Proceedings of Machine Learning Research vol 178:1-55, 2022 35th Annual Conference on Learning Theory

Realizable Learning is All You Need

Max Hopkins NMHOPKIN @ENG.UCSD.EDU
Department of Computer Science and Engineering, UCSD, California, CA 92092.
Daniel Kane DAKANE @ENG.UCSD.EDU

Department of Computer Science and Engineering / Department of Mathematics, UCSD, California, CA
92092.

Shachar Lovett SLOVETT@CS.UCSD.EDU
Department of Computer Science and Engineering, UCSD, California, CA 92092.

Gaurav Mahajan GMAHAJAN @ENG.UCSD.EDU
Department of Computer Science and Engineering, UCSD, California, CA 92092.

Editors: Po-Ling Loh and Maxim Raginsky

Abstract

The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning
theory. With variants ranging from classical settings like PAC learning and regression to recent
trends such as adversarially robust and private learning, it’s surprising we still lack a unified the-
ory; traditional proofs of the equivalence tend to be disparate, and rely on strong model-specific
assumptions like uniform convergence and sample compression.

In this work, we give the first model-independent framework explaining the equivalence of
realizable and agnostic learnability: a three-line blackbox reduction that simplifies, unifies, and
extends our understanding across a wide variety of settings. This includes models with no known
characterization of learnability such as learning with arbitrary distributional assumptions or general
loss, as well as a host of other popular settings such as robust learning, partial learning, fair learning,
and the statistical query model.

More generally, we argue that the equivalence of realizable and agnostic learning is actually a
special case of a broader phenomenon we call property generalization: any desirable property of a
learning algorithm (e.g. noise tolerance, privacy, stability) that can be satisfied over finite hypothesis
classes extends (possibly in some variation) to any learnable hypothesis class.
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1. Introduction

The equivalence of realizable and agnostic learnability in Valiant (1984)’s Probably Approximately
Correct (PAC) model is one of the best known results in learning theory, and numbers among its
most surprising. Given a set X and a family of binary classifiers H, the result states that the ability
to learn a classifier h € H from examples of the form (x, h(x)) is in fact sufficient for something
much stronger: given samples from any distribution D over X x {0, 1}, it is possible to learn the
best approximation to D in H. This surprising equivalence stems from a classical result of Vapnik
and Chervonenkis (1974) (VC), and independently Blumer, Ehrenfeucht, Haussler, and Warmuth
(BEHW) (Blumer et al., 1989) and Haussler (1992), who equate both the former model (known as
realizable learning) and the latter model (known as agnostic learning) to a strong property of pairs
(X, H) called uniform convergence."

1. Uniform convergence promises that a large enough sample gives a good approximation for loss of every h € H
simultaneously.
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VC, BEHW, and Haussler’s result was certainly a breakthrough in its own right, but its proof
technique is too indirect to reveal any deeper connections between realizable and agnostic learning
beyond the PAC setting. Further, recent years have seen both theory and practice shift away not only
from this original formalization, but more generally from the “uniform convergence equals learn-
ability” paradigm, often in favor of distributional or data-dependent assumptions like margin that
are more applicable to the real world. The inability of VC, BEHW, and Haussler’s proof technique
to generalize to such scenarios raises a fundamental question: is the equivalence of realizable and
agnostic learning a fundamental property of learnability, or simply a happy coincidence derived
from the original PAC framework?

In the 30 years since these works, a mountain of evidence has amassed in favor of the former:
almost every reasonable variant of learning shares some sort of similar equivalence. This includes a
long list of popular settings such as regression (Bartlett et al., 1996), distribution-dependent learning
(Benedek and Itai, 1991), multi-class learning (David et al., 2016), robust learning (Montasser et al.,
2019), online learning (Ben-David et al., 2009), private learning (Beimel et al., 2014; Alon et al.,
2020), and partial learning (Long, 2001; Alon et al., 2021b). What’s more, the uniform convergence
paradigm fails miserably in most of these models. In the distribution-dependent model, for instance,
it is easy to build classes which are trivially learnable (even with one sample!) but completely fail
to satisfy uniform convergence (Benedek and Itai, 1991). On the other hand, models such as private
learning give well-known examples where uniform convergence fails to imply learnability (Alon
et al., 2019b). In spite of this, we are really no closer today to a general understanding of this
phenomenon than we were in the early 90s. Much like Vapnik and Chervonenkis (1974), Blumer,
Ehrenfeucht, Haussler, and Warmuth (Blumer et al., 1989), and Haussler (1992)’s proofs, the above
works often use indirect methods and tend to rely on powerful model-dependent assumptions.

In this work, we aim to offer a generic, unifying theory by way of the first direct reduction
from agnostic to realizable learning. Unlike any previous work, our reduction is blackbox, relies on
no additional assumptions, and, perhaps most importantly, is incredibly simple. In fact, the basic
algorithm can be stated in three lines.

Algorithm 1: Agnostic to Realizable Reduction
Input: Realizable PAC-Learner A, Unlabeled Sample Oracle Oy, Labeled Sample Oracle O,
Algorithm:

1. Draw an unlabeled sample Sy ~ Oy, and labeled sample Sy, ~ O.

2. Run A over all possible labelings of Sy to get:

C(Sy) = {A(Su,h(Sv)) | h € H|sy }-

3. Return the hypothesis in C'(Syy) with lowest empirical error over St

This basic reduction simplifies and unifies classic results such as BEHW and Haussler’s distribution-
free equivalence and Benedek and Itai (1991)’s analogous result in the distribution-dependent set-
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ting,> with no loss in sample-complexity.> Moreover, because Algorithm 1 doesn’t rely on model-
dependent properties like uniform convergence, it extends to learning regimes without known char-
acterizations. One such example is the notoriously difficult distribution-family model, in which the
adversary is given a restricted family of distributions & along with the pair (X, H). While no char-
acterization of learnability is known in this model, Algorithm 1 can still be used to show that the
realizable and agnostic settings are equivalent.

Unfortunately, while Algorithm 1 does avoid any significant blowup in sample complexity, it
is inherently computationally inefficient. In fact, this is necessary unless P = NP. There are
many basic classes (e.g. halfspaces) which are easy to learn in the realizable model, but NP-hard
in the agnostic setting (see e.g. Feldman et al. (2009)).* As a result, we focus in this work only
on information theoretic considerations, though building computationally efficient reductions under
restricted settings remains a very interesting avenue of research.

Before moving on to analysis of Algorithm 1, it is worth mentioning that the reduction actually
touches on a more general phenomenon than just the equivalence of realizable and agnostic learn-
ability. Think of realizable learning as a “base learner,” and of agnostic learning as an additional
property we’d like to satisfy (a sort of noise tolerance). Algorithm 1 works in part because the ag-
nostic property is easy to satisfy over finite classes. Call a property P (e.g. privacy, noise-tolerance)
finitely-satisfiable if for every finite class, there exists a learner satisfying property P. The structure
of our reduction suggests that any such property should in fact generalize to all “learnable” classes:

Guiding Principle [Property Generalization] If A is a (sample-efficient) base learner and P is a
finitely-satisfiable property, A can be used to build a (sample-efficient) learner with property P.

We stress that the above is a guide, not a theorem, and indeed sometimes requires modification for
a given application (e.g. while private and realizable learning are not equivalent, applying the prin-
ciple can still lead to a number of useful weaker variants). There are many examples of property
generalization in the literature (e.g. malicious noise (Kearns and Li, 1993), nasty noise (Bshouty
et al., 2002), privacy (Beimel et al., 2013b), and robustness (Montasser et al., 2019)). While these
works rely on strong model-specific assumptions, Algorithm 1 provides a more unified framework
and helps extend such results beyond the PAC-model. This includes basic extensions such as gen-
eral loss functions® and the distribution-family model, but also more involved modifications such as
partial learning, robust learning, or even the statistical query model. To give a more concrete ex-
ample, let’s consider our principle in the setting where the “base learner” is an adversarially robust
realizable learner over square loss, and the “finitely-satisfiable property” we’d like to generalize is
privacy. The statement then claims that this base learner can be used as a subroutine to build an
adversarially robust learner over square loss satisfying a variant of privacy (e.g. semi-privacy).
Along with providing a general framework, Algorithm 1’s lack of reliance on strong assump-
tions like uniform convergence can actually be useful even in classical settings where they hold. To
exhibit this, we focus on semi-private learning, a model in which the learner has access to a public

2. Formally Benedek and Itai only consider random classification noise, but it is clear that their analysis extends to the
agnostic model.

3. In the distribution-free setting, the resulting sample complexity is optimal up to a log factor, though it was later
discovered this could be removed through a more complicated chaining technique (Li et al., 2001).

4. We note this is only known to hold in the proper setting. This does not lose significant generality since our reduction
is inherently proper, and even an improper reduction would break standard cryptographic hardness assumptions such
as learning parity with noise.

5. Over infinite label spaces, we will require some weak assumptions on the loss.
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unlabeled database and a private labeled database. While the goal is generally to learn in as few
public samples as possible (since these are harder to collect in practice), uniform convergence based
methods (Beimel et al., 2013b; Alon et al., 2019a) require extra unlabeled samples to achieve the
condition. Algorithm 1 circumvents this entirely by appealing directly to a realizable PAC-learner,
and achieves the information-theoretically optimal unlabeled sample complexity as a result.

2. The Basic Reduction

Since all of our results are derived from variants of Algorithm 1, it is instructive to start by con-
sidering its basic analysis in our simplest non-trivial setting: distribution-family classification. This
framework captures learnability with arbitrary distributional assumptions, a well-studied relaxation
of PAC learning in practice where worst-case distributional assumptions are often too strong, and
encompasses both the distribution-free and distribution-dependent PAC settings. Unlike these mod-
els, however, the distribution-family setting has no known characterization of learnability: uniform
convergence is not necessary (Benedek and Itai, 1991) as in the former, and finite coverability is
not sufficient (Dudley et al., 1994) as in the latter. Indeed, it is plausible no combinatorial char-
acterization of this model exists at all, as it shares characteristics with EMX learnability which
is independent of the ZFC set theory axioms (Ben-David et al., 2017). As such, we cannot hope
to prove the equivalence of agnostic and realizable learning in this model by finding a common
characterization.

With this in mind, let’s define distribution-family learning more formally. Let X be a set (called
the instance space), Y = {0,1} the set of binary labels, & a family of distributions over X, and
H ={h: X — Y} afamily of binary classifiers. A tuple (2, X, H) is realizably learnable if there
exists an algorithm® A and a function n(g, §) such that for every £, > 0, distribution D € 2, and
hypothesis h € H, A outputs a good classifier with high probability on samples of size n (e, d):

Pr  ferrpyn(A(S, h(S))) <el > 134,
SNDn(E,B)

where errpxp, (A(S, h(S))) is commonly called the error or risk of h:
errpxn(l') = Pr [ (z) # h(z)].

Likewise, a tuple (2, X, H) is agnostically learnable if there exists an algorithm A which for every
distribution D over X x Y whose marginal Dx € & outputs A’ close to the best hypothesis in H
with probability 1 — §:
Pr [errp(A(S)) < OPT +¢]>1—9,
SNDn(E,(S)
where OPT = minpecg{errp(h)} is the error of the best hypothesis in the class and the risk
errp(A(S)) is similarly defined:
errp(h') = Pr [W(z) # yl.
(z,y)~D
With this in mind, we can now state the most basic application of Algorithm 1: the equivalence of
agnostic and realizable learning for distribution-family classification.

6. Note that A could be deterministic or randomized. This distinction has no effect on any of the arguments in this
work.
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Theorem 1 (Agnostic — Realizable (Distribution-Family Classification)) Ler A be a realizable
learner for (2, X, H) using n(e, §) samples. Then Algorithm 1 is an agnostic learner for (2, X, H)
using:

muy(e,d) <n(e/2,0/2)

unlabeled samples, and

ma(e.d) < C)<7K5/2,6/22;%10g(1/5))

labeled samples. Moreover, if (X, H) has finite VC dimension d, the latter can be improved to

dlog (1/¢) +log(1/6)>
g2 '

mda®§0<

Along with its novelty in the distribution-family setting (where no such equivalence was known),
it is worth noting that in the distribution-free setting, Theorem 1 actually recovers the same sample
complexity bound as standard analysis of uniform convergence.” We also note that while unlabeled
sample complexity is not usually considered separately from labeled complexity in the PAC setting,
this will become a useful distinction in semi-supervised extensions considered later in the work. As
such, it is instructive to keep the complexities separate for the time being.

With this out of the way, let’s prove Theorem 1. The analysis breaks naturally into two parts,
corresponding respectively to Step 2 and Step 3 of Algorithm 1. In the first part, we’ll show that
C(Sy), the set of outputs corresponding to running the realizable learner A across all possible
labelings of the unlabeled sample Sy, is in some sense a “good approximation” of the class H.
More formally, the crucial observation is that for any choice of the adversary’s distribution, C'(Sy/)
will (almost) always contain a hypothesis close to the optimal solution.

Claim 2 For any distribution D over X x Y whose marginal Dx € 2, with probability 1 — §/2,
there exists h' € C(Sy) which is within /2 of the optimal risk:

errp(h) < OPT +¢/2.

Once we have this claim, the second step is to show that Step 3, an empirical risk minimization pro-
cess on C(Sy), gives the desired agnostic learner. This actually follows from standard arguments.
In particular, given a hypothesis h € C'(Sy), let

errs, (h) = Pr [h(x) #y]
(z.y)~SL

denote its empirical risk with respect to Sz. Since C(Sy) is finite, a standard Chernoff+Union
bound gives that with probability at least 1 — §/2, the empirical risk of every hypothesis in C'(Sy7)
with respect to Sy, is close to its true risk. Then as long as Sy, is sufficiently large, empirical risk
minimization returns a solution with at most O P1" + ¢ error with high probability.

It remains to prove Claim 2. The key observation lies in an equivalence between realizable
PAC-learning and a weak type of randomized covering: for any fixed h € H, C'(Sy) contains a
hypothesis close to h with high probability.

7. Though it should be noted that the additional log(1/¢) factor can be removed by a more complicated chaining
argument (Li et al., 2001).
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Lemma 3 For any distribution D over X x Y with marginal Dx € 2 and any h € H, with
probability 1 — 0 /2, there exists h' € C(Sy) which is within /2 of h in classification distance:
Pr [h'(z) # h(z)] < e/2.
x~Dx
Proof The proof is essentially immediate from the definition of realizable PAC-learning. .4 promises
that for any h € H and D € 2, a 1 — §/2 fraction of labeled samples (S, h(S)) ~ D™/2:6/2)
satisfy
ertpxpA(S, h(S))] = PrlA(S, h(5))(z) # h(z)] < /2.

Since C(Sy ) contains A(Sy, h(Sy)) for every h € H by construction, the result follows. [ |

We call C(Syr) a non-uniform cover (see Definition 16 for formal details). Note that Lemma 3 does
not imply that C'(Syy) contains hypotheses close to every h € H simultaneously. This stronger
object is called a uniform cover and takes provably more samples to construct (see Appendix J).
In our case, a non-uniform cover is sufficient. Since the guarantee holds for every fixed h € H, it
must hold in particular for the optimal hypothesis hopr, so C'(Sy) contains some b’ within €/2 of
optimal. Let’s now formalize these ideas and put everything together to prove Theorem 1.

Proof [Proof of Theorem 1] Let D be the adversary’s distribution over X x Y, and let hopr € H
be a hypothesis achieving the optimal error. By Lemma 3, with probability 1 —4/2, C'(Syy) contains
a hypothesis A’ such that:

Pr [N (z) # hopr(z)] < /2.

x~Dx

This implies Claim 2 (that C'(Sy7) contains a hypothesis with error at most OPT + £/2) since
errp(h’)y < Pr [hopr(z) #y|+ Pr [hopr(x) # W (z)] < OPT +¢/2.
(z,y)~D (zy)~D

We can now use standard empirical risk minimization bounds on C'(Sy) to find a hypothesis with
error at most OPT + ¢. Chernoff and union bounds imply that with probability at least 1 — §/2,

the empirical risk of every hypothesis in C'(Syy) on a sample of size O (W&M) is at most

/4 away from its true error. Since h’ has error at most OPT + £/2, its empirical risk is at most
OPT + 3¢/4, and by the above guarantee any hypothesis in C'(Syy) with empirical risk at most
OPT + 3¢/4 has true error at most OPT + «.

