g)_ 1552UY+52UB}/ESQU,
N N N1 Ni—1
(2) =N kil —N1 N1 kE_p
En, =€y, e uly +e2 7 vy, E E2upy+€ upy g €20,
k=1 k=1 k=1
eyl E =
Upy e o
e now calculate
Wi lculat
N1 Ni+1 Ni+1
/e Lo (@) i
UVx—E €2 vg, + g Hy + g 7—[2(:,),
i=1 i=1 i=1
where
’H(l) 5 1 3 + 2 1 2
=€ vE € uE e uE e vk,
() ._ 5 i1 kK 1 j ~1
Hy' =e % u, 52vpx Vper 52u teT u e'T vk,
k=0
) 1—2 i—1
i1
e v, g EQU] +E2UZE g 52fupx+5 2 vpxl E 52uE,
j=0 k=0
and by abuse of notation, for Ny + 1 we set
Ni—1 v Ny
3 Ny k-1
HI(,Nlﬂ): N1 E 520pw+€ vpzl 52u§+£ 2 uévl g e o,
k=0 k=1
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+e2 7 v Z&ﬂuE (A.12)

We now calculate

Ni+1 N1+1
VeVE = § T+ 3 gy (A.13)
i=1
where
-1 i-2
. i—2 k i—1 k—1
T =2 o' ervpy +e2 vl > e 2 v, (A.14)
k=1 k=1
1 =1 k 1 =t k—1 1 ! k
1.5 <k = i1 5.k = i1 =k
Jp —521)EE €2V, + €2 Uy €2 Vgteruy, E €2Vpy
k=0 k=1 k=1
1—2 . - i—1 . . i—2 .
i Bk S i-1 ko k | kK
+e2vpy ) €2v, +e2 v, E2up, +€2 v, £2vy. (A.15)
k=0 k=0 k=0

and for the case of N1 + 1, we set

Ni+1 N N
JIp! —521/ Essz+52v1§52vEY+521)1§52v

. lel
+ 571)]])\;1 621}k. (A.16)
k=0
We also calculate
N1 . N1 . Ny .
= erAup+ > erAup =) ezAuf, (A.17)
k=0 k=0 k=0
Ny . Ny . Ny .
= Z angv]; + ZEEAU% = Z angv]; (A.18)
k=0 k=0 k=0

where above we have used that Au¥ = 0 and Av% = 0 according to (A-31)) below to simplify these
expressions.

We now consolidate these identities to obtain the expansion of the Navier-Stokes equations.
Starting with equation (1.9)), we obtain

USUZ + VEUS + PS — AUF

Ny
—0-0 | ~0-0 0 (-0 i i i i i
= (e + Uty — pyy+P> Z(Z( a“+“px“p+”p“py+“py”p+P pyy)"i'fzg)""gzg))
i=1
Ny
—i—Z(%@uE—i—aPE)—i-]: +QE)+€2<u8u+u8u+v8u+8uv+P Au)
i=1

Ny
i - N
+ ™2 (wuy, 4 vuy) + 5](\}1) + 5](\,) + Fpt 4 g (Ni+1) E 51+§u;m bk
1=0

: (A.19)
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where we have inserted the pressure expansions from , as well as used identities , ,
and .

Next, we use identities , , and to obtain the following expansion of the
equation ,

IS

eyse eY/e i_ €
UV +VeVy + 2 = AV

Ny - Ni+1 ' ] Ni+1 ' ] N1
= Z&:T(v};x + Ppy) + Z (Hg) + j,if)) + Z (Hg) + jl(gz)) - ZEEAEU;
i=1 i=1 i=1 i=0
Nitl i . No No
+ Y er Pl e T IPy e (g + Tou + Duy + Byv — ALv)
i=0
ZN2
+ 72 (uvy + vuy). (A.20)
A.2 Euler Layers
Our outer Euler flow selection is
[, v, Pp] = [1,0,0]. (A.21)

We now consider the equations obtained by setting the first summand on the second line of (A.19))
equal to zero and the first two summands on the first line of (A.20)) equal to zero:

Optily + 0, Pl = e~ 2 (FO) + g1y, (A.22)
Opvly + Oy Py =7 (HY + 7, (A.23)

Dyl + Oy vy = 0. (A.24)

We will make the following inductive hypothesis on the Euler layers, which will be verified to
hold: we take each Euler layer to satisfy the Cauchy-Riemann equations,

827’[)]5 == 8YU%7 8zu‘7E = —8)/'1)%, fOI' .7 = 07 ’Z - 1 (A25)

It is clear that the leading order, (A.21)), verifies this hypothesis.
We will decompose

PL = PL + P, (A.26)

where ]ADfE will be used to cancel the quadratic terms on the right-hand sides above. More specifically,
we have the following lemma.

