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PLETHORA OF CLUSTER STRUCTURES ONMN &L,

M. QEKHTMAN, M. SHAPIRO, AND A, VAINEHTEIN

ABSTRACT. Wa continue the study of multipla dustar structures in the rings
of regular functions en &L, SLq and Mats, that are compatible with Foisson-
Lic and Poisson-homogeneous structures. According to our initial conjectura,
each class in the Belavin-Drinfeld classiflestion of Poissoo-Lie structures oo
samisimpls complax group ¢ coresponds to & duster structura in O[3 ). Hara
wa provae this conjecturs for alargs subsst of Belevin—Dirinfald [ BIN) data of An
typa, which inchudos all the previously known examplas. Mamaly, we subdivide
oll prssible Ay type BD dete ioto orismated sod poo-oriented kicds. In the on-
anted caso, we singla out. BD data sstisfying & certain combinatorial comdition
that wa call ppericdicty snd prove that for any BD dats of this kind there ex-
ists & regular clustsr strocture compatible with the corresponding Foisson—-Lie
bracket. In fect, we oxtend the apericdicty condition to pairs of oriented BD
dsta and prove & maora genaral result thet establishos an oxistonos of & regular
cluster structurs on Shn compatible with & Poisson bracket homogeneous with
raspaict to tha right and laft action of two copiss of 5L, aquipped with twa
different Poisson-Lie brackets. If the spariodicity condition is pot satisfled,
o competible chastar structures hes to be replaced with & generalized duster
strocturs. We will addross this situstion in futurs publiostiores.
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1. INTRODUCTION

In this paper we contirme the systematic study of maltiple cluster structures
in the rings of regular functions on &L, 5L, and Mat, started in [13] 14, 15).
hhﬂnmmapprnachdevdup&dmdmplmmdmm@mfnrm
cluster structurss on algebraic varietiaa,

Recall that given a complex algebraic Poisson variety (A, {-, -} ), & compatibla
aluster structure Cyy on M is a eollection of coordinats charts (called clusters) com-
prized of regular functions with simpls birational transition maps betwesn charis
(called cluster transformations, see [8]) such that the logarithms of any two fono-
tions in the same chart have a constant Poisson bracket., Omeoe found, any such
chart can be uwsed as a starting point, and our construction allows us o restora
the whole Cpq, provided the arising birational maps preserve regularity. Algebraic
structures corresponding to Cuy (the cluster algebra and the upper cluster algebra)
are closely related to the ring O A1) of regular functions on M. In fact, under cer-
tain rather mild conditions, &{A4) can be cbtained by tensoring the upper cluster
algebra with C, see [13].

This construetion was applied in [13, Ch. 4.2] to double Bruhat cells in semisim-
ple Lie groups equipped with (the restriction of ) the stendand Poisson-Lie strusture.
It waa shown that the resulting chister structure coincides with the one built in [Z).
The stendard Poisson—Lis structure iz o particular case of Poisson—Lis structures
corresponding to quasi-trisngular Lie bialgebras. Such structures are associated
with solutions to the classical Yang—Baxter equation. Their complete classification
was obtained by Belavin and Drinfeld in [I]. Solutions are parametrized by the
data that consists of a contimuows and s discrete components. The latter, called
the Belavin-Drinfeld triple, is defined in terms of the root syetem of the Lis algebra
of the corresponding semisimple Lia group. In [I3] we sonjectured that any such
solution gives rise to a compatible cluster structure on this Lie group. This con-
jecture was verified in [d4] for SL; and proved in |5, §] for the simplest non-trivial
Belavin-Dirinfeld triple in SL,, and in [15] for the Cremmer—Gervais case.

In this paper we extend thase results to o wide class of Belavin-Drinfeld triples
in SL,. We define a subelass of oriented triples, see Baction Ed] and ensods
the corresponding information in a combinatorial objest called a Belavin-Dirinfeld
graph. Our main result claima that the eonjecture of [13] holds true whenever
the eorresponding Belavin-Drinfeld graph is asyclic. In this case the structure of
the Balavin-Drinfeld graph is mirrored in the explicit construction of the initial
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cluster. In fact, we have proved a strongsr result: given two oriented Balavin—
Dirinfeld triples in 5L, we define the graph of the pair, and if this graph possesses
a cartain acyalisity property then the Poisson bracket defined by the pair (note that
it is not Poisson—Lie anymora) gives rise to a sompatible custer strusturs on SL.,.

If tha Balavin-Drinfeld graph has oyeles then the sonjecture of [13] nesda to be
medifiad: one has to consider genaralized custer struetures instesd of the ordinary
ones. We will address Belavin-Drinfeld graphs with oycles in & separats publication.

In [i7], Goodearl and Yakimov developed s uniform approach for construsting
cluster algebra structures in symmetric Poisson nilpotent algebras using sequencas
of Poisson-prime elemeants in chains of Poisson unique factorization domains. Thess
remults apply to alargs class of Poisson varieties, e.z., Schubert salls in Kac-Moody
groups viewed as Poisson subvarieties with respsct to the standard Poisson-Lis
bracket. It is worth pointing out, howsver, that the approach of [17], in its current
form, do=s not ssem to be applicabls to the situation we conzider here. This is
evident from the fact that for cluster structures constructed in [I7], the cluster
algebra and the corresponding uppsr cluster algebra always ocincids. In contrast,
a8 we have shown in [14], the simplest non-trivial Belavin-Drinfreld dats in SLq
results in & strict inclusion of the clustar algebra into the wpper clustsr algebra.

The paper is organized as follows. Section [ containg a concise description of
neceasary definitions snd resultz on cluster algebras and Poisson—Lis groups, Sec-
tion [ presents main constructions and results. The Belavin-Drinfeld graph and
related combinatorial data are defined in Section [E3l The same section contains
the formulations of the main Theorems E3 and E3 An explicit construction of
the initial cluster iz sontained in Section FZand summearized in Theorem 4] Seo-
tion M is dedicated to the proof of this theorem. The quiver that together with the
initial cluster defines the compatible cluster structure is built in Section {3 sea
Theorem EH whose proof is contained in Section B Section [Fd] cutlines the proof of
the main Theorems EF and [E3] It contains, inter alia, Theorem ETT] that enables
us to implement the industion step in the proof of an isomorphism betwesn the
oonstrucked uppar cluster algsbra and the ring of regular functions on Mat,. A de-
tailad comstructive proof of this isomorphism is the subject of Seetion [l Ssction [
is dewvoted to showing that cluster strustures we eonstructed are regular and admit
a global toric action.

OJr research was supported in part by the NSF research granta DMS # 1362801
and DM8 #17020584 (M. G.), NSF research grants DMS #1362352 and DMG-
1702115 (M. 5.), and ISF grants #162/12 and #1144/16 (A. V.). While work-
ing on this project, we bensfited from support of the following institutions and
programs: Université Clande Bernard Lyon 1 (M. 8., Spring 2016), University of
Motre Dame (A. V., Spring 2016), Research in Pairs Program st the Mathema-
tisches Forachungeinstitut Oberwolfach (M. G., M. 8, A. V., Summer 2016), Max
Flanck Institute for Mathematics, Bonn (M. G. and A. V., Fall 2016), Bernoulli
Brainstorm Program at EFFL, Lausanne (M. G. and A. V., Summer 2017), Re-
search in Paris Program at the Institut Henri Poincard (M. G., M. 8, A. V., Fall
2017), Institute Des Hautes Etudes Scientifiques in (M. G. and A. V., Fall 2017),
Mathematical Institute of the University of Heidelberg (M. G., Spring 2017 and
Summer 2018), Michigan State University (4. V., Fall 2018). This paper was fin-
ishad during the joint visit of the authors to the University of Motre Dame Jernzalem
Global Gateway and the University of Haifa in December 2018, We are grateful
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to all thase institutions for their hospitality and outstanding working conditions
thay provided. Special thanks are dus to Salvatore Stalla who pointed to s mistake
in the original procf of Theorem B4 and to Gus Schrader, Alaxander Shapiro and
Milen Yakimov for valnable diseussions.

2, PRELIMIMARIES

2.1. Cluster structures of geometric type and compatible Podsson brack-
ets. Lat F be the fisld of rational functions in & 4+ M indspendent variablas
with rational coefficients. There are M distinguished variables; they are demoted
TR Ldy e ens v yar 8nd called frozen, or stable. The (N + Mitupls x = (m,...,
Ta4ar ) i called & clwater, and its elements 21, . .., apr are called custer variables.
The guiner & ia a directed multigraph on the vertices 1,. .. N + M corresponding
to all variables; the vertices sorresponding to fromen variables are callad frozen. An
adge going from & vertax 4 to a vertex § is denoted @ — §. The pair © = (x, Q) is
callad a seod

Given asead as above, the adjacent custer in direction &, 1 < & < N, is defin=d
by x = (x {= }U{2L}, where the new chister variable 2| is given by the ezchange
ralation

TEEh = H o+ ]:[:.-.
k—i ik

The gquiver mutation of ¢} in direction & iz given by the following thras steps:
(i) for any two-edge path i — k — j in @, (i, j) edges i — j are addad, whera
e(i, §) is the mumber of two-edge paths i — k — §; (i) every edge § — i (if it
exista] annihilates with an edge i — §; (iii) all edges i — k and all edges & — i ara
reversed. The resulting quiver is denoted QF = p, (@), It is sometimes convenient
to represent the quiver by an N x (N + M) integer matrix B = B{Q) called
the erchange matrir, where b;; is the number of arrows i — j in &). Nota that the
principal part of B is skew-symmedric (recall that the principal part of a ractangular
matrix is ita maximal leading square submatrix).

Given a sead ¥ = (x,Q], we say that a seed £ = (x', ) is adjacent to E {in
direction k) if x’ is adjasent to x in direction k and Q@ = pa(Q). Two seeds are
mugtation equinalent if they can be connected by & saquence of pairwise adjuoent
gsada. The set of all sseds mutation equivalent to E is called the cluster structure
{of gaometric type) in F associated with © and denotad by C(E]; in what follows,
we usually write just C instesd.

Lat A be a grouwnd ring satisfying the condition

Elzwsts. . Tvane] © A CEfEE ., xE )

{wa write x*! instead of x, z—1). Following [8] 2], we associate with C two algebras
of rank N over A: the cluwster algebra 4 = A(C), which is the A-subalgebra of F
generatad by all closter variables in all seads in O, and the wpper clwster algebne
A = A(£), which is the intersection of the rings of Laurent polynomials over A
in cluster variables taken over all seads in . The famous Lewrent phenomensn
[g] claims the inclusion 4(C) € A(C). Note that criginally npper closter algebras
wera defined over the ring of Laurent polynomials in fromen variables. In [16] wa
proved that uwpper cluster algebras over subrings of this ring retain all properties
of umal upper closter algebras. In what follows wa assume that the ground ring is
the polynomial ring in frozen variables, unlass explicitly stated otharwise,
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Lat V' be o quasi-affine varisty over C, C(V) be the field of rational funetions on
¥V, and OV} ba the ring of regular functions on V. Let © ba a duster strusture in
F ag above. Assume that {f,..., fswiar} i8 & transcendence basis of C(V7). Then
the map w2 — fi, 1 £4 £ N4+ M|, can be extended to a field isomorphism
w1 Fo — OV, where Fe = F @C is obtainad from F by extension of sealars. The
pair (Z, ) is called a cluster structure in C(V) (or just o duster structure on V),
{0, frriar} is called a cluster in (2, ). Oocasionally, we omit direct indieation
of ¢ and say that C is a duster structure on V. A cluster struetura (£, ) is called
regular if o(x) is & regular function for any cluster variable ®. The two algebras
defined abowve have their countarparts in Fe obtainad by extension of sealars; they
are denoted Ar and Ae. If, moreover, the field isomorphism @ can be restricted
to an isomorphism of Ac (or Ac) and O(V'), we say that Ac (or Ac) is naturally
waomorphis to O(V).

Lat {-, -} be a Poisson bracket on the ambient field F, and C be a duster structura
in F. We gay that the bracket and the cluster structure are compatible if, for
any cluster x = (Fy,..., Ty ar), one has {z;, x;} = w;Tr;, where w;; £  are
constants for all 1 <4, § = N + M. The matrix (¥ = (wy; ]mcu]l&dt.hameﬂi-:imt
matrir of {.,-} (in the basis x); clearly, R‘i&akew—aymmﬂ:rin: The notion of
compatibility extands to Poisson brackets on Fp without any changss.

Fix an arbitrary cluster x = (x,...,Ty 4 ) and define a local toric action of
rank 2 at x a3 a map

a=1

. N
(21) X (:,—]:[g:“’) 3 q={@,....q) € (C*),

=1

where W = (&) iz an integer (N + M) x 2 weight matriz of full rank. Let x' be
ancther clustar in O, then the corresponding loeal toric action defined by the weight
matrix W' is compatible with the local toric action (1) if it commutes with the
saquence of cluster transformations that takes x to x'. If local toric actions at all
clusters are compatible, they define a global toric action on C called the C-extension
of the local toric action [E).

2.2, Poisson—Lie groups. A reductive complex Lie group § equipped with a Pois-
son bracket {.,.} i called a Poisson-Lie group if the multiplication map & « G =
(X,¥)— XY £ G i=s Poisson. Perhapa, the moat important dlass of Poisson—Lis
groups ia the one associated with quasitriangular Lie bialgebras defined in terma of
clasaical R-matricea (gee, a. ¢, [3, Ch. 1], [18] and [19] for & detailed exposition of
theas strustures).

Lat g be the Lis algebra corresponding to & and (-, -} be an invariant nonde-
generats form on g. A classical R-matrix is an element r € g2 g that satisfies
the dassioal Yang-Harter equation (CYEE). The Poisson-Lie brackst on § that
ocorresponds to r can be written as

{1 ) = (B (W5 19,75 1) — (R (VR P, W R )
= (R_ (V5N V5% — (R-(VEF), VR,

where Ay, R_ € Endg are given by (Ryn, §} = ir,q @ ¢} —(B_{.n) = {ny &)
for any n,& £ g and V5, V7 are the right and the left gradients of functions on G

(2.2)
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with respect to {-, .} defined by
d d
(VEAX)& = | FXe), (THAX).86 = 2| flA)

#=0 ¢=0
for any £ g, X €06
Following [18], let us recall the construction of the Drinfeld doubls. First, nota

that CYBE implies that

(2.3) g+ =Im(Ry), g =Im{R_)
are subalgebras in g. The double of g is D(g) = g & g equipped with an invariant
nondegenerata bilinear form
({08 m), (£'m70)) = (&, €' — ().
Define subalgebras 3y of Dig) by

(2.4) or={(£E): £}, oo = {(R+(£).R-(£)) £ €a},

then 9y are isotropic subalgebras of D{g) and D(g) = v, 40_. In other waords,
(Dig), 0y, 0_) is & Manin triple. Then the operator Bp = T, — Ty_ can be used
to define a Poisson-Lie structure on D{G) = § = §, the double of the group G, via

@5) (P = § ([(Ro(F 1), P 14) — ((Ro(P5F), P27Y)

where 7 and 7" are right and left gradients with respect to ({-,-}}. Restriction of
this bracket to § identified with the diagonal subgroup of (F) (whose Lie algsbra
is 94 ) coincides with the Poisson—Lie bracket {-,-}_on §. Let T'_ be the subgroup
of D) that corresponds to 9_ Double cosets of P in D) play an important
role in the description of symplectic leaves in Poisson—Lie groups G and DG, sea
[19].

The classification of classical B-matrices for simpls complex Lis groups was given
by Belavin and Drinfeld in [I]. Let G be a simple complex Lia group, & be the root
system asscciatad with ita Lie algebra g, 47 be the sst of positive roots, and IT C OF
be the set of poeitive simple roots. A Belavin-Drinfeld triple T' = (T'1, Ta,v) (in
what follows, a F0 triple) consists of two subeets ', Tz of 11 and an isometry
7 Iy — 'y milpotent in the following sense: for every o £ IM there axista m € M
such that /(o) £ 'y for § £ [0,m — 1], but.*'r’“[u]fh

The sometry 7 yields an iscmorphi=m, alse denoted by o, beiween Lis subal-
gebras gr, and g, that correspond o I'y and Tz It is uniquely defined by the
property ye, = &,y for @ € I'y, where e, is the Chevalley generator corresponding
to the the root o The isomorphism 1% gr, — gr, 8 defined as the adjoint to oy
with respect to the foom (-, ). [t.iag;ivmb].r"r's.,[a:,=s,ﬁnr"r[u] £ I';. Baoth
~ and * can bea extended to maps of g to itsslf by applying first the orthogonal
projection on g, (respactively, on g, ) with respect to (., .); clearly, the extended
maps remain adjoint to each other. Mote that the restrictions of + and «* to the
positive and the negative nilpctent subalgebras o, and n_ of g are Lie algebra
homomorphisms of ny and n_ to themselves, and (e ,) =0 for all a € Y\ T,

By the classifisation theorem, each classical H-matrix is equivalent io an R-
matrix from a Belavin-Drinfeld class defined by a BD triple I'. Following [7], we
write down an expression for the membere of this class:

(2.6) r=%ﬂ:n +s+za:s_=®sﬂ+iu:a_=ﬂ 1""—1.5,;
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here the summation is over the sst of all positive roots, (3 € b &k is given by
fty = T h, @k, where {h_} is the standard basis of the Cartan subalgebea f, {k_}
iz the dual basis with respect to the restriction of {-, ) to b, and 2 € [ A B satisfies

(27 (1 —7yla@1)(28) = ((1+ 7Ia® 1)

for any o € Iy, Sﬂhﬁmtnlﬁﬂjfnrma]jnurspamnfdjmmgni—ﬂ@mth
kp = |I1Y I';|. More precisday, defins

(2.8) br ={k£h : alk)=Fk) f(a) = F for some j},
then dimfy = kp, and if &' is a fixed solution of (ET]), then every other solution
has a form 8 = 8" + 85, where 2y iz an arbitrary element of by A hp. The subalgebra
hp defines a torus Wy = exphy in G.

Let 7., 7. be projections of g onto ny and n_; 7y be the projection onto . It
follows from (28] that £ in (E3) is given by

1 T 1

(2.0) R“"_l—"rw} 1_T1{+(E+.5‘)-r,],
where 5 £ End k is shew-symmetric with respect to the restriction of (-, -) to §h and
patisfies {5k, k') = {8, h @ k") for any &, & € b and conditions

(2.10) Sl — e = %[1+1}hu

for any @ € Iy, translated from EET).

For an R-matrix given by ([Z8), subalgebras g+ from L3 are contained in
parabolic subalgebras py of g determined by the BIY triple: py contains by and
all the negative root spaces in gr,, whils p_ contains b_ and all the positive root
gpaces in gry. Thean ons has

(2.11) =0y ®hy, po=p_2h_

with b+ C h. An explicit description of subalgebras h+ can be found, e.g., in [15
Beot. 3.1]. Lat [ denote the Levi somponent of py. Then [, = gr,, [_ = gr,, and
the Lis algebra isomorphism - desoribed above restricts to [ Ngy, — _MNg_. This
allows to describe the subalgabra o _ as

(212) oo ={{£+.8-)) £+ € gxs TiMurgels) = Tng_£-}
C{EE ) Ex €0y, TimL &) =m £ ]

where 7. are the projections to the corresponding subalgebras

In what follows we will use a Poisson brackst on § that is & generalization
of the bracket {[Z3). Let r,r" be two classical R-matrices, and Ry, B!, be the
oorresponding operators, then we write
(2.13) (P e = (R(WE TR — (R VRN, TR,
By [18, Proposition 12.11], the above expression definee a Poisson bracket, which
is not Poisson-Lie unless r = ¢, in which case {f2, [}, evidently coincides with
{f', F*}r. Tha brackst [ZI¥) defines a Poisson homogenscus structure on § with
reapact to the laft and right multiplication by Poisson-Lie groups (G, {., -}, ) and
(G {,}. ), raspectively. The bracket on the Drinfeld double that corresponds to
{f, f}rr is defined similarly to ([E8) via

(@14) {0 = % ({{Ro (7 F1), 7 7)) — ({BR (F2F1), 7))
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4. MAIN RESULTS AMD THE OUTLIME OF THE PROOF

3.1. Combinatorial data and main results. In this paper, we only deal with
g = sl,, and henos Iy and Ty can be identified with sutests of [1, n—1). We assumea
that T is oriented, that is, 4,4+ 1 € Ty impliss ¥(i+ 1) = (i) + 1.

For any i € [1,n] put

iy =min{j e [1,n]\T1: §=4i}, i_=max{je[0n]\Tu: j<i}
The interval A{i) = [i_+1,4,] is called the X -run of i, Clearly, all distinct X-runs
form a partition of [1, n]. The X -runs are numbered conssoutively from left to right.
R:-rmmpla,latn 'i"a.ndI'l—{i 2,4}, then there are four X-runs: &) =[1,3],
l.ni.amularwng.r Pidinmmuthmpmumof[ln]mf-rmaﬁm For
exampla, let in the above example T'y = {1,3,4}, then &; = [1,2], &, = [3,5],
Az =[6,6] and &, = [7.7],

Funs of length one are called trivial. The map v indusee a bijection on the
sets of nontrivial X-runs and ¥-runs: we ssy that &; = (A ;) if there exists
k £ A, such that Ay(k)) = A, The inverse of the bijection + is denoted
(the reasons for this notation will become clear later). Let in the previous exampls
Y1) = 3,7(2) = 4,7(4) = 1, then Ay = y{As) and Ag = y{A,).

The BD graph &fr is defined s follows, The vertices of & are two oopies of the
get of positive simple roots identified with [1,m — 1], One of the seta is called the
upper part of the graph, and the other is called the lower part. A vertexi eI is
comnectad with an mclined edge to the vertex (i) € I's. Finally, vertices i and n—i
in the same part are connected with & Rorizontal edge. [fn=2kand i=n—-i=§&,
the corresponding horizontal edge is a loop., The BIDF graph for the above exampla
is shown in Fig. [l on the left. In the same figure on the right one finde the BD
graph for the case of SLe with Ty = {1,3,4}, Ta = {2,4,8} and y i — i + 1.

\fﬂ_ (X-_h \
"H-hh___“:—_E—"_ -

Froure 1. BD graphs for apsriodic BD triples

Clearly, there are four possible types of eonnected components in &p: a path,
a path with & loop, & path with two loops, and a cycle. We aay that a BID triple
I is aperiodic if each component in & is either a path or o path with a loop, and
periodic otherwize. In what follows we assume that T is aperiodic. The eass of
pericdic BD triples will be addressed in a separata paper.

Remark 3.1. Lat wyp ba the longest permutation in &,. Observe that horizontal
edges in both rows of the BD graph can be seen as a depiction of the action of
{(—wrp) on the set of positive simple roots of SL,,. Thus the BD graph can be used
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to analyze the properties of the map wevuwpy™ . A map of this kind, with the
pair (wg, w0 ) replaced by a pair of elements of the Wall group satisfying certain
propertias dictated by the BD tripls in an arbitrary reductive Lis group, was de-
fined in [19, Seet. 5.1.1] and utilized in the desoription of symplectic leaves of the
ocorrasponding Poisson—Lie struciura,

The main result of this paper states that the conjecture forrmilatad in [13] holds
for oriented aperiodic BD triples in SE . Namely,

Theorem 3.2. For any oriented aperiodic Belavin-Drinfeld triple T' = (', Ty, )
theme eriata @ cluater structure Op on 8L auch that

(i) the number of frozen variables ia 2k, and the coresponding erchange matric
Raa g full mank;

(i) Cp is regudar, and the cormeaponding upper cluster algebm 40(Cr) is naturally
waomorphic to OSL,);

(iil) the glabal toric action of (C*)*™ on Cr is genemted by the action of Hr=Nr
on SL, given by (Hy, Hy)(X) = HUX Hy;

(iv) for any solution of CYBE that belongs to the Belavin-Drinfald claas specified
by I', the corresponding Shiyanin bmcket da compatible with Op;

(v] o Poisson-Lis bracket on SL, ¢ compatible with Cr only if # i o soolar
mudttple of the Skiyenin brockst arsocinted with o scheion of CYBE that belongs to
the Belavin-Drinfeld class specified by T'.

This result was establishad previously for the Cremmer—Gervais case given by
yiirri+1forl<i<n-2)in 16 and for all cases when kr = n — 2 in [5, ).

In faet, the construction abowve is a particular casa of & more general constroction.
Let #° and »° be two classical R-matrices that correspond to BD iriples I'" =
(If,T%,+") and I'* = (T'5,T5,7°), which we eall the row and the column BD triples,
regpactively.

Assume that both T™ and I'" are oriented. Similarly to the BD graph Gr for T,
one oan define a graph Grepe for the pair (I'°,T'°) as follows. Take Grr with all
inclined edges diracted downwards and &= in which all inclined edges are directed
upwards. Superimposs thess grapha by identifying the corresponding vertices. In
the resulting graph, for every pair of vertices 4,m — i in either top or bottom row
there are two edges joining them. We give thess edges opposite orientations. If n is
am,thmweretdnmlymebmpatmchufthatwnmﬁml&b&l&d . The resulk
iz a directed graph &'pe 2n — 1) vertices. For exampla, mnmdarthamaec-f
&L with I = {{1,2}, {r 2,3}, ln—}i,ﬂn—}ﬁjandP‘:[{l 2}, {3, 4}, 1~ 3,2 4).
The corresponding graph Gpe pe is shown on the left in Fig. [ For horisontal edges,
no direction is indicated, which means that they can be traversed in both directions.
The graph shown on in Fig. [@ on the right corresponds to the cass of Ly with
re=({2,6},{3,7},2— 86— T) and I'= = ({2,6},{1,5}.6 = 1,2+ &).

Ad::e,ct.&dpﬂ:t.hmﬂrc c is called alfernating if horizontal snd inclined adges
in the path slternats. [J:I.Pﬂrt.lﬂl.‘llﬂr an edge is & (trivial] alternating path. An
alternating path with coineiding endpoints and an aven maimber of edges iz called an
alternating eycle. Similarly to the decomposition of Gp into connected components,
we can decompose the edge set of Gre pe into a disjoint unicn of maximal alternating
pathe and alternating cyalas. If the resunlting collection contains no alternating
ayoles, we call the pair (T7, I'°) aperiodic; clearly, (T',I') iz aperiodic if and only
if I' is aperiodic. For the graph on the laft in Fig. [@ the corresponding masimal
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paths are 413314, 3232, 7423, and 41 (here vertices in the lowear part are marked
with a dash for better visualization). None of them is an alternating cycle, so the
oorrasponding pair is aperiodie. For the graph on the right in Fig. [ the path
623526716 iz an alternating cycle; the edges 1T and 53 are trivial alternating paths.

FICURE 2. Alternsting paths and eyeles in G

The following result generalizes the first two claims of Theorem [

Theorem 3.3, For any aperiodic pair of oriented Belawin- Drinfeld triples (I7, T%)
thene erists a cluster structure Cre p= on 5L, such that

(i) the number of frozen variables 65 kre + kpe, and the cormaponding ezchange
matrir hos a fell ok,

(i) Cpepe o regulor, and the corvesponding upper duster agebra Ao (Cpep: ) i
naturally womorphic to O(SL,).

(iii) the global torée action of (C*)*F+*F o Crepe is genemted by the action of
Hr: K"H:rc E'H-EL-.. gﬂEﬂ- EI'!,I'I::HLH::]I:I] = Hl.xﬂz.

(iv) for any pasr of sohtions of CYBE that belong to the Balavin-Drinfeld classes
specified by T™ and T, the corvesponding bracket [I1H) is compatible with Crs r=;

(v] a Poisaon brackst on SL. ia compatible with Cr-pr= only if # i a sonlar
mudtiple of the bracket ([ZT3) ascciated with a pair of soldions of CYBE that
belong to the Belavin-Drinfeld classes spacified by [* and T,

Following the approach suggasted in [156], we will construct a duster structure on
the space Mat, of » x n matrices and derive the required properties of Cpr p= from
similar features of the latter cluster strusture. Note that in the cass of L, we alao
obtain & ragular closter structurs with the same propertics, howaver, in this casa
the ring of regular funetions on &L, i isomorphic to the loealization of the upper
cluster algabra with respect to det X, which iz equivalent to replacing the ground
ring by the corresponding localization of the polynomial ring in fromen variahbles,
In what follows we uss the same notation Crs p- for all three cluster structures and
indicate explicitly which one is meant when nesded.

3.2, The basis. Consider connestad components of &p for an aperiodic T'. The
choiea of the endpoint of a component induces directions of its edges: thea first
edge ia diracted from the endpoint, the second one from the head of the first one,
and so on. Mote that for a path with a loop, each edge excapt for the loop gets
two oppaite direstions. Conssquently, the choice of an endpoint of & component
defines a matrix built of blocks eurved cut from two nxn matrices of indeterminatas
X =(zy) and ¥ = (%;;). Each block is defined by a horizontal directed edge, that
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is, an =dge whoes head and tail balong to the same part of the graph. The block
sorraspomding to a horisontal adge 4 — (n— i) in the upper part, called an X -block,
is the submatrix X; with J = [o,n] and J =[1,f], where a = (R —i+ 1)_+ 1 is
the leftmost point of the X -run containing n — i + 1, and § = i, is the rightmost
point of the X-1un containing 4. The entry (n —i +1,1) is callad the erit point of
the X -block. Similarly, the blodk corresponding to o horizontal edge 4 — (n —4) in
tha lower part, called a ¥ -block, is the submatrix ¥/ with J = [1,4] and J = [#,n],
where & = i, is the rightmost point of the ¥-run containing i and § = (r—i+1)-+1
is the leftmost point of the ¥-run eontaining » — 44 1. The entry {1,n —i 4+ 1) is
called the erit point of the Y-block. In the example shown in Fig. @l on the left,
the edge 5 — 2 in the upper part defines the X-block X["3 with the exit point
(3,1), the adgs 4 — 3 in tha lower part defines the ¥-blodk 1‘}':5' with the axit
point (1,4), and the edgs 1 — 6 in the upper part defines the X-block X[}7] with
the exit point (7, 1), see the left part of Fig. B where the exit points of the blocks
are eirclad.