Putting everything together, we have that with probability 1 — J over the entire process, the
empirical risk minimizer of C'(Sy7) has error at most O PT + ¢ as desired. The sample complexity

d
bounds follow from noting that |C'(Sy)| is at most 2(¢/2:9/2) "and at most M if the class
has VC dimension d. The sample complexity bound for the latter case then follows by plugging in
the standard bound for distribution-free classification: n(c/2,5/2) < O (dlog(l/ £)-+log(1/9) ) [

&€

3. Property Generalization Beyond Binary Classification

While simplifying and generalizing classic results on distribution-free (Blumer et al., 1989; Haus-
sler, 1992) and distribution-dependent (Benedek and Itai, 1991) learning is nice, the real benefit of
Algorithm 1 lies in its ability to adapt across a huge range of models. In this section we give a
high-level overview of some extensions to popular settings beyond the PAC model and look at how
Algorithm 1 extends to properties beyond agnostic learning (e.g. privacy, stability, malicious noise).
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3.1. Generalizing Labels and Loss

We start with one of the most basic and important modifications in practice: loss functions beyond
binary classification, encompassing classic settings such as multi-class classification, regression,
and more. Let X be the instance space, and Z a family of distributions over X . Instead of working
over {0, 1}, we now consider classifiers over a generic label space Y, and loss function £ : Y XY —
R>. For simplicity, we assume that £(y, y) = 0, and say that ¢ satisfies the identity of indiscernibles
if £(y1,y2) = 0iff y; = yo. Given a family of classifiers H = {h : X — Y} and a distribution D
over X x Y, therisk errp ¢(h) of a hypothesis h € H is its expected loss ( Il;:', D[E(h(a:), y)], and

)

learnability is defined analogously where errp ¢(h) replaces the standard classification error.
Unfortunately, it is fairly clear that a naive application of Algorithm 1 will fail in this general
model. If Y is infinite, the unlabeled sample Sy may have infinitely many labelings, causing C'(Sy)
to be infinite in turn. Since we are not in the domain where uniform convergence is equivalent to
learnability, empirical risk minimization is no longer guaranteed to work, and Algorithm 1 may
therefore fail. In fact, this is not just an issue with our algorithm: it is an inherent barrier. Realizable
and agnostic learning simply aren’t equivalent for most reasonable losses over infinite label classes.

Proposition 4 (Proposition 20) Let ¢ be any loss function over R satisfying the identity of indis-
cernibles that is continuous in the first variable. Then there exists a class (2,X, H,{) which is
realizably learnable but not agnostically learnable.

It is worth mentioning that & can be taken to be the set of all distributions over X in this construc-
tion, so the lower bound holds in the distribution-free setting as well.

The construction in Proposition 4 exploits the continuous label space by exactly encoding each
hypothesis so that any labeled example uniquely determines its corresponding hypothesis. This
is clearly learnable in the realizable case, but a small amount of noise erases the encoding so it
can’t be agnostically learned. On the other hand, a simple modification of Algorithm 1 shows this
is essentially the only barrier. More formally, call a class discretely learnable if for all € > 0,
there exists an e-discretization® of (2, X, H, £) that is learnable to O(¢) error. Discrete learnability
can be thought of as a weak type of noise tolerance, essentially acting only to rule out the above
construction. We prove that discrete learnability is equivalent to agnostic learnability over two broad
classes of loss. The first is a basic generalization of loss functions over finite label spaces.

Theorem 5 (Informal Theorem 44: Agnostic — Realizable (Doubly Bounded Loss)) Let/ : Y x
Y — R be a loss function such that Yy, # ya € Y:

U(y1,y2) € [a, ]
for some B > o > 0. Then for any class (2, X, H, (), the following are equivalent:
1. (X,H,2,0) is (properly) discretely-learnable.
2. (X,H, 2,0) is (properly) agnostically-learnable.

Theorem 5 implies that realizable and agnostic learning are equivalent over any loss function sat-
isfying the identity of indiscernibles over finite Y, since realizable and discrete learnability are

8. A discretization is a class H’ over a finite (or probably finite) label space such that every h € H is close to some
h' € H'. See Appendix C.1 for details.
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equivalent in this case and every such loss is doubly bounded. We complement this with a lower
bound showing a separation between realizable and agnostic learning for general loss on finite Y by
exploiting a simple ternary loss function that fails the identity of indiscernibles (see Proposition 19).
While many reasonable loss functions on infinite label classes aren’t bounded away from 0,
they often come with other structure we can utilize. We’ll prove a similar result under the weak
assumption that our loss satisfies an approximate triangle inequality. Such loss functions, which we
call approximate pseudometrics, can informally be thought of as generalizing distance-based loss.

Theorem 6 (Informal Theorem 24: Agnostic — Realizable (Approximate Pseudometrics)) If/ :
Y xY — Ryxq is an (upper) bounded loss function satisfying a c-approximate triangle inequality:

Vy1,y2,y3 € Y : £(y1, y3) < c(€(yr, y2) + £(y2, ¥3)),
then for any class (9, X, H, () the following are equivalent:
1. (9,X, H,?) is (properly) discretely-learnable.
2. (9,X,H,!) is (properly) c-agnostically learnable.

where “c-agnostic” learnability only requires error ¢ - OPT + ¢ rather than OPT + €.

While c-agnostic learnability is a weaker guarantee than before, it is actually necessary for approx-
imate pseudometrics. We prove there exist simple discretely-learnable classes over c-approximate
pseudometrics which are not ¢’-agnostically learnable for any ¢’ < ¢ (see Proposition 25). It is
also worth noting that the sample complexity blowup in both Theorem 5 and Theorem 6 remains
polynomial in e~ (indeed nearly-quadratic) in most scenarios.'” Finally we remark that along with
being novel in the distribution-family setting, to our knowledge these results are actually new to the
distribution-free setting as well, where such an equivalence was only known for bounded Lipschitz
(Bartlett et al., 1996; Wolf, 2018) or binary-valued (Bendavid et al., 1995; David et al., 2016) loss.

3.2. Beyond the PAC Setting

While distributional assumptions and general loss are a good step towards practice, today’s trends
have branched even further from the PAC setting. Here, we discuss a prototypical example of ap-
plying Algorithm 1 to a newer model: adversarial robustness. In the appendix, we cover extensions
to Partial Learning (Appendix F), SQ-learning (Appendix H), and Fair Learning (Appendix I).
Robust learning is an extension of the PAC model handling adversarial perturbations at test time.
Practically, this is meant to ensure that an integrated prediction system (e.g. self-driving car) cannot
be tricked by small adversarial changes to the outside world. The model is formalized by modifying
how we compute error. Given a function ¢/ : X — P(X) mapping each x € X to a set of possible
corruptions, the robust risk of a labeling ¢ : X — Y with respect to a distribution D over X X Y is:

R- = E U(e(a’
emyple) = B | max (@), y)

9. By this we mean the range of ¢ is [0, B] for some B € R>,. We note that this condition can be replaced with the
weaker assumption that (2, X, C, £) is agnostically learnable for every finite subset C C H.
10. More formally, the blowup is at worst l"ggizye‘), where |Yz| is the size of the e-discretized label space.
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Realizable and agnostic robust learning are then defined analogously to the PAC-model.!" A basic
modification to Algorithm 1 implies the equivalence of realizable and agnostic robust learning.

Theorem 7 (Informal Theorem 49: Agnostic — Realizable (Robust Classification)) If (2, X, H)
is robustly PAC-learnable in the realizable setting with sample complexity n(e,0), then (a modifi-
cation of) Algorithm 1 robustly learns (2, X, H) in the agnostic setting in:

SRR g CCCE

unlabeled samples and

90 (1) k110

labeled samples.

We note that this result can also be combined with our analysis for more general loss functions,
albeit with a slightly worse c-agnostic parameter. In the classification setting, Theorem 7 generalizes
recent work giving such an equivalence in the distribution-free model (Montasser et al., 2019, 2021),
though the sample complexity of our algorithm suffers an extra factor of ¢! in this special case.

3.3. Beyond Agnostic Learning

So far we have only considered using Algorithm 1 to reduce from agnostic to realizable learning,
albeit in a number of extended settings. On the other hand, we claimed in the introduction that
Algorithm 1 can be used to satisfy any “finitely-satisfiable” property. In this section, we’ll discuss
two such examples: privacy, and malicious noise. In Appendix G we cover a similar application to
uniform stability. Note that since we are only modifying the learning property in this section, the
base (realizable) learner remains the same and does not require any additional constraints.

We’ll start with Kearns and Li (1993)’s malicious noise. In this model, the learner is given a
faulty sample oracle Oy () which returns a labeled sample from the adversary’s true distribution
with probability 1—7, and otherwise returns an adversarially chosen pair (x, y). A learner is tolerant
to malicious noise if it achieves the standard PAC guarantees while drawing from the malicious
oracle instead of the standard sample oracle. Like agnostic learning, tolerance to malicious noise is
easy on finite hypothesis classes. As a result, a basic modification of Algorithm 1 gives a blackbox
reduction from agnostic learning with malicious noise to realizable learning.

Theorem 8 (Informal Theorem 27: Malicious — Realizable) If (2, X, H) is realizably PAC-
learnable with sample complexity n(e, 6), then for any n < 13, (a modification of) Algorithm 1
gives an agnostic learner for (2, X, H) tolerant to n malicious noise. Furthermore letting A =
Tiz — 1, the sample complexity is at most poly(A~1,1og(1/5),n(A,9)).

This extends the result of Kearns and Li (1993) to the distribution-family setting, and is tight in the
sense that 15? is the best possible error tolerance in the malicious model (Kearns and Li, 1993).
As before, the result can be combined with our prior techniques to give a similar equivalence for
approximate pseudometric loss new to both the distribution-family and distribution-free settings.

11. We note the distribution-family model does require a slight twist, see Appendix E for details.
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While malicious noise is certainly distinct from the agnostic model, both are examples of noise-
tolerance properties. We’ll end this section with a property of a different flavor: privacy. Informally,
an algorithm is said to be a-differentially private if its output is not susceptible to small changes in
the underlying sample (see Appendix C.3). Privacy is a very strong condition, even relaxed notions
such as (a, 0)-differential privacy require finite Littlestone dimension in the distribution-free setting
(Alon et al., 2019b), which rules out any direct reduction from realizable learning.

On the other hand, our reduction actually is able to recover a different relaxation known as semi-
private learning (Beimel et al., 2013b). In this generalization of the well-studied ‘label privacy’
(Chaudhuri et al., 2006) model, the learning algorithm has access both to a private database of
labeled samples and to a smaller public database of unlabeled data. This models a common practical
scenario: a small portion of “opt-in” users are willing to release their participation, but still wish to
hide sensitive label data. By replacing empirical risk minimization (ERM) in Step 3 of Algorithm 1
with a private algorithm known as the exponential mechanism (McSherry and Talwar, 2007), we
give a direct reduction from semi-private to realizable learning in the distribution-family setting.

Theorem 9 (Informal Theorem 34: Semi-Private — Realizable) If (2, X, H) is realizably learn-
able with sample complexity n(e, d), then (a modification of) Algorithm 1 gives an a-semi-private,
agnostic learner using

Mpup(0v,€,0) < n(e/2,6/2)

unlabeled (public) samples, and

Mpi(c,2,8) < O (”(8/15/2) + 10g(1/5)>

e - min{e, a}
labeled (private) samples.

This generalizes Beimel, Nissim, and Stemmer’s (Beimel et al., 2013b) original equivalence in
the distribution-free setting, and unlike previous arguments extends to the general loss functions
covered in Section 3.1. In fact, in this case our algorithm even gives a quantitative improvement
over previous work (Beimel et al., 2013b; Alon et al., 2019a) in the distribution-free setting.

Corollary 10 (Informal Corollary 35: Semi-Private — Realizable (Distribution-Free Classification))
If (X, H) has VC-dimension d, then (X, H) is a-semi-private, agnostically learnable in:

d+log(1/6)>

mpub<€7 67 a) S 0] < -

unlabeled samples, 12 and

Mpri(€,6,0) < O <d10g(1/6) + 10g(1/5)>

¢ -min{e, a}

labeled samples.

12. We note that this algorithm is improper. A proper algorithm may need an additional log(1/¢) unlabeled samples for
some classes.
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For fixed d and 4, Corollary 10 resolves the unlabeled sample complexity of semi-private learn-
ing, as Alon, Bassily, and Moran (ABM) (Alon et al., 2019a) showed that any class which is not
privately learnable requires at least Q(%) public samples to (semi)-privately learn. The private sam-
ple complexity, on the other hand, remains off by a logarithmic factor from known lower bounds
(Chaudhuri and Hsu, 2011). Resolving the latter requires improving the standard application of the
exponential mechanism, and remains an interesting open problem.

It is also worth noting that Theorem 9 and Corollary 10 are robust to some amount of shift in
distribution between the public and private databases. This problem, often called covariate shift
in other contexts, is a commonly observed issue in machine learning practice, and is especially of
concern in privacy where a distribution over “opt-in” public users could easily differ from the overall
distribution of private data. We discuss covariate shift in the semi-private setting in Appendix C.4.

4. Proof Overview: Modification Archetypes

We now overview four general types of modification we use to extend Algorithm 1 to scenarios
beyond the basic reduction for binary classification covered in Section 2.

Discretization. We start with our main technique for infinite label spaces. Here, since we cannot
afford to run our learner over all labelings of Sy, the key is to run it only on those coming from
some discretization of the class. As long as we have access to a learner for the discretization,
the same arguments as in Section 2 then recover property generalization for infinite label spaces.
We formalize these notions in Appendix C.1, where we use the technique to prove Theorem 6
(Theorem 5 is proved in Appendix D). Discretization can also be used to handle learning models
such as the statistical query setting which output real-valued query responses (see Appendix H).

Subsampling. Another core limitation to Algorithm 1 is access to clean unlabeled data. Algo-
rithm 1 works by running a realizable learner over a representative set of unlabeled data, but in
practice such data may be corrupted, and data-dependent assumptions like margin might mean the
optimal hypothesis isn’t even well-defined on this set. We handle such cases by a simple sub-
sampling procedure: run the learner over all labelings of all subsets of Sy;. As long as Sy contains
enough uncorrupted data, subsampling finds it and we can maintain the guarantees discussed in Sec-
tion 2. We use this technique to prove property generalization for robust learning (Theorem 7 and
Appendix E), partial learning (Appendix F), and malicious noise (Theorem 8 and Appendix C.2).

Replacing the Finite Learner. In the introduction, we proposed a general paradigm called prop-
erty generalization: that a variant of any learning property which holds for finite classes should hold
for any “learnable” class in the base model. The main idea relies on replacing the ERM process in
Algorithm 1 with a generic learner for finite classes with the desired property. To prove Theorem 9,
for example, we replace the ERM process with McSherry and Talwar (2007)’s exponential mecha-
nism. We use a similar strategy in Appendix G to prove analogous results for uniform stability.

Replacing the Base Learner. Finally we note a very basic modification of Algorithm 1 that allows
us to extend property generalization beyond the PAC setting: simply replace the input realizable
PAC learner with a learner in the desired model. This is usually combined with one of the techniques
above depending on the specific application, e.g. to prove property generalization for robust learning
and the statistical query model. The same idea can also be used to analyze semi-private learning
with covariate shift (Appendix C.4) and property generalization for fair learning (Appendix I).
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5. Related Work

Agnostic learning is a very widely studied model across learning theory, and works across many
different sub-areas have noted model specific equivalences with realizable learning. Here we’ll
survey a few representative examples, and discuss how they relate and differ from our approach.

5.1. Beyond Binary Classification

Uniform Convergence and Multiclass Classification. It is well known that the uniform conver-
gence equals learnability paradigm continues to hold for 0/1-valued loss functions over constant-
size label spaces Blumer et al. (1989); Bendavid et al. (1995); Vapnik and Chervonenkis (1971);
Natarajan (1989), and that agnostic and realizable learning are equivalent as a result. On the other
hand, Daniely, Sabato, Ben-Devid, and Shalev-Shwartz Daniely et al. (2015) showed this is no
longer the case as the number of labels grows large. In this regime, even basic multi-class learning
is no longer equivalent to uniform convergence, so the connection between realizable and agnos-
tic learning becomes non-trivial. A few years later, David, Moran, and Yehuyadoff (DMY) David
et al. (2016) proved the equivalence nevertheless holds in the infinite multi-class setting through
the weaker sample compression equals learnability paradigm. While more general than the uni-
form convergence paradigm, their proof remains model-specific and fails in many of the settings we
consider, e.g. partial learning Alon et al. (2021b).

Discretization and General Loss Functions. Basic forms of discretization were also considered
back in the mid 90s in work on characterizing the learnability of real-valued functions. In a seminal
work, Bartlett, Long, and Williamson (BLW) Bartlett et al. (1996) proved that a scale-sensitive mea-
sure introduced by Kearns and Schapire Kearns and Schapire (1990) called fat-shattering dimension
characterizes learnability under bounded Lipschitz loss functions.!*> BLW use a basic form of dis-
crete learning (called quantization) to prove that fat-shattering dimension is a necessary condition,
and use uniform convergence to prove sufficiency. We give a similar argument as BLW in the neces-
sary direction, but show that uniform convergence is not necessary for the equivalence to hold, and
instead use Algorithm 1 to appeal directly to discrete learnability. This allows us to extend BLW’s
result across a much more general set of loss functions and scenarios without strong model-specific
assumptions.