Lemma A.1. Define

Dl .
Pi =

DN |

7 (Julg P+ ol ) + S e (ul by + vl o)) (A.27)
j=1
Then, assuming (A.25), the following identity holds
N - 5 (FD 4 g
) PL 4+ B E . =0 A28
<8y> P (g—;mg + 75 (4.28)
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Proof. This follows from a direct computation. O

We then get to use P}; to obtain the Cauchy-Riemann equations from (A.22)), via

Opul + 0, P =0, Ol +0yPhL=0,  Opuly+ Oy =0, (A.29)
and therefore, setting Pi = —uiE, we get
Opv'ly = Oyuly, Oyl = —Oy vy on Q@ = (0,00) x (0,00), (A.30)

which are the Cauchy-Riemann equations, and in particular which imply
Auly =0, Avly = 0. (A.31)

These equations are supplemented with boundary conditions as well as compatibility conditions,
which we now describe. By enforcing the Dirichlet condition (v) +wvj;)|y—o = 0 at the leading order
of (1.12), and similarly for subsequent orders, we get the boundary condition
vily=0 = —vj, '|z=0, (A.32)

where the quantity on the right-hand side above is inductively known. We also get to enforce a
boundary condition at Y = oo, which we again take to be the Dirichlet condition, vfg\y:oo =0.

We now describe the class of datum V(YY) := vj|,—0 that we will prescribe. Instead of pre-
scribing V4 (+) directly, we choose to make the following definition:

Definition A.2. Define the function Vi(:) to satisfy the “elliptic compatibility condition” if it
can be realized in the following manner. Consider the function U;;l(.%) : Ry — R. Consider any
smooth extension of v;;_l to R, which we call 77;_1(37), which we take to be compactly supported in
the negative x direction. Let 0 be the harmonic extension of 171’;_1 to H. VE(+) satisfies the “elliptic
compatibility condition” if it can be realized under this procedure, that is VL (Y) = 0%(0,Y), for
some extension ’[}%.

That is, the freedom in prescribing the datum Vé is not as explicit as selecting the function
itself, but rather the freedom is in picking the extension 17;;_1 (which simply needs to be smooth
and rapidly decaying).

We now discuss the construction of the Euler profiles, (u%;,v%) for i = 1,.., N;. Recall from

that our equations are
Dpvly = Oyuly, Dyl = —dy vy on Q = (0, 00) x (0,00), (A.33)
supplemented with boundary conditions
vis(z,0) = fv;‘,_l(:c,()), vis(z, 00) = 0. (A.34)

For these profiles, we have the following estimates

Proposition A.1. Solutions to (A.33|) - (A.34)) satisfy the following estimates

|(voy)' oo} villug < (2) 27+, (A.35)
|(voy) oo}l < ga)~2 7. (A.36)
Proof. This is a minor adaptation of Lemma 3.4 and Proposition 3.6 in [Ly16b]. t
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A.3 Prandtl Layers
A.3.1 Leading Order Prandtl

To find the leading order boundary layer, we set the term in the first parenthesis of ({A.19)) equal
to zero, as well as the pressure term ng from ({A.20)), which gives

U0y + 0y — Oou) + Pp, =0, P =0, Oyt + 9yvy =0, (A.37)

which are supplemented with the boundary conditions
—0 770 -0 —0 —0 Yo o
Uple=0 = Uy (y), Uply—0 = 0, Uply=co =1, Up = _/0 Oy (A.38)

Recall now the Blasius profiles, defined in (1.27)) - (1.29)). Recall also that, without loss of
generality, we set g = 1. We now record the following quantitative estimates on the Blasius
solution, which are well-known and follow immediately from the self-similarity of the profile:

Lemma A.3. For any k,j, M >0,

1(2)M 0509 (1 — 1) Loe < Cappy(w)*2, (A.39)
pyla) 2R (A.40)
10509550 < Ciyjlx) 2743, (A.41)

We also have the following properties of the Blasius profile, which are well known and which
will be used in our analysis.