1112 15 1314 17 TLX 71
21 23 1314 17 L
31 ¥ 23
X ¥ 1112 15
53 5 21
. 53 sTIAL
71 75 7Lx 73 X
0
71 75

Fiourg 3. Blocks and their gluing

The mmber of directed edges is odd and the blocks of different types alternate;
therefora, if this number equals 4b— 1, then thers are b blocks of each type. If thera
are 4b— 3 diracted edges, there are b blocks of one type and b— 1 blocks of the other
typ=. By adding st most two dummy blocks with empty seta of rows or columns at
the beginning and at the and of the sequence, we may assume that the mamber of
blocke of each type is aqual, and that the firet blodk is of X-type.

The blocks are glued together with the help of inclined edges whose head and tail
belong to different parts of the graph. An inclined edge i — § directed downwards
stipulates placing the entry (f, n) of tha ¥-block defined by § — (n— j) immediataly
to the left of the entry (i, 1) of the X -block defined by {n—4) — i. In other words,
the two blocks are glued in such & way that Afa) and A{&) = y(Afa)) coincide.
Similarly, an inolined edge i — j directed upwards stipulates plasing the entry (n, j)
of the X -block defined by j — (» — j) immediately above the entry (1,4) of the
¥ -block defined by (r — i) — i. In other words, the two blocks are glued in such &
way that A{F) and A{F) = 7*(A[F)) coincide. Clearly, the exit points of all blocks
liz on the main diagonal of the resulting matrix. For example, the directed path
B—=2—=4—=3—=1— 6in the BD graph shown in Fig. [ on the left defines the
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ghiing shown in Fig. @ on the right. The runs along which the blocks ara gluad are
shown in bold. The same path traversad in the opposite direstion dafines & matrix
ghuad from tha Hlocks x[|11=:;11, 1’[:[[3; and IE:I]

l]lm&nﬂpﬁrmdmpﬂi‘[l"l’“ and the decomposition of Gre p= into maximal
alternating paths, the blocks are defined in a similar way. To each edge i — (R— i)
in the upper part of &'pe e, assign the block X7 with J = [o, 6] and J = [1,4],
where & = (n — i + 1)-(I") + 1 and § = i4(I") are defined by X-runs exactly as
before except with respect to different BD triples ™ snd . Similarly, the blodk
mrreapnndmgtuahmmnmﬂedgai—}[n—ijmthaluwpartmthamm
Yy with I = [1,&] and J = [§,n], where & = i, (T") and = (r—i+ 1)_(") +1
are defined by 1-rums. Thess blocks are glued together in the same fashion as
before, except that gluing of & ¥-block to an X -block on the laft (respectively, at
the bottom) is governed by the row triple I's (respectively, the column triple I'=).
In what follows, we will call X — and ¥ —nums corresponding to I't (respectively, to
I} mow (respectively, column) runs.

Let £ = £{X,¥) denote the matrix ghied from X- and ¥-blocks as explained
above. It follows immediately from the cometruction that if £ is defined by an
alternating path i; — g — - -+ — ig, then it is a square N () = N (L) matrix with

k
N(£) =% izj1
=1
The matrices £ defined by all maximal alternating paths in Gpr p- form a collection
denoted L = Lr:;': [:ﬂI'Lr].fI" =1_":=I':]. ThlI.E,

(i) each £ £ L is & square N (L] = N [£) matrix,

(ii) for any 1 < i < § < n, there is a unique pair (£ £ L, 2 € [1,N (]|} such that
Lap = Yijs and

(iii) for any 1 < § < i < n, there exists and & unique pair (£ € L,s € [1, N{L]])
such that L, = xy;.

Wa thus have a bijection J = Jprpc between [1,n] = [1,n] % UL, (i, i) and
the set of pairs {(£,s): £ € L,s € [1, N(£)]} that takes a pair (i,§), i # j, to
(L0, 7), 804, 7)). We then define
&1) £, 00Y) = aet L@ IEINECD] 145
The block of £(i, f) that contains the entry (s(i, §), s(i, §)) is called the lending biock
of 1;;

hdd.ltln:-na]lg.r, we define
(3:2) V) =detX [l £3(X¥) = det¥ [T
The leading block foﬁiﬂx,mdthalaﬂdmgblﬂckuff;mf. Note that (E3)
means that # is extended to the diagonsl via a{i, i) =4, while £(i, ) is not defined
uniquely: it might denote either X or 1.

Finally, we put f;(X) = £;(X X) for i # jand f;(X) = £5(X,X) =
£3(X, X ), and define

F = Frepe = {f;;(X) 14,5 € [1,n]}.

Theorem 3.4. Let (I, T°) be an oriented aperiodic pair of BD triples, then the
Sfamily Fps p= forms a log-canonical coordinate system with respect to the Potsson
bracket [Z13) on Mat, withr = ¢ and v’ =r° given by ([ZH).
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Remark 3.5. A log-rancnical coordinate system on SL, with respect to the same
bracket is formed by Fre pe %, {det X'}

Although the construction of the family of functions Fre pe is admittedly ad hoe,
the intuition behind it is given by the ecllestion L = Lpr e that doss have an
intringic meaning. Resall the obsarvation we previously utilized in [15]: & funstion
garving as o fromen variable in a cluster structurs on a Podsson variety has a propsrty

that it is log-canonical with every clustar variable in every cluster. The vanishing
locus of such a funstion folintes into a union of non-generic symplectic leaves, Cm the
cther hand, in many examplas of Poisson varisties supporting a cluster stracturs,
the union of generic symplectic leaves forms an open orbit of & eertain natural
group action. Thus, it makes sense to salect sami-invariants of this group action as
fromen variables. Furthermore, a global toric action on the cluster structure arising
thiz way can be described in two equivalent ways: it is generatad by an action of
a commutative subgroup of the group acting on the underlying Poisson varisty or,
alternativaly, by Hamiltonian flows generated by the frosen variables.

In cur eurrent situation, the group action is determinsd by the BD data I'v,
. Let »* and @ be subalgebras defined in ([Z4) that correspond to T and
I'", respectivaly, and let TF = axp(?d” ) and PZ = exp(d® ) be the sorresponding
subgroupe of the double. Consider the astion of T% x D on the double D{GL,)
with T acting on the left and T2 acting on the right.

Proposition 3.6. Let £(X,¥) € Lyere. Then
(i) A=t £{X,Y) ix a semi-invariant of the action of DT x T2 described above;
(if) det £(X, X) is log-canonical with all matriz entries x;; with respect to the
Poisson bracket 1),

Comsequently, we selact the subeollection {det £(X, X ) : £ € Lps p< pU{dat X }
Frpepe a8 the sat of frozen variables.

3.3. The quiver. Let us chooee the family Fprpc as the initial cluster for our
cluster strusture. %nuwdaﬁ.nat.haqmvar @'rr r= that corresponds to this cluster.

The quiver has n® verticas labelad (i, 7). The function attached to a vertex (i, 4)
is fi;. Any vertex except for (n,n) is frogen if and only if its degree is at most
three, The vertex (m, n) is never frosen. We will show below that frosen vertioes
oorraspomd bijectively to the determinants of the matrices £ € LU X }, a3 suggested
by Proposition B

- oy
G G

DR

CORNC

FicurgE 4. The neighborhood of a vertex (i, 1), 1 <i,j<n
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A vartex (i,7) for 1 < i < m, 1 < § < n has degres six, and its neighborhood
locks as shown in Fig. @ Here and in what follows, mutable vertices are depicted
by circles, fromen vertices by squares, and vertices of unspeaified nature by ellipsa.

A wertene (1,7) for 1 < § < n can have degres two, three, five, or six. If I'™
stipulates both inclined edges (j — 1) — (k — 1) and § — k in the graph Grpr =
for some k, that is, if v5(k — 1) = § — 1 and (k) = §, then the degree of (1,§) in
Qrr re equals six, and its neighborhood looks as shown in Fig. Ba).

If I'" stipulatas only the edge (§ — 1) — (k — 1) as above but not the other one,
that is, if v*(k — 1) = j — 1 and j ¢ T'5, the degrea of (1, ) in Grer= aquals five,
and ite neighborhood looks as shown in Fig. Bb).

If I'® stipulates cnly the edge § — k as above but not the other ons, that is,
if —1 ¢ I'5 and (k) = j, the degree of (1,§) in Qv r< equals three, and its
neighborhood looks as shown in Fig. Be).

Finally, if I'™ does not stipulate any one of the above two inclined edges in
Gre e, that is, if § — 1,5 ¢ T, the degres of (1,5) in Qrr e equals two, and its
neighborhood looks as shown in Fig. Bd).

) (o) e
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- L — Bl
0t g e 00 a0
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! ",
RS o
S ) :?n,uu | 2 e |
[} .1
T Ty o
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& &4l LB x?“"*:f-'
i Id

FICURE 5. Poasible neighborhoods of a vertex (1,§), 1<j<n

Bimilarly, a wertex (i,1) for 1 < i < n can have degrea two, thres, five, or six. If
I'™ stipulates both inelined edges (i — 1) — (k — 1) and i — & in the graph G re
for some k, that is, if 77(i — 1) = & — 1 and 4°(i) = k, then the degres of (i, 1) in
@Qrr re equals six, and its neighborhood looks as shown in Fig. Ba).

If I stipulates only the edge (i — 1) — (k — 1) as above but not the other one,
that is, i 77(i— 1) =k — 1 and i g I, the degree of (i, 1) in Qr« r- aquals five, and
ita neighborhood looks as shown in Fig. Bi(b).
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If I stipulates cnly the edge ¢ — k as above but not the other one, that is,
if i— 1 ¢ I} and 47(§) = &, the degree of (i,1) in Qr. - squals thres, and its
neighborhood looks as shown in Fig. Be).

Finally, if I does not stipulate any cne of the above two inclined edges in Gre pe,
that is, if i— 1,1 & I, the degres of (i, 1) in Qrr = aquals two, and its neighborhood
looks as shown in Fig. G d).
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FICURE . Possible neighborhoods of a vertex (i,1), 1 <i<n

A vertex (n, §) for 1 < § < n can have degrea four, five, or six. If I stipulates
beth inclined edges (k — 1) — (j — 1) and & — § in the graph G- re for some k,
that is, #f 7°( — 1) = k—1 and 7=(§) = k, then the degrea of (m, ) in Qre - equals
six, and its neighborhood looks as shown in Fig. [a).

If ['= stipulatas only the edge (k — 1) — (§ — 1) as above but not the other one,
that is, if 15(§ — 1) = k — 1 and j ¢ T, the degree of (7, ) in Qe pe equals five,
and ite neighborhood looks as shown in Fig. [b).

If I'* stipulates only the edge k — § as above but not the other one, that is, if
j— 1 #T5 and () = k, the dagres of (, ) in Qv - equals five as well, and its
neighborhood looks as shown in Fig. [e).

Finally, if I'™ does not stipulate any one of the above two inclined adges in
G v, that is, if § — 1, & T5, the degres of (n, ) in Qre,re equals four, and its
neighborhood locks as shown in Fig. [id).

Bimilarly, a vertex (i,n) for 1 < i < n can hava degras four, five, or six. If "
stipulates both inclined edges (k — 1) — (i — 1) and k — i in the graph Gpr = for
some k, that is, if v* (k— 1) =i — 1 and y7(k) = 4, then the degree of (i, n) in Gre r-
equals six, and its neighborhood looks as shown in Fig. B(a).
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Fiocurg 7. Possible neighborhoods of a vertex (n, i), 1 < j<n

If I'* stipulates only the edge (k — 1) — (i — 1) as above but not the other one,
that is, if y°(k— 1) = i — 1 and i ¢ I, the degree of (i,n) in Qr= = aquals five,
and ite neighborhood looks as shown in Fig. Bb).

If I'" stipulates only the edge & — § as abowa but not the other one, that is, if
i—1¢ I'% and v (k) = i, the degres of (i, n) in Q@re re equals five as well, and its
neighborhood looks as shown in Fig. Ec).

Finally, if I does not stipulate any cne of the above two inclined edges in Gre pe,
that is, ifi—1, i ¢ IS, the degree of (i, ) in Qr+ r< equals four, and ita neighborhood
looks as shown in Fig. B d).

The vertex (1,n) can have degres one, two, four, or five. If I stipulates an
inclined edge (r — 1) — j for some §, and I'* stipulates an inclined edge i — 1 for
some 1, that is, if 7°(j) = n — 1 and 7°(i) = 1, then the degrea of (1,n) in Qr- =
aquals five, and ita neighborhood looks as shown in Fig. @ia).

If only the first of the sbove two edges is stipulated, that is, if (§) = n — 1
and 1 ¢ I', the degres of (1,n) in Qpr r- aquals four, and its neighborhood looks
as shown in Fig. @(b).

If only the sscond of the ahove two edges is stipulated, that is, if 1*(i) = 1 and
n—1¢ 5, the degres of (1, n) in @ = aquals two, and its neighborhood looks as
shown in Fig. @(o).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ T'% and
n—1¢ T3, the degres of (1,n) in Qs r- equals cne, and its neighborhood looks as
shown in Fig. B(d).

Bimilarly, the vertex (r, 1) can have degrea one, two, four, or five. If T atipulates
an inclined edge (n — 1) — j for some j, and I stipulates an inclined adga i — 1
for some i, that is, if v7(n— 1) = j and 75(1) =i, then the degres of (n, 1) in Gre r-
aquals five, and ita neighborhood looks as shown in Fig. [Ia).



FLETHOHRA OF CLUETER STRUCTIUTRES ON &Ln

17
-~ ll.-' -\-.\.. T _,-'"- -
B (pa) G
=y - —% "
R .,
“, \
e y o, Fpe k."""“ e
;H-I-Cﬂ_l_j- :'LI.J'S-I ._Hh_.__. x\,H,.-' |_I.d_:- . |-I___
p— .\_‘l__n\. par— _— -\.\_\_*__. S
,
Y
H\
18 FeeLw pelm
) o (o)
il w
. .
Bard () e
'\\R i) \““\ £y
Ny Ny
- - - — --H"-.
(TP T T e a
L Sl l,‘_\_u" S _} 'q\_\l_'l__,.l
& \1 &
Y
R‘L
e F— i
(Al atn®
il i

O

FICQURE 9. Possible neighborhoods of the vertax (1, n)

If only the first of the above two edges is stipulated, that is, if ¥7{r —1) = §

and 1 ¢ T'], the degres of (n, 1) in Qe re aquals four, and its neighborhood looks
aa shown in Fig. Ib).
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If culy the sacond of the above two edges is stipulated, that is, if 7°(1) = i and
n—1¢TI7, the degree of (n, 1) in Qrs re aquals two, and its neighborhood looks as
shown in Fig. [z).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ T'] and
n—1¢T7q, tha dagres of (n, 1) in Qpr re equals cne, and its neighborhood looks as
shown in Fig. [(d).

&

(L)

] L]

FICURE 10. Possible neighborhoods of the vertex (m, 1)

The vartex {n,n) can have degres threa, four, or five. If I™ stipulates an inclined
edge i — (n—1) for some i, and I'" stipulates an indlined adge § — (r— 1) for some
4, that is, if v°(i) = n — 1 and 4"(n — 1) = j, then the degres of (n, n) in Qr-r=
aquals five, and ita neighborhood looks as shown in Fig. [[Ta).

If only one of the ahove two edges is stipulated, that is, if either &) = n — 1
and n—1¢ I'§, or 1°(n — 1) = j and » — 1 ¢ T}, the dagree of (n,n) in Qp
aquals four, and its neighborhood looks as shown in Fig. [Tb,).

Finally, if none of the above two edges is stipulated, that is, if n — 1 ¢ T'f and

n—1 ¢TIy, the degree of (n,n) in Qe pe aquals thres, and its neighborhood looks
aa shown in Fig. TTid).

Finally, the vertex (1, 1) can have degres one, two, or three. If I'* stipulatas an
inclined edge 1 — 4 for some i, and I'* stipulates an inclined edge 1 — § for some §,
that is, if 47 (1) = i and v°(f) = 1, then the degres of (1,1) in Qr« re aquals three,
and its neighborhood looks as shown in Fig. [[3a).

If only ome of the ahove two edges is stipulated, that is, if either v7(1) = i and
1¢I5, or 4°(f) = 1 and 1 ¢ I'}, the dagree of (n, n) in Qpere aquals two, and its
neighborhood looks as shown in Fig. T3 b,c).
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F1cURE 11. Poasible neighborhoods of the vertex (r, n)

If none of the above two edges is stipulated, that is, if 1 ¢ IS5 and 1 ¢ I,
the dagree of (1,1) in Qv r= aquals one, and its neighborhood looks as shown in
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FICURE 12. Poasible neighborhoods of the vertex (1, 1)

We can now prove the characterization of frozen vertices mentioned at the be-
ginning of the section.
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Proposition 3.7. A verter (i, §) i3 frozen in Qrepe if and only ifi= j =1 and
Ju = detX or fi; i3 the restriction to the diagomal X =Y of det £ for some
EEerlrc.

FProgf. It follows from the daseription of the quiver that there are two types of frozen
vertioes distinet from (1, 1): wertices (1, §) such that § — 1 ¢ 5, sea Fig. [c),(d)
and Fig. Bc),(d), and vertices (i,1) such that ¢ — 1 & I, see Fig. @l(c),(d) and
Fig. [x), (d].

In the first case, the horizontal edge (n— § 4+ 2) — (§ — 1) in the lower part
of Gre re is the last edge of & maximal alternating path. Therefore, the ¥-block
defined by this edge is the uppermost block of the matrix £ sorresponding to this
path. Consequently, f = (f — 1) (") + 1 = j, and hence (1, §) iz indead the upper
left entry of L.

The sasond ecasa ia handled in & similar manner. O

The quiver @drer: shown in Fig. 03] corresponds to the BD data I = (1,2},
{2,3},1— 2,2 3) and T° = {{1,2},{3,4},1~ 3,2+ 4) in GLz. The corre-
sponding graph Grr r= iaahuwnunt.halaft.:i.ul?ig. For example, consider the ver-
text (1,4) and note that Gre pe contains both edges 4 — 2 and 3 — 1. Consequently,
the first of the above conditions for the vertices of type (1, §) holds with k& = 2, and
hence (1,4) has outgoing edges (1,4) — (5,2), (1,4) — (2,8), and (1,4) — (1,3),
and ingoing adges (5,1) = (1,4), (1,5) = (1,4), and (2,4) = (1,4). Alternatively,
consider the vertex (4,5) and note that Gpr p- contains the edge 2 — 3, while
4 ¢ I's. Consaquently, tha second of the above conditions for the vertices of type
(#,m) holds with & = 3, and hence {4,5) has outgoing edges (4,5) — (4,4) and
(4,8) — (3,5) and ingoing edges (3,4) — (4,5), (3,1) — (4,5), and (5, 5) = (4,58).

@

_/

FIoURE 13. An example of the quiver Qpe pe
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Theorem 3.8, Let (I, T°) be an oriented aperiodic poir of BD triples, then the
quiver Qrere defines a chuster structure compatible with the Poiason brcket [LI3)
on Mat, withr =" and »' =r° given by (ZH).

Remark 3.9, The quiver that defines a cluster strusture compatible with the same
bracket on SL., is obtained from Qe pe by delsting the verte (1, 1).

34. Outline of the proof. The proof of Theorem [ iz based on lengthy and
rather involved caleulations. Following the strategy introduesd in [IG], we con-
gider the bracket [Z14) on the Drinfeld double of SL. and lift it to a brasket on
Mat, x Mat,. The family Fpe pe is obiained as the restriction onto the disgonal
X =Y of the family Frs re of functions defined on Mat, =« Mat, via

F=Frope = {£5(X,¥) 2,4 € [Lm]i & 7p 0 {£5(0,Y), £5(0,Y) 1d € [Ln]},
sea ([T0)), ([FF). The bracket of a pair of functions f,g € Fpepe is decomposed
into a large mumber of contributions that either vanish, or are proportional to the
product fg. In the process we repeatedly use invariance properties of functions in
Fre e with respect to the right and left action of certain subgroups of the doutle.

The proof of Theorem [ iz basad on the standard characterization of Poisson
structures compatible with a given cluster structure, see e, [IZ, Ch. 4]. Note that
the numbser of frozen variables in Qpr pe equals 1 + kpe + kp=, and that det X is
frosen. As an immediate consequence we get Theorem E3i), which for " = T
turns into Theorem EZ{).

The proof of Theorem [EHiii) is based on the claim that right hand sides of
all exchange relations in one cluster are sami-invariants of the left-right action of
Hre x Hre, sea Lemma BJ It also involves the regularity check for all clustars
adjacent to the initial one, sas Theoram [l Theorem EHiii) follows when I'f =
Ic. After this is done, Theorem E3Hiv) and {v) follow from Theorem 8 via [13]
Theoram 4.1]. To get Theorem E3iv) and (v) we need a generalization of the latter
result to the case of two different tori, which is straightforward.

The central part of the paper is the proof of Theorem E3i) (Theorem F3ii)
then follows in the case I = I'°). It relies on Proposition 2.1 in [15], which is
reproduced below for readers” eonvenisnos,

Proposition 3.10. Let V be a Zarisli open subset fn C"™ and C be a cluster
atructure in C(V) with n duster and m frozen variables such that

[P there erists a cluater (fi,..., fatm) in © such that f; i reqular on V for
i€ [l,n+4m|;

(i) any cluater variable f} adjacent to fi, k € [1, n], i reguiar on V'

(iil) any frozen variable f_ ., i€ [1,m], vanishea at some point of V)

(iv) ench regular function on V' belongs to dc(C).
Then C ia a regular cluster structure and Ac(C) is natumlly isomorphiz to (V).

Conditions (i) and (iii} are established via direct observation, and condition (ii)
was already dismssad above. Therefore, the main task is to check sondition {iv).
Mota that Theorem [E3i) and Theorem 3.11 in [16] imply that it is enough to
check that every matrix entry can be written as a Laurent polynomial in the initial
aluster and in any sluster adjacent to the initial one. In [15] this goal was achisved
by constructing two distinguished sequences of mutations. Here we suggest a new
approach: induction on the total size [[5| + |T5|. Lat T' ba the BD triple obtained
from I' by removing a eertain root o from I'y and the corresponding root (e from
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I'z. Given an aperiodie pair (T, T'") with [I']| > 0, we chocse o to be the rightmost
root in an arbitrary nontrivial row X-run A" and define an apericdic pair [l" L)
Einne.the.tntalaimnfthjaped:isma.]lg,mm&thatﬂ:ﬂr,rzpmmtha
above mentioned Laurent propsrty. Recall that both C and © are cluster structuras
on the space of regular functions on Mat,. To distinguizsh bet ween them, the matrix
entries in the latter are demoted =4; they form an nox » matrix Z = (z5).

Let F = {fi;(X): 4,5 € [1,n]} and F = {f;;(Z): 4,5 € [L, n]} be initial clustars
for C and C, respectively, and € and &} ba the corresponding quivers. It is easy to
sea that all maximal slternating paths in Gre p- are preaarved:inﬂf.,lr.: except for
the path that goes through the direstad inclined adge & — y{a). The latter one
is split inte twor the initial segment up to the vertex o and the closing segment
starting with the vertex y(a). Consequently, the caly difference betwesn @ and
€} in that the vertex ¢ = (o + 1,1) that eorresponds to the endpaoint of the initial
segment is mmtable in ¢ and frogen in ), and that certain three edges incident to
v in @ do not exist in &

Lat us consider four fislds of rationsl functions in n® independent variables: X =
ct::ll'-"':! HH:] Z = 'EI:E].'I.: 11.11.:] ..F El::'fll: :'an] Eﬂ.d..F Etﬁh
#nn). Polynomial maps f : .F—&.-l:'a.nd_f .F—&Eamg;wanb].rrp.,n—}f.;[l']
and §;; n—&j’u[ﬂj By the induction hypothesis, there exists a map P : £ = F
that takes x;; tnalﬂmantpcdynummlmmblanﬁaﬂsuchthm:f-&ﬁ Id.
Hnte.thatthapﬂlynmalu fq[.zjma]gabrmmﬂymdepandmt and henca f is an
somorphism. Conssquently, o f = Id as well. Our first goal i= to build a map
F 1 X — F that takes x;; to a Laurent polynomial in variables ip. gz and satisfias
condition fo P =1Id.

Wa atart from the following result.

Theorem 3.11. There erig o bmtfonal map U7 - A" — Z end an invertshla poiy-
nomial map T : F = F satisfying the following conditions:
al fol' =Uaf;

b) the denominator of any U(x;;) i a power of f,(Z);
¢} the muerse of T &5 o menomiéal transformation.

F‘ut..F'=T‘lc}ﬁc}[-’;it.iaamap.-t'—}f,mdb}ra]mdthamdu-:tiun hypothesis,
Pof=T"loPaUof=T"loPfoT =T"10T =14

For the same reason as above this yialds fo P = Id. Let us check that P takes r;;
to a Lanrent polynomial in varisbles pap. Indead, by b), 7 takes x;; into a rational
expression whoss denominator is & power of f.(Z). Conssquently, by the industion
hypothesis, P takes the mumerator of this expression to a Laurent polynomial in
Fape, and the denominator to o power of .. As a result, F’-}Htﬂkea::,-‘; to A
Laurent polynomial in §_ 5. Finally, by ¢), T—! takee this Laurent polynomial to a
Laurent polynomial in .5, and hence F as above satisfies the required conditions.

The next goal is to implament & similar sonstruction at all adjacent slustare.
Fix an arbitrary mutable vertax & & w in Q); a8 it was explainad abowve, o re-
mains mutsble in @ as wall. Let p (F) and p,(F) be the clusters obtained
fzumFandF‘,reapaﬂ.iwl].r, via the mutstion in direction u, and lat f{X) and
fulZ) be cluster variables that teplace f,(X) and fu(Z) in pu(F) and p.(F).
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Replacs varisbles i, and ¢, by new variables ¢ and @ and define two addi-
tional fislds of rational funetions in n® variablas: F' = C{ip11,..., ¥, ... .49nn ) and
F' = C(f1, ..., @y oy Fun). Similarly to the situstion discussed above, there
mapnl:.mc-mmlmmnrph:mf'}‘—}l'mdff F' = Z and a Laurent map
P':Z — F such that f'c P = Id (the latter axista by the induction hypothesis).

We define a map T7: ,F‘—&,F"mf!"'"[?q] Ty ) for (4, ) # v and Tl ) =
Flptn for some integer A, and prove that maps IV and T satisfy the analogs of
conditions a)-c) above, Consequently, the map F¥ = {T')~! ¢ P* o U7 takes each x;;
to & Laurent polynomisl in grqp,.0004 W s s P 80d satisfies condition PYe ff = Id.

Thua, we proved that every matrix entry can be written as a Lanrent polynomial
in the initial cluster F' of Cpe pe and in any duster p, (F) adjacent to it, except
for the cluster p,(F). To handle this remaining chuster, wapmkad:fmtu
the rightmoet root in ancther nontrivial row X-run (if there are other nontrivial
row X-runs), or the leftmost root of the same row X-run (if it differs from the
rightmost root ), or the rightmoet root of an arbitrary nontrivial column X-run and
an aperiodic pair (", <) (if |T5| = 0), and proceed in the same way as above.
MNamely, wea prove the existence of the analogs of the mape 7 and T satiafying
oomditions a}-o) above with a different distinguished vertex v. Consaquently, g, (F)
iz now ooverad by the above reasoning about adjacent clusters,

Similarly, if the initial pair (', I'") satisfies [T5| = 0, we apply the same strategy
gltarting with eolimn X-rung. It follows from the above description that the only
case that cannod be treabed in this way is [If] + 5| = 1. It is considered as the
bass of induction and treated via direct caloulations

We thus cbiain an analog of Theorem [E3Hii) for the cduster structure Cpe e on
Mat,_ . The soughi-for statement for the cluster structure on SL, follows from the
fact that both ¢ (Cpe pe) and O(5L,.) are obtained from their Mat,, counterparts
via the restriction to det X = 1.