5.2. Semi-supervised, Active, and Semi-Private Learning

Our reduction hinges on combining a realizable learner with unlabeled data to cut down the number
of potential hypotheses in our class. The use of unlabeled samples to this effect is one of the core
ideas in the field of semi-supervised learning Balcan and Blum (2010); Zhu (2017). Here, it is
usually additionally assumed that the function to be learnt has some relation (or ‘compatibility’)
to the underlying data distribution, for example it might have large margin on unlabelled data as
in Transductive SVM Joachims et al. (1999) or redundant sufficient information as in Co-training
Blum and Mitchell (1998); Dasgupta et al. (2002). In their seminal work on the topic, Balcan and
Blum Balcan and Blum (2010) employed a similar strategy to Algorithm 1 in which they draw
an unlabeled sample Sy and select hypotheses consistent with each possible labeling based upon
compatibility. They argue via uniform convergence that this results in a uniform cover, and then use

13. Though the original work only considers ¢1 loss, their techniques generalize to Lipschitz loss, see for instance Wolf
(2018).
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empirical risk minimization to select a good hypothesis in the cover. It is worth noting that around
the same time a similar strategy independently found use in the online learning literature in work of
Ben-David, Pal, and Shalev-Schwarz Ben-David et al. (2009) who simulated the so-called ‘standard
optimal algorithm’ (SOA) over a sequence of examples and applied weighted majority Littlestone
and Warmuth (1994) over the resulting set of hypotheses to obtain an agnostic online learner.

Similar strategies have also found use in the related active learning literature. Hanneke and
Yang Hanneke and Yang (2015) use the same technique to build a cover from unlabeled samples
(adding one hypothesis consistent with each possible labeling), and then apply active (adaptive)
query algorithms to learn the best hypothesis in the cover in as few labeled samples as possible.
This generalized earlier work of Dasgupta Dasgupta (2005), who assumed a priori that the cover was
known to the learner ahead of time. Most recently, the approach has seen use in the study of semi-
private learning. In their original work on the model, Beimel, Nissim, and Stemmer Beimel et al.
(2013b) again apply the same trick for building a uniform cover, but then find the best hypothesis
privately via the exponential mechanism (similar to our proof of Theorem 9). The analysis of this
strategy was later improved by Alon, Bassily, and Moran (ABM) Alon et al. (2019a).

The above works differ from ours in two crucial senses. First, each work focuses solely on
developing an algorithm for their specific framework (rather than working to understand a more
general equivalence or reduction between settings). In this sense, one can view each of these prior
results as a specific instance of our general framework where the “base learner” in our reduction is
restricted to be an empirical risk minimizer (or SOA in the online setting), and a problem-specific
learner for the relevant property (online, agnostic, active, or private) is then applied over the result-
ing cover. Second, and perhaps most importantly, these previous works all rely fundamentally on
uniform convergence.'# This means that their algorithms break down as soon as one moves away
from the original PAC model (even to say the basic distribution-dependent setting), and can also lead
to sub-optimal sample complexity bounds. In the analysis of semi-private learning, for instance, we
show that avoiding uniform convergence leads to asymptotically better bounds, actually resolving
the public sample complexity of the model altogether. Indeed, one can show that building a uniform
cover requires asymptotically more unlabeled samples than a non-uniform one, and therefore cannot
result in optimal semi-supervised algorithms.'>

5.3. Non-Uniform Covering and Probabilistic Representations

Covering techniques have long been used in learning theory, and while almost all prior works focus
on uniform notions (where all hypotheses are covered simultaneously), there is one notable excep-
tion. In 2013, Beimel, Nissim, and Stemmer (BNS) Beimel et al. (2013a) introduced probabilistic
representations, a strong randomized form of covering used to characterize pure differentially pri-
vate learning. In the language of our work, given a class (X, H ), a probabilistic representation is a
distribution over subsets of H which is a non-uniform cover simultaneously over all distributions of
X. BNS prove that private learning is equivalent to the existence of a probabilistic representations
for the class. Equivalently, this can be thought of as the ability to build a non-uniform cover without
access to the underlying distribution at all. On the other hand, we are interested in the much weaker

14. The online setting is the only exception, but this model diverges much more substantially from the PAC-type learning
we consider in this work than previous uniform convergence based methods.

15. Formally we only prove this for the distribution-family model, though we conjecture it holds in the distribution-free
setting too.

13



HOPKINS KANE LOVETT MAHAJAN

setting where a non-uniform cover can be built from a bounded number of samples from the distri-
bution (and crucially argue that this is equivalent to realizable learning). Thus in a sense, our core
connection between realizable learning and non-uniform covering can be thought of as an analog of
BNS’ characterization of private learning by probabilistic representations.
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Appendix Organization

Our appendicx is split into two main portions. Appendix A, Appendix B, and Appendix C make up
the “main body” of the paper and are meant to be read in order as written. On the other hand, the
remaining sections cover various applications of our reduction to a variety of learning models and
properties. These sections are all self-contained, and are meant more as a reference text in the sense
that the reader interested in some particular model or property should simply skip to the section
covering that application.

The main body portion is organized as follows: we cover preliminary definitions in Appendix A,
our base reduction from agnostic to realizable learning for finite label classes in Appendix B, and
discuss the four modification archetypes along with a representative application in Sections C.1, C.2,
C.3, and C.4. In more detail, these sections respectively cover: extensions to infinite label classes
via discretization, malicious noise via sub-sampling, agnostic semi-private learning via replacing
ERM, and covariate shift via replacing the base learner.

In the remaining sections we cover applications to doubly-bounded loss (Appendix D), robust
learning (Appendix E), partial learning (Appendix F), uniformly-stable learning (Appendix G), the
statistical query model (Appendix H), and fair learning (Appendix I), and discuss further connec-
tions of non-uniform covers to previous notions of covering (Appendix J).

Appendix A. Preliminaries

Before moving to a more formal discussion of our results, we’ll cover the most basic learning
models discussed in this work: standard (distribution-free) PAC-learning and distribution-family
PAC-learning. Extended models we consider beyond these (e.g. malicious noise, robust learning,
partial learning, etc.) will instead be introduced in their respective sections.

A.1. PAC-Learning

We’ll start by reviewing the seminal PAC-learning model of Valiant (1984) and Vapnik and Cher-
vonenkis (1974). We start with a few core definitions for the setting of general loss. Let X be an
arbitrary set called the instance space (e.g. RY), Y a set called the label space (e.g. {0,1}), and

18



REALIZABLE LEARNING IS ALL YOU NEED

H a family of labelings of X by Y (that is a family of functions of the form » : X — Y). Given
a class (X, H), it will often be useful to consider its growth function 11z (n) which measures the
maximum size of H when restricted to a sample of size n:
x(n) = hegggxn(lHlsl))-

We note that the growth function is trivially bounded by |Y|", but one can often give stronger bounds
when (X, H) satisfies some finite combinatorial dimension (e.g. VC-dimension for the binary case).

While PAC-learning is sometimes used to refer only to classification, we will study the model
under general loss functions. With that in mind, we call a function £ : Y XY — R a loss function
if £(y,y) = O forall y € Y. We say a loss /£ satisfies the identity of indiscernibles if {(yy,y2) = 0
iff y; = y2. Given any distribution D over X X Y and loss /, the risk of a labeling h : X — Y with
respect to D and / is its expected loss:

errpe(h) = E  [((h(z),y)].

The goal of learning is generally to find a classifier A € H that minimizes risk. More formally, there
are two commonly studied variants of this problem. The original formulation, now called realizable
learning, assumes the existence of a hypothesis in H with no loss.

Definition 11 ((Realizable) PAC-learning) We say (X, H, /) is realizable PAC-learnable if there
exists an algorithm A and function n(e, §) such that for all ,6 > 0 and distributions D over X XY
such that minpep errp ¢(h) = 0:

Pr  [errp(A(S)) > ¢] <.
S~ Dn(e,d)

A is called proper if it outputs only labels in H.

Perhaps a more realistic variant of PAC-learning is to drop this restriction on the adversary, and let
them choose an arbitrary distribution over X x Y. This model, introduced by Haussler (1992) and
Kearns, Schapire, and Sellie (Kearns et al., 1994), is known as agnostic learning.

Definition 12 ((Agnostic) PAC-learning) We say (X, H, /) is agnostic PAC-learnable if there ex-
ists an algorithm A and function n(g,0) such that for all ,6 > 0 and distributions D over X x Y :

Pr  [errp (A(S)) > OPT +¢] <,
SNDn(a,J)

where OPT = minpcp{errp(h)}.

For some settings covered in this work, it will turn out that reaching O PT' + € error is too stringent
of a condition. However, we will show in these cases that it is sometimes possible to maintain a
weaker guarantee and learn up to ¢ - OPT + ¢ error for some constant ¢ > 1. We call such classes
c-agnostic learnable.

Finally, we note that for simplicity when ¢ is the standard “classification error:”

0 ifyr =y
1 else,

Uy1,y2) = {

we’ll simply write (X, H) to mean (X, H, ¢). Realizable and Agnostic Learning are well studied
under many basic loss functions including binary classification, where both models are known to be
characterized by a combinatorial parameter called VC-dimension.

19



HOPKINS KANE LOVETT MAHAJAN

A.2. Learning Under Distribution Families

The standard PAC-models described above are often called distribution-free due to the fact that no
assumptions are made on the marginal distribution over X. In practice, however, this is usually
too worst-case an assumption. We often expect distributions in nature to be “nice” in some way, or
at least somewhat restricted. This is reflected in the fact that popular machine learning algorithms
usually significantly outperform the PAC-model’s worst-case generalization bounds. Indeed such
niceness assumptions have long been popular in learning theory as well, where conditions such as
tail bounds or anti-concentration are frequently used to build efficient algorithms.

These ideas are captured more generally by a simple (but notoriously difficult) extension to the
PAC framework originally proposed by Benedek and Itai (1991), where the adversary is restricted
to picking from a fixed, known set of distributions.

Definition 13 ((Realizable) Distribution-Family PAC-learning) Let X be an instance space and
9 a family of distributions over X. We say (9, X, H, () is realizable PAC-learnable if there exists
an algorithm A and function n(e,0) such that for all €,0 > 0 and distributions D over X XY
satisfying:

1. The marginal Dx € 9,
2. minpepg errpy(h) =0,

we have
Pr  [errp(A(S)) > €] <o.
SNDn(E,J)

Agnostic learning is defined similarly. The adversary must still choose a marginal distribution in Z,
but the conditional labeling can be arbitrary.

Definition 14 (Agnostic Distribution-Family PAC-learning) We say (2, X, H, () is agnostic PAC-
learnable if there exists an algorithm A and function n(e,0) such that for all €,§ > 0 and distribu-
tions D over X XY satisfying:

1. The marginal Dx € 9,
A outputs a good hypothesis with high probability:

Pr  [errp (A(S)) > OPT +¢] <6
S~ Dn(e,0)

where OPT = minpep{errp(h)}.

The weaker c-agnostic learning is defined analogously with O PT replaced by ¢ - O PT'. Unlike the
standard model, very little is known about distribution-family learnability. While a number of works
have made some progress on this front (Benedek and Itai, 1991; Dudley et al., 1994; Kulkarni and
Vidyasagar, 1997; Vidyasagar et al., 2001), a characterization of learnability remains elusive despite
some 30 years of effort.
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Appendix B. The Core Reduction: Agnostic to Realizable Learning

In this section, we give a more detailed exposition of our main reduction as covered in Section 2,
including the more general setting of arbitrary loss on constant size label spaces (in the distribution-
family model), matching lower bounds, and additional discussion of non-uniform covers. As men-
tioned previously, since there is no known combinatorial characterization of learnability in the
distribution-family model, standard techniques (Blumer et al., 1989; Bendavid et al., 1995; Vapnik
and Chervonenkis, 1971; Natarajan, 1989) cannot be used, and it is plausible that no combinatorial
characterization of learnability exists for this model at all (Ben-David et al., 2017).

Before jumping into our reduction proper, it is worth discussing why we can’t simply take the
approach of prior works and rely on uniform convergence, a strong condition which promises that on
a large enough sample, the empirical error of every hypothesis will be close to its true error. While
uniform convergence was a very popular technique in the early years of learning, practitioners have
since moved away from the paradigm which fails to capture learning rates seen in practice (Zhang
et al., 2021; Nagarajan and Kolter, 2019). Indeed it soon became clear that the technique failed to
capture even basic theoretical models such as the distribution-dependent setting.'®

Proposition 15 (Benedek and Itai Benedek and Itai (1991)) There exists a PAC-learnable class
(D, X, H) over binary labels and classification loss without the uniform convergence property.

Proof Let X = [0,1], D be the uniform distribution over X, Y = {0,1}, and H consist of all
indicator functions for finite sets S C X, as well as for X itself. It is not hard to see that (D, X, H)
is realizably PAC-learnable by the following scheme in only a single sample: if the learner draws
a sample labeled 1, output the all 1’s function. Otherwise, output all 0s. When the adversary has
chosen a finite set, with probability 1 the learner draws a sample labeled 0, and outputs a hypothesis
with O error (since the finite set has measure 0). If the adversary chooses the all 1’s function, the
learner will always output the all 1’s function.

On the other hand, it is clear that when the adversary chooses the all 1’s function, no matter how
many samples the learner draws, there will exist a hypothesis in the class that is poorly approximated
by the sample. Namely the hypothesis whose support is given by the support of the sample itself has
empirical measure 1, but true measure 0. As a result, this class fails to have the uniform convergence
property despite its learnability. |

In later sections, we will even see distribution-free models where uniform convergence fails, such
as the Partial PAC model (Long, 2001; Alon et al., 2021b) which captures realistic scenarios such
as learning with margin. Since even the most basic modifications of PAC-learning fail to satisfy
uniform convergence, it is clear we need to move beyond the condition to gain a more general
understanding of the common phenomenon of equivalence between learning models.

Instead of relying on uniform convergence, our core observation is an equivalence between
learning and sample access to a combinatorial object we call a non-uniform cover.

Definition 16 (Non-uniform Cover) Let (X, H) be a class over label space Y and Lx y denote
the family of all labelings from X to Y. If C' is a random variable over the power set P(Lx y ) and
d: Lxy X Lxy — Rxq is a “distance” function between labelings, we call C' a non-uniform
(e,9)-cover of H with respect to d if forall h € H:

Pr [3W €T :d(h',h) <e] >1-4.
T~C

16. In this setting only a single marginal distribution D is allowed.
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We call C bounded if its support lies entirely on subsets of size at most some k € N, and we call the
smallest such k its size.

Non-uniform covers share a close connection to several notions of covering used throughout the
learning literature such as uniform covers (Alon et al., 2019a) and fractional covers (Alon et al.,
2021a). We discuss these connections in more detail in Appendix J. For the moment, we note only
that previous works using the strictly stronger notion of uniform covering necessarily lose factors in
the sample complexity as a result. We discuss this further in Appendix C.3 as well.

In Section 2, we argued (at least implicitly) that once we have sampling access to a bounded
non-uniform cover, agnostic learnability follows from standard arguments. Namely since a sample
T has bounded size and is guaranteed to contain a concept “close” to optimal, it suffices to run
empirical risk minimization over about log(|T|/d)/e? samples. The key to our reduction therefore
boils down to turning blackbox access to a realizable PAC-learner into sampling access to some
relevant non-uniform cover. This is given by Step 2 of Algorithm 1, which we rewrite here as a
subroutine called LEARNINGTOCOVER.

Algorithm 2: LEARNINGTOCOVER(H, A, Si)
Input: Hypothesis Class H, Realizable PAC-Learner A, Unlabeled Sample size Sy.
Algorithm:

1. Run A over all possible labelings of Sy by H.

2. Return the set of responses C'(Sy):

C(SU) = {A(SU,h(SU)) | h e H|SU}.

In fact, we already argued in Section 2 that LEARNINGTOCOVER gives sampling access to a
non-uniform cover, but we will re-write the result here in this formulation for convenience.

Lemma 17 (Core Lemma: Realizable Learning Implies Non-Uniform Covering) Ler A be an
algorithm that (¢,0)-PAC learns a class (2, X, H,?) inn = n(e, d) samples. Then for any D € P,
running LEARNINGTOCOVER on Sy ~ D" returns a sample from a size Il (n), non-uniform
(e,9)-cover with respect to the standard distance between hypotheses:

A(h, ) = BJU(H (@), (@)

Proof The proof is essentially immediate from the definition of realizable PAC-learning. .A promises
that forany h € H and D € 2, a 1 — § fraction of labeled samples (Sy7, h(Sy)) ~ D™=9) satisfy

ertps,e(A(Su, h(Su))) = E[L(H (), h(x))] <&,

where h' = A(Sy, h(Sr)). Since C(Sy) contains A(Sy, h(Sy)) for every h by definition, the
result follows. u

This means that as long as we have blackbox access to a realizable PAC-learner and unlabeled
samples from the adversary’s distribution, we can simulate access to a non-uniform cover. Let’s now

22



REALIZABLE LEARNING IS ALL YOU NEED

formalize our previous intuition that this is sufficient to turn a realizable learner into an agnostic one
for any finite label class. We will generalize this result to doubly-bounded loss in Appendix D, but
it is instructive to consider the setting of finite Y first.