Lemma A.4. For [u., v, defined in (1.27), the following estimates are valid

=

|0yt (2, 0)] Z (x) "2, (A.42)
Oyytis < 0. (A.43)
A.3.2 i=1,..,N; Prandtl

We collect the e order boundary layer contribution in the expansions (A.1) and (A.5]), which
gives the linearized Prandtl system. We define for i =1, ..., Ny,

P® = ¢ / h (H;") + 7 - E%Asv;—l) dy' (A.44)
y
We subsequently set for i =1, ..., Ny,
Flgi) = —6_% (fzgi) + Ql(f) + &TP]@ — ss%u;;;), (A.45)
and correspondingly the equations
SOl + Uk, + V90 ul, + vhdyud — Opul, = F{, (A.46)
o= | T o, =0 — vl (A.47)
Yy

39



These equations are supplemented with the boundary conditions

U;J’y:() = _U%|y:0a “;‘y—wo =0, u;io’x:() = Ué(y)- (A.48)

¢

We now define our notion of parabolic compatibility condition. The “zeroeth order parabolic
compatibility condition” that we demand is simply that the initial data matches the boundary data
at (0,0), that is

U (0) = —u(0,0). (A.49)

To now motivate the definition of higher order compatibility, suppose we seek the initial datum
for 6mu;]m:0. We evaluate the equation (A.46]) at x = 0 to obtain

04 i 0 i _ 0 77
Uy O Uy | =0 ~+ Uy V| z=0 = FIS ) — (.U,

+000,U7 — 92U7). (A.50)

We now rewrite the left-hand side by using the divergence-free condition as

—|ug\2ay(pTg) = F\Y — (@, U} + v90,U; — 92U%), (A.51)
which upon solving for ©},(0,y) yields
i () _ (=0 778 4 5709 77i 2770
. u?(0,0) v Fp’ — (up, Ul +1,0,U) — 0;U))
1—)1((),?]):_,&0713 +u0/ pr—p - P P y—p , (A52)
' 7a,0.0) "y P
and taking one 0, then yields
=0 (4) =0 778 4 509 77 2771
u;x((l y) :wufm(o, O) _ Fp (07 y) - (upxUIjO—F 'UpayUp - 8yUp)
upy(O, 0) uy
Y v B{(0,y) — (a0,U7 + 000, Us — 82U7)
— 1, (0, ) =02
]
i) oo B 0) = (@05 + 50,0 — 0U;)
a9,(0,0) P77 f
v F(0,y) — (@0, U¢ + 009, Ui — 92U)
agy(o,y)/o K £ |;0|2 A e e (A.53)
P

From the above, the compatibility condition we need to enforce is then

B0.) = WU+ 50U =0 _ o oy [V E00) — @0+ 50,05 Uy _
( =0 = Uy (0,-) —0[2 )Z =Y
Up 0 ’up| y=0

(A.54)

which is a condition on up to the second derivatives of U;;(y) at y = 0.

Definition A.5. U;(-) satisfies the “zeroeth order parabolic compatibility condition” if
is valid, and the “first order parabolic compatibility condition” if is valid. Higher order
compatibility conditions are derived in the same manner, although we omit writing the precise
formula for these higher order conditions.
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A.4 Remainder
We define now,

PVt = _E/ (Hj(DN1+1) + gD E%Aavﬁh) dy’ (A.55)
Y

in order to cancel out the last two summands on the first line of (A.20). Collecting the only
remaining terms from (A.19) and (A.20), we arrive at the following equations for the remainder

N
Uy + Upth + DUy + Uyv + Py — Acu = Fr + £7 (uug + VUy), (A.56)
P, N.
Wy + Tpu + Dy + Tyv + Y _Av=Gp+ ETQ(U’Um + vvy), (A.57)
€
Uy + vy =0, (A.58)

where we have defined the forcing via

poy (51(33 + €D 49, P _ gg%uggx). (A.59)
and ultimately
Fr = F™*) L = Fp Gr =0, (A.60)

where F), defined in (5.7). These equations are supplemented with the boundary conditions

u|:c:0 = U’x:O = u|x:oo = U’J}:oo =0, (A61)

uly=0 = vly=0 = uly=so = V[y=00 = 0. (A.62)
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