4. INITIAL BASIS
The goal of this Section is the proof of Theorem FEd

4.1. The bracket. In this paper, we only deal with g = sl., and hencs gr, and
pry are subalgebras of block-disgonal metrices with nontrivial tracelass blocks de-
termined by nontrivial runs of 'y and Ty, respectively, and zeros averywhers alse,
Each diagonal scmponent: is isomorphic to sly, whers & is the size of the correspond-
ing run. Formmla ([E13), where Ry, = R and R = RT are given by (3 with
& akew-symmetric and sabject to conditions ([E10), defines o Poisson brackst on
G = 8L, It will be convenient to write down an extension of the bracket 14 to
the.dnuble.ﬂ[GL.]au-:hthﬂzltareammgnmthadmganﬂlI Y iz an extension
of I3 to &L, (for brevity, in what follows we writa {., ]- instead of {., } ol

To provide an axplicit expression for such an extension, we.axbandt.hamapa
~ and " to the whole gly. Mamely, 7 is8 re-defined as the projection from gl,
onto the union of disagonal blocks spesified by I'y, which are then moved by the
Lie algebra isomorphism between gr, and gr. to corresponding diagonal blocks
gpecified by Iz, Similarly, the adjoint map 1* acts as the projection to gry followed
by the Lis algebra isomorphism that moves ench disgonal block of gr, back to the
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corrasponding disgonal block of gr,. Consequently,
"~ = [ . " =Ip,,
(41) JS A
i it TR s s s
where [, is the projection to gry and M, is the projection to gp,. Mote that the
restriction of « to gr, is nilpotent, and henee 1 — 7 is invertible on the whole gl,.
We now view ¥.,, 7. and 7; a8 projections to the upper trisngular, lower tri-
angular and diagonal matrices, respectively. Additionally, dsfine Ty = T + My,
Ty = T + My and for any square matrix 4 write 4, A, Ay, 45, A instead of
oA, w A, md, mo A, wo A, respestively. Finally, define operatars ¥ and Vy via

Vel = ('ﬂ:_ﬁ)-i,;El, Vri= (Eﬂ}ii)i,j=11

Er =VxX +VyY, Er=XVx +YVr,
Er =7 (VX )+ VY, En=XVx +7"(¥Vy),
M =VxX +7(VeY), Me=7XVx)+¥Vy
via By f =V f - X+ Vyf Y, Egf = XVxf+YVyf, and s0 on. The following
simpla relations will be used repeatedly in what follows:
1_1ng =T"x.!f'+ﬁ&, 1—1TEE=H'£+1—']"
42) _171-5'5 VY + 1_17% #Eﬂ =¥Vy + #En,
e =7"(EL) + nr'*; VxX), nr=7Er)+ nf-;(r??l
whers Iy, is the orthogonal projection complementary to Iy for j = 1,2, 1=1,&
The statement below is a generalization of [15, Lemma 4.1].

Theorem 4.1. The bracket ([E1d) on the double D{GL,) ia given by

(43) {4 AP XY ) = (RL(ELf'), BEuf?) — (R (Erf), Brf*)
AV LYV ) — (Ve f X,V f Y,

and operators

MR,

whare
44) RO = e ~ et
3 () G mOS -T(es))
wath
g1 (;_;)1
AN T
forl=1,0

Proof. We nead to “tweak™ Ry to ectend the bracket (E13) to 7L, in such o way
that the function det is a Casimir funetion. This is guaranteed by requiring that
R, is extended to an operator on gl, which coincides with the one given by )
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on 5l and for which 1 € gls is an sigenvestor. The lattar goal ean be achisved by
replacing ([ZH) with
i T i

I:li-ﬂ:] R+=1—"‘|"ﬂ-}_ 1—'}'-“-{+ E'H'D'l'ﬂ".sﬂm
whmwmthe-prajmnntathaapamufhamlemd.m.g;n:-nﬂlmtrmeaglmb].rﬂ'[f]—

LTr(2)1, 7 is the adjoint to 7 with respect to the restriction of the trace form
tu:-t.heapa.ua diagonal matrices in gl , and & is an operator on this space which
is shew-symmetrioc with respact to the restriction of the trace form eand satisfies
[EALLT

The operator § in (@A) can be selacted as follows.

Lemma 4.2, The opemtor

- ()

wiath g, 7" understood af acking on the space of diagonal malricss in gl, ie ahew-
spymmetric wath meapect to the regtriction of the trace form fo this space and satiafies
1),

Froof. Rewrite (@) as

114y 1 "y + |
T 21— ZANl—  1—er )

The first term above clearly satisfies [Z110). The seoond term, multiplied by (1 —)
on the right, beoomes

—% ("r+ ﬁ[l - "r]) = —%ﬁ (1=
and vanishes on by, C b spanned by b, o £ T, O
Wa onn now oormpute
7 S(0s) = S(Go) — = (Te()S(1) +Tr(S(Co))1)

= 5(¢o) - + (Te{C)5(1) — Tr(cs(L))1)

and plug into ([£5) taking into account (8], which gives (£.4]). Expression [!E] is
obtained from [ZH) in the same way as formmla (4.2) in [15].

4.2 Handling functions in F. It will be convenient to carry out all computations
in the double with functions in Fpe rc, and to retrieve the statements for Frr p- via
the restriction to the dingomal.

Recall that matrices £ used for the definition of the collection Frr = are built
from X- and Y-blocks, ses Section {3 We will frequently use the following com-
parison statement, which is an esasy consaquence of the definitions, ses Fig. 14
Proposition 4.3. Let X{, X be two X -blocks and Y7, ¥ be two ¥ -blocks,

(i) If & e; A (reapectivaly, o > o naeux;,' fita completely inside X[, in
particular, of > o (reapectivaly, ' < @),

(ii) If & > F (respectively, & < &) then ¥; _;rita completely ingide 1"'- ;in
particular, & < & (respectively, ¥ = £).
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P P

FIourE 14. Fitting of X- and ¥-blodks

Consider & matrix £ defined by a maximal alternating path in Spepe. Lot us
numbs=r the X-blocks along the path conssoutively, so that the t-th X -block is
dam:-t.ed.x}{‘. In a similar way we mumber the ¥-blocks, so that the é-th ¥-block is
denoted ¥7*. The ghied blocks form & matrix £ so that £ = X and L7 =¥7",
which we write as

w e
i=1 =1

According to the agresment above, if the &-th X -block is non-dummy, then the ¢
th ¥-block lies immediately to the left of it, and if the é-th ¥-block is non-dumooy,
then the (¢ + 1)-th X-block lies immediately above it. In more detsil, all Ky's
are disjoint, and the same holds for all K's; moreover, K; nKq_1 = &. If both
t-th blocks are not dummy, put & = K¢ 1 K:. Then & # & ocorresponds to
the nontrivial row runs A o) and A(&:) = 7"(A(o: ) along which the two blocks
are glued. Consequently, 4y is the uppermost ssgment in Ky and the lowarmost
sagment in K,. If the first block is a dummy X-block and A& ) is & nontrivial
row V-run, define & as the sst of rows corresponding to Afa); if this Y-run is
trivial, put #; = &. Similarly, if tha last block is a dummy ¥-block and Afe,) s a
nontrivial row X -run, define &, as the set of rows corresponding to Ao, ) and put
I, = v (Afa,)); if this X -run is trivial, put &, = & We put K = 4, for a dummy
first X -block and K, — &, for & dummy last ¥-block to keep relation &, = K, K,
valid for dummy blocks as well.

Further, all L,'s are disjoint, and the same holds for all £,'s; morecwver, LML, =
& For2=¢ < s put U, =L, NL,_;, then T, # & corresponds to the nontrivial
oolumn runs A{F, ;) and A{F,) = 7= [A{F,_, )). Consaquently, ¥, is the rightmost
segment in L, and the leftmost segment in L,_;. If the first block is & non-dummy
X-block and AjF,) is a nontrivial eolomn X-run, define T as the sst of columns
sorrasponding to A(#); if this X-run is trivial, or the block is dummy, define
T, = @. Bimilarly, if the last block is & non-dummy ¥-block and Aff.) is a
nontrivial eolumn ¥-run, define ¥,41 85 the set of columns corresponding to A (4, )
and put J,11 = 7" (A(f,)) (note that J,41 does not correspond to any X-block
of £); if this ¥ -run is trivial, or the block is dummy, define ¥,.; = . Wa put
Ly =1 and L4y = T, to keep relation T = LN Doy valid for 1 < £ < a4 1.
The structure of the obtained matrix £ is shown in Fig. 18
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e

FIoURE 15. The structure of £

It follows from (7)) thet the gradients ¥y g and Vy g of a function g = g(C)
can be written as

(4.8) Vxg= Ef‘?zg 2R Vra= EWEH g 9

Hnmthatmhkeﬂﬂ'ﬂ,thabln:kam(ﬁ]maymlap.
Direct computation shows that for [ = [a,n], J = [1, 8], I = [1,a], J = [F,n]
one has

* .5 ¥ gﬁ' ]
(4.9) X(Veoa)iZi = [,:, X/ (Ve g:]ﬁ] FW£§E}=[Ifi£ K ﬂ]-
Here and in what follows we denote by an asterisk parts of matricss that are not
relavant for further considerations. Nota that the square block X[ (Veg)l is the
diagonal block defined by the index set J, whereas the square block ¥ (Veg)f is
the disgonal block defined by the index sat T,

Similarly, for I, J, I, J as abova,
{d.10)
= (Vealf - Xf *] fr-u ¥ = [':' o _]
Wﬂﬂ]f_u [ il ol * F"‘.EH:] Wﬂﬂf _1.-11 E]
and the corresponding squars blocks are disgonal blocks defined by the indax seta
J and J, reapectivaly.

Lat Ny, N_ £ L, be arbitrary unipotent uppsar- and lower-triangular alemeants
and Th, Ty € H be arbitrary disagonal elements. It iz aasy to sas that the struetura
of X- and ¥-blocks as defined in Section B and the way they are glued together,
aa shown in Fig. {8 imply that for any £ £ Fre re one has
(011) (VX exp(y)(N)Y) = 1 (X exply™)(N- ), ¥ N_) =£(X,¥)
and
(4.12) £ (T2 X sxp(7™") (Ta ), exp(y ") (T ¥ Ty) = o7 (Th) a"(Ta)2 (X, ¥,
where a® (T ) and a°(Th) are constants depending only on T and Th, respectivaly.
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It will be more convenient to work with the logarithms of the funstions £ £ Frepe,
instend of the funstions £ themsslves, The correeponding infinitesimal form of the
invarianos properties ({110 and (13) reads: for any £ £ Fre pe,

(4.13) Epr.n = {EGEn_)=10
and
(4.14) (Ergly =oomet, (Epgly = const

with g = log f. Additional invariance properties of the functions in Fre pe are given
by the following statement .

Lemma 4.4. For any £ € Fre pe, any X-run A and anp ¥-nn A,
Tr(Vxg - X )& = const, Tr(XVxet = const,

TriVye- 1’]& = oonst, Tr[Y‘FTg]E = ronst
with g = logf.

FProof. Congider for exampls the sscond equality above. Let 14 dencte the diagonal
n x n matrix whose entry (f,j) equals 1 if § € A and 0 otherwiss. Condition
Tr(X Vxgls = aa for an intager constant as is the infinitesimal version of the
equality

(4.18) fl(ln+ (2 —1J1a) X, ¥) = =2 (X, Y.

To establish the latter, recall that (X, Y") is a principal minor of & matrix £ € L.
Cleatly, £((1, + (z — 1)1, )X, Y") represents the same principal minor in the matrix
E{E]nbtainadfrnmﬂviam]ﬂplyingbysamryaubmatrixﬂﬁlsuchthﬁtth&rm
gat Ry corresponds to the X -run A, There are two types of such submatrices: thosa
for which R, lies strictly below & and those for which Ry ocincides with @ (the
latter might happen only when the run X is nontrivial). To perform the above
operation on each submatrix of the first typs it suffices to multiply £ on the laft
by the diagonal matrixz haying = in all positions corresponding to Ay and 1 in all
cther positions. To handle & submatrixz of the second type, we multiply by = all
rowsof £ starting from the first one and ending at the lowest row in £, and divide
by = all columns starting from the first one and ending at the rightmost solumn
in L,. seo Fig. T8 Clearly, this is equivalent to the laft mltiplieation of £ by a
disgonal matrix whose entries are either » or 1 and the right multiplication of £ by
a diagonal matrix whose entries are either z—1 or 1. Consequently, every principal
minor of £(z) is an integer power of = times the corresponding minor of £, and

(IS follows.
A gimilar reasconing shows that the remaining three equalities in the statement
of the lamma hold as well O

Furthermore, the following statement holda troe.
Lemma 4.5. For any £ £ Fre pe,
[[f-II_WxE - X Jo = const, I[f-I’ (XWVxg)o = oonat,
[[f-LEWYE ¥ )p = const, I[f-; (YWyg)ly = const
with g = logf andl = o,r.

(4.16)
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FPropf. Bame as in the proof of Lemmea @4 we will only focus on the sseond equality
in (@I, eince the other thres can be treated in a similar way.
For any diagomal matrix £ wa have

1
(4.17) “ﬂ[‘ﬂ=z E'n'ﬂﬂ]ln,
&
where the sum is taken over all X -runs. Let § = (X Wy g)g, then by Lemma €4 all
terms in the sum above are constant., O

Corollary 4.6. (i) For any £ € Frx re,
T['W_p-;g ' ..1':] = eonst, Tl.'l::xvj_g:] = oonst,

(4.18) Te(Vyg ¥)=oomst, Te(¥Vya) = const
with g =logf.

(ii) For any £ € Fre =,
(4.19) (Meglo =conet,  (ymE)o = const
with g =logf.

Froof. (i) Follows immedistaly form Lemma @8 and equality Tr{ = Trily ({) =

Trllja (<) for any { and 1= o,r.
(ii) Follows immediately form Lemma @3 and (I3 via the last two relations

in ([@3F). |
4.2, Proof of Theorem [Ed first steps. Theotem [Ed iz an immediats sorcllary
of the following result.

Theorem 4.7. For any£',1? £ Fre e, the bracket {log£',log£%} 7 is constant.
The proof of the theorem is given in this and thea following sections. It eomprises
a mumber of explicit formulas for the objects involved.

4.3.1. Explicit erpression for the bmcked. Lat us dearive an explisit expression for
{log£!,1og £*}©. To indieste that an operator is applied to & function log£°, i =
1,2, wa add i as an upper index of the corresponding operator, so that ViX =
Vxlogf! X, B} = Ex log £2, ate.

Lat

4.20 Ra o ! ! 8 —Tr(cS)1
(4.20) ©=-3 (15 + 12 )@ £ MES -1 @) D),
for ¢ € gln, of [{d)); clearly, Fo(¢) is a disgonal matrix.

Proposition 4.8. For any 11, £ Fre pe,
(4.21) {logf!, logf?}”
1 2 1 ] 1 1 2
= (R3(EL), BE) - (RS(ER).ER) +((€)o, — s (nd)e )
— (o, s (€ ) + (Mg (o, Teg (V3 o)
()<, 0=~ (b (7)) +(1°" (€ )2, ¥ (V3Y)) Hr"(ER) 2,17 (XVR)).
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FPropf. First, it follows from Theorem @] that
(4.22) {logf'logi®}” = (RL(E}) - VX, El) — (R (EY) - XV%, E%).
By ([Z) and @I,
R (BE) - VX = RS(ED) + - E): -
1

_ 1 1 1
= R&(EL) + qlﬁr_]n— e

the sscond equality holde sinee £} € b_ by [@I3]). Similarly,

1 i
B) - XV = B BR) + 1= )z - s (€h)e
W (ER)+ Tkl - 7o (€R)

1
=REE-E'}:]+1_T{

the second equality holds sinee £} € by by ([E13).
Consequently, the first term in (23 i= equal to
1 1 1 1
a2 (RED.ED + (@B ) - (1

The second term in (L3]) can be re-written via ({3) as
{ﬁ(ﬂ,]mﬁf} = (E&Ju:ﬁ” #’ﬂ

= (@ =z )+ (M€ T (V3Y)) + (T () iy (V37)
= {':'E}.:]D:

o) + (Teg(€)n Trg (V¥ + (17 (€)o7 (V3 1)),
where the last equality follows from ([@1).
We re-write the third term in (I224) as

1
1 — 7=

()<

(ML) <

(MR)z;

()< B2 ).

(e et} = () V3x + el ) = (), VR X))
= (0L Jeo i) — (k) < 7= IVFY D) = (k)e i) — 77 (&), T (VYD)
where the sscond equality follows from (13, and the last equality, from (2 and

{Tlg;(A4),77*(B) ) =0 for any A, B.
Similarly, the second term in in ({25 is equal to

428) (RER.ER) + (12 (h)x ER )

1y @t 1 2 1
= (RS(ER)ER) + {(1h) 2 VI3 + { (hJon =z (€ho)
— (R (ER).ER) +{ (Th)or g (o )+ {(r)z 720 — (77(€R) 5 1T,

Combining [{.2)), ({20 and plugging the result into [@2F), we obtain [@.2]) as
required. O
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4.3.2. DHagonal comdributions. Mots that the third, the fourth and the fifth terms
in [@Z0)) are constant due to [@TI1) and [@IH. The first two terms are handlad by

the following statemsnt.
Lemma 4.9. The quantities { Ry (E}), B} ) and (R (L), E%) are constant for any
f:l',f2 = Frt,r:.
Proof. Let us start with
426) (Ro(E}) B) = —%{(I%r o) Bl )
- ; (Te(EL) Tr(ELS) — Tr(ELS) Tr(EE)) ,

where v = +~. Fimst, nota that

an w0 ~(a (e -2 ) n((s2 ) )

1. .
='Ir(1 =tk — = &+v§,r-v*xx)=mm:

for i = 1,2 by ([IF), (@I, (I1=) and [@IW. Thus, the terms in the second line

in (@3 are constant.

Next, by [I2),
(i%r ﬁ)& - ii"r'E‘Jr T—y
(4.28) (ﬁa}_,ﬂ}:{&,ﬂ-l@ 1_11._!&},
(k)= (ssocs )
and hencs
(4.20) {(1 TT+ ﬁ) [;Ei]n,ﬂ'i>

={[&]u v}-r+1 } {(:ﬁ]u ViX+— Fi}

= (€D ;= i)a) + (r.mu. (€0 )+ (€ €)0)

+ {01 Jo. VX — ((EL )0, 7(VE X))
Each of the thres first terms in (Z) is constant by ([L1d) and (I%). Note that

h]||' @:
{E)o(VEX)) = {1710V 3o +77(V3 ¥ Jo, V3 X) = (Tle, 0 Jo, V2 X)
with Iy = I}, and a0 the last two terms in ({25 sombine into
(e, (7L)os Iz, (V5K Do)

which is constant by {18,
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Similarly,
w30 (RuER.ER) = -3 (12 + 12 ) BheER )
— 2 (Te(Bh) Tr(B%S) — TH(BhS) Te(ER))

with = 7". As before,

“iﬂﬁﬂg]:{ﬁi’(i%r' 1—11')1>

1 . 1 . . .
=T - o+ ¥V — XV | = oomat
(1_T,Eh I_TTFR+ ¥ .!-:)

for i= 1,2, and

(525 2) oo
- {[ri}:_-]u.‘lr"?% + %&} + {I:E}ﬂu.ﬁi' + iljfaﬁi}
= ( h)os — (€)o )+ { (6o, = (o ) +{(€4)o, (€)
i) T

+ ()oY V) = ((€r)e. 7" (¥ V5)).
Each of the three first terms above is constant by (H1d)) and ([EIH), whila

(7)o Y95 ) = (i€ 1" V95 )) = (T, (ko Thi, (Y73 o ) = const

with 'z = I'5. Thus, the right hand side of ({30 is constant as well, and we ara
dome, O

4.3.3. Simplified vergion of the mape 7 and 7°. To procesd further, we define mora
“aocessible” versions of the maps 7 and *. Hecall thet gr, and gr, defined abcos
are subalgabras of block-diagonal matrices with nontrivial traceless blocks deter-
mined by nontrivial runs of I'y; and Iy, respectivaly, and zerca everywhere elsa. Each
diagonal component is isomorphic to s, where & is the size of the corresponding
run. To modify the definition of v, we first modify esch nontrivial diagonal block
in ar, and gre from sl to Mate by dropping the fracelessness condition. Mexd,
% iz defined as the projection from Mat, onto the union of disgonal Blocks spec-
ified by I';, which are then moved to corresponding disgonal blocks specified by
I'z. Similarly, the adjoint map 4" acts as the projection to Matp, followed by a
map that moves each disgonal block of Matr, beck to the corresponding disagonal
block of Matr,. Consequently, ringad analoge of ralations (L)) remain valid with
My, understood as the orthogonal projection to Matr, and I, as the orthogonal
projection to Matr,. Further, we define £r, £g, fir and fg with §° and 4= replacing
+° and «* and note that the ringed versions of the last two relations in (£2)) remain
valid with l'll-.l and ﬁn being orthogonal projections complementary to Iy, and
f[p,,reapact.ivel].r. Obsarve that the ringed versions of the other four relations in
[@Z) are no longer trus, sines 1 — 4 and 1 — 4" might be non-invertible.

It is sy to ses that 4 and 4" differ from v and +*, respectively, only on the diag-
onal. Consequently, invariancs properties [.11) and (I3 remain valid in ringed
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versions, Further, the ringed version of the invariance property (13) remains valid
as well, albeit with different constants a®(Ti) and a*(T3), which yisldz the ringed
is now taken only over trivial X-runs. As a corollary, we restore ringed versions of
relations (LI,

Reecall that to complete tha proof of Theorem 7], it remains to consider the
four last terms in [LZJ). The following observation plays o erueial rola in handling
thess terms.

Lemma 4.10. For each one of the last fowr terms in ({LZ1), the difference hatween
the imitdal and the ringed weraion & conatant,

Fraof. F%uﬂlit!-'{milm (mz )=} = (g )<, (i )= ) is trivial, sinee y* and 3* coincide
F";;tha E.a:::-:nnd-::ft.hafnurterma, we have to consider the differencs

{ ik da, (R ) — ((nkJo, (MR)o) = (F (X V5o — ¥ IX Vi )o, (YVE o)
+ Ve o, XT3 — 7 (XT3 o)
+ A F =T NEAV I A Vo) + (T Vi o (F — 1) (X V% o)

The first summand in the right hend side above aquals
L e vl )2 Tyl Tie)
5 A VR T VEE)
)

where the sum is taken over all nontrivial row X -runs. By Leamma 4] each factor
in this expression is constant, and hence the same holds true for the whole sum.
The remaining thres summands can be treated in & similar way.

The remaining two terms in ({Z]]) are treated in the same way as the second
term. O

Basad on Lamma @11, from now on we prooesd with the ringad versions of the
last four terms in [EZI].

4.3.4. Erplicit erpresaion for ((fi; ), (fi)=). Let f* be the I' = I' trailing minor of
L%, then

2

S [ i (D0
[:d..'.ﬂ:] L%y = [U 1‘1-:| . VL' = |:‘ 1['-:|.

Denota I* = N(L£") — I* + 1. From now on we assume without loss of generality
that

o _
(4.32) MeLlull_,
4
Consider the fixed block X:IE in £ and an arbitrary block .I",'E in £2, l.f,ﬂ': = 2

then, by Proposition L.3(i) tha sacond block fita completely inside the first one. This
defines an injection pnfthaaubaataﬂ'?andlffnfrmand columne of the matrix
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ﬂ”iumma.ubmtax;mdﬂnfmm and columns of the matrix £, Put

(@33) Bl = - ((CVE (R (VD).
(430 B = ((vAc) e e ),
(4.35) B = {(V22Y) 51" (VE)E, g (€38

Lemma 4.11. (i} Expression {4} )...(ff )~ ) & piven by

(4.36) (iip)=(f2)=)= 3 (Bi+ B+ 3 BY
B<h} A=
* 3 (Ve (eviig) - (e a2 e5m)
<f}
ifl e L, and vanishes otherwise.
(ii) Both summanda in the laat sum in ({30 are conatant.

Remark 4.12. Ginos (A, d,5...,4%4%7. ) = Tr(d,45... 4142, ..), here and in
what follows we omit the comma and write just (d,4,...4'47...) whenever
Ay, Ag, ... and A*, 4% ... are matrices given by explicit expressions.

Proof. First of all, writa

(4.37)

(k) <, ()3 = (Tir (D<) o Tiry (()=)) + (Hp, ((82)<) T, ()= )
with [} =I5,

It follows from the ringad version of (1)) that for i= 1,2,
(4:38) fir, (72) = 4 (4L)

with § = §=. Consaquently,
(Tiry (04)) e, (02020 = (Fir, (03)2) 47 (€] =0
via the ringed version of ([II3).
Note that H, (4*(ViY)) = 0 by the definition of 47, therefore I, (i) =
T, (Vi X).
Let us eompute Vi X . Taking into acoount () and (@10, we gt

= i Py i il g A
VX =% liﬁ'ﬂ%xﬂ WEJE}I:.'
=1

_+ | r:J‘ B wiySe (wiFix
E T 0

where Ji = [1,n]" Ji. The latter aquality follows from the fact that in columns
. . . Lt
L;\?;ﬂﬂnmmmenhieanfﬂ'belmgtuthabl-xk[ﬂ‘]‘j;,:l’ﬁ,whmin

. . L7 i
oolumns T} nongero entries of £ belong also to the block [I'.']f;f"rll = 1"_}-{"’, Sea

=1
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Fig. In mora datail,

.t W'i:ﬂ‘]" : WEJL '.I#‘Eﬂ.]fc‘ WE]K'.,-:P'
ws0)  Vi¥=3, W‘ﬂ‘]‘“ wznﬂwnm cm‘* x;f

Nota that tha upper left blodk in [{7) is lower triangular by (I31). Basides, the
projection of the middls block onto Iy wanishes, sincees it correaponds to the diagonal
block defined by the nontrivial X -run A () (or is void if ¢ = 1 and T3 = @).

It follows from the explanations above and [T2T) that the contribution of the
t-th summand in ([L39) to I ((f})..) vanishes, unless ¢ = p. Moreover, if I' £
L:,_IHWi,itmjaheafnr!:=paawa]l. Scn,jnwhatfa]lmwe.ﬂmume.thm:?lEL;.
In this case (30 yields

(8.40) fle, (()<) = T, [(Wlﬂﬂ:'if’?)q “]-
o o
On the other hand,

R R YT S Xy X}

e e () =3 |0 0 m]’f xk
= o 0
where the i-th summand sorresponds to the i-th X-block of £F.
l.f,Sl < A2, then the contribution of the ¢-th summand in (A1) to the second

tmmlﬂﬂjmmahe&by (E.31)), since in this case J! C J3% A(F), which means
that the upper loft block in (TA0) fits mmplenalymt.hmthe-muupper left Block

in ([ZA1).
.I'a.EE'IJIEI.Et.]l'BI.,ﬂ': = 2. Then, to the contrary, J? C J;\,ﬁ[,ﬁ:],mdhanua

p(L{) © L2 % W, Note that by (E40), to compute the second term in (E37) one
mnraplmjimmwjrxﬁ So, using the above injection p, one can rewrite
the two upper blocks st the ¢-th summend of 1Tz ((f2)> ) in (Z31) as one block
(VEIE g (E1 RN,
and the remaining nonzero blodk in the same summand a8
8 (e,

The corresponding blocks of ftn ((fi).) in [@30) are

SILINE) H, PIL]#])
[?ﬂ f'l};._l welLived) — [?:: }IL el L RE) (‘:1]

and
A -nct-*]
{v].-i'ﬂl-].ﬁ}'\ﬂ" Wl }Ll','u[ﬁi][-ﬂl :
The aqualities follow from the fact that all nonzero entries in the eclumns p{L{) of
£ belong to the X-block, see Fig. {8
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The contribution of the firet blocks in each pair can be rewritten as
YelL 34T L A K
(4.42) (Eﬂlf’ el peaen(C iy (VE)ziag )
Fecall that p{K) K7, If the inclusion is strict, then immediately

SFIEERR H PEY
(4.43) (LY, (W2)ehmeavan
plLiy®

= {ﬂl‘?i]fqiﬂ — (LY w2y L Wi}:c[i.i-.,w]
{f'lvﬁjauf“: (£ P w El'ftifwf:'
Otherwise there is an additional term
(Y (R
in the right hand side of [{43). However, for the same reason as above,

Fﬁjgﬂﬂlﬂc ) Wlﬂljﬂﬁ '-."']

Mota that p{L\ T C L;, a.ndL;]iea strictly to the left n:-fL;, sea Fig. [T
Consequently, by (LEI, the latter submatrix vanishes. Therefore, the additional
term dose not contributs to (L),

To find the contribution of the sscond term in (L33 to ([L3F), note that

1, PILEYET) ALINET)

(4.44) E?LJ ,q;.i'.,wi](‘: :I = (VL' }#E'\W",!

and
ner Lo}
{vﬂ ) Mﬂ:]m-i = (Vi f_z}m o

for the same reason as above, and henes the contribution in question equals

g oy i VT 1y eLT V9T
— ((VEL?) 3003 (VELY)O 553 ) = const
by ([@31).
Similarly to (L35, ({43, the contribution of the second blocks in each pair can
be rewritten as

(4.45) {[ﬂl‘ﬁ'ljp[ﬁ_ﬁ [ﬂljiﬁia]]f?ﬂﬂ;_:; IZJE'-I}I”[WI if:}

As in the previous cass, and additionsl term arises if p(K}) =Kr},andﬂ:amnrri-
bution to (T34 vanishes.
Nota that by (31, one has

i3} 1o
(£1%L) [KE]EEI:]F[ el _ Elvl}ﬂﬂ'*](ﬂl]ﬁ?} H

and

A _ {Elv J (E1J-=ﬂ";]

{ lv-i.],ﬁf 3[:":1:] AL
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henes the total sontribution of the first terms in (T35 and (T30 squals
: Lo ) K

(048) {(CVHZE (A (VE e + (E10e (V)5

w3 L3w? z ] K}

= (VL) (e (VI o + (A VD)
§ K] K
— ((ovhED (v - o e ),

where .
(€3}

=
‘ 0

HMote that )

(Ve vﬁ}lm} ocmst
by (31)), which gives the first summand in the last sum in [£36). The remaining
term equals

L+ o L3 K
— ((C'VE) S Ve (VE) 23 } — ((C'WE) e (£ (V2)E5 )
Lh £ o]
== {(ﬂl?}:,] ::.;:2] [‘:2] a2 E‘FEJL-E } )
which coincides with the expression for Bl in [I23); the last equality above followsa

from ([EZ1]).