Theorem 18 (Agnostic — Realizable (Finite Label Classes)) Ler (2, X, H, () be any class on a
finite label space Y with loss function £ : Y — Y satisfying the identity of indiscernibles. Then
Algorithm 1 is an agnostic learner with sample complexity:

log (M)

2

m(e,8) < n(e,8/2) + O :

where 1g > () (%) is a constant depending only on /.

Proof Let A be the promised realizable learner for (X, H, 2, ¢) with sample complexity n(e, J).
Run LEARNINGTOCOVER with parameters ¢’ = e and &’ = §/2. We argue that the output
contains some A’ such that errp ¢(h') < OPT +¢/2. Since C(Sy) is finite and £ is upper bounded,
a standard Chernoff bound gives that choosing an empirical risk minimizer from C(Sy) based on

log (1€
(@] (Og<€25) additional samples gives the desired learner. The sample complexity then follows

immediately from the definition of C'(Sy).

To see why C'(Syr) has this property, recall that for any h € H, Lemma 17 states that C'(Sy7)
contains some A’ such that:

EenbDy [g(h/(.%‘), h(x))] < MeE.
Because we assume that ¢(a,b) = 0 iff a = b, this actually implies a stronger relation—~h and b’
must be close in classification error:
U3
Pr |h h’ < —m— ——.
B @) 7 ()] < ming_; (¢(a, b))

Let hopr € H be an optimal hypothesis, and let Ay, p;- denote the corresponding output of LEARN-
INGTOCOVER. Then by the above, we have that:

eer,e(h/OPT) = (%ENDV(}/OPT@)??J)]
= (I,ENDW}LIOPT(”:)’ y) — L(hopr(x),y) + L(hopr(2),y)]
— OPT + (I,END[E(}I/OPT(JU)’ y) — L(hopr(),y)]

< OPT + Prolhopr(x) # Hopr(z) max(¢(a,b)

< OPT +¢/2

mina;ﬁb (é(avb))

ey 2o (0(a.b)) for some universalc > 0. W

where we have used the assumption that we set 77, = ¢

It’s worth spending a moment discussing our only assumption on the loss function /¢, that it
satisfies the identity of indiscernibles. This is not only a natural assumption for most cases in
practice (that mislabeling has non-zero error), it is theoretically justified as well: realizable and
agnostic learning aren’t necessarily equivalent for £ without this property, even in the distribution-
free setting.
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Proposition 19 (Identity of Indiscernibles Lower Bound) There exists a realizably learnable class
(X, H,?) over a finite label space Y which is not agnostically learnable.

Proof Let the instance space X = N be the set of natural numbers, the label space Y = {0, 1}2.
We consider the hypothesis class H with all functions which output the first bit as 0, that is:

H=A{h:h(z)=(0,-)Vr e X}.
Furthermore, we define the loss function £ : Y x Y — {0,1, ¢} as

0 b1 =0
0((b1,71),(b2,7m2)) =1 by #byandry =19
¢ otherwise.

Note that (X, H, /) is trivially learnable in the realizable setting simply by returning any h € H.
On the other hand, we will show it is only O(c)-agnostically learnable. First, notice that for any
labelling f : X — Y, there exists a hypothesis h € H which matches f on the second bit, and
therefore for any marginal D over X:

OPT <errp¢(h) <1.

As aresult, it suffices to show that for every m € N and (randomized) algorithm .4 using m samples
there exists a labeling f : X — Y and marginal distribution D x such that

Es g Eanpy [((A(S, £(9))(@), £(2))] > ¢/12. ()

As long as this holds Markov’s inequality gives that every algorithm must have error at least {2(c)
with constant probability.

For simplicity, we will restrict our attention in the rest of the proof to the marginal distribution
D x which is uniform over the set [k] for some natural number k& we will fix later. To prove Equa-
tion (1), by Yao’s minimax principle it is enough to prove there is a distribution p over functions
f : [k] = Y such that any deterministic algorithm A has expected loss at least ¢/12 over p:

EpnpBs~ppBonpy [((A(S, f(5))(2), f(2))] > ¢/12.

We now show that the above holds for p being uniform over all functions from [k] to Y for any
k > 2m. Here, we have that

EonDx EpnpEsnpyg [((A(S, £(5)) (), f(2)))] 2 Bonpy | JPr [0 ¢ S]-c/4],

D%

where the last step follows from noting that for any value (a, b) that A(S, f(5)) assigns to = ¢ S,
f(z) will be (1 — a,1 — b) with probability 1/4 incurring a loss of ¢. The result then follows by
noting that for every = € [k]:

Pr [x%S]z(l—%)mZUe

S~D7
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since 1 —z > exp{—=z/(1 — x)} and k > 2m. Therefore, we get that

EenDyEpnpEs~pyp [((A(S, f(5))(x), f(2))] = ¢/4e,
which completes the proof. |

Note that this bound holds even if A is allowed to be improper. It is also worth noting that if we
are willing to increase the size of Y, the learner’s error in this bound can actually be increased all
the way to ¢, the maximum possible (see Proposition 20). This is in fact tight, as we will show that
any loss function like the above satisfying a c-approximate triangle inequality can be c-agnostically
learned (that is learned to within ¢ - OPT + € error).

Appendix C. Four Modification Archetypes
C.1. Discretization: Infinite Label Classes

In the previous section, we showed that our base reduction characterizes the equivalence of real-
izable and agnostic learning for loss functions satisfying the identity of indiscernibles for all finite
label classes. In this section, we discuss a technique called discretization that allows our reduc-
tion to extend this result to infinite label classes. Normally, it’s clear that when Y is infinite our
standard reduction will fail: since the total number of possible labelings of a finite sample may
be infinite, LEARNINGTOCOVER may output an infinite set. In fact, this is more than a technical
barrier: realizable and agnostic learning simply aren’t equivalent for infinite label classes.

Proposition 20 Let ¢ be any continuous loss function (in the first variable) over R satisfying the
identity of indiscernibles. Then there exists a class (2, X, H, ) which is realizably learnable but
not agnostically learnable.

Proof Let X = Nand Y = [0,2]. To construct our class, we first consider the set of all boolean
functions over X with finite support. Each function f in this class may equivalently be thought of
as a binary string in {0, 1}*. Denote the corresponding decimal value of this string in [0, 1] by s;.
To construct H, for every boolean function f : N — {0, 1} with finite support, include in H the
function hy(x) = f(x)+ sy. Note that (X, H) is clearly realizably learnable under any distribution
family & and any loss function, since a single sample always uniquely determines h ¢. On the other
hand, adding even the smallest amount of noise erases this unique identification, making the class
impossible to learn.

More formally, let & be the family of all distributions. By the continuity of ¢ and the fact
that £(0,0) = ¢(1,1) = 0, for all ¢ > 0 notice that there exists 7y = ~(¢) > 0 such that
maxo<y<,{4(7,0),£(1 ++',1)} < e. Let n, € N be the index of the first non-zero digit in
the binary representation of . The idea is to note that beyond these first n, coordinates, our class
if within ¢ of an arbitrary boolean function. More formally, notice that for any distribution D and
boolean function f which is 0 on [n,], we have that OPT g (f) := minpepg{errpys(h)} < e. The
bound then follows from the fact that such arbitrary functions are not learnable.

In more detail, Yao’s minimax principle states that it is sufficient to show that for any potential
sample complexity m(e, d), there exists a randomized strategy for the adversary such that no deter-
ministic learner can achieve O PT" + ¢ accuracy with constant probability for some constant ¢ > 0.
To this end, consider the following strategy: the adversary chooses the uniform distribution over
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[y, Ny + 2m(e, )], and a binary function on that interval uniformly at random (recall OPT is at

most ¢ for every such function). Since the learner can only see 1/2 of the mass, any strategy must be

incorrect on half of the remaining points in expectation. In particular conditioned on any sample, the

expected loss of any predicted labeling of an unseen point is at least ijperr = re]rl[(l)n2 }{w}
y€lo,

(since each unseen label appears with 1/2 probability conditioned on the learner’s sample). The

total expected loss of any strategy is then at least {iyin-err/2, which is bounded away from 0. Setting

¢ and c sufficiently small then gives the desired result. |

Proposition 20 relies crucially on the fact that the adversary can erase a significant amount of infor-
mation with a very small label perturbation. In the rest of this section, we’ll discuss a technique for
modifying our reduction that shows this is essentially the only barrier between realizable and ag-
nostic learning (at least for a broad class of loss functions). The key is to require a slightly stronger
notion of learnability based upon discretization.

Definition 21 (Discretization) We say (2, X, H',{) is an e-discretization of (2, X, H, () if the
following three conditions hold:

1. H' is probably bounded. That is for alln € N, § > 0, and D € 2 there exists a bound
m(n,d) € N such that:

! < >1—6.
JPr lIm(H'|5)] < m(n,8)] = 1 -6

2. H' point-wise'” e-covers H with respect to £. That is for all for all h € H, there exists
h' € H' satisfying:
Vo € X (W (z),h(z)) <e.

3. H'is always useful. That is for all h' € H', there exists h € H such that:

Vo € X : 4N (z),h(x)) <e.

Note that most realistic settings have reasonable discretizations (e.g. it is enough to have some
Lipshitz-like condition and a weak tail-bound on the loss). We now define a basic notion of learn-
ability based on discretization which essentially serves to rule out adversarial constructions in the
vein of Proposition 20.

Definition 22 (Discretely-learnable) We say (2, X, H, () is discretely-learnable with sample com-
plexity n(e,0) if there is some constant ¢y > 0 such that for all €,6 > 0 there exists an -
discretization H. which is (ci1€,0)-PAC-learnable in at most n(s,0) samples. We call the learner
proper if it outputs hypotheses in H.

We’ll prove that discrete and agnostic learnability are equivalent as long as the loss satisfies an
approximate triangle inequality.

17. We note that in most cases this condition can generally be weakened to the expected guarantee
Eznpy [C(R (z),h(z))] < &, but the stronger notion is needed for some applications such as adversarial robust-
ness.
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Definition 23 (Approximate pseudometric) We call a loss function { : Y XY — Rxq a c-
approximate pseudometric if for all triples y1,vy2,y3 € Y :

C(y1,y3) < c(l(y1,y2) + £(y2,y3))-

Approximate pseudometrics are natural choices for loss functions in practice and capture a broad
set of scenarios including finite-range losses and standard setups such as /,,-regression, and have
seen some previous study in the literature (Crammer et al., 2008). By modifying the first step of
our reduction to take discretization into account and leveraging the approximate triangle inequality
in the second, we prove that discrete learnability and c-agnostic learnability are equivalent under
c-approximate pseudometrics.

Theorem 24 Let ! :Y XY — Rx>( be a bounded c-approximate pseudometric. Then the following
are equivalent for all (9,X, H,():

1. (9,X, H,?) is discretely-learnable.
2. (2,X,H,Y) is c-agnostically learnable.

Proof The proof is similar to Theorem 18. We first show the forward direction. Assume (2, X, H, ()
is discretely-learnable. Fix ¢’ = 48301 (where c; is the constant from Definition 22), and let H,./ be
a learnable &’-discretization of H. We argue that running LEARNINGTOCOVER on H,: gives the
desired agnostic learner. Since ¢ is bounded, it is sufficient to prove that C'(Sy) contains a hypothe-
sis i’ such that errp ¢(h') < ¢- OPT +¢/2. Empirical risk minimization then works as in the finite
case.

Let hopr € H be an optimal hypothesis. Since H./ is a discretization of H, there exists
hEO/ pr € H.s such that:

Vz € X : L(hopr(z), hopr(z)) < £
Further, by the guarantees of discrete learnability, with probability at least 1 — §/2 there exists
W € C(Syr) such that close to h% pr in the following sense:

JE (60 @), W pr(a)] < e’ = 1
Plugging in the previous observation and applying our approximate triangle inequality, we get that
I is close to hopr in the following sense:

Ewwwmmwmmc(Ewwm,ame1Ew%wmwmmm0

xz~Dx xz~Dx x~Dx
€
< —
~ 2c
The final step is to transfer from the marginal Dy to the full joint distribution of the adversary,
which follows immediately from a similar application of the approximate triangle inequality. This
is the only step that loses a factor in the OPT term:

erep (W) = B [H(H(x).y)]

<c(, B 0@ horr@)] + | E  [horr(2).)])
<c-OPT +¢/2
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as desired.
We now prove the reverse direction, which is essentially immediate. Assume the existence of
a c-agnostic learner for (2, X, H, /). Given a discretization H., we want to show (2, X, H., /)
is learnable to within c;e error for some c¢; > 0. This is achieved simply by running the agnostic
learner on (2, X, H., ¢). Since H. is “always useful”, every h € H. is e-close to some b’/ € H in
the sense that:
Vo € X : (W (x),h(x)) <e.

In particular, this means that for any choice of h by the adversary there exists ' € H with low
error:

errpo(h') = E[(K (z), h(z))] < e.

As a result, running the c-agnostic learner for (2, X, H, ) returns a hypothesis of at most (¢ 4 1)e
error with high probability. |

It is worth noting that bounded loss is not really necessary for Theorem 24. More generally we
can require that (2, X, H, /) is “finitely learnable” in the sense that for all finite subsets H' C H,
(2,X,H',0) is agnostically learnable. When ¢ is bounded, this is true for any finite class by
empirical risk minimization.

It is also worth noting that various modifications to the definition of loss (e.g. defining loss be-
tween hypotheses rather than on Y directly) will continue to work with the above. Similarly, there
are various cases when one can get better than ¢ - O PT" accuracy for a c-approximate pseudometric,
generally by instead optimizing over some surrogate loss function. For instance, if a simple trans-
formation of the loss gives a ¢’-approximate pseudometric for ¢’ < ¢, then one can generally learn
up to ¢’ - OPT.'® As an example, note that while square loss /3(z, y) = (x —y)? is a 2-approximate
pseudometric, taking /€TTp ¢, gives a true metric between hypotheses. As aresult, as long as OPT
is bounded, we can get truly agnostic learning by optimizing ,/€rrp ¢, instead. This strategy works
for any polynomial loss, such as ¢, (z,y) = |z — y|P.

On the other hand, outside of these special cases, Theorem 24 is tight: there exist c-approximate
pseudometric loss functions which cannot be ¢’-agnostically learned for any ¢’ < c. The argument
is similar to Proposition 20, but requires a bit more care.

Proposition 25 There exists a discretely-learnable class over a c-approximate pseudometric that
is not ¢'-agnostically learnable for any ¢’ < c.

Proof The proof is similar to Proposition 19. We consider the same instance space X = N and
hypothesis class H:

H={h:h(z)=(0,)VzeX}.
The loss function £ : Y x Y — {0, 1, ¢} is also the same, but extended to the larger domain Y = N?:

0 b1 =0
0((b1,71),(b2,7m2)) =1 by #byandry =19
¢ otherwise.

18. This does require that O PT is bounded.
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As before, note that (X, H, /) is trivially realizably learnable by always returning any h € H, {is a
c-psuedometric by definition, and for any labeling f : X — Y there exists h € H such that for all
distributions D:

OPT S BTTD’f(h) S 1.

We now show that the class (X, H, ¢) is only c-agnostically learnable. Since OPT < 1, it suffices
to show that for every m € N, large enough n € N, and randomized algorithm .4 on m samples,
there exists a labeling f : X — Y and a marginal distribution D x such that:

B0y Eony [U(A(S, F(8))(@). S = (1= =) e e

n
Forn > W
least ¢’ with constant probability.

For simplicity, we now restrict our attention to the marginal D x which is uniform over the set
[k] for some k € N to be fixed. By Yao’s minimax principle, its enough to prove that there exists a
distribution i over functions f : [k] — [n]? such that any deterministic algorithm A the following
holds

applying Markov’s inequality to Equation (2) implies that .4 has error at

13
By EsnnyEanny [((A(S, £(9)@), f@))] = (1- ) e
We now show that the above holds for ; being uniform over all functions from [k] to [n]?> when
k> hrl(n/2(+l)) Similar to Proposition 19, we have that

1\2
Eo 0 EfuEsny LA(S, (9)(@), f(@))] > Eanny | Pr 28 8] (1-2) ],
X
since no matter the assignment A gives to = ¢ S, it will be wrong on both coordinates with proba-
bility (1 — 1/n)? over the randomness of x. The result follows by noting that for every = € [k]

Pr [@)gs)=(1-7)" 21

5D rx0 n

since 1 —z > exp{—=z/(1 — x)}, and we have assumed k > 1n(n/2(+1)) and n > 1. Therefore, we
get that

1\ 3
Earp By Es g ((A(S, f(8))(@). f@) > (1= ) e

n

which completes the proof. |

C.2. Sub-sampling: Malicious Noise

Now that we’ve seen how to handle practical problems like regression over infinite label spaces,
we’ll discuss a technique that helps handle data corruption and data-dependent assumptions: sub-
sampling. The main idea is as follows. Say that the original unlabeled sample we draw is, in some
sense, partially corrupted: perhaps an adversary has changed some fraction of examples (malicious
noise), or some portion of the sample is un-realizable for a concept in the class (robust and partial
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learning). In either case, there generally exists a core subset of “clean” samples that we can use
to recover the guarantees of LEARNINGTOCOVER. Since we cannot necessarily identify these, the
idea is to run LEARNINGTOCOVER over enough subsets of the unlabeled sample that we find a
clean subsample with high probability. In this section we’ll discuss the application of this technique
in detail to Kearns and Li (1993)’s well-studied malicious noise model. In the appendix, we discuss
applications to recently popular adversarially robust (Appendix E) and partial learning (Appendix F)
models.

To start, let’s recall the standard malicious noise model. In this variant of PAC learning, instead
of having access to the standard sample oracle from the adversary’s distribution D over X x Y, we
have access to a malicious oracle Oy (-) which, with probability 7, outputs an adversarially chosen
pair (z,y), and otherwise samples from D as usual.

Definition 26 (PAC-learning with Malicious Noise) We call (X, H, 2,{) (agnostically) (¢, 0)-learnable
with malicious noise at rate n = n(€) if there exists an algorithm A and function m = myq(e, J)
such that for all ,§ > 0, and distributions D over X X 'Y satisfying:

1. The marginal Dx € 9,

A outputs a good hypothesis with high probability over samples drawn from the malicious oracle of
size n(e, d):
Pr errp(A(S)) > OPT +¢] <.

where OPT = minpc{errp(h)}.

In other words, malicious noise essentially gives a worst-case formalization of the idea that an -
fraction of the learner’s data is (adversarial) garbage.

Let’s now formalize the argument above: modifying LEARNINGTOCOVER to run over sub-
samples gives a sample-efficient algorithm for learning with malicious noise. For readability, we’ll
(somewhat informally) restate the algorithm with this change.

Algorithm 3: Malicious to Realizable Reduction

Input: Realizable PAC-Learner A, Accuracy Parameter ¢ < 1/2, Noise Parameter n < l%re,
Unlabeled Sample Oracle Oy, Labeled Sample Oracle O,
Algorithm:

1. Draw an unlabeled sample Sy ~ Oy, and labeled sample Sy, ~ Op,.

2. Run LEARNINGTOCOVER over all S € (Sy),y :=={S C Sy : |S| = [(1 — ') [Su|]}, where:

,_3n+e/l-2)
02

3. Return the hypothesis in C'(Syy) = |J C(S) with lowest empirical error over Sy..
SE(SU)n/

We now prove that Algorithm 3 gives an (agnostic) learner that is tolerant to malicious noise.
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Theorem 27 Let (2, X, H) be realizably PAC-learnable with sample complexity n(e,d). Then
forany n < 1%—5’ Algorithm 3 is an agnostic learner for (2, X, H) tolerant to n malicious noise.

Furthermore letting A = -5~ —nand § = ( %) log (%) its sample complexity is at most:

mt(e.8) < O [ g7A/48/4) G (1 (0 (n(a/2,8/2) + EH2Y) ) ) 4 10g(1/9) P Ios(1/9

A A2 A3

where we’ve assumed £ < 1/2 for simplicity.

Proof To start, we’ll review for completeness a fairly standard analysis of empirical risk mini-
mization under malicious noise. Assume for the moment that the output of LEARNINGTOCOVER,
C(Sy), contains a hypothesis b’ satisfying err(h') < OPT + ;. Say we draw M labeled samples
for the ERM step, and an 1’ = 1 + [3 fraction are corrupted by the adversary. For large enough M,
we can assume by a Chernoff and union bound that the empirical loss of every hypothesis returned
by LEARNINGTOCOVER is at most some 3 away from its true loss on the un-corrupted portion
of M (we will make all these assumptions formal in a moment). Given these facts, notice that the
empirical loss of A’ on M is at most:

errpr(h) < (1 —0")(OPT + B1 + 83) +1

On the other hand, the empirical error of any h. € H whose true error is greater than OPT + ¢ is
at least:

erryr(h) > (1 — 1) (OPT + ¢ — $33).

To ensure that our ERM works, it is enough to show that for any such h, erry(h) > errp(h'). A
simple calculation shows that this is satisfied as long as 51 + 283 < ¢ and 81 + (B2 + 263 < A.
Setting 51 = P2 = B3 = A/4 gives the desired result.

It is left to argue that our assumptions above hold with high probability. First, note that by a

2
Chernoff bound, the probability that ' > 1 + A /4 on a set of M samples is at most e_c(%) M for
some ¢ > 0, so this occurs with high probability as long as M > Q(log(1/8)n?/A?2). Similarly, the
empirical error of every hypothesis in C'(Sy7) on the remaining clean samples will be within A /4
of its true error as long as M > Q(log(|C(Sy)|/8)n?/A?).

It is then left to show that C'(Syy) contains a hypothesis of error at most OPT + A/4. To
show this, it is enough to ensure that we run LEARNINGTOCOVER over a clean subsample of
size at least n(A /4, §/4) with high probability. If we draw |Sy| = O (M +log(1/6) A2>
unlabeled samples, a similar Chernoff bound to the above promises that at most an 7’ fraction
are corrupted with high probability, and therefore that at least n(A/4,d/4) remain un-corrupted.
Running LEARNINGTOCOVER over all subsets of size (1—17")|S,,| then gives the desired result. The

sample complexity bound follows from choosing M large enough to satisfy the above conditions
along with the fact that |C'(Sy)| < ((1_’;‘7,)n) g (n). [ |

It’s worth noting that the error tolerance of Theorem 27 is tight. In their original introduction of

malicious noise, Kearns and Li (1993) proved that for most non-trivial concept classes, no PAC-
learner can be tolerate ﬁ malicious noise. Theorem 27 also extends to other scenarios we’ve seen
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so far such as arbitrary loss over finite label classes and approximate pseudometrics. The proof
remains mostly the same, though the optimal error tolerance may differ.

Since our agnostic model restricts the adversary to choosing a distribution whose marginal lies
in the original family, Theorem 27 provides the first insight on robustness against an adversary who
can corrupt the underlying data as well as the labels. One might wonder whether this result can be
pushed further: is it possible to be robust against an adversary who can corrupt the marginal over
X in some stronger sense? Unfortunately, the answer is no: malicious noise is necessarily the most
distributional corruption we can handle. Let’s look at two basic lower bounds to see why. First,
we’ll consider an adversary who can remove a portion of the learner’s sample.

Proposition 28 For any 6 > 0, there exists a class (9, X, H) which is realizably PAC-learnable,
but not learnable under an adversary who can remove a d fraction of the learners sample.

Proof This follows from a result of Dudley, Kulkarni, Richardson, and Zeitouni (Dudley et al.,
1994) that there exists an unlearnable class (2, X, H) such that for some n(e,0), (D, X, H) is
learnable in n (e, d) samples for every D € 2. The lower bound then follows simply from adding
an extra unique identifying point zp to X for every distribution D, and modifying each D € &
to have ©(6) support on zp. This modified class is clearly learnable, since after drawing O(1/0)
samples, the learner will draw xp and identify the distribution D with good probability. However,
the class is not learnable under an adversary who removes points, since with high probability the
adversary can completely remove any mention of xp from the learner’s sample, reducing to the
original unlearnable class (7, X, H). [ |

An adversary who can add samples is similarly powerful. In the realizable setting, if the adversary
is allowed to add an arbitrary number of correctly labeled points to the learners sample, basic classi-
fiers such as halfspaces become unlearnable (Blum et al., 2021). On the other hand if the adversary
is limited to adding only a few additional samples, realizable learning may remain possible, but
even trivial concept classes cannot be agnostically learnable.

Proposition 29 There exists a class (X, H) which for any vy > 0 is realizably but not agnostically
learnable under an adversary who can add a ~ fraction of correctly labeled" points to the learner’s
sample.

Proof Let X = {z,z1,22} and H = {hy, ha} be any class such that hy (z) = ha(z), but hy(z;) #
ho(x;) for i = 1, 2. In the realizable setting, note that a single labeled example on z1 or zo exactly
determines the hypothesis. As long as there is less than 1 — ¢ mass on x, the learner will draw such
a sample after O(1/e) samples with good probability. Further, if the mass on z is at least 1 — ¢,
then h; and hg are both valid outputs. As a result, any ERM is a valid PAC-learner. Since adding
correctly labeled examples can only help this learner, the class remains realizably learnable under
an adversary who can add an arbitrary number of clean samples.

In the agnostic setting, consider an adversary who chooses a labeling f such that f(z) =
hi(x) = ho(x), f(x1) = hi(x1), and f(z2) = ho(x2). The optimal hypothesis hopr is then
decided by the amount of mass on 21 and z2 in the marginal distribution. Namely if the adversary

19. For simplicity, we’ll assume the adversary is restricted to picking a marginal distribution and labeling rather than any
joint distribution over X x Y.
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chooses a distribution D over {x, x1, z2}, the optimal error is min{D(x1), D(x2) }. The idea is then
to note that for v/ < ~y/4, the learner cannot distinguish between the two following distributions:

Di(z1) = e1y', Di(x2) = (1 — e1)y/

and
Do(z1) = (1 = c1)v, Da(w2) = e17/

where 1/2 > ¢; > 0 is some small constant. Informally, if the two distributions are indistin-
guishable, any learner will always incur error of around (I%W, whereas OPT is ¢~/ for both
distributions.

Let’s now give the formal argument. By Yao’s Minimax Principle it is enough to prove there is
a strategy over distributions such that any deterministic learner has high error. In particular, if we
can prove that the expected error is at least 3- O PT, then Prlerror > 2-OPT] > OPT. Since OPT
is just some constant ¢17’ (dependent only on ~), this is sufficient to prove the result. Moving on,
consider the strategy in which the adversary chooses the labeling described above, and chooses each
marginal (D; or D9) with probability 1/2. We’ll break our analysis into two cases dependent on
the sample complexity of the learner. If the learner uses O(1/4") examples, then there is a constant
probability of drawing a sample only consisting of the point z. Let f’ be the hypothesis returned by
the deterministic learner on this sample. By construction, f’ must disagree with either iy or hy on
x1 or xo. Assume f’ differs on hq(z1) (the other cases will follow similarly). When the distribution
is Do, f” has error at least (1 — ¢ )+’. Since this occurs with constant probability independent of the
choice of ¢y, choosing c¢; sufficiently small leads to an expected error of at least 3¢’ as desired.

On the other hand, when there are n = €2(1/4’) samples, we claim that the adversary can
force the following sample to occur with constant probability: 2+'n instances of x; and x5, and
(1 + v)n — 47'n instances of x. This follows from the fact that for the appropriate choice of
constant for n, a Chernoff bound gives that both z1 and x5 occur at most 29'n times with constant
probability. Since the adversary is allowed to add yn > 4+'n arbitrary examples, they can add
instances of x1, z2, and x until the above sample is achieved. The remainder of the argument is
then the same as the previous case, as any learner response on this sample will incur similarly high
expected error. |

It is also reasonable to consider distributional corruption in the semi-supervised setting, where
the unlabeled and labeled data-sets might have different underlying distributions. We discuss this
model in Appendix C.4.

C.3. Replacing ERM: Semi-Private Learning

So far we have focused on property generalization for two forms of noise-tolerance—agnostic learn-
ing and learning with malicious noise. In this section, we’ll show how to use Algorithm 1 to gener-
alize a broader spectrum of finitely-satisfiable properties through replacing the ERM process with a
generic finite learner with the desired property. Our prototypical example will be privacy, which is
well known to be finitely-satisfiable via McSherry and Talwar (2007)’s exponential mechanism. To
start, we’ll cover a few basic privacy definitions.

Definition 30 (Differential Privacy) A learning algorithm A is said to be a-differentially private
if for all neighboring inputs S, S’ which differ on a single example:

Pr[A(S) € T] < e® Pr[A(S') € T,
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for all measurable events T' in the range of A.

The exponential mechanism is one of the most widely used techniques in privacy. Informally, the
algorithm allows for differentially private selection of a “good” choice from a finite set of objects
(potential hypotheses in our case). More formally, let s : (X x Y)* x H — R be a “score” function,
and define “sensitivity” Ay to be
Ag = S,h) —s(S",h
s = maxmax |s(S,h) — s(5", h)|

where S, S’ are two neighbouring datasets. The exponential mechanism selects an item with a good
score with high probability, while maintaining privacy.

Definition 31 (Exponential Mechanism McSherry and Talwar (2007)) The exponential mecha-
nism Mg on inputs S, H, s with privacy parameter « selects and outputs h € H with probability

as(S,h
exp( éA ))

as(S,h/)\ "

Zh’eHeXp(g(QA ))

It is well known that the exponential mechanism leads to a private learner for finite hypothesis
classes under bounded loss.

Theorem 32 (Theorem 3.4 Kasiviswanathan et al. (2011)) Ler (2, X, H, () be a finite class with
a bounded loss function. Then the sample complexity of a-differentially private learning (2, X, H, ()
is at most:

H
npri(a,€,0) < O <log <u> max{s_Q,s_la_1}> .

We note that (Kasiviswanathan et al., 2011, Theorem 3.4) only considers classification loss, but
the extension to bounded loss is immediate. Unfortunately, even with the power of the exponential
mechanism, privacy is a very restrictive condition in the general PAC framework, since we’re most
often interested in infinite hypothesis sets. Indeed even improper private learning requires finiteness
of a highly restrictive measure known as representation dimension (Beimel et al., 2013a), which can
be infinite for classes of VC dimension 1. As a result, the past decade has seen the introduction of
a number of weaker, more practical definitions of privacy. In this section we’ll focus on a model
introduced in 2013 by Beimel, Nissim, and Stemmer (Beimel et al., 2013b) called semi-private
learning.

Definition 33 (Semi-Private Learning) We call a class (2, X, H, () semi-private PAC-Learnable
if there exists an algorithm A and two functions npu, = npuy(€, 9, o) and nyri = npyi(€, 6, ) such
that for all €,6 > 0 and distributions D over X X Y whose marginal Dx is in 9, A satisfies the
following:

1. A outputs a good hypothesis with high probability:
Pr lerrp ¢(A(Su,SL)) > OPT +¢] < 0.

T pub Ny i
Sy~Dy " ,Sp~D"Pri
2. A is semi-private. That is for all Sy € X "vub:

A(Su, -) is a-differentially private.
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In other words, semi-private learning offers a model for applications where labeled data is sensitive,
but some (perhaps opt-in) users might not care about their participation itself being released. Unlike
standard private learning, distribution-free semi-private classification is known to be characterized
by VC dimension, just like realizable PAC-learning (Beimel et al., 2013b). The best sample com-
plexity bounds are due to Alon, Bassily, and Moran (ABM) (Alon et al., 2019a), who use uniform
convergence to build a uniform cover for H from unlabeled data, and then apply the exponential
mechanism to the resulting cover.

Due to their reliance on uniform convergence, ABM’s techniques fail in the more general set-
tings we consider. Further, their use of uniform covers results in sub-optimal public sample com-
plexity even for distribution-free classification. We prove in Appendix J that these objects require
asymptotically more samples than non-uniform covers (at least in the distribution-family model),
and therefore cannot be used to achieve optimal semi-private learning. We circumvent both of
these issues by appealing directly to a realizable learner to build a weaker non-uniform cover. For
readability, we first restate the algorithm here.

Algorithm 4: Semi-Private to Realizable Reduction
Input: Realizable PAC-Learner A, Unlabeled Sample Oracle Oy, Labeled Sample Oracle O,
Algorithm:

1. Draw an unlabeled sample Sy ~ Oy, and labeled sample Sy, ~ Oy,.
2. Run LEARNINGTOCOVER over Sy to get C'(Sy).

3. Return the hypothesis in C'(Sy7) given by applying the exponential mechanism with respect to
Sr.

We prove that Algorithm 4 gives a semi-private agnostic learner in the distribution-family set-
ting.

Theorem 34 (PAC-learning implies Semi-Private Learning) Let( : Y xY — Rx>( be a bounded
c-approximate pseudometric. Then the following are equivalent for all triples (2, X, H,{):

1. (9,X, H,?) is discretely-learnable
2. (2,X, H ) is c-agnostically, semi-private learnable.

Proof The proof is essentially the same as Theorem 24. The only difference in the argument is
to replace the generic ERM learner over the output of LEARNINGTOCOVER with the exponential
mechanism (Kasiviswanathan et al., 2011). |

Let’s now take a look at what Theorem 34 implies about the special case of distribution-free
classification.

Corollary 35 Ler (X, H) be a class of VC-dimension d with sample complexity n(e, ). The sam-
ple complexity of (agnostic) semi-private learning (X, H) is at most:

Npub(€,6,0) <n(e/2,6/2)

35



HOPKINS KANE LOVETT MAHAJAN

and

st <0 ( (o (PE12512) g (1) ) st

Further, the sample complexity of improperly (agnostic) semi-private learning (X, H) is

npus(2,6,0) < O (d+10§<1/5>>

Npri(€,6,a) < O <<d log <i) + log (;)) max{z—:_2,€_1a_1}> .