It remains to compute the contribution of the sacond term in ([{35). Similarly

to ([@3d), we have

wl W
[?EJ ,qLE]I:ﬂl]F[ = Eﬂl}:EﬂJ
Om the other hand, similarly to 48], we have
(Vi) ga ':f'i]:cﬁ Wﬂﬂijwﬂ }'-:-'_’ t
whera

]
Vi= [n [1[:‘];%_’] .
As before, we use [LIT]) to gat
o " w
(RN - — (TR ) - cons,
which together with the contribution of the second term in (£33]) computed above
yields the second summand in the last sum in ([T38). The remaining term is given

by
L R : By LH
((FLen i (v ) = (TEe) T v e ),
which coincides with the axpression for By in (2H).
=
Assume now that £ = A and hence J} = J}. [nt.]::lamae-thahl-::c]mﬂ”‘ and

I’havethemmemdth,mdmanfthamheammd&thauther but the direction

ufthemclumnnma].r\mr],r and hence p iz not defined.
Mot that by ({40, to computs the sacond term in ({37 in this case, one can
omit the columns J7 in @), and hence the contribution in question equals

{W.Eﬂl.] FASY [?ij fgﬂ'f [ﬂ_!]:%} .
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which eoincides with the axpression for B in (£35). O

4.3.5. Erplicit expression for (i) =, (fk)<). Reesll that ' € LIULY_, by [E33).
Clomaequently, it EK:LIR':_I; more exactly, eithar i EK; ",,ﬂr:,, or

(4.47) ' €K} withg=porg=p-1,

Ji
sea Fig. [ Consider a fixed block ¥7,' in £ and an arbitrary blcu:n}f in £2.
L B
If @i > &f then, by Proposition @3(ii) the second block fits completaly inside the
first one. This defines an injection o of the subseta K { and L} of rows and columns
thhe.matrixﬂiiutntheautﬂetaﬂ': andL:ufrmmdmhm.uanfthe.med:rixﬂl.
Put

ws) Bi=- (@) ok B ).
(1.49) BY = ( (V)i (e (VRS ),
ws) 57 = (V1) @D,

Lemma 4.13. (i) Brpression {(fg) s, (f)<) i riven by

(451) (ir)z. (i) <) = (iR, (HR)ed + 3 (B + B+ E By

:I’-Iﬁ::'i

+ ¥ ({{vﬂ IJ"Eig’[vfﬂ}l } {(e'vL }I’Eﬁg]{ﬂ“vﬂxg}]

&F <Ay

I € K7, and equals (k). ()} otherwise.
(ii] The firat term and both summands in the laat sum i the right hand side of
[@IET) are constant.

FProof. Clearly, {(fi)z, ()<} = (0ife: (Fa) + 4 (k) 5, (k) ) The first term

on the right is constant by the ringad version of (19, 80 in what follows we only
lock at the second term. Similarly to (3T, we have

(4.52)

(i) (7)< ) = (P, ((FR)-) Air, (7)) ) + (Big, (GR) ) By, (6R)<) )
Mt[htf?un:mﬁ-nmthe.mgedmaimnf () that for i= 1,2,
(4.53) fir, (%) = (&)

with § = 4. Consaquently,
(Tirs (k) Bivs () <)) = (Tirs (GR)>) 4 (ER)< ) ) =0

via the ringed version of (E13).
Note that Tz (§(XV%)) = 0 by the definition of 4, therefore Mz (L) =

e, (Y ).
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Lat us eomputa ¥V}, Taking into ascount ([L5) and (L), wa get
Lt
0 ! Emlijgi';l} 0
iy e v
] -3 @i o,
k=1 i i i
Ya'lVelgf O
wharafj:[l,n]\fj;t.hal&ttar equality follows from the fact that in rows R}, @
. i 7 '
all nonzero entries of £° belong to the block [I'.‘:]E'._ =1'}{',whereaa in rows 3%
nonzero entries of £F balong also to the block [I'.":]‘;.‘, =I:,", sea Fig. [0 In more
detail,

=1

at Tt s
Yvi=% r‘}iw‘.ﬂ‘i
Vi (VRN

iy I .
o | EVelgngt  (EVElgue: O
] 1~ 1 o ¥ ] i vy
(4.54) Y =3 [(CR WEig ™ (g (Vg 0
=1 T i (BN T iy
= viwuEet vieor o
MNota that the upper laft block in (T3] is upper triangular by (E31]). Besides,
thapmja:ﬁunnfthamiddlaﬂnuinﬂnhv&ﬂahea,mmrﬁigéﬁ,thamiddla
block correeponds to the disgonal block defined by the nontrivial ¥-run A(a ).
Recall that ' € K1 U KL_,, therafore by (T3I), the contritution of the t-th
Eumm.a.ndinmtuﬁh{?i}}i]}}mﬂmt#g,wﬂaqiﬂeﬁhﬂpm
-1 Mum::nrar,if?lEﬁékﬁ;,MWtﬂbuﬁmmjahufnrt:quweu,am
Fig. 3 So, in what follows ' € K, in which case
oL
L' -') 0
(4.55) fis, (1)) = 1z, ('i it _ o
0 0
Om the other hand,
a 0 0
, L3 At H
ase) Mg () =Y [ElmBET 0 o),
Jl E E E L
= vEenEe vEend o
where the ¢-th summand correspomds to the é-th ¥-block in £2.
If &} < (i3, then the contribution of the ¢-th summand in (L58) to the second
term in (52 vanishes by ([@50), since in this case I* € 7Y Afal).
.I'-EE'IJIEI.Et.]l'E.I.ﬁ; = &. Then, to the contrary, I {_Zf_lq'l.,ﬂ[ﬁ;],ﬂndhanua
o(Kf) C K7\ @) Note that by (E5H), to compute the sssond term in ([TEZ), one
cmraplamffin[l][ﬂ_]h]rﬁ\,ff.Bu,uaingthaabwe.mjamiunn',mcmrmta
the.t.w-:-upparblncksatthat—thm:mmandufl]f.k[l:ﬁfq]{{]inl[ﬂ[ﬂlaauneblﬂck

gt H
Lz 0

]
]

1y=ILf) 2
() kv seayeny (V2)

and the remaining nonzero blodk in the same summand aa
o
L3

(L]
()5 mieny (VE)
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The corresponding blocks of Iz ((fig)-) in [E55) ars
Bl gDl EEEAY
{1’.‘.1‘?‘1:{] tfflv:::ﬂ*]x el [ﬂlfmixgiyw.i.];lx et
and
(VLD = () (LR,

The aqualities follow from the fact that all nonzero entries in the rows o K]') of £
belong to the ¥ -block, see Fig. [[H
Thamnt:ﬂ:miunufthaﬁ:atblmhnineuhpairmnbermttanm

El=&had), 1,080 Bl
asn (VB ()R (TR () et )
Recall that o{ L) C L. If the inclusion is strict, then immediately
AT ap (L)
(4.08) W.E.]J: 3 Eﬂljii VLB
r[:.ﬂ.' L h

1 1y mily) e o P
= [Vl } - (Vi J (i L(KE'.,-:E:]

1 ﬂﬁ ) E\ed) 2 L]
= {Vzﬂ WE.]_EE e Iz a2
Otherwise there is an additional term
K! it
~(VE)ET e
in the right hand of ({58). However, for the same reason as thoss discussed during
the treatment of ([HAJ),
ri
':Elt?f'rhmw}!}i {f'l?ﬂjwcfr* L
Note that oK\ 3§) € K]\ ¥} and K lies strictly below K ' &}, see Fig. 00
Hence by ({EI)) the above submatrix vanishes, and the additional term does not
oontributa to (@37
To find the contribution of the sscond term in (55) to (57, note that

iR -(R38]
(4.59) IJL[KHF:WI ( s = (Ve LEE?:'.W?;

and
fr 8] e
EEJ:EE'.,F W.E {Ei'c"i;]ﬂ-ﬁﬂ 1
and hence the contribution in queauun aquals

Ehva HElael
(VR G EVHIER) = ons

by @30,
Bimilarly to [d4H), the contribution of the second blocks in each pair above can
be rewritten as

(4.60) { (Wi £1}ri£.] (VL }n:R’?Ef,IJ:EEF Wi};’; Eﬂlﬁfﬂ:} .

As in the previous case, an additional term arises if o L) =If:, and its contribution
to (G vanishas.
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Tbﬁndthetnmlmmihuﬁunufthaﬁ:attmm@udm nota that
by (E31)), in this computation one can replace the row sat L} of £'% o1 with of 7).
Therefore, the sontribution in quastion equals

@et) ((vheh) I (VI e ey + (VR ()R

oliL; K] q.’
= (lﬁiﬂl}wgﬂfi’ !.E _{:El" I:.l:i]}g."’g + W.E Lg(ﬂif‘g:’
= {Wiﬂl-]rqﬁi:l‘ Wiﬂi}li% — JLHHW*}
whera
'PE
W, = [ o]
Mota that
{ .E-IJ ITI:L| :II:,?.EEE}LE} sonst
by (E3I), which gives the first ummand in the lsst sum in (E5T). The remaining
term is given by
:r[-ﬁ ] L r[i” ¥ : :
(e w) - (@ednenident).
which eoincides with the axpression for B! in (=)
It remains to compute the contribution of the sacond term in [L&0). Similarly
to ([I5H), we have
- - R.E
Omn the other hand, H:III]JJ.E.]'].]."‘I:.IJ @:ﬂ]]_] wahmra

(s (VE)ES = (225 - 2V,

0
]
(£2)35

whera
.-3[ =

Using (431) once again, we get

=[EF o L 2l
— (MWL) (£2 W R gL ) = — { (£ }:‘mi (£292 g ) = comst,
which together with the contribution of the sscond term in (585 computed above
yields the second summand in the last sum in (L3I, The remaining term is given
by
(#7109, L %
{{.ﬂlvg_]d:@i .3: W! }LE} = ({Ll‘?ijﬂﬂ!(ﬂ“]ﬂ WEL}LE} ]

which eoincides with the expreesion for B in ([T39).

hmmannwthﬂt&f—ﬁlandhmff —JFl In this case the blﬂtkﬂf; and

1’- have the zame height, and one of them lies inside the other, but the direction

ufthemclumnnma].r\mr],r and hence o is not defined.
MNota that by (350, to computa the sacond term in [{5J) in this case, one can
omit the rows [} in ([I50), and hence the contribution in question squals

{{Elvﬂg i 02 (ﬂ’]_ﬂ (w2 fﬂ 2y g }
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which eoincides with the axpression for B in (E20). O
4.2.6. Erplicit erpression for {ﬁ"(&]g,ﬁ"w;r]}. Assume that p and g are de-
fined by (E3Z) and (7)), respactively, and lst ¢ be the injection of K2 and L2
into F.': and L;, respactively, defined at the beginning of Saction @23 Put

(4.62) BY = {{‘FiﬂlJ:Ezg"ﬂ (V2)at,, () ‘”} :

Lemma 4.14. (i) Expression (1= (£})<, 4" (VHY)) is given by

(163) (3~ 4= (ViY))= 3 B+ 3, BV

E+d

Bi<al A=Al
-
Lierd Il = TINAEE
+EE<W}:E1:]L’—|-J" 7 Wﬂ‘:!]; -.,u’It-;Pmm;}

u=1¢g=1

e Byl — FA(EY +FA(E

1 =1 L X ™ 2 +i4
"‘E_;E{WEE Jiiyeil 0 Fiva oy g (VEC ]: +,—riﬂmc.ﬂ‘*]>

+E < poBL 2 )+l <p: Bl < B ( (VE0GE (€5 ).

where B ia given by (LE) with p(3]) replaced by T for f; = 5, and B i
given by (LEE).

(i) Each summand in the last three suma in (LG i conatant.
Proof. Recall that by (@3, this term can be rewritten as { I, (f )<, 4 (V3 V) )
with [y = [ and § = §*.

Mot that Vi X has been already computad in [39). Let us sompute £*(V5 ).
Taking into acoount (L8] and [@I), we get

2 +1

romn =3 etz - Sl e

N TS '_:w‘;

the latter aquality is similar to the one used in the derivation of the expression for
Vi X in the proof of Lemma @11 In more detail,

(w61) A(Vi¥)=
i 1] 0 0

x4+l .'R:'_: .'11':' ;+1 )
E*’r" E (V)i DEEJ;E:_L E +E‘j' [u Wzﬂ‘];- ’::*l

Nota that the diagonal block in the first term in (L)) sorresponds to the non-
trivial eolomn ¥-run A{F_ ), unles ¢ = 2* + 1 and W, | = @. Therafore, e
moves it to the disgonal block corresponding to the nontrivial eclimn X -run A{# )
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. i .' .i_"l't. . . .
mm:puadhywﬂﬁ:[ﬂjﬂ:_m[m. Comsequently, the resulting diagonal block in
fi is aqual to

R e i Ky ¢ iy B i iy
(4.65) (VR S + WD oY = L)
for 1 = ¢ = ' +1; note that the first term in the left hand side of (LEH) vanishes
for £ = 2"+ 1, and the second term vanishas for £ = 1.
Fmtha,thapruja:ﬂunﬁrlufthamndblmkmthaﬁmtmnf@]vmiahe&.
Summing up and applying (Z31]), we get

st 1 A1y L3 a4l 1] ]
466) T (i) =5 fp | Vel O L 5 4 £t e |
I:: :] I.I:ﬁ.ﬁ:]_ E L 0 0 E i F.]E.'E'l:]j:_:lllﬂ
RemanEL;uL;_lhy(m. Therefore, for any « = p both terms in

([LEH vanish. Consequently, by the ringed version of (1)), the contribution of the
saoond term in expression () for the second function to the final result squals

m=1

Foa 1 L 7 A(EF
LY Vo = A
Ty {W}: ey i M f'!]Ee s ies,aaﬁ.ﬂa}

m=li=1

A o o B FOAGY & o o EGE— FAG)

+ 2.2 A Ve 0rgnad ] Snpacagy e (Ve epnasl i )
which yields the third and the fourth sums in ([53). Note that each summand in
both sums is constant by ([T3ZT]).

Further, for any = < p, the nonzero blocks in both terms in ([GG) are just
identity matrices by ([£31]). Hanoe, the corresponding contribution of the first term
in expression ([IHd]) for the second function to the final result aquals
(4.67)

'

o (u<p: oLz B+ In <pi By < B3 ((VOT] €35,

which yields the fifth sum in [@G3]). It follows immediataly from the proof of Lemma.
s .
4 that the trace (Wiﬂmﬂj-,“} is & constant.

Finally, let % = p. Let us find the contribution of the first term in ([L5H). From
now on we are looking at the é-th summand in the first term of ([E5d)) for the sscond
function. If 57 < § then the contribution of this summand vanishes for the same
giza considerations as in the proof of Lammea {171

If f; > f; then the contribution in question equals

() K L
((Vhe) ol (VR (€45 )
which coincides with B! given by (I2d) and yields the first sum in [E53).

If 5; = §; then the contribution in question remains the same a8 in the previous
oase with o 37) replaced by $1.

Let us find the sontribution of the second term in (I6E). Nota that § entera
hnﬂﬁamﬂtmﬂ@udgh&ﬁatt&mm[m,mmmuﬂy,mm
drop it in the former and replace by [p, in the latter, which effectively means that
A* im simultanecusly dropped in both terms.
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From now on we are looking at the é-th summeand in the first term of ().
However, sinoa we have droppad 4%, thmmeanathﬂ:wemmmpmmgtha[t—l]
Ethlunrkmﬂiwiththe.[p—l}atl’blmkmﬂl If f_, = B, then the
contribution of this summand vanishes for the same size considerations as bafors,

If f}_, < B ;. then the contribution in question equals

={07) Ll o
(VL) IG (PR 3 (€75 )
which ecincides with Bl¥, given by (), and hence yialds the sesond sum in

EEE). O

4.37. Erplicit expression for {*‘F’ I:'El.]i-?:]E ‘j"[.l"‘?}]} Assume that p, ¢ and o are
the same as in Section 36 and p be the injection of K} and L] into K and L},
respectively, definead at the beginning of Section EEd Put

3 y LA
(4.68) BY = ((£'V L) a8 (€8s (VE)5a ).
Lemma 4.15. (i) Expression (k) 5, 77 (XV%) ) is given by

@ee) (9 (e Fav)= Y, B+ Y B+ Y B

afsar_ &Fsay o o
L ‘E |. -‘l
I u Do o B3 48—
+E;§<ff'v A T EeVEGaTRR )

P

1 1 ol 7 =17

+EIEI:<':‘: VR eis e o I (CVERRG R

u=1i=

A

+3 (Hu<p-1:al = af} +|{u<p: ol <al}) {[ﬂ”],}[‘i"ﬂﬁ:}
where B is given by (L3H) with o(®}) replaced by ® for &) = ai, and B is
given by (LEE).

(i) Fach summand in the laat three suma in (LGF) i@ conatant.

Proof. Recall that by (L53), this term can be rewritten ss (fr, (k)= X V3] )
with [y = I} and 4 = 4~

Mote that YW} has been already computed in (5], Let us compute §{XV ).
Taking into acoount ([@E]) and @3], we get

o 0 ] 0
@70) AV = 34 |0 cc‘,.r:mﬂ 0 +E+[u (cv: t]:r"‘-'“'“l'
=1 | ] Ll

similarly to [LE).

MNota firat that the diagonal block in the first term in [L70) corresponds to
the-npnt.:ivialmwﬂ'-nm.ﬁ[ﬁ}],unlms!:: 1 and the first X-block is dumrmy, or
£ =g and &, = &. Hence, § moves it to the disagonal block eorresponding to the
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nontrivial row ¥-run A{f]) compied by [I.'.‘];._ E"'_""LL.‘- in (LEd). Conssquently, the
resulting diagonal block in ff; is equal to
ivEy pri v iy iy Py iy B

(471) (£a1(VEIEE + ()51 (VE) ] = (LW
(if the first X-block is dummy snd @ # &, the seoond term in the laft hand side
vanishes; for @ = & relation (7T holds trivially with all three terms void).

Hmanm,thapmjaﬂinnﬁn of the second block in the first column of @54
vanizhes. Eummﬂgmﬂnd&pplying[lﬂ.f_’.ﬂﬂ wa gat

472) T (k) ‘Eﬂn [(ﬂ v;:].ﬁ.'i ] Eﬁ- [u (ﬂlvﬂ“ Wl :

u=1

Racall that I* € KpUKp_1, ses Saction LEH Therafors, for any u > p both
terms in [L73) vanish. Therafors, the contritution of the sscond term in @TT) to
the final resnlt equals

F I’
ADyeisiiiaa
Y3 (O VhESE AR R )

m=1i=1

P2 2y mB B =
atrl I @2 B\ A ol
53 (@it e iag)
whilﬂlydﬂdsthafnurthmdthaﬁﬂhwm&mm. Note that each summand in
both sums is constant by ([ET]).
For any % < p — 1, the nongero blocks in both terms in ([@79) are just identity
matrices by (LET). Therefora, the corresponding contribution of the first term of
[T for the seeond fimetion to the final result equals

.5 a
E[|{u{p—1:ﬁi:jﬁf}l+l{u{p— l:ui{cf}l:ﬂ{[ﬂijif{?ﬂ:g}.

which is similar to (LH7]) and is constant for the same reason.

Further, lst & = p — 1. Then the nonzero block in the second term in(@TH) is
again an identity matrix, snd hance the inequality & < p — 1 in the sscond term
above is replaced by u < p, which yields the last sum in (5.

Let us find the contribution of the first term in (7T3F). From now on we are
locking at the summation index ¢ in (£71) for the second function; recall that
it corresponds to the ¢-th ¥-block. If &!_, < &2 then the contribution of this
summand wvanishes for the size considerations, similarly to the proof of Lemma
EE;_I}Ef,tththammibuﬂnnmqueaﬂun&quﬂa

(v eE ),

which coincides with B’ given by ([L3H). If &,_, = & then the contribution in
question remains the same 8s in the previous cass with o) replaced by -Ilp_l
Consequently, we gat the first sum in (B,

Finally, let = p. Then the first term in (.73 is treated exactly as in the casa
#=p—1, which givee the sscond sum in [£50).
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Let us find the contribution of the second term in ([@7TH). Note that § enters
hnththamndtarmin[lIﬂludEheﬁrattermin[m, oonsaquantly, we can
drop it in the former and replase by e, in the latter, which effectively means that
% is gimmltansously dropped in both terms.

From now on we ara looking at the summation index ¢ in (LT for the sscond
functicn. However, since we have dropped 4, thiameanathatwammmpariugtha
!:-th.!'—blcn:kmﬂimththe.p-th.!'bln-:kmﬂl If o > o} then the contribution
ufthet—thta‘mmmmfﬂrthammmdarmgu

l.fu < af then the contribution in question squals

((evhieiendon),

which ocincides with the expression ) for BIY and yields the third sum in

i} o

4.4. Proof of Theorem [F.3k final steps. Lat us find the total contribution of
all B-terms in the right hand side of [E36), (E51), (63 and (I5H). Recall that
Illieainrc-waﬁ'; l._I.Pi':|}_:l andc::nlumuaL;ULi_l. We consider the following two
RS,

44.1. Caae I: Ilheammmﬁ'lmdmhﬂnmbl Maote that under these conditions,
Ly

the matrix (V1 ﬂlju[ﬂ*hmtheauplmun@]fnrﬂfmlﬂf_ﬂljvmahm,m
rma.nuimhmma[ﬂaﬂ_l]he.ﬂtrlcﬂyabummdtutham':ffl Besides, the matrix
{EI‘E'EJKLW, in the expression ([@50) for B{" in (51} venishes as wall. Indesd,
the-ccdumn[ﬂ]xhﬂwmheaﬁjheamthar@tnf%. Om the other hand, the
Lthmwnf?ivarﬁaheafiﬁe&ahﬂmthamtmﬁm_ufthemﬂdiagnndnﬂh
the vertical line corresponding to the right endpoint of Ly,

Finally, for any ¢ such that 5 > £, the contributions of the term Bj' given by
[E3) in [@30) and {3 cancel each other. Similarly, for any ¢ such that &) > &,
the contributions of the term By given by ([3H) in ({51 and [5H) cancel each
cther as well T&hﬂgiﬂiuﬂmuﬂ.t.hﬂﬁi,:ﬁf:i.aequiva.lam.tnu},:uf,mmn
rewrite the remaining terms as

473) N (BY -B: £ = Fla <al}+y (B'-B: B8 > 8 o =al}
S B <= ) - S - B B el > )
+3 (BB BY : 6= 510l < o)+ 3 {BI-BU4BY: 6} = 5,0l = a2}
+I(BY: A < B+ T{BN: ol 2 ),

where Bf, B", BYY, and B} are given by (A7), ({3), ([ETH), and ({H3), raspes-
tivaly.



FLETHORA OF CLUSTER STAUCTURES ON GL, 4T
Lemma 4.16. (i) Erpression [L7T3) ia given by

¥ ((evyriovni)« T ((evnEevni)

2 =n e
o rak o =uh
Y (e, (VRE 4 + 3 {(wee) F(vich)H)
o it
e :

a; -
+ E {Eﬂ!]xa_, EJE_’}

LT 2,
- 20 (VR e (£ E) kol
# =ag -,-;{

ﬂ.’EI'-lE'. ‘:':'"P
+ ¥ '{r;ﬂlvﬁjm v - % (WfﬂlJi,'::Wiﬂ’}ﬂ}
af= s Ag =
afmaj afma
>y (g oo )+ P> (e wDi),

where » " i3 taken ﬂuerh&emsesﬂﬁenh&earﬁtpamtﬂf.!}; lea above the exit
L B
point of X;F .
F
(ii) Fach summand in the erpreaaion above s a constant.
FProof. To find the first term in (@73 note that for any fixed ¢ satisfying the oor-
responding conditions one has
(4.74)
A2 (%5
BN - Bl = ((£'E) 5 ][EE]:g[vEJL,} +{ (v :[ﬂ[ﬂ?]:; (V1) Lz}
ECH

- {{ﬂlvﬂjp[ﬁ] [.Ezv::}_,f} = oonst

via ([LTT) and (@3], which yields the first term in the statement of the lemma.
Similarly, to treat the sacond term in ({73 we note that under the scorresponding
oonditions
- ,nﬂ ‘ﬂ’ r 2 QE
(@78) B - B = ((£VE g (R ) + ((£VE) g (VE) 5
ol EH
- {[ﬂlvi}ﬁz [E“‘E‘i}ﬁé} = ocomst

vis [LT1) and (3T)

To find the contribution of the third term in [@L73), rewrita it as
L L H E 1 il L H
((EvhE(evhe) - ((CVEEEHE (vEE)
and note that the sscond term aquals

(4.78) {Eﬂll,: (VE); [ﬂilﬁs (VE) 3 }
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1 i
since (WL) 1" vanishes. Further, the block xf; is contained complataly inside the

¥ L L
block X §. We denote by p the corresponding injection, so (£1)5% = (£2)55°".

t P ]
Therafore, (L7 can be written as
2 K] 2 LR
{WL (L) a*{v.c} (L xi'f-:,=> 1
where wa usad the fact that
WEJLE(EE]P‘:LP:I + I-F,.EJK gl Eﬂz]p[L.:l [‘E‘! Ez}#-p:' =0

; AL
Finally, Eﬂ!];;z-f.,s: = ELI]K-E-'\"';‘-’ and

i :.1 ai
[ﬂljfc'}-.,-:;w}:hz = [_ﬂl‘ﬁ'_]é}ﬁ Wk =10,
henes [L7H) vanishes, and the eontribution in question is given by the same expres-
sion a8 in ({7, and thus yialds the sacond term in the statement of the lemma.

To find the fourth term in (73 note that for any fived ¢ satisfying the corre-
sponding conditions we get

477 Bl - B"
= ((VECY) (VRS (R ) - ((VEEY) 3P (VA) o ().
Applying (E5H) to the first expression and wsing the equality
(VEEY) S (VE) 1 g + (VEEY) 5 (VRN of = (VEE) G (VE)
we get
(@78) B - B = ((vheY) pwic o) - (VRS (W30 ().
Clearly, the first term above iz & constant, .

Nota that af, > af, and hence the block xf:" iz contained completely inside the

bln-:k.!'}?,whichme&na,inparﬁculu,thatp:: 1. Consider two saquences of

blocka

- NP L RPN N

{4.79) {1;-::‘,.1}5’_:,1};_ G} omnd (VLA VAL )

There are four possibilities:

[1] there exista a pair of blocks 1"'1""" and 1"'.'_‘_" guch that P =T .

_,_ £ . mdthaaubaaquanuaanfblmhntc-thelﬂnf?—f ™ a.n-:ll"'—i""

p—rI [ -

II:CIZIII.IZ:].dEl,

(ii] there axists a pair nfblnu:kaﬂ' I3-m andﬂ":g_': E‘Ilﬂhﬂlﬂi.f;_m = J’E_m,

J,,_r.. S mdthesulmquanmanfbludmtut.halﬂ DTIJ" md.!'jg“"
ooincide;

[m]thaﬁ:ataaqummiaapm:pa'aubaeqmm of the sacond one;

{iv) tha second saquence is a proper subsequence of the first one, or is empty.
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Case (i) Clearly, this can be possible only if [T C Pp—m’ sea Fig. [l whera
I It

bluu:ka.!",ai' nmdl}:" are for brevity denoted X} and Y, respectivaly.

x,
Xy
— -
F.¥, S
., ; ? ‘ B;
Yia
Yia
5.
FIoURE 16. Casa (i)
Denota
m—1 m=1
[:d' SD] El U I:R-r—; UH:'—;] L'I F=m? = U I:L:'—; L'IL:'—; 1'—r|l|'

Nota that the matrix [I'.!] ooincides with & proper Eubmatnxnf[ﬂljal, wa denota

the.cc-rreap-:-ndmgm]e;:h-:-nﬂ'[m can be mnmdaredaauanaluguftham]achnna
defined in Section EEH). Clearly,

By oy 03 oy B e
(4.81) [FE: }L.E E‘:!]frg = [?f: EE}L.H - i.]j:.? EEEJB’, :
The contribution of the first term in ([LE1)) to the second term in [(LTH) equals
F ol wl ol
(VR B (i) ) = - (R B (vRe o)
and cancels the contribution of the first term in (75 computed above,

To find the contribution of the sscond term in [@ET) to the sscond term in (@78
nota that

(4.82) {v::f'l,] o = [?ﬂ}lx uaptﬂlﬁrpuﬂp’

g0 the contribution in question aquals

ase) (ODF ST )

P F
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Taking into acoount that [ﬂijeg = [r.l],[egl, (f?j’”"' (ﬂlj;[’;;'[’ and that
@84)  (EYDn, (VR = (LSS - (T v,
this contribution can be rewritten as
(DY (e )
(R F B (D e )

.ﬂ.'I_IE

Next, by(E3I),
(V25 () = (v =
since the columns L2 lie to the loft of =3 4 @2,
Finally, by (L31),

Hlued
e
where the unit block oooupies the rows and the columns o(8]). Therefors, the
remaining contribution equals

(T ) = (@EEDT) = (@, w0 ).

which is & constant via Lemma [{d] and yialds the third term in the statement of
the lemmsa.

Case (ii): Clearly, this can be possible only if J}_.. C Ji_.., see Fig. [T] where
we use the same convention as in Fig. [

(TS - 1 ),

#‘-—'J

&, &,

Il

FICURE 17. Case (ii)
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Let & and =} be defined by (@5 Nntathatthamatr:x[ﬂlje,m, ooincides
F-m

with a proper submatrix of [I.'.E]L“"‘ _iwe denote the corresponding injection p
(in & sense, 1tmnbﬂmnmdﬂr&dﬂﬂmmﬂlugufthﬂmpﬂhcm deﬁnadmﬂe-ctmn
HZ® however, it acts in the opposite direction). C[lea.rl:.r,lﬂ:'EllL.l I _1=8alu
K? _. Similarly to [{=d]), we have

.ﬂ.'I_IB

(e (VAN
= (VhE " - e Sy - (T

The firat two terms in the right hand side of this aquation are treatad ecactly as in
Casa (i) and yield the same contribution. The third term yislds

— (T R ey )

i L
sinos El]LaE._m = (ﬂ_!:]:::""']_ T prosesd further, note that

- H'I.I'Iﬂ r.t:-ﬂ'! "'rri'p m!

(VR (e = (wRehe - (v e

The firat term on the right hand sides wanishes, sinee VL i5 lower triangular, and
oolumns L} lie to the left of gL} ). The seocond yields

(el T v S g U = W

{[_‘Ef: Ve (£ }KPUE'-H ':El]:ru.a:>

P—m
i

[E“]:E;";.;']: » [ﬂljﬁ,uel Finally, [ﬂlv;}ﬁf"':; vanishes, since £V
is upper triangular, and.mwaﬂ'l ".,'1*1 habaluwﬂ':}uel

Case (iii): T‘hamaamunlypoambla:fthalmblmkmthaﬁmtaaqummnf
type ¥, sae Fig. (5 on the laft. hmummgthed:th:ablnu:kml’}, , We procsed
axacﬂyaamﬂamﬁl]mthL;_m—Eandg‘atthemmamntJﬂ:mgn

Case (iv): This easa is only poseible if the last block in the sssond saquence is of
ty‘pe.!’,aaal“ig.ﬁnntharight.hmumjngthatthiﬂblnckiﬂxﬁ'“‘:‘,weprnmad
exactly as in Casa (i) with £ =& and get the same contribution.

'Ibt;authafﬂhammm nutathatu}-::ufimp]imt.h&tthe-blmk
Iﬁ iamntamadmmpla‘halymmdatheblu&:ﬂ' Tharef-::ra,m]e,-:h-:-npcanbe
defined as in Section L34 moreover, p[’ﬁ“]_ﬁl and p(L}) = L] mnm-g;_ﬁf

H

l}unaaquam:l].r,t.hablnckl’-," iz contained mmplatalymmdat.hablnck]’ig" and
mjachnna'cmbﬂdsﬁnadaamﬂmtmn
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| I
3 %
& Tt AN PP
f. 4
H a
' Ch
L] .
= Fia n.
| g
L.

FIQURE 18. Cases (iii) and (iv)

Wa prooesd similarly to the previous case and arrive at
(185) B - B+ BY = ((vic')g {vif.‘]:g:;
~((vEe) S (v @) + (v e ).
Clearly, (VA5 = (VE) 5159 (€)% 1., o0 the sscond term in (A)
equals
458) — (€90 (VD€ (T35
= (s (VI S ODIE )
- {(ﬂlﬁc’gu&;d J;.: (VL) [n'ﬂ;n }
The first term in M} enquals
(€0 (TDE T wLES)
= (VL T VEL R o) = (VAL (VALY e ) = comst,

which together with the contribution u:nfthe.ﬁ.mt term in (EEH) yields the fourth
term in the statement of the lemmsa for of }ﬂ

By (d21)), the matrix {El‘?}::l """":ﬁa:'va.mahm Next, we use injection & men-

tionad above to write [£! =(£® ]"gmml , and henoe the second term

[fr*]ufr‘
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in [@EH) can be written as
(4.87) { (£l J""K "’III'-’]L wFue (i) W;Jﬂ }
N G e Ay
{[ﬂlvl }FII; ;"'ﬁ -‘[I'.!]i-;._,,mt_ ;WHL{?}

1l yRIEHUEL_, g, B2 0] 7y K7
{[,f-'- vﬂ}p[ﬂ- %) L ]mn_:rw, ) E}L_?-L"F? }

By (E2]), the first term in (57 aquals
o2 :
(4.58) —{ (£'FE) i (£79E) 3 ) = oomst.

-
Reeall that the matrix Eﬂ!j[ﬂﬂﬂp:[ﬁ}_
[LET can be rewritten as
ol il K #]
((evE S e (VR ) = ((evh)iE e (va)E)
by ([E3T)). Taking into ascount the third term in (L0, we get exactly the same
oomtribution as in ([L7d), which together with [I.55) yields the fifth term in the
statement of the lemma for of :a-c:;
To treat the third term in [T J:L-:-tat.hed:
Loy AR IURD Ly PR LR,
(L ?_E_] 3 E-E] :,W }

and that the matrix [ﬂ’)“"“‘"

aquals
HwEd_ 2 el KE
{Eﬂljp[ﬁq!{vl }P[ il LE;_',!]"‘ EI_L\::II:H"' ]{Wi £3 L-.|1;.-=}

FA vl KE
= (), (VDI CIE D e ).

’J?uiahm,andanthaaamndtermm

vanishes. Consequently, the ferm in question

, PRI Y - !"ﬁ'l'r
since (L ]r[ﬁ" = (L ] . The obtainsd expression vanishes since
[.'?1-] f_’ [:_ﬂl:] F—’lﬁw Wl .E-l p—l."fu'
Ei
vanizhee by [LET).

Further, consider the sixth term in ({73 . Using ({75 we arrive at
= ol o
(4.89) BY - B" 4+ Bf' = ((VEC!) g1 (VL))
Lt K o] o L2 of
— (Ve g3 (VE) 3 ()53 ) + ((£'VE) R (L5 (WE) 3 ).
Claarly, the first term in [IIH mﬂ.mmtant

Nute.thattheblmhﬂ.x'r and .I",J coincide. Similarly to the analysis abowe,

wemnmdartwunumpt_qrmquanmanfblnch [TH) (the cases p=1or t =1 ara
trivial]. We have the same four possibilities as before, and, additionally,
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(v) the ssquences coineide.
Each nne-ufthapnmﬂ:ﬂmga {i)-{iv) i= further Elpht.mt.nt.wc:
a) the axit point u:nf.!'ﬁf liea below the exit pu:::mt.nf.!}l"

b]t.haamt.pmnt.c-f.!’g hmahmthee.ntpcum-:nfﬂ'f
Case (ia): Glam'l:.r,tlua can be possible l:lIIl!."].ffl -CF ms 220 Fig, [0

I

Yew

!,J

FICURE 19. Casa (ia)

Mﬂ;ﬂ&ﬂim:i?;inthammemyﬂam(m. Using aqualities {IE3 and
(L), = [ﬂljzi,wammw the second term in (T50) s

- (W2 VP e )
H(ODF e DT )
D R T ).
Note that (ﬂljji“"’ = (L2525 and

.ﬂ.' a
{vﬂ L’:ﬁll [‘EIJL Kiuat Wl 'E'l.];,!-,.-;pi L]

(VA)E (™ = (vt

henes the second term in the expression above equals

(VRN g (VRN ) = ( (W) ST (VL) LR ) = oomst,
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which together with the first term in (23] yields the aighth term in the statement

of the lemmsa, as well as the fourth term for of = of.

L |
Finally, Wijf;"“ﬂ vanishes since the columns L1 are strictly to the left of

K;uﬁ;,mthattd:dterminthe-axprmunabmvuiahea.
Mota that

(V)P (g
= (E'VE)RA(LY5E + (CVEE B (LR oy + (E VR A (EEE
By (EEI), (£'VE) g5, oy vnishes; besides, (£2)55 = (£")5}. Hemos
- (Ve d e ) - - (@vhieden).

that iz, the first term in the equation above cancels the third term in ({58, Further,
| a
':E:L]:ri'.,-:}, = ':E!]irtf'.,-:f and
P K] K]

Eﬂiﬁcf\ﬂ WE: }LE = {'E!vijfc?w?‘
and hencs

ad ! K] £
@o0) (T e 0 (VD ) =~ (Vb (v o)

gt ] EFyal
=—{(c'v} frl::-nl[\ﬂ!?!}xi::qﬂ} comst.

J54%

The remaining contribution of ({38 equals
&l 1 K2 al . 2]
o) —((@VHFEEREDE ) = - (@VDEEnend),
since the deleted columns and rows of £'WY, and £' vanish.
Mext we use the injection o [Emﬂﬂrtnthe-:-neuaedmﬂue[lj above but acting
in the opposite direstion) to rewrita [I.'.lja': Eﬂ!jutﬂﬁ:ﬂ and to writa
(ﬂzjr[ﬂp]{vi.]wi - [.'E'Evi},[gp:. E-ﬂ!]:[ai] WE }.:.'.'wh
which transforms the above contribuation into
L \ﬁ.‘l
~((EVE) eV ) + ((BVR e T (VI E o)
Clearly, the first term above vanishes since [EE‘E"?:}:EE,] = 0. The sacond ons
F
vanizshes sinos
EL
(4.92) ()% = (e i
=1 i
(35S = ()F"™ and
P

el T
el =i (L
(VE)Sh 2 (€T = (VALY S =
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Case (ib): Cﬂwly,thjamnbapumﬂ:launlyfff_mcfl , of. Fig. 0 We

prooeed exactly as in Case (ia), retaining the definitions of &_ a.nuiE.,.,a.nda.rnvaed:
[ION. As a result, we obtain two sontributions similar to thosa obtained in Casa
(in): ome is similar to the eighth term in the statement of the lemma and is given

by

(4.93) 5 Wif-lﬁi Wfff'i}i::>'
e
ajmsd

whila the other together with [T00) yields the fifth term in the statement of the

lammaf-::ruf=n:,.

Naxt, we nota that [ﬂlv}:} = (I:l],L[v}:} L3, sinoe sines [V f:‘ = 0. Applying

(ﬂlj‘;i = (£2)35, we wrrive at
- (TR THEEE).

Mota that
@1) (VHEENE = (VALY 5 — (VI T (eih e - (VR HEYE.

T treat the first term in @:ﬂl},mmmmﬂugd (8] and get

~ (Ve RN ) + ( (T (e (VA )

Clearly, the first term above aquals
(4.95) ~(whe!) 3 (vieY ) =

The second term above can b= rewritben as

{Wf: }ﬁ' ':f-z.ﬂ-fa (VZ) ::-_.e ﬂz]:riguas} :

Mext, we writs
(4.96)

(£7) s (V255 = (cow) ot ooy (o et o (v e,
The contribution of the first term in (30 ean be written as
{{ﬂ*vijﬁgﬂtﬂljﬂw[e,?[?ﬂ}“ }
UB’ i i
R (L I A I A
(v eV e )
where injection o is defined as in Casa (i) above, The second tarm above equals

(V)5 (E1VE) ) = eonst,
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and yislds the seventh term in the statement of the lemma, while the first term
K]
- (:[f,!]i_? [vﬁjﬁ_‘f, f,!:,ﬂk *Wl} =wl}
and vanishes, sinea
(V3 i (C)Fata = (VALY g = 0
by (@I

The contribution of the second term in (36 equals

{Wdﬁﬂﬂlj A i}ﬂwﬂ (ﬂilfc'ﬂ-'ﬂ'?>
FAE

{W.Eﬂl} Fl‘lﬁp{vﬂ }L:'.'irﬂ} {[:viﬂl.]_{:::: [.?iﬂz}_{.%\ﬁ-é} = oonet

and together with ({35 cancels the sontribution of [LE).
The contribution of the third term in (Z500) squals
(857 e (VO (e )
and vanishes, sines
KU z
(VE) ;3 ) e = (VEcT)ps =0

by (@3,
The contribution of the second term in (4.94) equals

L &l wl Kl
(€95 (TR G2
and vanishes, sines
L Ei Ei
EEIJ:E\:-;W]E}LE = [ﬂlv]i}ffi-,'qk =0

L i i
the latter squality follows from the fact (£171)52 000r = 1.
PP P
The contribution of the third term in (5] squals

(@)ien (VDI TDF)
via [ﬂ!]{_‘% = [ﬂl]ﬁaﬁ Note that
Eﬂljj[:‘af]{vi.]_{. [.'E'I?-E},-[EE [1 D] i

and henee (£1)} 70 (V1)5H(£)ZE = (£3)%. Conssquently, the contribution in
question equals ’ ’
) e HY,
(@G ET) = - (@&, 25),
which is a constant by Lemma 4] yielding the sixth term in the statement of the

lemma.
Case (iia): Clearly, this can be possible only if J_,, < Ji_.,, see Fig. [A1
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¥

S
Ao,

FICURE 20. Case (iia)

We proceed exactly as in Case (ia), reta.mmgﬁthe-daﬁmhnnanfﬁ' and =X, and
arrive at ({30 Next, wa apply {I‘.lja, [I.‘.!]Eg, and note that
L 1’ =M
(22T o = (£VR)g — ()3 (VH B g0 - (G (VHE
Consequently, [LI0)) can be written as a sum of thres terms. The first two are

treated exactly as in Case (ia) and yield the same contribution. With the help of
[0, the third term can be rewritten as

Lijri L

(e (D @GR ).
Hart., weuae.t.hamgechnn ¢ (similar to the one dafined in Section LEd) to writa
(£jey™ = (£%)ay ™', which together with

I':—m. —-m ': p—m Lf—r- L —1m

W.E.]Lpu{,i ':f'l]p[ "+ WLJLP l" [ﬂljﬁg__-.lib_ = Wﬂﬂljf:u,t =
transforms the third term into
{[:.ﬂl']“fuﬁl’ Llp:m"! P [ﬂl:].:f.:,!'_n'l,';‘é._r. EJL?_,. }
L=TH Ll—l'l

Finally, we usa [ﬂlj‘ﬁ' .,'_;L . [I'.!] yex amd

(E2)™ oa I:v%ﬂi‘%__ = (L3 e =0

to make sure that the comtribution of this tarm vanishes,
Case {iib): Clearly, this can be poasibla u::nl],rli'.il':,_,._c 2 s cf. Fig 01 We
prooeed exactly as in Case (ib), with the only difference: the contribution of the
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firat term in ({30 contains an additional term
(eEH g e v ).
which vanishes sincs (£1)5%- s = (I‘F]f;c'::';é']
(V)i () amer = (WAL = 0.
Case (ifia): This casa is unl}rpnmibleﬁthalaat.bl-:-ckinthaﬁmt saquence is of

type X, see Fig. E1 on the right. ﬁa&u.mi.ugt.hﬂ.t.t.hjablmkmﬂ' ""'*" , W proocssd
exactly as in Case (in) with £ =& and get t.he-mmamntrﬂ:m:m

rer f Bz

oML

FICURE 21. Cases (iiia) and (iva)

Case (iiib): Thie case is only possible if the last block in the first saquence is of
k!
typ= ¥, of Fig. 05 Aaauﬂngthattﬁabl&ckial’}{“‘“,mpmmiaxmﬂyum
‘p—m.
Casa (iib) with L} = @ and get the same contribution.

Case {iva): This case is only poesible if the last block in the seoond sequencs is
of type ¥, sea Fig. [21] on the left. Amumjngthatthjabluckial’f‘“,we-pmm&d
exactly as in Casa (iia) with L]_,, =& and get the same contribution.

C-'ﬂse[ivb]:Thjamaajaunlypoaaiblaifthalaatbl;ckmthamdaaquanmia
of type X, of. Fig. 08 Amlmujn,gt.hatthjablnckml'"ml wa prooesd exactly as
in Case [ih]withﬁ'f_m=ﬁa.ndgatthammamntnbuum

L L

Case (v): T‘ﬁamae-ia-:nlypoaaiblaifthauitpﬂmtanfﬂ'é‘ and.ﬂ';é’ ooincide,
The last block in both sequences is either of type 1 or of type X. In the former
case we procead as in Case (iva), and in the latter casa, as in Case (iiia).

The last two terme in the statement of the lemma age obtained from the last two
terms in ([TF) by taking into aceount that I::i'.l‘i"ljl"":'=l ]mthe.e.rpreaﬂnnljﬂﬂjfnr

£l el
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B} and [‘E‘EEI}:EW;”? thaarpreaﬂnnlﬂ:ﬁﬂjfurﬂwmu.mtmmﬂea sinee in
hnthcaaaau’iammp:hunmt.nthablmk]’}?"’. The remaining traces ars treated
-

in the same way as in (LET). ]
442 Case & I lies in rows ..Ff'l and columna Ll . Bimilarly to the previcus
o)

cnas,[ﬂl?fjp[,g! the-arprmunﬂlﬂ]fmﬂ’m[@judmthaaxpnmm
(@EH) for BY in (@50, [lelj’E:;mthawm@:m;mrB“mthﬂﬁﬂh
term in ([@53), mwﬂlufﬁiﬂlj \'mthaaupreamonmfnrﬂmmm
vanish. Fuﬂhm,thamnhmnfﬂf[mmmdtDWJmﬁﬂMnthﬂ

for any ¢ such that & > 7, while the contributions of 5" to [@E]) and to (L5
cmuduchutherfnrmytauchth&tﬁ:,_l = &7, Consequently, we arrive at

(4.97)

SHBY B ap_y > &, By < By (Bl -Bl 6L > B =)
+3 (B, ﬁ,_l*iﬂfﬁl =B+ (BB w =08 = )
FYB B - B al = al A, < )

+3 (B +BL, - B &, =&l =&}
A direct comparison shows that [I07) can be obtained directly from the first six
terms of (73] vin switching the roles of B} and B7, replacing f} with & and of
with A7, and shifting indices when necessary.
Lemma 4.17. (i) Erpression [07) ia given by

Y (meta ey T (Vi)

2=, =2 e,
B gy Bi=Bp
+ 2 {Eﬂ‘ {vﬂff‘j}+ b ({ﬂ‘vJ i (VR }
P .
Y (reigeheiey; '-‘:2.?} T (@i i)
l?.t;:f i lﬁ’—t:::-—:
+ E {[.vf_'ﬂl [.v.ﬂﬂi '_L} E {[EL'C"}:} [.'E'Ev.ﬂ} }:

&
m’:ereE 15 taken over the coses when the emi point ::ﬂ"';"tl liea to the left of the
exit point nﬂ"',"".
(if) Fach summand in the erpresaion above ie o constant.

Proof. The contributions of the terms in ({.37] can be obtained from the computa-
tion of the contributions of the corresponding terms in [£73) via a formal procees,
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which replases K., Ly, Ko, Luy @, T, ey Fay e, fo and T by Lacy, Raci, Lo,
Kr: 'III", *I'!—lr Iar—lr ﬁr—l: ﬁr: &, and EL: TEPEIG‘h.‘J'B].!.", and ]II]:E]'G]:I.EHEEE P and o
Besides, matriz multiplication from the right should be replaced by the multiplica-
tion from the left, and the upper and lower indices should be interchangad.

As an exampls of this formal process, let us consider the computation of the
somtribution of the fourth term in (3T, First obeerve, that the expression for
B — M in [T is transformed to

(e (TR (Vg ) - (R R OvhE e, )

which is exactly the expression for B! | — B (note that the summation index in
the statement of the lamma is shifted by one with respect to the summation index
in (5.

Mext, wa apply the transformed version of (L85 (which is identical to @71
vdthahﬂaihdima]tnthaﬁmtanpmminnabnmmdumthatmmfnm&iaquﬂity

(VA BV o+ (VA (BVR) I = (VA)EE (e VE)E
to gat
[:d..ﬂﬂ]
B, - BT = {Lﬂ“vi}:g: Lﬂlv}:}:;j:} - {(ﬂ‘ (VR (VR }

which is the transformed version of [@TH). Clearly, the first term above is a con-
slant.

Nut.e.that.ﬁl 1:"-'5r-1= whlehmthau'smfnrmedvermunuful :.w:t2 and means
thatthe.blcrckl’} iamntmnedmmplatelymmdathablnckljl" Similarly to
Eaﬁammmmdamaaqum of blocks

N I N I

{Ijs:l'-,}'}::’,xlf_‘:, . } and {II.;__: ,]-}_.2:’ 1_1'}.5_’ pra ]-

-1

and study the same four cases. Let us consider Case (i) in detail. The analogs of
&, and =, ara

By =Kr_1U UE-FE}_& UK r_i), E_1=Le1U U [;E'r—l' U Lr_i).

=1 =1

We add the correspondence &, — Z,_; and =, — &, _;, which turns the above
relations into the trnnaf-::rmed vereion of (LE).
Mote that the matrixz (£¥)Z “” eoincides with & proper submatrix of [1’.‘.1] ""
we dencte the corresponding injection p. Clearly,
_ i #3_y -
[d,_gg] [CE!].;E’L i J:: = [\ﬂ!?!} . [ﬂi]:'s LW.E} ::

which is the transformed version of (@E).
Thamnhﬂ:miunufthaﬁ:attarmmlﬂzﬂjmthaamdtmmlﬂ:ﬂjequﬂa

—((evhg evhg ) - - (v v )

and cancels the contribution of the first term in (35 computed above.
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To find the contribution of the sacond term in [ E3H) to the sacond term in (3]
nota that

et _ = _
(EVHE = (S (Ve

=i

which is the transformed version of [{83), so the contribution in queetion aquals
- Li_ Sk _ i
(@3 DS E S whia )
thalﬂ;marprmnnmthe.trmafurmaimamnnf (Ed). Taking into account that
=) - (=1
gy, = (L) o (f-!]aﬂ ez, = ':f'ljp .1 and that

L

el 2 _ _ n_ ?
1£LL _ I: jpl_ 1l _ ['?IEI}:'[::—.I.L%}: —WJ: Lf A 1( 1];-[_ I.]

which is the transformed version of [{Ed), this contribution can be rewritten as
- =i-a) K
{I:ﬂ Jﬁ_- S (vie Ve as (VR }

— (e e, PO S EE ).

Nexct, by (E3],
(2 aa (VE)E = (V)50 | =0,

gince the rows K7} | lie above 62_, % &2,
Finally, by (@310,
) ]
1 1 T _
'E-]L’ ,l.’ll:- |__ 1 2
where the unit block cocupies the rows and the columms p(E2 ). Therefore, the
remaining mnt.rﬂ::m:_inne-:luala

(g ownit) - (@i endE:) - (i o).

which iz & sonstant mlmmupaldﬂthathudtarmmthamﬂmm of the
lemma.
O

6. THE QUIVER
The goal of this Section is the proof of Theorem EE

8.1. Preliminary considerations. Consider an arbitrary ordering on the sst of
vertioes of the quiver §pr p- in which all mutable vertices preceds all frozen vartices.
Lat Bpr p= be the exchange matrix that encodes G p= under this ordering, and let
fipe e be the (skew-symmetric) mairix of the constants {log ', log /71, f5 f° £
Fre e, provided Fr: p- has the same ordering. Then by [12, Theorem 4.5, to prove
Theoream [EF it suffices to check that

S —
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for some A # 0. In more detail, denota w¥ = {log fr., log fi;}, then the above
aquation can be rewritten as

i i A for (1, 3) = (4, 1),

R o I |
O W E O otherwise
for all pairs (4, 7), (£, §) such that f;; is not frozen. By the definition of the quiver
Qre = (808 Bection @3]), & non-frozen vertax can have degres six, five, four, or three.
Consider first the cass of degres six. All possible neighborhoods of & vertex in this
oase are shown in Fig. @ Fig. Ba), Fig. Ba), Fig. [a), and Fig. Ba).
Conssquently, the left hand side of (1) for I{Lj{nmnbammittanaa

I:-.':'I-E:I ':I:"'r'ij—ll; '|.|||1+1:j ':ul—lg— - ‘J] I: ll; 1.-|-1 l|--|-1::I + [:ulﬂ—l - I:"'Im-l-l,;:l
—rl ]
=6} =8 = 5+,

see Fig. @ In other words, the neighborhood of (4, §) is covered by the union of
fuupﬂtﬂnfmrﬂmﬂ,mdthamntrﬂmﬁnnﬁfjnfeachpairiﬂthaﬁﬁﬁrmuftha
corresponding values of w. More exactly, the first pair consists of the vertices to
the morth and to the east of (i, §), the second pair consists of the vertex to the
north-west of (4, §) and of (4,7) itsslf, the third psir consists of (i,) itself and of
the vertax to the south-east of (4, j), and the fourth pair consists of the vertices to
the west and to the south of (i, 7).

It is easy to see that in all other cases of degres six, the left hand side of
can be rewritien in & similar way. F-::-rammpla,fart—i ananalngaflmﬂhnlda
with &} —w" e 134 “'ﬂri-lmd'sla G e i1 urr:, s=a Fig. [(a).

Fh:ther mnmdarthammnfdegmﬁve. All possible neighborhoods of & vertex
in this case are shown in Fig. Bi(b), Fig. @b), Fig. Ob.c), Fig. B(be), Fig. Ha),
Fig. 0li{a), and Fig. @1{a). Direct inspaction of all this cases shows that the lower
vertax is missing either in the first peir (Fig. B(b), Fig. Blz), and Fig. Baj), or in
the third pair (Fig. @b), Fl,gﬂ“h:] and Fig. @1ia)), or in the fourth pair Fig. [6b),
Fig. Mc), and Fig. @a)). In all thess cases the remaining fimction in & deficient
pair iz a minor of size one, and hence all the above relations will remain valid if the
miseing funotion in the deficient pair is replaced by f = 1 (understood s & minor
of size pero).

Bimilarly, in the case of degree four the are two defident pairs (any two of the
pairs 1, 3, and 4), and in the cass of degres three, all three pairs are deficient.
However, adding at most thres dummy fmetions f = 1 as explained above, we can
always rewrite (i) as

1 2 A for (8, 4) = (i, 7)
(5.3) aij=aﬁ-5ﬁ_a?j+a:j={n _

Equation (53] can be obtained as the restriction to the disgonal X =¥ of
a gimilar equation in the double. Namely, assumes that § &£ 3, ¢ &£ 2, and put
i = {log{,,, log £} 0. If additionally 1 < 4,§ < n and i # 4, j 1, we define

d}j _':j_l,; _""1:;+1= d-?j—":'ll,;-1_“”

d =wli -l n,  dh=wl vl
lfinrje-qua]alnrn,the.ﬂhnvedaﬁmhnnnfdfj should b= modified similarly to
thE-mﬂd.‘lﬁ.ﬂﬂnﬂnﬂf% explained above. It follows immedistely from (1)), ([EX)
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that esach :1;. is & difference {logfa;,logfi;}? — {logE e, log £} 7, whare £,
udi.-mmtraiﬁngmjnnranfthammamhixthatdﬂmmmmh}rm Fuor
Exﬁm.PlEa,fl:lr‘l— 1 w&gﬂt fi I. —f-..l:lu —1j+1s i! 2 = f.n..-:i“,_l],f 5 _:Elf’
and fau =1, ;_;. %mythatdijmnfx-t;meﬁthe.ludmgblmkuffnnman
X -block, and of ¥ -type otharwise,

[fi_j+1thanwe.aat:!u_f._1?j. ﬂnna&qumﬂy,mtﬁamaaiﬂfnmdfjm
of X-type. Similarly, if { = § — 1 then we set fa5 ='_|'€':‘;_1. Consequently, in this
case all four d¥, are of ¥'-type. In what follows we will usa the above conventions
without indicating that explicitly.

For i # j equation (&3] is the restriction to the diagonal X =¥ of the aquation

R T R T T B for (L3) = (& 9)
in the Drinfald double. Mote that all the quantities imvalved in the above aquation
are defined unambiguously.

The casa § = § requires a more delicats treatment. [t is impossible to fix & choios
of £;3;5 and £33 4 in such a way that (5.d) is satisfied. Consequently, to get (53],
weumtamhmmihuﬁnnmﬂijmmpmdmﬂmﬁmmtﬂy,mdmt
to the diagonal X =Y. The cbtained restrictions are combined in & propsr way to
get A;; and to prove ([53) directly. In more detsil, we ether set £ 2 —f.-l,;—1
a.ndf.lat_f n::-r:EE:_i.__;l‘,_la:r:u:flf:nl-_f“7L lnthe-fu:rmercnaad.tjudd.f;
maﬁ!—mmﬂ%mﬂ%muf?—tmwﬂammmmdf a.n-:ld.qa.m
Df.l’i"t.]l'pe-ﬂndduanddv are of ¥-type. Mote that in both cases the restristion to
the diagonal yields the same pair of functions.

&mﬂml;r,jnthammt:jwaaatainharf”=i{§nrfi=f§5,depmdmgmtha
choica of the corresponding £2, a0 that £ and £2 have the same type.

5.2, Diagonal contributions. Recall that the brackst in the double is computsd
via equation (HZI]). In this section we find the contribution of the fist five terms in

([IZT) to Di;.
Proposition 5.1. The contribution of the finat term in (@210 to Di; venishes.