Proof LEARNINGTOCOVER uses n(g/2,§/2) samples by definition. In the improper case, Han-
neke showed that n(e/2,/2) < O (W) . Since the class has VC dimension d, the size of

the resulting cover is at most (e - n(¢/2,/2)/d)?, and the private sample complexity bound then
follows from Theorem 32. |

and

This improves over the recent upper bound of ABM who showed that

dlog(1/¢) —|—log(1/5)) '

npub(gv J, Oé) <0 < -

In fact, for constant d and §, Corollary 35 completely resolves the unlabeled sample complexity of
semi-private learning, as ABM (Alon et al., 2019a) prove a matching lower bound.

Theorem 36 (Public Lower Bound Alon et al. (2019a)) Every class that is not privately learn-
able requires at least Q(1/¢) unlabeled samples to learn in the semi-private model under classifi-
cation error.

On the other hand, we note that the private sample complexity remains off by a log factor from the
best known lower bounds of Chaudhuri and Hsu (2011).

Theorem 37 (Private Lower Bound Chaudhuri and Hsu (2011)) There exist classes of VC di-
mension O(1) which require at least:

npri(€, 9, ) > 2 (max{e_Z,s_la_l})
private samples to learn.

While we have now resolved the public sample complexity of improper learning, it remains an inter-
esting open problem for the proper regime where certain adversarial examples are known to require
an extra log(1/¢) factor in the standard PAC sample complexity (Daniely and Shalev-Shwartz, 2014;
Hanneke, 2019). We conjecture that Theorem 34 should still be tight in this setting: namely that
the unlabeled semi-private sample complexity should always be at least the realizable PAC sample
complexity.

Conjecture 38 Letr (X, H) be a hypothesis class which is not privately learnable. Then the re-
alizable sample complexity of (X, H) lower bounds the unlabeled sample complexity of proper
semi-private learning:

npub(€,1/2) > Q(n(e, 1/2)).
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C.4. Changing the Base Model: Covariate Shift

One issue with semi-supervised models like semi-private learning is that, in practice, the distribution
over unlabeled data probably won’t match the labeled data exactly. In this section, we’ll talk about
a final modification to our reduction to tackle such scenarios and more generally to extend property
generalization beyond the realizable PAC setting: replacing the base learner. In fact, we already
saw this strategy used to a lesser extent in Appendix C.1, where we replaced our standard realizable
base learner with a discrete learner. Here we’ll look at an application in which we assume our
initial learner is robust to covariate shift (Shimodaira, 2000), meaning that even if the distribution
underlying the data shifts between train and test time, the algorithm will continue to perform well.
This stronger assumption will allow us to build semi-private learners that can handle corruption
between the public and private databases. To start, let’s formalize covariate shift in the distribution-
family model.

Definition 39 (Covariate Shift) Let (2, X, H, () be any class, and for every € > 0 let C. be a
“covariate-shift” function that maps every D € 9 to some family of distributions over X. Given
any distribution D € & and any h € H, let the error of a potential labeling be given by its
worst-case error over C.(D), that is:

Cs-errpnecte) = max. {5 fieto) ho)]}.
We say that (2, X, H,!) is realizably learnable under covariate shift C = {C.} if there exists an
algorithm A and function n = n(e, ) such that foralle,§ >0, D € 9, and h € H:

SPLr)n [CS-errpxnee(A(S, h(S))) > ¢] <.

We call such a learner robust to covariate shift.

We emphasize that in the above definition, the covariate shift family scales with the error param-
eter ¢. This is a bit different than Shimodaira (2000)’s original definition, but is a natural choice
in our context since we consider algorithms which only use access to the original source distribu-
tion (sometimes called “conservative domain adaptation” (David et al., 2010)). In this setting, we’d
expect that as we demand higher accuracy, the amount of covariate shift we can tolerate will de-
crease. Indeed in the agnostic model, it’s clear this scaling is necessary by a similar argument to
Proposition 29.

The key observation to apply learning under covariate shift in our reduction is simply to notice
that the non-uniform cover output by LEARNINGTOCOVER must contain a hypothesis close to opti-
mal under any shifted distribution in C. (D). This can then be used to analyze any semi-supervised
model where the marginal of the labeled distribution may be corrupted from D to any distribution
in C.(D). In this section, we’ll again focus on the setting of semi-private learning. First, let’s
formalize what it means to be semi-private learnable under covariate shift.

Definition 40 (Semi-Private Learning under Covariate Shift) We call a class (2, X, H, () semi-
private (agnostically) PAC-Learnable under covariate shift C = {C.} if there exists an algorithm
A and two functions npu, = Mpup(€, 6, ) and Ny = npyi(e, 6, o) such that for all €,6 > 0 and
distributions Dx € 2 and D' over X x Y whose marginal D, € C.(Dx), A satisfies the
following:
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1. A outputs a good hypothesis over D' with high probability:
Pr lerrp o(A(Su, Sp)) > OPT' + ] <4,

SUND;?)M}) ,SPND/TLPH
where OPT" = minpcg|errps ¢(h)] is the minimum error over the shifted distribution.
2. A is semi-private. That is for all Sy € X"

A(Sy, -) is a-differentially private

In other words, we’d like to recover a near-optimal hypothesis even when the marginal distribution
over private data is shifted from the public data. This is a realistic scenario in practice, since the
distribution of “opt-in” users is likely different from the marginal over the total population. We’ll
show that this issue is solvable in the semi-private setting as long as the analogous issue in the
non-private setting (distribution shift between train and test time) can be resolved.

Theorem 41 Let (2, X, H, () be any class on a finite label space with loss function satisfying
the identity of indiscernibles which is realizably learnable under covariate shift C = {C.}. Then
(2,X, H,0) is semi-private, agnostically learnable under covariate shift C with sample complex-
ity:

log (HH(H(?M/?)))

2

m(e,d) < n(ne,d/2) + O .

mina#b (Z(a,b))

maxa¢b(€(a,b))) is a constant depending only on £.

where we recall ng > 2 (

Proof The proof is essentially the same as Theorem 18. The only difference is to note that for all
marginal distributions Dx € 2 and choices of shift D'y, € C.(Dx), the output of LEARNINGTO-
COVER has some A/ satisfying
E [6(h (z), hopr(2))] < mee,
z~D'

where hopp is some optimal hypothesis over the shifted distribution D’. As in the standard anal-
ysis, this is guaranteed by including the output of the realizable learner on hpp7 (robustness to
covariate shift promises this output is close under D’y with high probability). The remainder of the

argument is exactly as in Theorem 24, with the exception of working over the shifted distribution
D'y instead of Dy. [ |

We note that this result can also be extended to the more general loss functions discussed in Ap-
pendix C.1 without too much difficulty with the appropriate definition of discrete learnability under
covariate shift.

Since Theorem 41 is a bit abstract, let’s take a look at one concrete application. Given a class
(X, H), the class-dependent total variation distance is a metric on distributions measuring the worst
case distance across elements of HAH = {hAh' : h,h' € H}:

TV, D,D) = D(h) — D'(h)|}.
uan(D,D') = max {|D(h) — D'(h)])
It is not hard to see that any realizable learner is robust to O(¢) covariate shift in 7'V g distance.
We can then apply Theorem 41 to build a robust semi-private learner.
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Corollary 42 Let (X, H) be a class of VC-dimension d, and for every ¢ > 0 and distribution D
over X, define a coviarate shift function:

CE(D) = {DI : TVHAH(D,D/) < 8/2} .
Then (X, H) is semi-private learnable under covariate shift C = {C.} in only

d—|—log(1/5))

Npub (€, 0, 0) < O < .

unlabeled samples and

Npri(€, 0, ) < O ((dlog (i) + log <(15>> maX{€_2,6_1a_l}>

labeled samples.

Finally, we note again that our original learner in these results is robust to covariate shift despite
having no access to samples from the new distribution. Unfortunately, this model does come with
fairly strong lower bounds regarding the type of covariate shifts to which it is possible to be robust
(David et al., 2010). One solution to this problem is to consider a relaxed variant called (non-
conservative) domain adaptation, where the learner additionally has access to a small number of
unlabeled samples from the test-time distribution. It is certainly possible to define an analog in the
semi-private setting, but naively the use of unlabeled data from the private distribution breaks our
reduction since privacy won’t be preserved. We leave as an open question whether any sort of PAC-
learner in the non-conservative model could imply semi-private learners with stronger robustness
to covariate shift. Some progress has been made in this direction recently by Bassily, Moran, and
Nandi (Bassily et al., 2020b) for distribution-free classification of halfspaces.

Appendix D. Doubly Bounded Loss

In this section we discuss a natural generalization of loss functions over finite label classes we call
doubly bounded loss: for all distinct y,y" € Y, we require £(y,y’) € [a,b] for some b > a > 0.
This is trivially satisfied by any loss function on a finite label class that satisfies the identity of
indiscernibles.

Definition 43 (Doubly Bounded Loss) We say ¢ : Y — Y is (a,b)-bounded if there exist b > a >
0 for any distinct y,y € Y:
Uy, y') € [a,b].

As discussed in Appendix C.1, since we now allow Y to be infinite, we need to work with discrete
learnability instead of realizable learnability. We can use a slight modification to the discretiza-
tion technique in Theorem 24 to prove the equivalence of discrete and agnostic learnability for
doubly-bounded loss functions. Note that this is stronger than our guarantee for c-approximate
pseudometrics, which only gives c-agnostic learnability.

Theoremd44 Let ¢ : Y xY — Rxq be an (a,b)-bounded loss function. Then for any class
(2,X, H,{) the following are equivalent:
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1. (X, H,2,0) is (properly) discretely-learnable

2. (X, H,2,0) is (properly) agnostically learnable.

Proof The proof that agnostic learnability implies discrete learnability is the same as in Theorem 24,
so we focus only the forward direction. Assume (2, X, H, /) is discretely-learnable. Fix &’ = 4,
and let H./ be a learnable £'-discretization of H. We argue that running LEARNINGTOCOVER on
H_/ (using the promised discrete learner) gives the desired agnostic learner. As before, it is sufficient
to prove that C'(Sy) contains a hypothesis /4’ such that errp ¢(h') < OPT + /2. Since ¢ is upper
bounded, standard empirical risk minimization arguments then give the desired result.

To see why C(Sy) has this property, recall from Lemma 17 that for any h € H./, with proba-

bility at least 1 — §/2 there exists h’ € C'(Sy) that is £’-close to h in the following sense:

Eorpx [€(1 (). h(z))] < 3.

Because £ is a-lower bounded, this implies that i’ must be close to h in classification error:
€
Y

P [h(a) # W (@) < o

and since the loss is bounded by b, the risk of A’ cannot be much more than of h:
errp (') <errpy(h) + /4.

Let hopr € H be an optimal hypothesis. Since H.: ¢’-covers H, there exists hg pr € H.r such
that:

eer,f(hEO/PT) —errp(hopr) < &

Let h’OEIPT € H.: denote the output of the base learner A on the labeling given by hg pr- Then by
the above, we have that:

eer,f(h/Og/PT) :( E M(hgl‘?T(x)7y)]

z,y)~D
< E w(th,PT($)a y)l +e/4
(z,y)~D
< L E  [lhopr(@).y) = Uhorr(@),y) + Uhopr (@),y)] + /4
= CI‘I'D,z(thT) — eer7g(h0PT) + OPT + 6/4
< OPT +¢/2
as desired. [ |

It is worth noting that the upper bound on the loss can be removed if the adversary is restricted to
choosing a marginal over Y which is weakly concentrated.
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Appendix E. Robust Learning

Robust learning is an extension to the PAC setting that models an adversary with the power to
perturb examples at test time. In practice, this corresponds to the fact that we’d like our predictors
to be stable to small amounts of adversarial noise—this could range anywhere from a sticker on
a stop-sign tricking a self-driving car, to completely imperceptible perturbations that totally fool
standard classifiers. The latter was famously demonstrated by Athalye, Engstrom, Ilyas, and Kwok
(Athalye et al., 2018), who showed how to generate such perturbations and provided the classic
example of tricking a standard ImageNet classifier into thinking a turtle was a gun. Their seminal
work caused an explosion of both practical and theoretical research in the area.”’

Formally, adversarial robustness is modeled simply by changing the error function to be the
maximum error over some pre-defined set of neighboring perturbations.

Definition 45 (Robust Loss) Let X be an instance space and U : X — P(X) a “perturbation
function” mapping elements to a set of possible perturbations. Given a loss function £ .Y xY —
R0, the robust loss of a concept h : X — Y with respect to a distribution D over X x Y is:

/
R-erry p(h) = (MJIE;ZND JC/IQZ%;)E(h(:E ), Y)
In other words, a hypothesis with low robust loss performs well even against an adversary who
can perturb x to any “nearby point” (i.e. any #’ € U(x)). Standard realizable and agnostic Robust
PAC-learning are then simply defined by replacing the standard error function with the robust error
function. Robust learning in the distribution-family model does require one extra twist: we need to
make sure that each hypothesis in the class actually has a corresponding distribution over which it
is realizable. To this end, we introduce a basic notion of closure for distribution families.

Definition 46 (Robust Closure) Let Z be a set of distributions over an instance space X and H a
concept class. Given any concept h, let X}, denote the set of points in X on which h has 0 robust
loss with respect to itself, that is:

X ={z e X : V2 €eU(x),l(h(z"),h(z)) =0}
For notational simplicity, let D\, denote the restriction D|x,. The robust closure of 9 under H is:

Dy =9 U U D|h.
De9,heH

In the robust distribution-family model, it only really makes sense to define realizable learnability
over the robust closure of &, since otherwise there may be hypotheses in the class that are not
realizable with respect to any distribution in & and cannot be chosen by the adversary at all. With
this in mind, let’s formalize this model.

Definition 47 ((Realizable) Distribution-Family Robust PAC Learning) A class (2, X, H, /) is
Robustly PAC-learnable in the realizable setting with respect to perturbation function U if there

exists an algorithm A and function n(e,d) such that for all £,6 > 0 and distributions D over
X XY satisfying:

20. Their work has over 900 citations despite being only four years old.
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1. The marginal Dx € 9y,
2. minpey R-erry p(h) =0,

then:

Pr  [R-erry p(A(S)) >¢] <6.
SNDn(s,é)

Agnostic learnability is defined similarly, but since the adversary is unrestricted, there is no longer
any need to take the robust closure.

Definition 48 ((Agnostic) Distribution-Family Robust PAC Learning) A class (2, X, H,{) is Ro-
bustly PAC-learnable in the agnostic setting with respect to perturbation function U if there exists
an algorithm A and function n(e,d) such that for all €,0 > 0 and distributions D over X XY
satisfying Dx € 9, then:

Pr  [R-erry p(A(S)) > OPT +¢] < 6,
S~ Dn(e,8)

where OPT = minpec g {R-erry p(h)}.

We note that different works consider different models of access to the perturbation set ¢/ as well
(e.g. assuming U/ is known to the learner (Montasser et al., 2019), or has some type of oracle access
(Montasser et al., 2020, 2021)). Our reduction requires fairly weak access to {/—it is enough to be
able to estimate the empirical robust loss of a hypothesis /& over any finite sample .S C X. With this
in mind, let’s now prove realizable and agnostic robust learning are equivalent in the distribution-
family model. We’ll focus on the special case of (multi-class) classification, and start by re-stating
our modified algorithm for simplicity of presentation.

Algorithm 5: Agnostic to Realizable Reduction Robust Setting
Input: Realizable Robust PAC-Learner A
Algorithm:

1. Draw an unlabeled sample Sy, and labeled sample S7,.

2. Run A over all possible subsets and labelings of Sy to get:

C(S) = {A(S,h(S)) | S C Sy, h € H|s).

3. Return the hypothesis in C'(.S) with lowest empirical robust error over ST..

Theorem 49 If (2, X, H) is robustly PAC-learnable in the realizable setting with sample com-
plexity n(e, ), then Algorithm 5 robustly learns (2, X, H) in the agnostic setting in:

n(E/Q(i:Z))ﬁ/?’) })

9) <O
moe8) <0 max {

unlabeled samples, and

mi(e,0) <O <mU(€’5) + 1og(1/5)>

g2

labeled samples.
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Proof The proof is similar to Theorem 18, but like malicious noise (Theorem 27), requires the use
of subsampling. The key issue is that for a distribution D over X x Y, the optimal hypothesis ho pr
may not be realizable with respect to D x, that is we may have:

R—CITUJ)X xho pT (hOPT) > 0.

As a result, our realizable learner (and therefore LEARNINGTOCOVER) has no guarantees over
this distribution. On the other hand, our realizable learner does have good guarantees over the
restricted marginal Dx |p, ... We can then fix the above issue by running LEARNINGTOCOVER of
all subsets of S including its restriction to Xj,, ... We will see that this essentially simulates running
the realizable learner on the realizable restriction D x|, ., and recovers the desired guarantees.