Proof. Similarly to operators By and Egp defined in section @] define operators
.E'_{. 'BII.d.E'_E mEL =VxX -yl Eﬂ'.'l.d.E'_ﬂ =XEVyx —-YVy.
MNota that by (3, @L25), the first term in (2] can be rewritten as

(B.8) (Rg(EL). Bpy = ((£L)y.AL) +{(n), . BL) + Tr(BL ) v
1 1 _
wm (et ) gt - (2 ) ok -meEd
where A7 and B} are matrices depending only on £? and pf and ¢f are functions
depending only on £2.
Lemma 5.2, Tﬁemnhﬁtﬂimafﬂmhhid;mh(ﬁﬂl;&myumafdﬁ,iﬂ
k <4, equals pj.
FProof. For any £,
1< [ 8f ot d
Tr logt =5 it =i = =

l,@—l

log £(LX, £1).
g=1
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If £ iz & homogensous polynomial, then the above expression equals its total degres.
Rem]lthatfnnamsﬂeat.hmmndltmnmdthatda;h-—degfnn_l O

Lemma 5.3. Tﬁemnh‘n&m“ﬂfthemh&zmmtﬂltamyﬂmafd;,lg
k< d, equals gf if dF; is of X-type and —qi otheruise.
Froof. For any £,

TrI:ELlugf)—f ¥ (E—:n, Bﬁm) —| log £ (£X, £7'Y).
ij=1
If £ is & homogeneosus polynomial both in a-variablas and in g-variables, then the
above expression equals deg f — deg f. Recall that f. . satisfies this condition
andthatd%faa—da;:fn u aquals 1 if .6 ;s is of X-type and 0 if it is of ¥-type,
w]:ule.dag.i..—degwf -equalaﬂl.t'i.j.mnf.!'-type.andlifitiaaﬂ’-typa. O

Racall that every point of a nontrivial X-run axsept for the last point belongs
to T3, Wa denote by [y the unicn of all nontrivisl X-runs, snd by 4 the extension
of 7 that takee the last point of a nontrivial X-ran A to the last point of y{A). In
a similar way we define Iy and 4",

Lemma 5.4. (i) The contribution of the first term in (GH) to 45; equals (A7 );;
f;rd?g ia of ¥-type, (AL Jy=(p95(5) — AU Ega (A1 )e #f & ia of X -type and
FJ eI, and 0 stharuvse.

(ii) The contribution of the second term in ([GE) to d5; equala (B});; if &; i of
X -type, (BYJyes ipgen ) — 18U K ) (BE e 1f 4 ia of ¥-tupe and j € Ty,
and 0 otheruise.

Proof. (i) Define an nx n matrix Jm(t) as the identity matrix with the entry (m, m)
replaced by £, and set Xom(t) = X Jm(t), Yim(t) = ¥ S (t). By the definition of £,
for any £ one has

Eﬁlﬂﬁflﬂ— Z I-J-c-[r:|+ E

l—l l—l
d
g=1
If f is & minor of & matrix £ € LU {X, ¥}, then the above expression equals the
total mumber of columms § in all column ¥ -bBlocks involved in this minor plus the
total mamber of columns §° (I in all column X -blocks imeolved in this minor {nots
that I 3 4°*(), and henos all such columns are different). Recall that the minors
fi3;0 = 1;; and fa;5 differ in size by one, and that the solumn missing in the latter
minor is j. Consequently, if 43, is of ¥ -type, (€2 log f1a, )y — (€x log Fis )y equals 1
if I = §, whchmﬂda(ﬂijxa,mdmuthmmaa E:L‘I'.‘I:Iﬂﬂ.ﬂ}l',]fd.! iz of X-typs,
thmd:ﬁeranuaequn.lal:ijledf—"i'[ﬂ which yields (A7, ‘m=
vanishes otherwise. Finally, the additional term |.ﬂ[:ﬂ|—1EhEﬂm[..iL]ﬂ
from the difference betwean (£x log £)o and [:.E.[, log £p, see Section [LEF
(ii] Tha proof is similar to the proof of {i). O

To prove Proposition [£.3] consider the contributions of the terms in the right
hand side of [EH) to Dj;.
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l_uat.uslpru:ﬂmnt.hnxl:t.hnau:::mrﬂhut.n:m.'anft.hvaﬁmt.tvarmt.-::d1I ﬂndd’ cancel each
other, Hwaﬂaﬂthamntnhuhﬂnatﬂdq udiﬂ Amaﬁmtthﬂ:l-—:t-::j::‘.n
Clearly, in this caze all d,; are of ¥ -type, and

(5.6) 'i11, = di'_l,,-~ d.z; = "11:_1,,:_11 d:; = d?,j—l'
Hencs by Lemma E4ii), the sought for cancellations hold trus, sonsaquently, the
somtribution of the first term in (G5 to Dy; wanishes.

Assume next that 1 < j < i < n. In this case all 4f; are of X-type, and (G0)
holds. Hence by Lemma E3Ji), the contribution of the first term in (B8] to Dj;
vanishee, similarly to the previous casa.

The next casa is 1 < i = § = n. In this case we choosa £33 2 and £33 ;5 in such &
way that d}; and d%; are of ¥-type and d¥; and d}; are of X-type, and [E]) holds,
mthemnt:ﬂnﬂnnnnfthaﬂmttmm[ﬂ]tnﬂivmmhmmagam

Assume now that 1 =4 < § < n. In this case dj; a.nddlj ara u:-f.!'-t.],lpe.mdd{j
a.ndd{j are of ¥ -type. Relations (EH) ars replacad by

dij=da;,  dfj=d5,0  df=di;
whera 15(l — 1) = j — 1, sea Section £3], and in partioular, Fig. B Consaquently,
51 —1) = § — 1 and 45({) = j, and hence by Lemma E4i), the sought for
cancdlations hald trae.

Finally, assume that 1 = j < i < n. In this sase 4}, and 4% are of X-type and
42 and 4%, are of ¥ -type. Relations () are replacad by

'31}1 = df_l,:u 'fl = 'i?_1,n= 'j:l = ﬂﬁm
where 7 (i — 1) = { — 1, sea Baoction 3 and in partioular, Fig. B Consequently, by
Lemma E.4Yi), the sought for cancellations hold true.

To treat the second term in (EE) we reason exactly in the same way and usa
Lemma EdYii) instead.

The third term in (E3) is treated trivially with the help of Lemma B3

Canecellations for the fourth term follow from the enncellations for the sesond
term established above and the fact that y—le is a linear operator. Similarly,
cmud]aumafarthaﬁﬁhatmfoﬂnwﬁﬂmthamnmﬂaﬁmaﬁxtheﬁmttﬂm
established above and the fact that -

Fmﬂ]l]r,t.haE.xthtarmmtreed:admmlm'lymthe.ﬁmtnnahﬂaadnnlamma.
B3 m|
Proposition 5.5. The contribution of the second term in ({Z) to Dy; vandshea.
Proof. The proof of this proposition is similar to the proof of Proposition Bl and
is basad on anslogs of Lemmeas [S2HEd] Mote that the analog of Lemma [5.4] claims
that contributions of (£} )y and (n)o to Dy; depend on 4, (i), and 47 (i]. In the
treatment of the case 1 < i = j < n we choose fa;: and £33 4 in such & way that

iﬂmdd%arenfl’-ty‘pe-andd%mdd:jmaufﬂ'-typa. O
Proposition 5.6. The contributiona of the thind, fowrth, and fifth term in (LZ0))
to Dy; vandish.

Frogf. The elaim for tha third term essentially coinsides with the similar claim for
the first term in (B8], the daim for the fourth term espentially coincides with the
similar claim for the sacond term in (EH), and the daim for the fifth term uses
additicnally ‘t]lafs.ctthat.ﬂf.; is & linear opsrator. O
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5.3, Mon-diagonal contributions. In this section wa find the contributions of
the four remaining terme in (ZI) to D;;. Maore exactly, we will be dealing with
the coniributions of the sorresponding ringed wersions. The eontribution of the
difference between the ordinary and the ringed versicn to I; vanishes similarly to
the coniributions treated in the pravious section.

6.3.1. Case 1 < j < i < m. In this case all seven funotions £ x f--mt.ii‘_l.rtha
oonditions of Case 1 in Section H4T] Cﬂnﬂaquamly,thalmdmgblmkuff._ =
£ 1, ﬂ.ﬂdil.:i =1 ;n IE..Y_‘-, the leading block of fa;: = £, , ;_), lel-,n =
fi_!‘:!—iu,ﬂ.ﬂdf!!—f.+;|_ﬂ1+;|_Exir,ﬂﬂdthﬂlﬂﬂﬂmgblﬂﬂkﬂfiﬂal—f.ﬂ_lﬂﬂd
f.i_l.‘;l =i'i.—|-1|j IEIJ'-_I:I

W hava to compute the contributions of (36), (L3510, 53, and [L53). Nota
that the first term in (51 looks exactly the same as terms already treated in
Sestion B3, and hence its contribution to D;; vanishes. T'hafnu:thtarmmm
vanishes under the conditions of Case 1, since both [viﬂlj::i;; and {ﬂlvij"t‘ﬁ;]
vanizh. Naxt,thamntrﬂnﬂiunufthshattermmmmuymaufdfjvmiahe&,
ainmthe.lmdjngbluckanfii.j-andii.j. ooincide. The same holds true for the
last term in (5. Fmthﬂ,thamnhmnfthatmmwmm[lmﬂm:ﬂj
and to df; soincide, as well as the contributions of this term to d7; and to df;, since
they depend cnly on §%, and ' = §° = 4, §* = 49 = j — 1. The same haolds trus for
the foutrh term in ({EF). Similarly, the contributions of the fourth term in
to d}; and to df; coincide, as well as the contributions of this term to d¥; and to
-:H_'j,ain-:at.ha].rdepandc-nl:.rnnii,andi1=i5=1'—1,i3=i“-=i.The.m.me.hulda
true for the fifth term in (L85,

The total eontribution of all B-terms involvad in the abowve formmulas is given in
Lemma [0 Mote that the contributions of the third, sixth, ninth and tenth terms
mlmmmmmmddfjmmmmthadapmdmmufﬂlthmatﬂmﬂ
on f! is only over which blocks the summation goes. The latter fact, in turn, is
oompletaly defined by the leading block of £1, andthaleadmgblnckanff.amd
f._aa::::u.nmda

prmmdfurthmmumaﬂmtthatf!:.&'ﬁ:fﬁ. Consider the first sum
in the third term in . Each Block involved in this sum contributes an equal
amount to d;; and d;, as well as to dj; and dj;, 8o the total contribution of the
block vanishes. Similarly, for the second sum in the third term in ([T36), each blodk
mmlvadmntrﬂ:meamaqunlﬂmumtnduanddf ﬂswe]laam-:kfudd:
the total sontribution of the blods vanishes aa well

The first, the sscond, and the fifth term in Lemma [T are treatad exactly as the
firat sum in the third term in (T30, and the fourth term, exactly as the the sscond
sum in the third term in ([L36). Consequently, all these contributions vanish. We
thus see that D;; = D;;[7] — D;;[8], where D;;[7] and D;;[8] are the contributions of
the seventh and the eights terms in Lemma B.18 to D;;.

'Ibtrena.t.]],‘,[?] mmﬂthﬂthaaummthammthtarmmtakmmtham

when the exit point uf.!}": heaahnvathae.m;:mm::fl}t Consequently, the

trestment in the casee when the exit point of £? lias above the-a::it point of £15
is again exactly the same s for the first sum in the third term in [£386), and the
corresponding contribution vanishes, If the exit point of £2 ecincides with the axit
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point of £, 4, that is, if§ — =14 — j — 1, one has

—#l -1 fori<i,
5T 7] = —dR 7] — LT 4 db = 4T
67 DMl=-EM-aean=Th T s
where #! is the number of non-leading blocks of 2 satisfying the corrasponding
mndit.i-:ms.]ft.haa:it.p-::-jm.uff!mﬂnddeamththaaﬂtpﬂintnffpje,thatis,if
f—j=1—4, ona has

it

n-an- {25

where #? is the number of non-leading blocks of £* satisfying the corresponding
conditions. The cases when the exit point nff!]ieabelnwthaa:itpnjntuffigf do
n::-t.mnt.rihutat.nn.-‘;[?].
Mlgmmmmdm[a]mmmaeawhanthaa:itpuintc-ff!]ieaabmre.
the exit point of £i1;1 is exactly the same aa for the second sum in the third term in
({@36) , and the corresponding contribution vanishes. If the exit point of £2 coincidas

with the exit point of £;1 4, one has

(8.8)  Dyf8] = —df[8] - (8] + d[8) = {Zii_l E;fj

where #' is the same as abhove, If the axit point of £2 coincides with the exit point
of £;2;2, one has
bl JEHL i<,

where #? is the same as above. The cases when the exit point of £2 lies below the
exit point of £:22 do not contribute to D;;[8].
It follows from the above discussion that for f — j=4—-§-1
1 foriz=4, J< 4,
Dy[7] - Dyl = § -1 for i<, § = 4,
] otherwise.
Consequently, [;; vanishes everywhers on the line § — j = 4 — j — 1. Further, for
f—j=1—jone has
1 fori<4, j= 4,
D [7] - Dyl = § -1 for i, j< i,
] otherwise,
Consequently, [;; vanishes everywhers on the line § — § = i — j except for the point
it,3) = (4, 1), where it equals cne. Therefore, for X = X7 = X7 relation (54
halds with A = 1.
There are three more possibilities for relations between the blocks X7, X7,
X
a) Xf # X§ =X,
b) X{ = X #Xi
o) X # Xfl #X{..
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To treat each of thess thres one has to consider correction terms with respeet to
the basic case X7 = X7 = X, We illustrate this treatment for the first of the
above possibilities,

By Lemma £3] casa a) can ba further subdivided into three subeases:

al)I'=1, 0" C.T;

ad) ' C I, =T,

ad) "I, 0T

In case al) wa have the following correction terms. Bor the third term in (@2386),
muammmxi'muammmmmﬁf < f for the pair
f._L,:,f 14 but violata i ﬁnrt.hac-t.ha't.h:ae-pm By Lemma[{3 such blocks are
-::hara.-:t.armedbymndmumf C I, J = .J'. Consaquently, thesa blocks produce the
oorrection term

o L2 Lt
- 3 (@B Evai) + 3 (e )
J=r J=r
to d}a

For the first term in Lemma H.18 the correstion terms are defined by the sama
bluu:kaaﬂabwe.axmptfurthe.bluckXﬁritna]jfbamumnfthaadditinnalmmmm
comdition of = n;]. Consequently, these blocka producss the eorrection term

ol ol L o
Y ((EVEs (e VE)gs) - 3 ((£VE G (£VE).)
J=Jr .j;-ﬁ
to 'ita whera mrreapundat.nt.hablnck.!’
For the sscond term in Lemmea .16 the-bla-:k.x" viclates the summation con-

dition A7 5!":,5;, uf:u#fﬂrthapairf,:al,!: 4 hut.zrnt.mﬁeaﬂ.fc-r the other thres

pairs. Eeaidea,thablu-:k.!’f,rmﬁaﬂeathmmndltmnfarthapmi 1y T 0 but vi-
olates it for the other thres pairs Consaquently, thess two blocks prc-du-::e-::::-rrmt.iun

terms
3 (VL (€925 ) - T (Vi) (v a)g )
i e

tu:n:L“1 where & corresponds to the block X/
Fbrthafuurthtmmlammmm,thablmkaﬂ'fﬁnlatathsmﬁmmn—
dit.inn,ﬁ?:,ﬂl,ni:‘r'u?fnrt.hapﬂufu I:Lhut.mtmf_l.rlt.fn:-rt.hauthert.hrm
pairs. Besides, the block X satisfies this sondition for the peir fip, f.:.,tbut
viclates it for the other thres pairs. Consequently, these blocks produce correction

terms
L2
-y {[v}:ﬂlj:EL ;[v,:ﬂi}ﬂ} + E {{‘E‘EEIJ (V2 [‘,EJL}
F=0
to dj;, where L corresponds to the block Xy
Bummation conditions in the fifth term in Lemma 430 are exactly the same as
in the fourth term. Conssquently, one gets oorrection terma
PUECH VO A H K\® H\®
JZ; (EVE) Gk iy (EVE) ) - E (V) iia (Vo)
= af

to -i}a-, whera K mnmpnndﬂt.nt.hablndtﬂ'f.
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For the seventh term in Lemma E.I8 the block Ifaﬂﬂaﬂmthe.mmmﬂ.iun
oondition 82 = A, of = El;fﬂl'thﬂpﬂjl'fiijl,fil‘;i but violates it for tha other threa
prirs. Beaidea,tﬁlea.-idit.iuml eondition on the exit points exclodes the diagonal
f—j=1—4 —1. Consequently, this block produces eorrection terms

3 (£ (£7VE) g ) +Dy[7]

to d}, where D;;[7] is given by (5T
For the sights term in Lemrma 18, the situation iz exactly the same as for the
geventh term. Consequently, one gets correction terms

-3 ((VEeY); (VELY); ) - Dyls]
=1
to di, where D;;[8] is given by (£H).

It is aaay to note that the sorrection terms listed above cancal one another {racall
that vanishing of D;;[T] — D;;[8] for £ — §= i — § — 1 was already proved above),
and henos relation @ in established in the ease al). Casas a2), ad), b), and ¢)
are traated in o similar manner,

5.3.2. Other cnsea. The case 1 < i < § < n is treated in o similar way with [£306)
replaced by [L51)) and Lemme {16 replaced by Lemmea @17

Consider the case 1 < i = j < n. The treatment of the first term in [LEI), the
last terms in ([{G3) and [@EEH), the third, sixth, ninth and tenth terms in Lemma
{368 and the third and the sixth terms in Lemma BT is axactly the same as
in the previous section. The third and the fourth terms in (@8, as well as the
fourth and the fifth termas in [63), are treated almost in the same way as in the
previous section; the only differencs is an appropriate choies of the funetions on the
diagonal, which ensures requirad cancellations. To treat all the other contributions,
recall that by the definition, the leading block of £3 is X, and the leading block of
£7 is Y. Denote by X7 the leading block of £;;_1, and by ¥y the leading block of
fi_1;. Similarly to Section EE1] there are four possible cases: X7 = X, Y7 =Y
X{2X. Y=V X{ =X Y/ 2V X] 2 X, ¥/ #71.

Leat us consider the first of the abova four eases. Contributions of all terms exespt
for the seventh and the eights terms in Lemmes I8 and @17 are treated in the
pame way as the third and the fourth terms in ({85 above. For example, to treat
the first sum in the third term in (38 we choose f22 =17, ;) and £33 = 7,
80 that this sum contributes only to &% and 4%, and the contributions caneel each
other. For the ramaining four terms, thers is a subtlety in the case § = 1. We writa
fio = 35|,y + $12 |, _, and note that X is the only block for £5 and ¥ is the
only block for £, Eﬂnae-quam.l!.r,ﬁ:-rfi=%i§, the terms involved in Lemma 715
somtribute mero for § 3£ 4 and 1/2 for § = 4, while the terms involved in Lemma £T7]
contribute zero for any 1. Similarly, for £2 = —;fi;;,t.hat.armainmlvedinlamma.
{16 sontribute zero for any §, whils the terms involved in Lamma [{.37] contributa
paro for § £ 4 and 172 for § = i. Therefore, we get contribution 1 for (i, ) = (1, §),
as required. In the remaining thres cases one has to consider correction terms,
similarly to Ssction EEI1

It remains to consider the cases when 4 or § are aqual to 1 or n. For example, lst
1 < § <i=nand asume that the degres of the vertex (n, §) in Qrx rc aquals 6, sea
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Fig. [l(a). It follows from the deseription of the quiver in Section [I3 that (n,j—1)
is & mutable vartex. In this cass the functions f-”a”' and f;1. satisfy conditions
of Casa 2 in Section 43 and all other functions satisfy conditions of Case 1 in

Section @A Consaquently, the leading block of £,1;1 = fa_1; E.]llj.f.-i'.il.=f_?‘-i+1
i!lﬂ},‘t.halaﬂd.'iﬂgblcrcknff;na& —in_lﬂ,_lﬂndfgn =fap =1 iEA"J-.-,t]:I.E

ludl.ﬂ.gblcrl:kﬂffpil.—fH_1]EA'P,,t.h.ElaﬂlﬂJﬂg'b1l}EkDfi1=:—f1,g.|.1 with
k= =(j) is ¥/, and the leading block of £, = £, is Y.

The treatment of the last three terms in [{63) and the last three terms in
Mrmamsthammaumﬁacﬁmm To procesd further, assume that
x{=xi =x7 mdr;’_rf. In this case it is more convenient to replace [Ed)
mth]].‘:_-i} d‘i+d"-i d.q 'H'hEI'E-ﬂ.t?:f.?j_1—fi_‘: Eﬁﬂ.da.'i'_",-:=f1k—i1lh_|.1,
&2 that the first thres terms in Dy; are subject to the rules of Case 1, and the last
term to the rules of Cass 2

The contributicns of the third, ninth and tenth terms in Lemma [@TH to any ona
nfd}j,u:h?f md:ﬂfva.rﬂahfurthe.mmereaannﬂsmﬂmﬁnnm The same holds
true for the contribution of the third term in Lemma E17 to 4%,

Thaﬁmtauminthattﬁrdmmmlﬂ:ﬂ]mntrﬂmteathammttud}jmd
cﬁr.,andmnmdg. The same holds true for the first, second and the fifth terms in
Lemmea .11 Thaaamndmmthathj:dtmm@:ﬂlvmiaheammpﬂbfjfm
every X-block of £ mmatﬁfﬂﬁ;ummncuymmlaﬁufmmlqu

Further, [ﬂl?lﬂﬁgi in the second sum in the fourth term of (@I is an

ﬂmhtymm,mdhmmthamnhmufthlammai‘f?umhm,mhm
gides in this difference depend ocnly on £*. The same reascning works as well for
the first, the fourth and the fifth terms in Lemma 17, and for the first sum in
thafuuthtmnfﬂﬂlrﬂmthacmﬂf_l::,F;_I.Thamnt.rﬂ::uti.nnufﬂ:daaumm
a.;?ﬁnrthamaaﬁf_1=,ﬁi_1 cancels the contribution of the sscond term in Lemmea
for the case &7 _; < Gg_.

Let us consider now the contribution of the fourth term in Lemma 0 Asmume
that a t-th X -block of £* satisfies conditions of > op and ] = f. Consequently,
the (t — 1)-th ¥-block of * satisfies conditions &_, > @, and 5 ; = §2_,.
Consider first the eaze when the inequality above is strict, Lfthal’-blmkmqueauun
is not the leading block of £*, then the contributions of the X -block to dj;[4] and
d%;[4] cancel aach other, whereas the contribution of the X -block to &} [4] eancels
the contritution of the ¥-block to di¥(2]. The same holds true if the ¥-block is
the leading block of £7 and § < v=(f). ¥ J = 7°(j) then the contributions of the
X -block to d2[4] and 433[4] vanish, whereas the contribution of the X -block to
d;[4] cancels the contribution of the ¥ -block to df7[2). Finally, if 3 = °(j) then
a.]lthe.a.hmremnmbutiummmh

'Dtharmae.,lfﬁt_l— l,the.mxt.h,thaaﬂvmthandthe.mghmtarmamlﬂmm&
mntnbutatubﬂt.hmdmnfd.?,mmmhnthmthaantpmmfnrfihea
t-:-the.laft.nft.haaﬂtp-:d.ntfmi. Consaquently, the contributions of the sixth
andthaeigh.tarmamniah,whﬂathemnhﬂ:minnnfthe?—blmkmi?[?] equals
the total contribution of the X-block to df;[4], 43;[4] and di¥[4], similarly to the
Previous casa.

Assume now that a ¢-th X -block of £? satisfies conditions of = oy and 57 = 87
Wea distinguish the following five cases.
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A i —§>n— i+ 1; consequently, the sixth, the seventh and the sights terms
in Lemma {16 do not eontributa to Dy;, since in all cases involved the exit point
for £2 liag balow the exit point for £1. Besidas, Eflbﬁl a.n-iﬁil_,ﬂ'l_.
tru.t.mmt-:-fth:ac:aae.me:mcﬂg.rthaume.ﬂathatrmtmentuﬂhe.mmu, }u and

,ﬂﬂ ,B;abmra
—j=mn—-i4+1; c::naaqumﬂg.r,ﬁf and,ﬁt_l—,ﬁl Similarly
tnthamaaﬂ,the-mxth,thaawanthmdtha tarmamlamma.mdnmt

-:x:-nrn'l:-ut.e-t.-::]:l.,,mmﬂﬂmﬂﬁﬂmwlv&dthaamtpumtfmi!hmb&lwur
coincides with the exit point for £'. On the other hand, the sixth, the seventh
and the eights terms in Lemma @17 contritute only to the subtrshend of 477,
but not to the minuend. If the ¥ -block in question is not the leading block of £
then the contributions of the X-block to d[4] and d?.[4] cancel each other, the
contritution of the X-block to dj7[4] equals one, while the contributions of the ¥-
block to 332[6], 332 (7] and 33 (5] are equal ton+1—af_; —(4), 7°(j)-nand 62_,,
respactively. Consequently, the total contribution to D;; vanishes. If the ¥-block is
the leading block of £2 then the contributions of the X-block to dZ [4] and di3[4]
vanish. Further, if { > 1 then the sontribution of the X-block to d1[4] vanishes as
well, wheress the contributions of the ¥-block to a5, d%'[7] and d¥}[5] are squal
ton+44—a_,—4§, i—n—1and &_; +1— 1, respectively. Conssquently, the total
contribution o Di; vanishes. Finally, if { = 1 then the contribution of the X-block
to [4]&1uﬂlannebwhmaﬂathammhuhmanfthafbluu:ktuaf[ﬁ]uiq[?]and

hmaqualmn+1—ﬁfl 7=(1), 1°(4) —n and &2 _,, respactively, and again
the.t.nta.lmmhutmnm]] vanishes.

C.i—-j=n- j,mnmqmﬂgﬁ?_l_u;_lmdﬁ?_ﬁ,ﬁ;_l.Hmethaajxnh,tha
seventh and the sights terms in Lemma @17 do not contribute to &%, since in both
cases involved the exit point for £7 lies to the right or coincides with the exit point
for 11, On the other hand, the sixth, the seventh and the eighth terms in Lemma
H18 do not contribute to d};, df; and to the subtrahend of dff, but contribute to
its minuend. If the X-block in question is not the leading block of £7 then its
contributions to df;[4] and df;[4] cancel each other, and its contribution to di[4)
equals one, The contributions of this block to df [6], df?[7] and df[2] are equal to
a — 4§, 1 and j — 2 — o, respectively. Consequently, the total contribution to D
vmha&ﬂammehnldahuaﬁttua.[—blmkmthalaﬂdmgblmknffiudi{n
If £ =m, and hence j = j,thann'ammhutmnmd“[d]anddq[d]mmh,mdtha
contribution to d};[4] equals one. The contributions of this block to d3'[6], d3[7)
and d33[8] are equal to of — j, 1 and j — 1 — of, respectively. Consaquently, the
total contribution to I;; equals one. If the ¥-block in question is the leading block
of £% then the contributions of the X-block to di[4], d%[4] and a}¥[4] vanish, as
well as the contribution of the ¥-block to df3[7], and the contributions of ¥'-block
t-:-f'-’[ﬁ] and d[8] cancel each other. Comsequently, the total contribution to Dy

D.i—§=n—j—1; consequently, &_; < &;_; and &, = §_;. Here the
aixﬁ,thamvmthmdth&dghhtmmmmm&dumtmnhibumtnd}j,
hutmntrﬂ:met.u-f mdd.q Assume first that &} l_ﬁp_l,thmthaajxth,tha
mmmudmamgmatmmmmdnmmbumtnaﬁ'mﬂﬂaﬂym
case O, If the X-block in question is not the leading blodk of £2 then its contributions
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to d;[4] and d;[4] cancel each other, and its contribution to d;7[4] equals one.
Further, its contributions to d%;[6] and 4]5[6] vanish, and contributions to 428 and
dﬁ[&] cancel sach other. Finally, its contribution to df:[?] cancels the contribution
to d42[4], and hence the total contribution to Dy; vanishes. The same holds true if
the X-block is the leading block of £2 and § > n— 1. Iff = n—1 the contributions to
dZ [4] and d#}[4] vanish and the contributions to d,[4] and d%;[7] cancel each other.
I § = n, or if the Y-block in question is the leading block of £2 then all the above
menticned contributions vanish. The cases &f | < ﬂ;_l iz similar; additionally to
the above, the contribution of the ¥ -blodk to 342 vanishes.

E. f— j< n—j—1; consequently, &_; < &__; and §}_; = A1_;. This case is
gimilar to the previcus one, with the additional canesellation of the contributions to
4%[7] and a}y[g].

Therefore, the total contribution to [; vanishes in all cases except for the case
{t,3) = (m, ) when it iz aqual one, hence under the sssumptions X; = X7 =X}
and ¥ = ¥;' relation () holds with A = 1. I thess assumptions are viclated,
one has to consider sorrection terms similarly to Section 30

6. REQULARITY THECK AND THE TORIC ACTION
The goal of this seetion is thresfold:
(i) to check condition (ii) in Proposition EI0 for the family Fre e,
(ii) to prove Theorem E3iiii), and
(iii) to prove Proposition B8

f.1. Regularity check. We have to prove the following statement.

Theorem 6.1. For any mutable duster variable f; € Fpr -, the adjocent variable
j.!'j i o regudar function on Mat, .

Froogf. The main technical tool in the proof is the version of the Desnanct—Jacobi
identity for minora of a rectangular matrix that we have usad previously for the
regularity chack in [15]. Let 4 be an (m — 1) = m matrix, and o < @ < 5 be row
indices, then

(6.1) det A% dat AT 4 det A7 det AP = det 4% det A3,

where “hatted™ subecripte and superscripts indicate deleted rows and columns,
regpactively.

Let us assume firat that the degres of (i, j) aquals six. Following the notation
introduced in the previous ssction, denota by fi; and fiujs the-fu.u-:tmnfl al tha
vertices to the north and to the east of (i, §), respectively, by fa;z and fiza the
functions at the vertices to the north-west and to the south-east of (i, §), respeo-
tively, and by fiu md_i-*:-_.uj.- the funetions a.tthaverﬂmatnt.haweatandtn_tha
south of (i, j), respectively. Let £ be the matrix used to define f3;a, fi; and faa,
L. be the matrix used to define fiz andf.-:j:,mdﬂ_ be the matrix used to
defing fiau Eﬂd.f.'l.‘;l.

Assume first that degfi; < deg iz, Define a degfan = I:d.lﬂf.i_l.‘;: + 1) matrix

) [wiit G =1 M2 - [l f)—1.0 2]
Avia A = (L4 wic,) - Then it i easy to see that Lih” 'y (o) =



T M. CEKHTMAN, M. EHAFIRO, AND A. VAINEHTEIN

AI;M’E“IH, and morecver, that A[&ﬁﬁ EI is a block in the block upper triangular

o g[Ldegfia]
matrix A[I,d-a.ﬂ_tjt . Conssquently,

fagp =det AL fu=det AR fao . det B =detA™, f;. detB=det Al
with B = AL ttdelfinl o0y — degfia + 1. Applying () with o = 1,

[Bemfuy+ 2, degfut 1]
f=2,7=m,d=1,one geta

Fap -det A3 4 fa det B fug = detA®. i . det B,

B ; ; — AL fy+1]
Nota that det.d] _da't...ﬁdet.ﬂ'mt.h..{_.dllli F+1],andhanue

(6.2} fa 1 dﬂ:j? + _fini,-&j:.-iji = fi; dat 42,

Let now deg fi; = deg fis;1. Define a (deg fij+1)x (degfi; +2) matrix A via adding

; i o[BI =1 (] it i
the solumn (@,...,0,1)7 nnthenghtmthamﬂmxﬂl_ﬁﬂ_lﬂtiﬂ. Then it iz sasy

[sfi* A (ER)] _ g [Rdefinga ] [2,desfia g +1]
to see that (Lo )]G ywic)] = Al amgfugs] 200 moreover, that A

i . . . , +3
iz a block in the block lower triangular mﬂmxjﬁlﬁ'ﬁm”“l. Clomaequent]y,
fajoodet B =det A",  fu. o detB=detAl?, fau=detd™, f;=detAl™
. g g0 +2. Aoy +2] . .
mthB=Ahftlzlﬂﬂm+1]mdm=dem‘ij+i Applying (1) with a = 1,
fg=2,7=m,d=1,one geta
forge - det Bdet A + faa - fuop - det B = det A fi,

where A =AE:E‘EEI iz the same as in the previous case. Mote that det 4% —

det..i!detﬂ, wh&re.j=Aliﬁgﬂj:rlljagimbythemmamuthewhﬂla
matrix A in the previcus cass. Consequently, relation 2 remains valid in this
cags as wall,

To procead further, we compare degf:; with degfs ;» and coneider two casas
gimilar to the two cases above., Ressoning along the same lines, we arrive to the
relation

(6.3) 1 dﬂtﬂf +ﬂ:‘;:fpj.l = fpjd dﬁtaﬁ
with © = (£_)E200E and A the same se in (7). The linear combination
of ([E2) and 3] with coafficients j-.'l.jl and f1 1, respectively, yields

(G.4) Fij I:;F.'l.jl det 4% — fap d&tﬂf:] = fap _f.-!jl.fil‘.;l. + fiaz f,-:.‘;n faz.

Combining this with Theorem I8 we see that f7; = fa det A — fiu det©f 5 a
regular function on Mat .

For vertioses of degras less than six, the daim follows from the corresponding
degenerata version of (JE4). For exampls, for vertises of degres five thera are threa
poasible degeneraticns:

(i) degfiap = 1, and hence ﬂl.ji = 1, which corresponds to the cases shown in
Fig. B{b), Fig. B(c) snd Fig. Ba);

(i) dagfa;u =1, and henoa fa.a = 1, which corresponds to the eases shown in
Fig. Bb), Fig. [0(c) and Fig. I0(a);
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(iii) degf; = 1, and henoa fa s = 1, which corresponds to the eases shown in
Fig. 0b), Fig. B(b) snd Fig, [ia).
Vertices of degress four and three are handled via combining the above degen-
erations. O

6.2. Toric action. To prove Theorem E3(iii) we show first that the asction of
Hre ® Hr= on SLn given by the formula (A, H2)X = H1X Ha defines a global
torie action of (C* )% +¥r= on Cpe pe. In order to show this we first check that the
right hand sides of all exchange relations in one cluster are sami-invariants of this
action. This statement can be expressad as follows,

Lemma 6.2. Let fi;(X)f5;(X) = M(X) be on erchange relation in the indtiol

cluster, then M(H X Hy) = xM(H, )M (X Y (Ha), where x¥ and ¥ ane loft
and right mdtiplicatfve chamcters of Hpe ® Hp- depending on M.

Proof. Motice first that all cluster wariables in the initial cluster are semi-invariants
of the action of Hpe x Hr=. Indead, racall that by (&I, [E3) any cluster variahla
fi; in the initial cluster iz a minor of & matrix £ of sisa N = N (£). Clearly, minors
are semi-invarisnt of the lefi-right action of the torus Diag,, = Diag,, on Maty,
whers Diag,, is the group of invertible diagomal N » N matrices. We sonstruct
now two injective homomorphisms v @ Hpr — Diag,, « Diag,, and oy @ Hpr —
Diag,, = Diag,, such that the homomorphism (v, &) : Hpe ® Hpe — Diag,, = Diag,
given by (v, e)(H,,Hy) = r(H, ) - of Hy) extenda the laft-right action of Hpe » Hp-
on SL, to an action on Maty, . Note that Diag,, » Diag,, is & commutative group,
g0 (7, ) iz wall-defined.

Wa describe first the construstion of the homomorphism r. Let A be a nontrivial
row X-run, and & = +"{A) be the corresponding row ¥ -run. Recall that e =
exp fipr. Consaquently, it follows from (ZE) that for any fived T € ¥ thers exista
a constant g3 (T') € C* such that for any pair of corresponding indices 4 € A and
i€ A onehas Tj; = g%, (T') - T Clearly, gf is & multiplicative charascter of Y.

Fix a pair of blocks X a.ndl"'"mﬂ Let A be the row X-run corresponding
to @, then we put gt = gﬂ.mddaﬁnaamahmﬂ’ﬂ"jemﬂgﬁau-:ht.hat.ltaam.ry
(4, 4) equals gf(T') for § € W] (K, U ;) U (K: ' 4,) and 1 otherwise, and a matrix
B{(T) € Diag,y such that its entry (j, j) squals (g7(T)) ™" for j € LAZH(E,UL,)UL,
and 1 otherwisa, sea Fig. [[5

Put A°(T) = [T,_, AY(T') and B*(T') = [[,_, B{(T'). Finally, for any j £ [1, N]
define £7(§) as the image of j under the identification of K, and I, if § € K,
and as the image of j under the identification of K, and [, if § & K\ &y,
and put O7(T) = diﬂgl:Tﬂ‘,:,,::[‘,]]""l Then, similarly to the proof of Lemma
EEL c-ne.c-bteu.na I‘.{Tﬂ' TY) = A’[T‘]G’[T]E{X Y)E(T), and henoe v : T

The trum»::-n the homomorphism ¢ is similar, with g defined by the
solumn X-run eorresponding to ¥, AS(T) having gf(T') as the entry (4, §) for
j € UIZIL: U L) \ Ty and 1 otherwise, Bf(T') having (gf(T"))" as the entry
,) for § € LAny( U K} and 1 otherwise, A(T) = ITi_, Af(T), B*(T) =
[T -, BE(T), and OF(T) = diag(Tpcij) oe(s) oy, where £°(4) is the image of j under
the.ldamﬁmhunc-fL.andJ.fj £ L, an ui the image of § under the identifieation
of L and J, if j € L% Weyy. Consaquently, the desired homomorphism is given by

O:T s (A(T), B(T)O(T)).
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Wea thus sae that any minor P of £ is a semi-invariant of the left-right action
of Hre % Hr: on SL,, and we can define multiplicative charactars y[ and x5 as
the produsts of the corresponding minors of A", 4% and C°, or B, B and C~,
respactively.

To prove the lamma, we congider first the most general case when the degres of
the vertex (i, §) is 6. Then, borrowing notation from the proof of Theorem B3]

MEI] = .fi’;i '-f,-xjf-i.if w].ﬂ'ji E-I] + f-i_'-‘i’ E—I:]f.-!j! Eﬂjfil.f I:.H.":]

It follows from [E3) that x‘f-"!’ +x"+-"l’ = y st +x‘5"[‘ii:', whera ¥ means yr of
¥ & Similarly, it follows from (B3) that ik +x'i"[‘ih =Mt 4P Adding
to both sides of the first aquality ¥ /7', to the both sides of the second equality
y¥fi' and adding these two equations together we obtain

xfujl +x.l7~.21= + xfu:t = yfitst 4 xfﬂ:t + yfitst =M,

which proves the asssrtion of the lamma.

Orther easem are obtained from the general case by the same specializations (sat-
ting ome or more finetions above to be 1) that were used in the proof of Theorem
[fdl above, This concludes the proof of the lemma. O

To complete the proof we have to show that any toric action on Cpe pe can ba
obtained in this way. To prove this claim, we first note that the dimenzion of e
aquals ke, and the dimension of Hpe equals kpe. Consequently, the construstion
of Lemma EF produces kpe + ke weight waotors that lie in the kernel of the ex-
changa matrix corresponding to Qe r=, sae [1, Lemma 5.3]. Assume that there
exista & vanishing nontrivial linear combination of thess weight vectors; this would
meaan that all cluster variables remain invariant undsr the toric action indused by
a nontrivial right-lsft action of {rr x W= on SL,.. However, by Theorem [C1] be-
low, every matrix entry of the initial matrix in SL, can be written as & Laurent
polynomial in the clustsr variablas of the initial cluster. Hence, & generic matrix
remaing invariant under this nontrivial right-left action on SL,, & contradiction.
Mota that the proof of Theoram [[1] does not usa the resulta of Saction G2

6.3. Proof of Proposition B8 (i) We will focus on the behavior of det £{X,Y)
under the right action of T'_ = T= . The left action of T can be treated in &
similar way. In fact, wa will show that det £(X,Y") is a sami-invariant of the right
action of a larger subgroup of D{&L,, ). Let Py be the parabolic subgroups in SL,
that eorrespond to parabolic subalgebras (Z11]), and let P4 be the sorresponding
parabolic subgroupe in GL,. Elements of P, (respectively, P_} ara block uppar
(respactively, lower) invertible trisngulsr matrices whoss aquare diagonal blocks
sorraspomd to column & -muna (respactively, eolomn ¥ -runs).

It follows from ([E1Z) that D_ is contained in & subgroup T_ of P4 = P_ defined
by the property that every square diagonal block in the first component deter-
mined by a nontrivial column X -run A ecincides with the square diagonsl block in
the sacond component determined by the corresponding nontrivial echimn ¥-run.
For g = (g1, 2] e D, consider the transformation of £(X,Y) under the action
(X,¥ )~ (X,Y) g, in particular the transformation of the block solumn Ly ULy
as depictad in Fig. I8 In dealing with the block eolomn we only need to remembsr
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that (g, ga) can be written as

A A A By 0 i
(g1, g2) = 0 & Agg|.|Ban © 0 \
0 0 Agg 1 Baa  Bag

where A11,45s, Bi1, Bz and ' are invertible and & ocoupies rows and columns
lasbeled by A{&) in g1 and rows snd columns labeled by A(f._1) in gz (recall
that both these runs correspond to 7% ). Then the affect of the transformation
(X,¥) (X,¥) g on the block column is that it is multiplied on the right by an
invertible matrix

[—-‘111 A '3']

] [ n.

0 By By
The cumulative affect on £(X,¥) is that it is transformed via & multiplication on
the right by an invertible block diagonal matrix with blocks as above, and therefora
det £{X,Y") is transformed via a multiplisation by the determinant of this matrix.
The latter, being a produsct of powers of determinants of diagonal blocks of g1 and
ga, iz & character of T'_, which proves the statermment.

(i) The claim follows from & more general statement: det £(X, ¥7) is log-canonical
with all matrix entries z;;, w; with respect to the Poisson bracket [Z1d]) which,
in our situation, takes the form (3. Semi-invariancs of det (X, Y") described in
part (i) above, together with the fact that subalgebras a_ = 7 and 2_ = 2% ame
isotropic with respact to the bilinear form {{ , )} impliss

Ffev_+(prnbh@h), Tiferliinhsh)
for f = logdet £(X,Y). This means that in (ZI)

Ro(Pf)=-f+m. (TFl,, Ro(Vfi=-FF+m, (Vfl.

where | |; denctes the natural projection to D(h) = h&:h and 7,7, are projec-
tions to 0y along 9, 8. respectively. Due to the invariances of ({ , )}, (Z1d) then
reduces to

{12 = & (1, (P Do (F) gl — limh, (70, () 1)

for any o = piX,¥).

Lat now 'PEI'?:] = 1“'53'&' Then {?"'F.]n = '-r.ﬂf.ii:n:]: [..?E'F.]n = '-r.ﬂl"i-'u:]' Thus,
to prove the desired claim we need to show that m, (7 f)o and af_ (7" f)o do not
depend om X, Y. To this end, we first recall an explicit formula for ma,

oy (€)= (£ — By(€ —m) & — Re(E—m)),
which can be easily derived using the property R, — B_ = Id zalisfied by E-
matricas (8. Sinee in our situstion the left gradient W f computed with respect to

{{, }isequal to (Wxf - X, —Vy f ¥, we concluda that components of ma, (7° flo
are equal to (Vx f- X — Ry (EL f)),;, where { |, now means the projection to the

diagonal in gl,. By (2, E3H), (L3,
(Vxf X =Ry (Buflo = § (~12s @o+ 1= (u)o)

+ 1 (T(BL)S - Tr((ELF)S) 1),
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By [{1d), Corollary @18 and {27, the right hand side above is constant. The
oomstancy of mf (" f)q and the ease of p(X,Y) = logy,; can be treatad similarly.

This completes the procf.

7. PrRoOF OF THEOREM [E3(11)

Az it was explained above in Section Ed, we have to prove the following state-
ment.

Theorem T.1. EFvery matrir enéry can be wrilten as o Laurent polpnomial in the
indtial clhugter Fro p= and in any custer adjacent to it.

Below we implement the strategy of the proof outlined in Seetion Edl

7.1. Proof of Theorem EJ7] and its analogs. Given an aperiodic pair (I™, I'")
and a non-trivisl row X-run AT, we want to explore the relation between clustsr
structures € = Cre re and C = Ef,?r.c,whm'e.f“=F[E’]ianbtainedhy deletion of
the rightmost roct in A* and its image in 7(A"). Note that the pair (I (&), <)
remaing apericdie.

Assume that AT is [p + 1, p + k], and the eorresponding row ¥ -run (A7) is
’;+ 1,9+ k). Then, in considering [f"[E’],I“], we replace the former one with

+ 1,p+ k — 1], and the latter one with [g+ 1,9+ k& — 1]. Besides, a trivial row
X-run [p+ k,p+ k| and a trivial row ¥-num [g+ &, g+ k| are added. The rest of row
K- and ¥-nms az well a3 all column X- and Y-rune remain unchangsd. In what
follows, parameters p, g and & are assumed to be fixed.

We say that a matrix £ € L is r-piercing for an v € [2,k] if T(p+ 1) = (L, 8,)
for some 2, € [1, N(L)]. Mote that two distinet matrices cannot be simultanscusly
r-piercing. On the other hand, & matrix can be r-piercing simmliansously for several
distinct valusse of r; the set of all such valies ia ealled the piancing sef of £. If &
piercing set consista of v, ..., Ty, we will assume that 2., = -+ > &, The subsst
-::-fa.].'lm_rat.riﬂea:i:uLthat_mmtﬂpiarcingﬁnranyrE[E,F:]iadan-:-tadl.g. i

Let L= Lz, pes F = Ty pes 80 let the functions 1;(X,¥) and fi;(X)
be defined via the same expressions as £;; (X, ¥) and f;;(X) with L and .7 replaced
by L and 7. It is convenient to restate Theorem 1T in more detail as follows.

Theorem 7.2. Let £ = (z;;) be an n x n matrir. Then there erists o unipotent
upper trisngular nx n matriz U(Z) whose entries are rational functions in 2;; with
denominators equal to powers u;fﬂ,ill[z] such that for X = U(Z)Z and for any
i, € [1,m],

fox) = i@ ipsea@) F IG5 = (€,9) ands < s,
" FiilZ) otheruiae,

wihere £ 42 the k-piercing matriz in L.
Frogf. In what follows we assume that € £ §, sinee for ¢ = § the claim of the
theorem is trivial. _

For any C(X,Y) € L define C{X,Y) obtained from £(X,Y) by removing the
hatmhumavuyhuﬂdﬂgblncknfth&hrml’ifﬂ_ﬁl. In partimalar, if £(X,Y")
does not have building blocks like that thenf.[.!',l’]:ﬂ[ﬂ',l"’].
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Nutathﬂlaﬂmahmfldaﬂngiabwamrredudblemptfmthemuhmmad
from the k-piercing matrix £*. The eorresponding matrix £* hes two irreducible
disgonal blocks £7, £3 of sizas 8, — 1 and N{£*) — 5, + 1, respactively. As was
already noted in Section F4] all maximal alternating paths in G- r= are presarved
mﬂfq[ﬁ,ramaptfnrthepaththm:gmﬂthmughthadjmctadiﬂdiuaiadge
ir+ k- 15 — (g+ k — 1). The latter one is split into two: the initial segment up
to the vartex p 4+ k — 1 and the closing segment starting with the vertec g + & — 1.
Consequently, L= {£: £ € L,£ # £} u{ £y, £3).

Further, if J(i,§) = (£, s) and £ # £* then J(i, j) = (£, 5). Furthermors, if
£ £ Ly then additionally f.-_j[.!',l"'] and i.-_j[.i!",l"] eoincide. However, if (4, §) =
(L£*, a) then

- P [E{,.ﬂ] for 8= a(i, ) < &,
ﬂhﬂ_{[ﬁ;,s—& +1)  for 8= a(i,§) = 2.

It follows from the above discussion that the claim of the theorem is an immesdiata
ocorollary of the equalities

(7.1) det £, X )Prytel] = det £(2, 2)

2 NIL)
for any £ £ L and s £ [1, N[ L)).
To prove ([TC1]), we select & partioular “shape™ for I7(Z). Let
k-1

=V {C)
=V iL)

r2) Uo =U0(2) = 1+ 3 a(Zegmas
where @, (2 ) are coafficients to be determined, and
73) v =0(@) =[], =p(iv) @e(2))

Drue to the nilpotency of y* on oy, the produst above is finite. Clearly, if o, (Z)
are polynomials in 2y divided by & power of foixi then the same is true for the
entries of F(Z).
The invarianes property (1)) implies that for every (i, 7],
£4(UZ,UZ) = £4(Z,exply") (U )UZ) = £(Z, UaZ);
here the second equality follows from (T3). Thus, to prove [CI) for X = UF it is
sufficient to select parameters o, (Z) in ([TF) in such & way that

(7.4) dat £(Z, UnZ)[204)) = det £(2, 2)f01E)

L) 2 L]
for all £ € L and s £ [1, N (L))

Obsarve, that the equation above is satisfied for any chodcs of a, if £ € Lg, that
is, if LIX,Y) = E{I,l"']. Indead, in this casa any ¥-block in £ either does not
ocontain any of the rowa g+1. ..., g+k, or contains all of them but without an cverlap
with thea X-block to the right. If the former is true, the block rows corresponding to
this ¥ -block in £(Z, [0Z) and £(Z, &) woincida, while if the latter is trus, then the
block of k rows under consideration in £(Z, [h) is obtained from the sorresponding
block row of £(Z, Z) via laft multiplisation by a k x & unipotent upper triangulsr
matriz 15 + H;]innﬂz]sﬂ,whichdneﬂnntaﬁacthﬂﬁngpﬂndpalmium.

Lat us mow turn to matrices £ € LY L. In fact, the same reasoning as abowa
shows that for any such matrix, the functions in the laft hand side of [Td]) do
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not change if £(Z,UaZ) is replaced by E{E UnZ) obtained from £(Z, &) via re-
placing every ¥ blﬂ-:kz[l k] by [L’DE:][I,_!_HI and retaining all other Y—blnu:kazJ'
Th-arafc-ra,mwhat.fu]luwawa aim at proving

w N [L - x =
(7.5 det £(Z, UsZ) i = det £(2,2) [T o)

for all £ € LY Ly and 8 € [1, N (L))

Assume that £ = C(X,Y) is r-piercing, and so there exists s, € [1, N{C)] such
that .ﬂ[:X,Y:]_r" = Tpieli the X-block of I‘.(A’,Yj that contains the disgonal
entry (sr,s,) is denoted X, . We can decompose £ = £(Z, UpZ) into blocks as
followes:

jf 0

':' EE
where the sizes of block rows are &, —r, k and N (£) — & — k& +r, and the sizes of
block columns are 8. — 1 and N{L) — 8, + 1. Nota that the blocks are given by

Ai= [u [Efu;][l ,ﬂ] A =0 W2 g
and

[z n] Br= [Elihm,ﬂ E'].
[nmubamnmanttummmj{mdjgjmﬂnm(a,ﬂz—rjx(a,—nblmk
A7, and B and Bj into one 8, x (8, —r + 1) block B™ with 8, = N(L) — s, + .
A similar decompesition into blosks of the same size for £ = £(Z,Z) containg
blocks A7, A7, By and Bf that may be combined into 4™ and BT, respectively;
oomsaquently, the last row of A7 (and henes of A7) is zero. Nota that sines exactly
one matrix in LY Ly is r-piercing for any fixed , notation 47, B", and A", B" is
unambiguous,

Dmntathemlumaatnfthe.mmndblnckmhmnm@jbyﬂr.let

det (L Tu‘:r-x{a-}p{-m—t}
(7.7) e (2] = det( £+ 0
nota that a, = 1. We claim that [(Z) given by (T3 and (7)) satisfies condi-
tions (TH). Note that the denominator in (7] equals fpie1(Z), and henca the
denc-mimtmanfthaenhieanfﬂdeﬁn&dbyﬂﬂ]mpﬂmnffﬂll[ﬂj.

Assume that the piercing set of £ is {ry,...,n}; additionally, set s, = L
Recall that ¥ -blocks of the form Zjj _,; do not appear in the columns My, in £,
and henoe [TH) is trivially satisfied for 2 = 8, .

For 8., <8< 8., —1, we are in the situation coverad by Lemma [T7] (ses Section
bal-::-w]m’thM=ﬁﬂ:,.-'5!=ﬁ;::,ﬂ:ﬂ,,—rg+1,ﬂz=ﬂﬂ—r1+1,md
ky = v, — 1. Condition (iii) in the lemma is satisfied trivially, since in this case
B = B. Conssquently, ([CH) is satisfied if the parameters a. = o.(2) satisfy
equations
(7.8) 3 (-1, det{ B oy ey jus1,8,) = O

s

#==1 [

'EEER]
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for any (k — v + 2}-element sutest S in [1,k] such that k £ S, wherae
S ==_ff={'i-E.SZ ‘I'-}.'n:}.

If I = 1, there are no other conditions on the parameters o, sinee 8., = 1.
Otherwise, let 8., < 8 < 8, — 1 and consider the block decompoeition [T for
T =Ty, “hc]atuthatthaaituaﬁnniunnwmmadhy[amm&lﬂlwith.&{:ﬂ:::,
.ﬂ:'[=f.'::2,N=ﬂ,.,—f'g+1,H==Eq—r5+1,md.i:1=r!—1. To check ccondition
iii) in the lemma, we pick an arbitrary subest T C [2,, — rs + 1,8, — rg + k] of
gize k —rg + 1 and apply Lemma [[07] to matrices A4 =Eﬂ::"""‘|"“""_rﬁﬂ and
M= f'.'j}':‘@"'m"'ﬂ‘*”“] with parameters N = 8, — g + 1, Ny = 6., —ry + 1,
and & = +; — 1. It follows that the condition in quastion is guarantesd by the zame
equations [CH). Conssquently, by Lemma [T equations [{C0) for 8, < 8 < 8, —1

are gnaranteed by equations ((CE]) with v replaced by ry.
Continuing in the same fashion, we conchude that if conditions

(7:9) 3 (~ 1T et (B s g ) = O

wEd

are satisfied for any v € {r1,...,m} and any {k — r 4 2)-element subsst S in [1, k]
oomtaining &, then () holda for any 8 € [1,N(L]]. It remains to show that [T
are valid with e, definad in (7).

Rewrita (7]} as

dat( B*) {xjuies1,0,]

(740 ) = et B

s, m=1,...,k

If r = k, and hence £ = £*, then every S in (TH] is & two element sat {ax, k] with
x € [k —1], £.8 = 1, £ = 0. Plugging (10 into the left hand side of [TH)
and clearing denorminators we obbain two terma that differ only by sign and thus
the claim follows,

For v = &, we nead to evaluate

(7.11) "Eﬁ:ai—if"dﬂ"‘(ﬁ* Ioe i 1,66] dEt( B i e plhs 18]

H::-t.e-t.hn.tt.hablnu:kaﬂl':_l,“] andﬂﬁ_l,n] have the same row set, and the exit point
of the former lies below the exit point of the latter. Consequently, J* C J7, and
tha firat of the blocks is a submatriz of the seeond one. Therefora, we find oursslvas
in a situation similar to the one dismsssd in Seotion [0 above while analyzing
sequences [L7H) of blocks. Reasoning along the same lines, we either arrive at the

[y vy o0 A L2 A A
(7.12) ?—[u vlvz]' B"[u 00 W, Wil
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where odd blodk columns and the sscond Block row of B* and 5™ might be smpty,
of at the sases (i) and (iv) in Section @47, and then

v, o
Uz 0 h o

(7.13) Be= |1k 0|, FB=|1s W
Iy W 0 Wy
L

where odd blodk rows and the second blodk column of B* and 5™ might be empty.
In particular, if B* is & submatrix of Br (of ease (iv) in Section EAT]) then (TI3)
appliee with an empty sacond block row and third block column in the expression for
B*. Similarly, if B is a submatrix of B* (of. case (jii) in Section LAT]) then (TI3)
appliss with an empty second bleck eclomn and third block row in the expression
for Br.

Bupposa ([TIF) is the mass. Define vy = 7y 2 Ty > 7y 2 Ty =0 and o > 0 8o that
the size of the block [T equals o fr,—7;_y) for 1 <4 < 4. Note that o > n—p = &
and o = 75. We will usa the Laplass expansion of the minors in (TII)) with respect
to the first block rows:

(7.14)

Aot (B pgeinen ol = (1) det(BY T, det( By B

det(B7) =y (xpyofnsr,a] = 3 (1) det( B7 e e Bt (B Jﬂ?ﬂ# .

Here the first sum runs over all &  [n1 + 1,72| such that 6| =oc—m -k + 1, and
& is the complement of & in [1) +1,77); the sscond sum runs over all 2 ¢ frs+ 1, 7
such that |Z| = ¢ — 13 —r + 1, and = is the complement of Z in [rs + 1, 74]; ce and
e= depend only on & and E, respectively, and [k + 1,7] is empty if ¢ = k. Plug
(TId) into (T11) and note that for any fived pair &, =, the cosfficient at
B
is aqual to
(18) (U () dea B ot B L ke
xE

since the upper left o x 7 blocks of B and B* coincide. Obeerve that [1,7|U8 <
[1,7s], snd henee (TI5) is aqual to the lefi-hand side of the Phicker relation (737
with 4 = B, I = 5, J = [k +1,0], L = [1,1] U® snd M = ([1,73] UT) |
(1,71 UB). T]:um[lIIﬂjvmhe&fnrmyEl and so ([LI1) is zero in the casa

Thamaem-nnbatreamdmlaﬂy wsing the Laplass expansion with
respect to the first blodk column, one concludes that (TII) is zero. This proves
that with o, defined by [TT]), all conditions (T3] are satisfied, and therefore [{0)
iz wvalid, which complstes the proof of the theorem.