Let’s take a look at this more formally. As in our previous arguments it is enough to prove that
C(S) contains a hypothesis k' with robust error at most OPT + ¢/2, since a standard Chernoff
bound tells us that O(log(|C(S)]/d)/<?) labeled examples are enough to estimate the robust loss of
every hypothesis in C'(S) with high probability. We note that this is the only step in our reduction
which requires access to the perturbation set /.

It is left to show that C'(S) satisfies this property. Let D|,,,, denote the restriction of D to
Xhopr» the points in X on which hopr has 0 robust loss with respect to itself. Let D|p, ., be
the restriction to the complement, that is X \ X}, ,,.. The idea is to decompose our analysis into
two separate parts over D|,,,, and D|ho pr- With this in mind, let 4* denote the mass of Dx on
Xhopr» and let OPT'’ denote the robust error of hop over Dl|hypp- Since we are restricting our
attention to classification error, notice that we can decompose O PT as:

OPT = R'eITLLD(hOPT)

= Pr [32' €U(z): hopr(a’) #y]
(zy)~D

=u* Pr (32’ € U(z) : hopr(z') #y] + (1 — p¥) Pr (3’ € U(z) : hopr(z') # y]

(x7y)ND|hOPT (:an)ND‘hOPT

=u* + (1 - p"OPT,

where the last step follows from noting that by definition for all z in the support of D| hoprs POPT
is not constant on U (x). To get a function within £/2 robust loss of OPT, we claim it is sufficient
to prove C(S) contains some h within robust error £/(2(1 — p*)) of hopr over D|p,, .., that is
some h satisfying:

Pr 32 eU(x): h(z") # hopr(2))] < e/(2(1 — u*)). 3)

@~Dx|hopr
This follows from a similar analysis to the above. Namely, letting R(h, x,y) denote the event

R<h7 x,y) =3z’ € U(SII) : h(x’) #*y
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for notational simplicity, we can break down R-erry; p(h) as:

Reermy p(h)=p*  Pr [R(hz,y)]+ (1 —p")  Pr [R(h,z,y)]

("E7y)ND|hOPT (x7y)ND|hOPT

<pt+(l—pf) Pro [R(hz,y)]

(x7y)ND‘hOPT

(x:y)NDlhOPT (:B’y)NDlhOPT

<pt+ (1 —ph) < Pr [R(hopr,z,y)|+  Pr 32’ € U(w) : h(a') # hopT(?C')])

<@+ (1) (OPT’ + Q(Iiu)>

=OPT +¢/2.

It remains to prove that C'(.S) contains a hypothesis satisfying Equation (3) with high probability.
To see this, note that by definition of realizable robust learning, on a labeled sample (S, hopr(S)) ~
D\hopr X hopr of size n(e/(2(1 — p*)), 6/3) our learner will output & satisfying:

Pr [32' €U(x): h(2') # hopr(x)] < e/(2(1 — 7))
e~Dx |hopr
with probability at least 1 —¢/3. To get Equation (3), it is then enough to note that ho pr is constant
on U(z) for all z in the support of Dx |, ., by definition.
The idea is now to draw a large enough unlabeled sample such that with probability at least

1 — 6/3, the restriction to X}, ., is at least this size. By a Chernoff bound, it is enough to draw
n(e/(1=p~),6/3)
1—p*
know p*, we’ll need to draw ¢; max,,c(o,1—] {

points to achieve this for some large enough constant ¢; > 0.>! Since we do not
n(e/(1—p),6/3)

1-p
(if p* > 1 — €, note that any hypothesis gives a valid solution). By a union bound we have that this
overall process succeeds with probability at least 1 — 26/3, and outputting the hypothesis in C'(.S)

with the lowest empirical robust risk then succeeds with probability 1 — § as desired. |

C1

} points to ensure this property holds

Theorem 49 can be extended to many of the generic property generalization results in the main body,
including approximate pseudometric loss, malicious noise, and semi-private learning, though the
exact parameters may be somewhat weaker (e.g. learning over non-binary loss may incur additional
factors and lead to c-agnostic rather than truly agnostic learning).

Appendix F. Partial PAC-Learning

Partial PAC-learning is an extension of the standard PAC model to functions that are only defined
on a certain portion of the input. Originally introduced by Long (2001) and recently developed in
greater depth by Alon, Hanneke, Holzman, and Moran (AHHM) (Alon et al., 2021b), this model
allows for the theoretical formalization of popular data-dependent assumptions such as margin that
have no known analog in the PAC model. Combined with the distribution-family framework, this
captures a significant portion of learning assumptions studied in both theory and practice (e.g. learn-
ing halfspaces with margin and distributional tail bounds). Let’s formalize this model, starting with
partial functions.

21. We've assumed for simplicity that n(e,d) > Q(log(1/4)). This assumption can be removed by including an extra
additive factor of log(1/9).
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Definition 50 (Partial Function) Let X be an instance space and 'Y a label space. A partial func-
tion is a labeling f : X — Y U {x}, where elements labeled “x” are thought as of undefined. The
support of f, denoted supp(f), is the set of elements © € X s.t. f(x) # *.

Standard Partial PAC-learning is defined much like the standard model with the simple modifi-
cation that “x” labels are always considered to be incorrect. As a result, in the realizable case, when
the adversary selects a particular partial function f, their marginal distribution over the instance
space X must be restricted to lying on supp(f). This makes formalizing data-dependent assump-
tions easy. If one wanted to consider halfspaces with margin ~y for instance, one simply labels every
point within  of the decision boundary as “x.” Interestingly, much like the distribution-family set-
ting, Partial-PAC learning falls outside both the uniform convergence and the sample compression
paradigm (Alon et al., 2021b). AHHM also show a dramatic failure of empirical risk minimization:
not only does naively applying an ERM to the partial class fail, it will also fail on any total extension
of the class. Despite the lack of these standard tools, both Long and AHHM were able to show that
distribution-free classification of partial classes is still controlled by VC dimension, and as a result
that the equivalence of realizable and agnostic learnability extends to this setting. In this section,
we’ll discuss how a variant of our reduction shows that this result extends to the distribution-family
model, extended loss function, and to properties beyond agnostic learning.

In the distribution-family model, formalizing realizable learnability requires some slight changes
from the standard model, since we need to make sure our hypotheses are actually realizable over
some distribution in the family (this is automatic in the distribution-free setting). To this end, we
introduce a basic notion of closure for distribution families.

Definition 51 (Partial Closure) Let & be a set of distributions over an instance space X and H
a concept class. Given any concept h, and distribution D over X, let D|, denote the restriction
D] supp(f)- The partial closure of 9 under H is:

Iy =20 |J D
De9,heH
In the realizable model it makes more sense to work with the closure of & than & itself, since
otherwise the class H may contain hypotheses that cannot be realized over any distribution, and
therefore cannot be accessed by the adversary at all. For simplicity, we’ll also restrict our attention to
(multi-class) classification where the label space Y = [m], and recall that the loss of any undefined
point is always 1.

Definition 52 ((Realizable) Distribution-Family Partial PAC Learning) A partial class (2, X, H)
is PAC-learnable in the realizable setting if there exists an algorithm A and function n(e, d) such
that for all €,6 > 0 and distributions D over X X Y satisfying:

1. The marginal Dx € 9y,
2. minpeperrp(h) =0,
then:

Pr [errp(A(S)) > ¢] <9,
S~ Dn(e,0)

where the error errp(h) is standard classification error:

errp(h) = Pr [h(x) #1].
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Agnostic learnability is defined analogously, but since the adversary is unrestricted, there is no need
to move to the closure of 2.

Definition 53 ((Agnostic) Distribution-Family Partial PAC Learning) A partial class (2,X, H)
is PAC-learnable in the agnostic setting if there exists an algorithm A and function n(e,0) such that
forall €, > 0 and distributions D over X X Y satisfying Dx € 9, then:

Pr  [errp(A(S)) > OPT +¢] < 6.
SNDn(s,é)

The issue with our standard reduction strategy for partial functions is that in the agnostic model,
the adversary’s marginal distribution over X might have support outside of supp(hopr), Which
causes LEARNINGTOCOVER to lose its guarantee of outputting a non-uniform cover. This can be
dealt with by a variant of our subsampling technique. If we run LEARNINGTOCOVER over all
subsamples of the unlabeled sample Sy, one of these subsamples must match the support of hopr.
This is in fact the same strategy used for adversarial robustness in Appendix E, but we will include
the algorithm again to make this section self-contained.

Algorithm 6: Agnostic to Realizable Reduction Partial PAC Setting
Input: Realizable Robust PAC-Learner A
Algorithm:

1. Draw an unlabeled sample Sy, and labeled sample S7..

2. Run A over all possible subsets and labelings of Sy to get:

C(S) = {A(S,h(S)) | S C Su,h € H|s}.

3. Return the hypothesis in C'(S) with lowest empirical error over S

Theorem 54 [f (2,X, H) is a realizably PAC-learnable partial class with sample complexity
n(e, ), then Algorithm 6 agnostically learns (2,X, H) in

mu (e, 8) go( max {”<€/<2<1—u>>,6/3>}>

ne0,1—¢] 1—p

unlabeled samples, and

mp(e,6) < O <mU(5a5) + log(l/d))

e2

labeled samples.

Proof The proof is essentially the same as for Theorem 49, but we repeat it here for completeness.
As always, it is enough to prove that C'(S) (from Algorithm 6) contains a hypothesis i’ with error
at most O PT + /2. The key issue with our standard reduction is that the optimal hypothesis hopr
may be undefined on certain examples in the unlabeled sample Si;. By running over all subsamples
of Sy, we in essence simulate pulling samples only from the support of hppr, which is enough to
get the desired guarantee.

46



REALIZABLE LEARNING IS ALL YOU NEED

More formally, let D|s,, ,.,. be the restriction of D to supp(hopr), and D], ... the restriction to
its complement X \ supp(hopr). The idea is to decompose our analysis into two separate parts over
Dlhopy and Dlp, ... With this in mind, let 4* denote the mass of Dy on the undefined portion of
hopr, and let OPT" denote the error of hopr over D|hypr- Since we have restricted our attention
to classification, notice that we can decompose O PT as:

errp(hopr) = Pr [hopr(x) # vl
(x,y)~D

=u*  Prfhopr(z) #yl+ (A —p")  Pr [hopr(z) # Y]

(a;,y ND‘hopT (xry)NDlhopT
=p" +(1—p")OPT.

We’d like to prove that C'(.S) contains a hypothesis A within £/2 error of optimal. We claim it is
sufficient to show that C'(.S) contains a hypothesis within £/(2(1 — p*)) classification distance of
hopr, since:

errp(h) = p* E [h(z) # y] + (1 — p¥) E [h(z) # y]

(@,9)~Dlho pr (€,y)~Dlhgpr

<pt+d-p) Eo [h(z)#y

(z.9)~Dlhg pr

= ' + (1= p")OPT + 2
= OPT +¢/2,

where the third line follows from the fact that 4’ and hopr only differ on a %ﬂ) fraction of

2(1
inputs over D|p, -

It is left to argue that C'(S) contains such a hypothesis h. Recall that on a labeled sample
(S,h(S)) ~ Dlhopr x hopr of size n(e/(2(1 — p*)),0/3), LEARNINGTOCOVER will contain
h that is ¢ /(2(1 — p*))-close to hopr in classification error over Dy, ., With probability at least
1 — 0/3. The idea is then to draw a large enough unlabeled sample such that with probability
at least 1 — /3, the restriction of the sample to D|,, ., is at least this size (since we run over

every subsample, we will always hit this restriction). By a Chernoff bound, it is enough to draw
(e/(2(1=p")),6/3)
1—p*
know ., we’ll need to draw ¢1 max,cjo,1—] {%‘36/3)} points to ensure this property holds
(if u* > 1 — €, note that any hypothesis gives a valid solution). By a union bound we have that this
overall process succeeds with probability at least 1 — 26/3, and outputting the hypothesis in C'(.S)

with the lowest empirical risk then succeeds with probability 1 — ¢ as desired. |

™ points to achieve this for some large enough constant ¢; > 0.2> Since we do not

Like Theorem 49, Theorem 54 can be extended to many of the generic property generalization re-
sults in the main body, including approximate pseudometric loss, malicious noise, and semi-private
learning, though it may experience some degradation of parameters (e.g. c-agnostic rather than truly
agnostic learning) depending on how the loss of “x” values are formalized in these settings.

22. As in Theorem 49, we’ve assumed for simplicity that n(e,d) > Q(log(1/4)). This assumption can be removed by
including an extra additive factor of log(1/9).
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Appendix G. Uniform Stability

Uniform stability, originally introduced by Bousquet and Elisseeff (2002), is a useful algorithmic
property that is closely tied to both generalization and privacy. Informally, an algorithm A is said
to be uniformly stable if for all elements x € X, the probability that A changes its output on = over
neighboring datasets is small.

Definition 55 (Uniform Stability) A learning algorithm is said to be a-uniformly stable if for all
neighboring inputs S, S’ which differ on a single example, all x € X, and ally € Y :

PILA(S)(2) = y] < PrLA(S) (@) = 4] + o

Uniform stability can also be thought of as a form of private prediction (Dwork and Feldman, 2018),
which protects against adversaries who have restricted access to a model only through prediction
responses on individual points (this is often the case in practice since it is common to release APIs
with query access rather than full models). Like semi-privacy, this definition has the benefit of
maintaining practicality in a reasonable range of circumstances while weakening the stringent re-
quirements of standard private learning. Indeed, it is well known that in the distribution-free classi-
fication setting, uniformly stable learning and private prediction are both possible for any class with
finite VC dimension (Shalev-Shwartz et al., 2010; Dwork and Feldman, 2018; Dagan and Feldman,
2020). Unsurprisingly, these previous works (at least those working in the agnostic model), rely on
uniform convergence and uniform covers. We’ll show these can be replaced with a variant of our
standard reduction. The argument is otherwise similar to the proof in Dagan and Feldman (2020).

Theorem 56 Let (2, X, H) be a realizably learnable class with sample complexity n(e,d). Then
there exists an a-uniformly stable, a-semi private algorithm that agnostically learns (9, X, H) in

only
mu(e,6,a) < O <n</26/2>)

(07

unlabeled samples, and

mi(e5,0) < O (10g <nH<n<5,5>>))

min{ae,?}

labeled samples.

Proof The proof boils down to a standard subsampling trick first noted by Shalev-Shwartz et al.
(2010). Instead of drawing our standard unlabeled sample of size n(c/2,0/2), we draw a sample
of size W and run LEARNINGTOCOVER over a random «/2 fraction of the sample. This
ensures that swapping out any individual sample can only effect the result with probability «/2.
Since this subsample is of size n(e/2,d/2), LEARNINGTOCOVER keeps its standard guarantees
and the output C'(Syy) has a hypothesis within /2 of optimal with probability 1 — §/2. We can
now apply the exponential mechanism with privacy parameter /4, which ensures the algorithm is
a/2-uniformly stable with respect to the labeled sample as well. The sample complexity bounds
come from standard analysis of the exponential mechanism and the size of C'(Sy/). Semi-privacy
comes for free due to our use of the exponential mechanism. |

As in previous sections, Theorem 56 can be extended to any of the generic property generalization
results in the main body, including for instance c-approximate pseudometric loss, malicious noise,
and robustness to covariate shift.
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Appendix H. Statistical Query Model

Kearns (1998) statistical query model is a popular modification of PAC learning where the sample
oracle is replaced with the ability to ask noisy statistical questions about the data.

Definition 57 (Realizable SQ-learning) Given a distribution D over X and h € H, let STAT (D, h)
be an oracle which upon input of a function 1 : X x Y — [—1,1] and tolerance T € R>o may
output any estimate of the expectation of 1 up to T error, that is:

STAT(D, h)(¢,7) € Epoplib(a, h(z))] £ 7.

We call a class (2, X, H,l) SQ-learnable if for all € > 0, there exists some tolerance T = 7(¢),
query complexity n(e, ), and an algorithm A such that for all D € 2 and h € H, A achieves ¢
error in at most n(e, 7) oracle calls to ST AT (D, h) with tolerance at worst 7.2

Agnostic learning is then defined analogously where D, h is replaced with a generic distribution
over X X Y whose marginal lies in 2. We can use a basic form of discretization to prove property
generalization in the SQ model.

Theorem 58 Let ¢ be a c-approximate pseudometric and (2, X, H,{) a realizably SQ-learnable
class with query complexity n(e, 7). Then (2,X, H, () is c-agnostically SQ-learnable up to € + T
error in (1/7)&7) statistical queries of tolerance at worst T.