O

As it was explained in Section Fd, we also nesd & version of Theorem E11
r&lat.ingﬂ:ﬂplrcmdE=Ef,r,mEaﬁ=ﬁ(E’]mnbtdn&dby the deletion
of the lefimaost root in A°. The treatment of this case follows the same strategy as
above., Onee again, we assume that the non-trivial row X -run that eorresponds to
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AT CTis [p+ 1,p+ k], and the corresponding row ¥ -run is [g+ 1.g+ &]. This
time, in considering [:f",f“],we.raplﬂmthafﬂrmarnnawith [p+2 p+ &, and the
latter one with [g+ 2,9+ k|, and add a trivial row X-nm [p+1,p+ 1] and & trivial
row Y-run [g+ 1,9+ 1]. The rest of nontrivial row X - and ¥-rumns as well as all
column X - and ¥ -runs remain unchanged. In what follows, parametars p, g and &
are assumed to be fixed.

Let L=L o oo J = Ty pe 80 let the funetions §,;(X, ) and f;(X)
be defined via the same expressions as £;;(X,Y’) and f;;(X ] with L and .7 replaced
by L and 7. A suitable versicn of Theoram E11] can be stated as follows.

Theorem 7.3. Let £ = (z;) be ann » n matriz. Then theme emists o unipotent
upper trisngular nx n matriz U(Z) whose entries are rotional functions in x;; with
denominators equal to powera of foi21(Z) swch that for X = U(Z)Z and for any
i,4 & [1.n],

ful X = FilB)fpan(B) i JT(.5) = (L7.5) ond s < &g,
v filZ) otherwise,

where £° € L i3 the 2-piercing matriz in L.
FProof. Our approach is similar to that in the proof of Theorem L3

For any C(X,Y) € L define £(X,Y) obtained from £(X,Y) by removing the
first row from every building block nfthe.f-::rm.!'[;“M. In particular, if £(X, %)
does not have building blocks like that theuﬁ_[.!’,l’]:ﬂ[ﬂ',l’].

Similarly to the previous case, all matrices £ defined above are irreducibls
for the one obtained from the 2-piercing matrix £°. The corresponding matrix £°
has two irreducible disgonal blocks £F, £F of sizas 82 — 1 and W (L%) — 82 + 1,
respectively. As was already noted in Ssction 4], all maximal alternating paths
in G'rr e are praserved in GE![E*::,F except for the path that goss through the
directed inclined adge (p+1) — (g+1). The latter one iz aplit into two: the nitial
sarmment wp to the verter p 4+ 1 and the closing segment starting with the vertex
g+ 1. Consequently, L = {£: £ € L,£ # £*}u{E], £3}.

As before, if J(i,§) = (L,s) and L # L then JiiL 4 = [ﬁ,s]. Farthermors, if
£ € Lp then additionally £;;(X.Y") and £;;{X,Y) coincide. However, if 71, §) =
(L£*, ) then

= (£3,8) for 8= a(i, j) < 81,
T4 = {Eﬁ;,ﬂ—ﬂ: +1) fc-r.s:.s[::_ﬂa.ai.

It follows from the above discussion that the claim of the theorem iz an immediata
oorollary of the equalities (T1]) for any £ € L and 8 £ [1, N{L)].
Lat

(7.16) Un(E)=1n+ ¥ Gxbgilgrs

=1

and

v(z) =] " a(2)).
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As before, the invarisnce property ([LII) allows to reduse the problem to sdecting
parameters &, = o, (Z) such that the analog of [Td) with Un(Z) given by [TI56)
ia satisfied for all £ £ L and s € [1,N(L]].

Omoe again, this relation is satisfied for any choice of o, if £ £ L, that is, if
L{X,Y) = £(X,Y), while for matriees £ £ L% Ly one has to replace £{Z, U2
by the matrix £(Z, [LZ) similar to the one dafined in the proof of Theorem [3)
Therafore, in what follows wa aim at proving the snalog of [TH) for all £ € LY Ly
and 2 £ [1, N(L)].

Wa can again use decompesition [TE) for £ and £, except that now BY is ob-
tainad from B by replacing the first row with zerce, whereas the last row of Af
remaing as is, unlike the previous case. Consequently, for 2 = 8., the analog of
([TH) i= satisfied trivially.

For 8-y = 8 < 8, — 1, we are in the situstion covered by Lemma [C8 with A =
Epr® M = E0® N =8, —ry+1, Ny =#8,,—71+1, and k; = r; —1. Condition (iv)
mthe-lamm&mmhaﬂedmna]lmmmthmmmﬂ[m_hﬂm qul4,+gﬂ]
Consequently, the analog of ([CH) holds true if the parameters o, = 0. (Z) satisfy
equations

(7.17) 3 (-1 Ta, det( B oy fuike gy, =0
=1,k
for any (k — v )-element subsst S in [2,K].
Continuing in the same weay a8 in the proof of Theorem [C8 and using Lemnrma [725]
instesd of Lemmma [T27], we conclude that if conditions

(7.18) 3 (U)o, det( BT o pjujes1 ) =0

=1k
are satisfied for any r € {ry, ..., rp} and any (k — rj-alement subest 5 in [2, k], then
the analog of ([7d) holds for any s & [1, N(.L)].

In particular, when r = 2, and hence £ = £, avery & in ([TI1H) is obtained by
removing 4 single index s from [2, k. Therefore, the sum in the left hand side of
([T1H) is taken over a two-slement set {1, »} with = € [2, k]. Bince £19 = k— 2 and
Exg = k — x, Ty 18 determined uniquely as

PR L VS
(7.19) (2] = (1) s 1.k
Therefore [T18) is equivalent to vanishing of
(7.20) D (S0 det (B g g ) Bet{ BT ) suugucpuesa o] = O
w21 k45

Denote 5 = [1, kY, 5, then €5 +¢,.5 = k — », and henos ([TH]) can be re-written
as
(=10% 3 (0% det(B%) a3, fyoimgusn ) B E7) s o =0
xES
The latter aquation is similar to [LI1]) in the proof of Thecrem [ and the our-
remt proof can be completed in exactly the same way taking into acoount that the
denominator in ([TI9) equals frio1(Z). O
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There are two more versions of Theoram [E17] relating the chister structures
Cpep= 80d Cpe pe, whera Fe = (A=) ar = = (&) for a nontrivial solumn
X-run A", They are obisined easily from Theorems T3 and [T via the involution

LI",].'" aqx,ﬂl—}m’T,XT]TELﬁnpm,

where T, = ([g, Ty, 71 : Ty = Ty is the opposite BD triple to T' = ([, Ta, 7y
Iy — T3). Consequently, X is obtained from £ via multiplication by a lower
t:riang'lﬂﬂr matriz, and the djaﬁug}ljshu_iflmﬁ.innfu[.z] equals fi g4 x (&) for T° =
Fe(&=) and equals f; ., o(Z) for T'= = T=(&=),

7.2 Handling adjacent clusters. Lel ws continue the comparison of cluster
structures € = Cpepe and € = Cp, po, where Tr = I*(&*). Recall that the cor-
reapundﬂgimiﬁalmﬁvam@mdﬁédﬂ!mfcﬂlum.'Thavarl:axv:[p+h,1]:ia
hmmmii',butnntm{?.Thma-:ftha&dgminddamtuthe-vartax[p+ﬁ:.1]in
&)—the one sonnecting it to the vertax (p+ k — 1,1) and the two connecting it
to the vertices (v7(p + k — 1),n) and {y(p + k — 1)+ 1,n)—are absent in &§ (in
more detail, the neighborhood of v in @ locks as shown in Fig. Bb), Fig. [lja), or
Fig. b}, while the neighborhood of v in &3 locks as shown in Fig, B4}, Fig. 00e),
or Fig. 00{d), respactively ).

As it was explained in Section Ed], we have to establish an analog of Theorem E11)
for the fields F' = Clpn, ... @ Pnn) 80d F' = C{@, ... @, .. . fnn) and
the map TY : F* — F' given by

I it

for some integer A, where T : F — F is the map constructed in Theorem 23
The map I’ : X — Z is also borrowed from Theorem 3, s condition b) in
Theoram [Z1T holds true. Condition ¢ follows immediataly from ([[CZI). Condition
aj reads ' o T =0 o f.

Recaﬂthatduata'mtaﬁnnﬂnrmulupmﬁdaianmurphimap:f'—&fﬂnd
g:F — F such that f' = fopand f' = f o ji. Consequently, condition &) above
would follow from ¢ T = T ¢ . The latter statement can be reformulated as
follows,

Froposition T.4. Let 1_{'-' be the cluster variable in E[tz‘ ) obtatned wa o sequence
of mutations at vertices (i, f1),.. ., (i, dnr) in &) avoiding v, and kot ¥ be a cluster
warighle in C(Q), ) obtained via the some sequence of mulations in . Then @ =
e for some integer A

Froof. Define a quiver §)_ by freezing the vertex o in & and retaining all the adges
from v to non-fromen vertices. Then any sequence of mutations in Q) avoiding
v translates into the sequence of mutations in &), and all the resulting cluster
variahles in £(@Q, ) and C{Qy, ) coinside. Wi will use the statement that describes
the relation between cluster variables in two cluster structures whosa initial quivers
are “almost the same™. That is, thers is a bijection betwaen vertices of thees quivers
that restricts to the bijection of subests of fromen vertioes and under this hijection
the two quivers differ only in terme of edges ineidant to one specified fromen verteo,
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Lemma 7.5. [I5, Lamma 8.4] Let B and B be integer i x (n + m) matrices that
differ in the last column only.  Assume that there epist @, w € T such that
Bl = Bw = 0 and fn4m = Wnim = 1. Then for any duster (z,... 20 )
in C(B) there erists a collection of numbers X, i € [1,n + m), such that :u::u:i_'_m
antizfy exchange relations of the custer structure C(B). In particwlar, for the initial
cluster A; = wy — 0y, i € [1,n+ m].

In cur current situation, B and B are adjacency matrices of quivers ¢ and @,
respectively. The last columns of B and B correspond to the fromen vertex ip+k,1).
To establish the claim of Proposition[[Cd], we just nead to define appropriate weights
il and w and to show that for any noon-frosen vertes i, §), A;; = w;;—&;; coincides
with the exponent of fois 1(Z) in the right hand side of the expression for fi;(X )
in Theorem 3

Put d:; = degfi;(Z) and di; = degfi;(X). A direct chack proves that the vectors
d = (d;;) and d = (d;;) satisfy relations Bd = Bd = 0. Besides, d, = d, = 4, and
hanu::avact.c-rai&:% andw:%dmﬁaf}rthamndiﬁmufmmmaﬂ. Moreover,
di; and di; coincide for any fi; that is & minor of £ # £, or a minor of £* with
a(i, 1) = ag. If fi; ie o minor of £° with a{i,j) > .agthend.-j—ﬁ.-j = 4. Consequently
Ag; satisfies the required comdition. O

7.3 Base of induction: the case [[Y|+ || = 1. It suffices to consider the casa
[| =1, || =0, the other ease can then be treated via taking the opposite BD
triple. In this casa all the ressoning exhibited in Sactions 1] and [CF iz still valid,
80 to oomplets the proof we only nead to check that every matrix element z_g can
be expressed as a Laurent polynomial in terms of clustar variablas in the clustar
ol F). Wi will do this directly.

Let T° = ({p}, {g}.p— q) with g # p and I = @. The finctions forming the
initial cluster Fr« g are fi;{X) = mxﬂmﬁfl for i = 4, fig(X) = det xF
for i < §, j—i# n—gand f; oo (X) = datc{ﬂ fori € [1,g), where N = n—p+q
and the N » N matrix £ is given by

1,
— ll“'_Hll"I II:“_F]
(7.22) £=|x b's

These last g functions distinguish Fre o from Fjy o that forms an initial cluster for
the standard cluster structure on GL,. Also, the function fpy1(X) = dat..!’E_'HT_'g
is & fromen variable in Cp &, but is mutable in Cpr . The mutation at o = ir+1,1
transforms f, ., o(X) into

Fona(X) = Kot () fpea, 3 (X ) fgt1,m (X + Fps1,2(X ) fim (X )

fo+1,1(X)
(7.23) yll  ylre—p
= det, [ [?l‘!'"']'] :-_]:-14-1]
0 Xiaa

with feioa(X) =1 in case p= n — 1, sea Fig. B(b) and [0(b). The last aquality
follows from the short Plicker ralation based on colummns 1,23, n — p4 3 applied
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tothe (n —p+1) x (- p+ 3) matrix
1 I[“'] Xllr“'_:’"']']

0 kgt Plee+ )
Ilr'“'_l’"']']
e

Obearve that {f(X) = fi; (:x[[;j‘}l“]] L i€ [g+ 1,m],5 € [1,n]} together with
the restriction of Qe @ to its lower n — g rows and freszing row g + 1 form an
initial cluster for the standard cluster structura £; on [ — g) * n matrices. It
follows immediately from [IZ, Prop. 4.15) that every minor of X with the row sat
in [g+ 1,n] ia a custer wariable in &, and hensa can be writben as & Leaurent
polynomial in any ehister of Cp. Note that for p > g — 2 the variabla foi11(X) is
fromen in £, therefore, by [12) Prop. 3.20], it does not enter the denominator of this
Laurent polynomial; for p < g — 2 this variable doss not exist in Oy, Consequently,
all such minors remain Laurent polynomials in the cluster adjacent to the initial
one in Cpr o after the mutation at (p+ 1,1). In partionlar, for any i € [g + 1,n],
i € [1,n], x;; can be written as & Laurent polynomial in this cluster.

For 2 < g—1, consider the ssquence of sonsaentive mutations at (241, n),..., (8+
1,8),(s4+1,84+1),...,(2+1,2) starting with the initial cluster in Cr: 5 and dencte
the obtained cluster variables f:H,n_Hllf_I], t € [1,n— 1]. The same saquence of
mutations in Cg o produsss cluster variables

Floppmen(Z)=datzimsnl o tE[Lm—s-1],

[:72'1:] - m—E ——a—
FormoeniZ) = detZI2 = e [n—ayn— 1],
Indead, every mutation in the sequence is applied to a four-valent vertax, and wa
obtain consaeutively
fj,ﬂ—l(‘z]fl-l-ﬂ,n[:z] + fj-l—l,'n.— 1[:'z]flﬂ [;z]
-ic"|':|'|'l [:'3:]

fisinlZ) =
and

Foaspes() = Lot O sttt eoetct Dlisracen )

for ¢ £ [1,n — 2]. Explicit formulas ([T24) now follow by applying an appropriate
version of the short Pliskar relation.

Racall that by Theorem L3 X and £ diffar only in the g-th row. Moreowvar, every
minor of X whose row set either does not contsin g or eontains both g and g+ 1 is
aqual to the sorresponding minor of Z. Let 49(Z) be such a minor; invoking onoce
again [I2, Prop. 4.15], ona ean obtain it by & sequence of mutations in Cp . Let
¥ X ) b the cluster variabls obtained by applying the same ssquence of mutations
to the initial ssed of Cpx 5. By Proposition I3, ¥(X) = $(Z) (fu1,(2))* =

V(X ) {fos1,0 (X)) for some integer A, Clearly, minors in (T24)) satisfy the above
condition unlees 2 + & + 1 = g, and henoa

Ay JE =T
Firipeen () = Fppen @) (Fpaaa (X)) 50
for &3 g— 28— 1. However, the exponents A1 n—s41 are easily computed to be all
zaro. Thus, we conchids that

[:725:] dﬂtI{:}_Jl:!ﬂuﬂHll = 'f:'fll"_ﬂ'll:"r]‘ ke [1" n—a- 1] ll'- {g — 8- 1}:
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and

(126) ek X T = M ), € -]
are chister variables in Cprr g.

Mow we are ready to deal with the antries in the gth row X. First, expand
fli2(&) in (T by the first column as

Fo12(X) = Zgn fp1,2(X) + Zgrrndet X2

For p >q,themwaatufdatx£”;;“=’+” lies completaly within the last n —
g rows of X, and hence, as ﬂmﬁmmmﬂ.LﬂmmPnlynmﬂmtha
cluster we are interested in. For p < g, this determinant iz a cluster variable
in Cpr o by ([ with £ = n — 2, and henee it is a Laurent polynomial in any
dluster in Cpe . Consequently, in both casas x i a4 Laurent polynomial in the
cluster we are interested in. Further, this claim can be established industivel
o Tyn_1,Tgn-1, ..., Eq1 by expanding first the minors fon_e(X) = det X|"—57,
t € [1,n—q], and then the mincrs f,, (X)) = det X["-4*" =9, t € [n—g+1,n— 1,
by the first row as fia—e(X) = Tgne fgt1ne+1(X ) + PlZgn—s+1, -« Tgn, Fij
i > g), where P is a polynomial

Finally, for 2 = g, Ty i8 & cluster varisble in Cpe e, and hence is & Lau-
rent polynomial in any custer. For 8 = 1,...,9— 8 — 1, Lanrent polynomial
expressions for Ty p—¢ can obisined remarsively using expansions of the cluster
variable fon_o(X) = det X747 by the first row exactly as above. For ¢t =
g—8...,t— g — 1, such expressionz are obtainad recursively by expanding the
cluster varinbla EH,“_H]_I:.I] gmby[ﬂilhyth&ﬁrﬂtmwaa ﬂ+1ln_!_'_1|:.x—]=
Tom—tSotZn—t+1(X )+ P Xy n—t41,. .., Ban, Ti; 14 > 8), where P is a polynomial.
Fort =mn— a,. n—lwauaethammaaxpamonﬁurfﬂn_Hl[.!']gmhy
e[ Thmmmpleteat.haprmf

Remark 7.8, In fact, one can show that every minor of X whoes row sst either doss
not contain g or contains both g and g + 1 is & clustar variable in Cre &,

74, Auxiliary statements. In this ssction we collected saveral technical state-
ments that were usad befors,

Lemma T.T. Let N = N+ No, k= k) +ke, and [at A, M be two N x N matrices

-'41 0 _ -IE]. ]
(7.27) M=|4 B|, M=|4 B|.
0 By 0 B

with block rowa of atzea Ny — &y, & and Ny — by and ook colimna of sizea N and
Ny, Assume that

I:i:l Al =.|E1.'

(if) there exists A such that Ay = {1£+E:‘='11 u.-a.-,,) Al and Az is obtained
from AL by replacing the last row with zeros;

(iii) every marimal minor of B = [2] that containe the last No — ko nows
cotneides with the corresponding minor ﬂ_ffl= [gj
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Then condigions

(7.28) B (1) e, det B fpuir1,vos k] = 0
=l

forany 8 C [1, k] such that |S| = kx + 1 and k € § guamntee that

[e¥] _ yi!
(7.29) det My = det M
forallag [LLN] here e, o =#{i €5 11> x} and ap = 1.
Proof. Denote
L=

By condition (iii), we only nead to consider 2 < N1. First, fix 2 € [N1 -k + 1, N1),
which means that A, is in the blodk Az, We use the Laplacs expansion of £, and
£, with regpect to tha second block eclumn. Defina § = 2 — Ny + &y, then

= EE_ 1) dﬁ':—""ﬂ? Aot By k41,00 4k )5

(7.30) T _
£ = E[_ 1) dﬂ(—'{!ﬁ dﬂt"&fu[k-plﬁgﬂl]'
T
where the sum is taken over all (N —s+ 1}-element subssta T in [t k], T = [t, K]\ T,
& = [s,N1] and e =5, i + £, with £, depending cnly on s,
By condition (i),

. dﬂtg.l! =) ifkeT,
(731) detlalr = 4 det(A)2 + B (—1) o det(dD) By popy  HEET,
=wel

and

(7.32) det(dy)7 = {

0 ifkeT,
det(A4)S ifkgT.

Bemdea,datﬂ.mﬁﬂﬁﬁhl_detﬂruuﬂﬁﬁilbymndmon[m] Therefors, the
difference £, — £, can be written as a linear combination of det(44)F such that
keT. Let T =T U {k}; define § =T =T U {k}, then |S| = ks + 1 and k € 5.
The coefficient at det{45)F equals, up to a sign,

(733) 3 (~1)ferein o, det Bray (s Mg 4]
wic ¢, k)T

= (—1)% 3 (= 1) e det Bygy fujuins1 vashils
=&l
Eiﬂﬂ-ﬁEl,Tn_.{*]_+E:3=ﬁ:—x. Thms for mmm‘?ﬂhﬂfﬂ]’ﬂE [-""71—5314'1--!"71]
it is sufficient that (7-25) be satisfied for any S < [£, K], |5 = kg + 1, F:E.S' In fact,
since ([T31) and (T32) remain valid for any set & o [1, V] of size |6 = N} —8+ 1,
similar considerations show that ([T25) implies

(7:34) det M = st M
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for any such & and a8 € [N1 — k1 + 1, N1]. This, in turn, results in [C2H) baing valid
for all s € [1,N1 — k). To see this, one has to use the Laplace expansion of £, and
£, with respect to the block row [, N1 — ky:

& =E|:—1J‘= et (417, _y) Aot My
& EE 1% det(A 1)y, ) det Myl

where & = [le]\BandthEEmmtakmma]lautﬂetaBm[s,Nl]nfmm
|&| = k. It remaing to note that detid, )2 ) *L]_dat[jlj[‘,m . by condition

|=
i), and dat._ﬂ,.-[[?'v"'l‘_":::i",‘",}] = dat.ME.;u’_;:f:ﬂ] is & partioular case of (T3] for

a=MNy -k +1. O

Lemms 7.8. Let M and M be tue N x N matrices given by (CZ0) with the same
sizea of block rowe and block columna. Assume that

(i) 4= Ay

(ii) Az = I::li +Ef=g ﬂiﬂli.) Aa;

(iil]) By is obtained from By by replacing the first row with zerps;

(iv) every marimal minor of B = [Bl] that contains the last Ny — ky rows and

By
dioes not contain the first row comcides with the mweapamﬁmmharufﬁ: [E]
Then conditions

(7.35) N (-1 e, det Bafaufes1,varh] =0
=g [1k]'E
for any 8 C [2, k] such that |S| = ks — 1 guarantes that
| _
(7.36) det M7yl =

for all 8 € [1, N]; here ay = 1.
Proof. The proof is a straightforward modification of the proof of Lemma (7] For
8 € [Ny — ky + 2, N,], Laplace expansions of £, and £, with respect to the second
block eolimn are given by (T30). By eondition (i), det(d2)% = det(d2)2, while
by condition (iv), det Bfypeyn vosky) = 928 Biuies1 vg+ky)- ‘Consaquantly, £, — £,
vanishes, and hence [T36) holds trus.

For 8 € [1,N] — &y + 1], the corresponding Laplace expansions are given by

[,¥3]
,E. =ZT:|:—1:JFJ' dEtA[lﬁ:—iilwdEtEfFulﬂlﬁEHll’
£ = ET:H]:,- mj[;:ﬁ;]_hlwdat%ulm e

where T' runs over all k;-slement subssts in [N — &y + 1,8 + &y and T = fi—
Ny +kpieT) for T =[Ny — ky +1,N) +ka\, T
Mext, by conditions (i) and (i),

[y ] :
dat ALYl jl-r""’LI ki—1—ExT ]-“: £T
=T det A5t + T (—1)k-1-Fxr g datjE,_,m{,}],_,{x} ift £T,

xgT
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whera E = [.E..N1 —.h], t=MN-—-bh4+land w=% —N1+ k1 £ [l,h]. Further, by
eonditions (iii) and (iv),

et By, {u ifegT,
1 = .
U[k+1,Ma+ky) dﬂtE&"’U[ﬂlﬂ:-hh] ifteT.

Th-arafc-re,th.edjfmm{.—f. mnbanﬂttmuahnmmmﬁnaﬁmcidﬁjgﬁll
such that t ¢ T. Let T = {t} UT"; define § = T* = T 4 {1}, then & C [2 k] and
|5 = ky — 1. Comsaquently, the coefficient at det A2 equals, up to a sign,

E (—1)"F e, det B 80 [ ac P41, W iy ] 5
nE[lIH'l,ﬂ

and the elaim follows. O

Lemma 7.9. Let A be a rectongular matriz, [ = (i), ...4,) and J be disjoint row
sets, L and M be disjoint eolumn sets, and |L| = |J| + 1, |M| = |[| — 2. Then

k
) L LU
(7:37) 2 (1) det Af yuy det AGRE, oy = 0.
A=1
Frogf. The formula can ba obtained from standard Plicker relations vin a natural
interpretation of minora of A a8 Plicker coordinates for [1 A). m|
REFERENCES

1] A. Balovin and V. Drinfeld, Solutions of the classical Yang- Barter equation for simple
Liz algebros. Funktsional. Anal. i Prilozhen. 16 [1082), 1-20.

2] A. Berenstein, 3. Fomin, and A, Zdlevinsky, Cluster adgebmas I, Upper bowmds amd
domble Bruhat seifs Duke Math 1. 126 [2008), 1-59.

|3 V. Chari and &. Pressley, 4 guide to guondum grosps. Cambridge University Pross, 1904,

|4] 1 Eisnar, Esotte claster structumes om SLe. 1 Fhys. A: Math. Theor. 47 {2014}, 474002-
Ard02d.

|5] 1 Eisper, Exotic clugter structemes on S, with Belavin-Drinfeld dota of minimal sz,
1. The sructure. [sree] Math. 1. 218 [2017), 301443,

|&] 1 Eisper, Exotic sluster structemes on SL,, with Belavin-Drinfeld data of minimal sz,
Al Cormespondenee betuaen oluster structumes ond Belosin-Drinfeld triples Ismel Math.
J. 218 (2017], 445487,

|7] F. Etingef, T. Schadlar, 0. Schiffmann, Esplicit quantization of dynamioal B-matrices for
fimite dimangional semeizimple Lie algebrms. Journal of the AMS 13 (2000), 505600,

|B] B. Fomin and A. Zskvirsky, Tluster alyebme ] Fowndations. J. Amer. Math. Soc. 15
{20072], 407-500.

|9] &. Fomin and A. Televinsly, The Lovrent phanomenon. Adv. in Appl. Math, 28 (3002),
118-144.

[10] M. Gokbtmen, . Shapira, and A. Vamshtein, (luster alpebms and Polison geomatry.
Bosc Mach J. 3 [2006), B90-064.

[11] M. Gekbtman, M. Shapito, snd A. Vainshtain, Generalized Backlvmd- Dorbowe tramgfor-
mations af Coseter-Tioda flouw from o alueter algebm perspeetive. Acta Math. 208 (2011],
245-310.

12] M. Gekbtman, M. Shapiro, snd A. Vainshtein, (uster aljebras ond Polizon geomety.
Mathomstion]l Survays and Monographs, 167, Americsn Mathomstical Sooety, Prowi-
denca, BRI, 2010

[13] M. Gekhtmen, M. Shapiro, and A. Vainshtein, Clester structemes on simple comples Lie
groups ard Helawn-Drigfeld classfisstion, Mess Math, T, 12 [2003), 800064,

[14] M. Gekhtmen, M. Shapiro, aod A. Vainshtein, Cmemmer—Gervois cluser strectum on
SLy. Proc. Netl Acsd. Soi. 111 (2014), D6EE-0608.



02

M. CEKHTMAN, M. EHAFIRO, AND A. VAINEHTEIN

[1%] M. Gekhtmen, B. Shapiro, and A. Vainshtain, Esofic cluster strustsres on She: the
Oememser—Gervails casr. Mamoirs of the AMS 246 (2017], oo, 1165, Sdpp.

[16] M. Gakbtman, M. Shapito, and A, Veimshten, Drinfeld double of QL amd geremaiized
alugter structures, Proo. Lond. Math. Soe. 116 [2008), 420484,

[17] K. Goodasr] and M. Yakimov, Cluster adpebm structums on Potsson midpotend algebras,

prapriot, mrXiv: 180101963,
18] A. Fayman and M. Somenov-Tisn-Shansky, Growp-theometion] methods in the theory of

fimite dimensional integrable syatems. Encyclopasdin of Mathamatical Scameoes, vol 16,

Springer Verlag, Barlin, 1904 pp.1 16035
18] M. Yakimov, Sympkotic lsaves of compler mduotine Polzson-Lae grosps. Thiks Msth. T.

112 (2008, 453509,

DEPAETMENT OF MATHEMATICE, UNMIVEESITY OF NOTEE DaME, NOTHRE DaME, TN 45536
E-mail addmss: mgekhmmadnd. «du

DEPAETMENT OF MATHEMATICE, MICHICAN STATE UNIVEREITY, EasT LaNsmc, MI 48823
E_-mail addness: mshapd rednath. nsn .adn

DEPARTMENT OF MATHEMATICS i DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF HATFa,

Hatfa, MoosT CanseL 31005, [SRAEL

E_mai] addmss: alak@os hoifs. oo 11


http://arxiv.org/abs/1801.01963

	1. Introduction
	2. Preliminaries
	2.1. Cluster structures of geometric type and compatible Poisson brackets
	2.2. Poisson–Lie groups

	3. Main results and the outline of the proof
	3.1. Combinatorial data and main results
	3.2. The basis
	3.3. The quiver
	3.4. Outline of the proof

	4. Initial basis
	4.1. The bracket
	4.2. Handling functions in F
	4.3. Proof of Theorem 3.4: first steps
	4.4. Proof of Theorem 3.4: final steps

	5. The quiver
	5.1. Preliminary considerations
	5.2. Diagonal contributions
	5.3. Non-diagonal contributions

	6. Regularity check and the toric action
	6.1. Regularity check
	6.2. Toric action
	6.3. Proof of Proposition 3.6

	7. Proof of Theorem 3.3(ii)
	7.1. Proof of Theorem 3.11 and its analogs
	7.2. Handling adjacent clusters
	7.3. Base of induction: the case |r1|+|c1|=1
	7.4. Auxiliary statements

	References