Proof The idea is similar to our discretization in Theorem 24. The realizable SQ-learner A makes
some finite n(e, 7) queries. Let C'4 denote the set of outputs of A when fed every possible com-
bination of responses from the discretized set {—1,—1 + 27,...,1 — 27,1}. Forevery D € &
and h € H, one of these combinations must be a valid query response in the realizable model, so
Cy covers (2,X, H,{). By the same arguments of Theorem 24, C 4 must contains a hypothesis
with error at most ¢ - OPT + <. Since we can directly compute the loss of every element in C 4
up to 7 error in the SQ model simply by querying the loss function, this gives the desired result in
|C 4| = (1/7)™&7) queries. [ |

We note that while our reduction in this model experiences exponential blowup in the number of
queries, this should really be thought of as corresponding to a blow up in run-time instead of “sample
complexity” in the standard sense (which corresponds more closely to 7).

Appendix I. Fairness

Recent years have seen rising interest in an algorithmic property called fairness. Informally, fairness
tries to tackle the issue that “well-performing”™ classifiers in the standard sense may actually be
discriminatory against certain individuals or subgroups. We will consider a form of fair leaning
introduced by Rothblum and Yona (2018) called Probably Approximately Correct and Fair (PACF)
learning. Their definition is based off of a notion of fairness that ensures that similar individuals are
treated similarly with respect to a fixed metric.

23. While we generally think of 7 as being at worst polynomial in &, this is not strictly necessary for the model.
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Definition 59 (Metric Fairness) Let d : X x X — R>q be a similarity measure on X and D a
distribution over X. A classifier h : X — Y, is called (o, y)-fair with respect to d and D if h acts
similarly on most similar individuals:

Pr [|h(z) — h(z")| > d(z,2") + 7] < a.

x,x'~D
We note that the output space Y,,, may differ from the label space Y in general learning problems.

In fact, this definition only really makes sense when the output classifier h is allowed to be real-
valued (as this allows for some flexibility in the |h(x) — h(z')| term). As such, when considering
settings such as binary classification where Y = {0, 1} is discrete, Rothblum and Yona (2018)’s
initial formalization considers returning probabilistic classifiers with Yo, = [0,1]. Here h(z) =
y € [0, 1] is taken to be the probability of the label being 1. The error of a probabilistic classifier &
with respect to any distribution D over X x {0, 1} is then given by its expected ¢; distance:

errp(h) = E_[lh(z) -y

For simplicity we’ll focus in this section on this same regime extended to the distribution-family
model.

In broad strokes, the goal of Fair PAC learning is to output a fair classifier satisfying standard
PAC guarantees. Practically this requires a few modifications. First, since there may be no fair
classifier satisfying these guarantees, we will only require our output to be as good as the best fair
classifier. Second, we will actually allow some slack in the fairness parameters, which Rothblum
and Yona Rothblum and Yona (2018) show is a practical way to ensure that fair learnability remains
possible across a broad range of classes.’*

Definition 60 (PACF-learning Rothblum and Yona (2018)) We say (2, X, H) is (agnostically)
(a, y)-PACF-learnable with respect to a similarity metric d : X x X — Y if there exists an
algorithm A and function n = n(e, €q, €+, 0) such that for all €, e, €~,6 > 0, and distributions D
over X XY suchthat Dx € 9, A(S) satisfies the following guarantees with probability 1 — 6 over
samples S of size n:

1. A(S) is accurate:
errpo(A(S)) < OPT,~ +¢

2. A(S)is (o + €q,y + &) -fair
Here OPT, ., is the optimal error of any (v, y)-fair classifier, that is:

OPT,, = min {errp,(h)},

d
heHDX,a,b

and
Hld)X%b ={h € H : his (a,b)-fair with respect to d and Dx }

24. We note that our presentation of this definition differs slightly from Rothblum and Yona (2018). Their (c, y)-PACF-
learnability formally corresponds to (o — 4,7 — €+ )-PACF-learnability in our version.
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Realizable learnability is defined similarly, where the adversary is constrained to picking distribu-
tions which have 0 error with respect to some (c, y)-fair classifier in H. We show that property
generalization holds for the PACF model.

Theorem 61 (Agnostic — Realizable (PACF Setting)) Let (2, X, H) be any class that is realiz-
ably (cv,7y)-PACF learnable with sample complexity n(e,eq, €~,6). Then (2, X, H) is agnostically
(v, y)-fair-PAC learnable in only

my (€, €as€v,0) <n(e/2,eq,64,0/2)

unlabeled samples, and

ML, £y 1,8) < O <log(HH(n(€/2,5a,€7,5/2))) + 10g(1/5)>

22
labeled samples.

Proof The key observation is that the definition of fairness depends only on the classifier h and
the marginal distribution Dx. Let hopr be the hypothesis achieving the minimum error over
Hp on~- By the above observation, with probability 1 — ¢ the hypothesis set C'(Syy) returned by
LEARNINGTOCOVER contains an (c + €4, + €+ )-fair h satisfying:

Eenpyx[In(z) = hopr(z)|] < &/2.

Since ¢; error is a metric (and therefore satisfies the triangle inequality), we can use our argument
for c-pseudometric loss functions from Theorem 24 to argue that choosing the lowest empirical risk
(av+eq, v+, )-fair classifier in C(Syy) with respect to a sufficiently large labeled sample Sy, gives
the desired learner. |

With care, this result can be extended to a broader range of loss functions as well as to other finitely-
satisfiable properties covered in this work.

Appendix J. Notions of Coverability

In this section we discuss the connection between non-uniform covers and several previous notions
of coverability used in various learning applications. For simplicity, we’ll restrict our attention to
covering with respect to standard classification distance, that is given a distribution D and hypothe-
ses h and h’ over some instance space X:

dp(h, 1) = P [h(x) # K (2)].
€T~
To start, let’s recall the basic notion of an e-cover specified to this measure for simplicity.

Definition 62 (c-cover) Let X be an instance space, Y a label space, and let Ly y denote the set
of all labelings ¢ : X — Y. A set C C Ly y is said to form an e-cover for (D, X, H) if for every
hypothesis h € H, there exists ¢ € C such that

dp(c,h) <e.

C'is called proper if C C H.
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Finite e-covers are exceedingly useful in learning theory. As discussed in Section 5, a common
strategy in the literature is to use unlabeled samples to construct an e-cover with high probability
(Balcan and Blum, 2010; Hanneke and Yang, 2015; Alon et al., 2019a; Bassily et al., 2020a). This
results in a distribution over potential covers we call a uniform (e, §)-cover.

Definition 63 (Uniform (¢, §)-cover) Let X be an instance space, Y a label space, and let Lx y
denote the set of all labelings ¢ : X — Y. A distribution D¢ over the power set P(Lx y ) is said to
form a uniform (e, 6)-cover for (D, X, H) if:

Pr [Cisan e-cover for (D, X, H)] > 1 — 4.
C~De

Dc is called proper if its support lies entirely in H.

In this work, we introduce a weaker non-uniform variant of this notion where each h has an
individual guarantee of being covered by the distribution, but it is not necessarily the case that a
sample will cover all h € H simultaneously.

Definition 64 (Non-Uniform (e, §)-cover) Let X be an instance space, Y a label space, and let
Lx y denote the set of all labelings ¢ : X — Y. A distribution D¢ over the power set P(Lx y) is
said to form a non-uniform (e, d)-cover for (D, X, H) if for every fixed hypothesis h € H,

Pr [Cis an e-cover for (D, X,{h})] > 1.
C~De

Dc is called proper if its support lies entirely in H.

In the context of learning, we are usually interested not just in the existence of these covers, but
in the more challenging problem of constructing them from a small number of unlabeled samples.
In other words, given a class (2, X, H), we’d like to know how many unlabeled samples from an
adversarially chosen distribution D € Z are necessary to build a uniform (or non-uniform) (e, 9)-
cover for (D, X, H). In Appendix C.3, we saw that the ability to construct a non-uniform (e, J)-

log(1/9)

cover from O <f> samples was crucial to give a semi-private learner with optimal public

sample complexity. This improved over recent work of Alon, Bassily, and Moran (ABM) (Alon
etal., 2019a), who showed that it is possible to build a uniform (e, §)-cover in O (M>

3
samples.

It is interesting to ask whether non-uniformity is really necessary here, or whether ABM’s analy-
sis is simply sub-optimal. We’ll show that the former is true, at least in the proper distribution-family
setting: the log(1/¢) gap between these models is necessary and uniform covers cannot be used to
build optimal semi-private learners.

Theorem 65 (Separation of Uniform and Non-Uniform Covers) There exists an instance space
X, hypothesis class H, and family of distributions & such that for any sufficiently small € > 0, the
following statements holds:

1. Any algorithm which returns a finite proper uniform (¢,1/3)-cover for (2, X, H) requires at
least (1/e -log(1/¢)) samples.

2. There exists an algorithm which returns a finite proper non-uniform (e, §)-cover for (2, X, H)
in O(log(1/6)/e) samples.
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Proof Let the instance space X = N and H be the class of indicators along with the all 0’s function,
thatis H = {h; : i € N} U{ho} where h;(z) = 1{x = i} and hq is 0 everywhere. We consider the
family of distribution Z = {Z,, \; }n k>0 given by k-sets of [n] where

D ={uif(T) : T C [n] and |T| = k},

where unif(7") is a uniform distribution over 7'.

We start with the first claim, that building a bounded uniform (e, 1/2)-cover needs at least
Q(1/elog(1/e)) samples. More formally, for any error parameter ¢ > 0 and size bound m =
m(e) € N, let k = [1/(2¢)]. We will show that for any algorithm A on klog(k) samples that
outputs at most m hypotheses, .A must fail to output an e-cover with probability at least 1/2.

Let n > m, k be some natural number to be fixed later and consider the family of distributions
Dn k- By Yao’s minimax principle, it is sufficient to show that there exists a distribution over the
elements in %, j, such that any deterministic algorithm over klog(k) samples outputting a set of
(at most) m hypotheses fails to give a proper e-cover with probability 1/2. We claim that taking
the uniform distribution over %, ;, suffices. To formalize this, it is useful to observe the following
claim.

Claim 66 Any subset of hypotheses C C H of size m can be a proper e-cover for H under at most
(7:) distributions in D, .

Let’s prove the result under this assumption. The key observation is that by standard lower
bounds on the coupon collector problem, a sample S of k log(k) points from any unif(7") € 2,
will not include unif(7")’s entire support with probability at least 1/2. With this in mind, assume
that the input sample S contains only supp(S) = j < k = supp(unif(7")) elements. As a result,
there are (Z:g) consistent distributions with .S, and by Claim 66, A(S) is a proper e-cover for at
most (7;‘) of them. Since S is equally likely to have been sampled from any of these distributions,
the probability that A(S) is a proper e-cover is at most:

n—j\ _ (m
Pr[A fails given supp(S) = j < k] > (k_ZT)L_J)(k)
b

Taking n sufficiently larger than m and k, we can make this probability as close to 1 as desired for
any 0 < j < k. Finally, since samples of this form occur with probability at least 1/2, the algorithm
fails with probability at least 1/3 as desired. It is left to prove Claim 66.

Proof [Proof of Claim 66] Notice that for any distribution unif(7") € %, x, any ¢ € T and any
J # i dunigcr) (hi, hyj) > 2¢. Let C be any proper e-cover of H under distribution unif(7"). Then,
by the above argument, it must contain {h; : ¢ € T'}. Since |T'| = k, C can be a proper e-cover of
H under at most (‘?) distributions in Z,, j. |

We now move to proving that a proper non-uniform (e, §)-cover can be built in only O(log(1/6) /<)
samples. This follows from the fact that for any n > k and distribution unif(7') € Z,, , eachi € T
is in the random sample S with probability 1 — §. Since each h; for j ¢ T is covered by ho,
outputting {h; : i € S} U {ho} generates a proper non-uniform (&, §)-cover. [ |

The construction in Theorem 65 can easily be modified to give a class with the same gap which is
not privately learnable (say by embedding a single copy of a threshold over [0, 1]). Since any such
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class requires at least Q(%) public samples to semi-privately learn by Theorem 36,2> Theorem 65
then provides a separation between using uniform and non-uniform covers in semi-private learning:
the former provably requires an extra log factor, while the latter matches the lower bound exactly.
Unfortunately, our proof of this result only holds in the proper setting, as Claim 66 fails when
improper hypotheses are allowed. We conjecture that this is not an inherent barrier: the separation
should continue to hold in the improper case, albeit with some different analysis.

We have now seen a weak separation between uniform and non-uniform covers, but one might
reasonably wonder whether a much stronger separation is possible. In particular, all previous con-
structions of uniform covers use uniform convergence, but there exist simple examples of learnable
classes in the distribution-family model that fail this property: do such classes provide an example
of objects which are non-uniformly coverable but not uniformly coverable? Surprisingly, the an-
swer is no! It turns out that an algorithm for non-uniform covering can always be used to construct
a uniform covering without too much overhead. Moreover, we’ll see that the log(1/¢) gap is tight
when (X, H) has finite VC dimension.

To prove this, it will actually be useful to make a brief aside and introduce another closely
related notion of covering called fractional covers. These objects are essentially a form of non-
uniform covering which output a single hypothesis instead of a set of them.

Definition 67 (Fractional cover) Let X be an instance space, Y a label space, and let L x y denote
the set of all labelings ¢ : X — Y. A distribution D¢ over Lx y is said to form a fractional (e, p)-
cover for a hypothesis class H for (D, X, H) if for any fixed h € H, a sample from D¢ covers h
with probability p:
Pr [d(c,h) <e] > p.
c~D¢

Fractional covers are closely connected to non-uniform covers. In fact, one can easily move between
the two by sampling or subsampling.

Proposition 68 (Non-uniform cover <= Fractional cover) Let (D, X, H) be any class, Cfyc
a fractional (g, p)-cover, and C,., a non-uniform (¢,1/2)-cover. Then the following hold:

1. Drawing logy /(1_p(1/6) samples from Cyqc gives a non-uniform (g, §)-cover.
2. Choosing a random hypothesis from C,., gives a fractional (g,1/2|C|)-cover.

Proof Both statements are essentially immediate from definition. For any fixed h € H, if we draw
M samples from Ciy,c, the probability we fail to cover h is (1—p)™, so setting M = log, J(1—p)(1/6)
gives the desired non-uniform cover. On the other hand, for any fixed h € H, a sample from
C ~ Cy contains ¢ e-close to h with probability 1/2. Outputting a uniformly random element of
C then gives an element within ¢ of h with probability 1/2|C| as desired. |

It will also be useful to note a classical relation between covers and fractional covers.

Lemma 69 If there exists a fractional (e, p)-cover for (D, X, H), then there exists a 2e-cover of
size 1/p.

25. While Alon, Bassily, and Moran only state this result for the distribution-free setting, it holds in the distribution-
family model as well.
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Proof This follows from classical packing-covering duality. The existence of a fractional (e, p)-
cover implies there cannot exist a 2e-packing of size greater than 1/p (that is, a set of more than 1/p
hypotheses in H that are pairwise 2e-separated with respect to D). By packing-covering duality,
this implies the existence of a 2e-cover of size [1/p] + 1. [ |

With this in hand, let’s show that uniform covers can be constructed for any realizably learnable
class, regardless of whether we have uniform convergence.

Theorem 70 (Realizable learning — Uniform cover) Ler (%, X, H) be realizably PAC-learnable
with sample complexity n(e, 0). Then it is possible to construct a uniform (g, 6)-cover for (2, X, H)

inn(e/2,8") samples where 6’ = O m .

Proof We’ll start by proving a slightly more general fact. If for every D € 2, (D, X, H) has a
proper (£/2)-cover Cp of size at most C' = C'(¢/2), then it is possible to construct a uniform (g, )-
cover in n(¢/2,6/C) samples. This is essentially immediate from Lemma 17, which states that
running LEARNINGTOCOVER over a sample of size n(¢/2,/C') gives a non-uniform (¢/2,6/C)-
cover. Union bounding over Cp then gives that a sample from the non-uniform cover (£/2)-covers
Cp with probability at least 1 — §. Since Cp is itself an (¢/2)-cover, this implies that the entire
class H e-covered by the sample with probability at least 1 — § as desired.

It remains to show that forevery D € 2, (D, X, H) has a proper (¢/2)-cover of size O(Il(n(c/2,1/2))).
This follows from combining Lemma 68 and Lemma 69. In particular, Lemma 17 implies that run-
ning LEARNINGTOCOVER over a sample of size n(s/2,1/2) produces a non-uniform (¢/2,1/2)-
cover of size at most I (n(e/2,1/2)). Lemma 68 states that subsampling from this cover gives a
fractional (¢/2,1/(2I1g(n(e/2,1/2))))-cover, which in turn implies the existence of a (¢/2)-cover
of size O(Ilg(n(e/2,1/2))) as desired. We note that this last argument is similar to an observation
made in Benedek and Itai (1991) seminal work on the distribution-dependent model. |

When (X, H) has finite VC-dimension d, note that Theorem 70 exactly matches the lower bound
exhibited in Theorem 65 as the required number of samples for a uniform (e, §)-cover becomes:

dlog(1/e) —|—log(1/5)) '

3

n(e/2,8') < O <

This also matches the bound given by ABM (Alon et al., 2019a) using uniform convergence.
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